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Abstract

Visual cryptography schemes have been introduced in 1994 by Naor and Shamir. Their idea was to encode
a secret image into n shadow images and to give exactly one such shadow image to each member of a group
P of n persons. Whereas most work in recent years has been done concerning the problem of qualified
and forbidden subsets of P or the question of contrast optimizing, in this paper we study extended visual
cryptography schemes, i.e., shared secret systems where any subset of P shares its own secret.
© 2007 Published by Elsevier Inc.

1. Introduction

A visual cryptography scheme is given by the following set up. Let P be a group of n persons
where each participant is given exactly one image (in fact it does not have to be a real image)
xeroxed onto a transparency. Stacking all the transparencies together, a secret image is recovered.
So in this sense the participants share a secret. This set up can be generalized to the case where some
subsets X ⊆ P (which are usually called qualified subsets of P ) can recover the secret by stacking
their transparencies together, whereas other, forbidden subsets cannot. Such structures, called access
structures, have been examined very well. In [5] Naor and Shamir analysed so-called (k , n)-threshold
visual cryptography schemes, i.e., schemes where a subset is qualified if and only if it consists of at
least k participants. In [1] and [2] their idea was extended to general access structures.
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Most work concerning this subject focuses on two aspects, either the pixel expansion, i.e.,
the number of subpixels which is needed on the different levels to represent a white or a
black pixel, or the contrast, i.e., the difference of subpixels representing a white or a black
pixel.

As a further generalization, the existence of a secret image can be concealed by displaying a differ-
ent image on each transparency. Naor and Shamir [5] solved this problem for the (2, 2)-threshold
scheme. In [3] this problem was considered for a general access structure. In [4] Droste made a
further generalization: stacking the transparencies of each participant together, a secret image is
recovered, and there is in fact only this single way to recover it. But moreover, the participants
of any arbitrary subset X of P share a secret, too. Hence we have 2n − 1 more or less secret im-
ages.

We start by briefly recalling the work done by Droste and prove that the scheme proposed in
[4] has minimal pixel expansion. Then we prove a trade-off theorem between the contrast of the
different images.

Finally we give new constructions for generalized visual cryptography schemes with less than
2n − 1 subsets in order to achieve a smaller pixel expansion and a better contrast.

2. Preliminaries

A visual cryptography scheme is based on the fact that each pixel of an image is divided into
a certain number m of subpixels. This number m is called the pixel expansion of the image. If the
number of black subpixels needed to represent a white pixel in an image is l, and the number of
black subpixels needed to represent a black pixel is h, then we call the number � = h−l

m the contrast
of the image.

An extended visual cryptography scheme consists of n transparencies �1, . . . , �n and 2n − 1 dif-
ferent images (one for each non-empty subset T ⊆ {1, . . . , n}). We denote by IT the image which is
recovered by stacking together exactly the transparencies �i for i ∈ T . We generalize this as follows.
For any non-empty subset S of the powerset P({1, . . . , n})\{∅} an S-extended visual cryptography
scheme consists of n transparencies �1, . . . , �n with the following property: let T ∈ S. If we stack
together the transparencies �i for i ∈ T , then we recover the image IT for which each white pixel is
represented by lT black subpixels and each black pixel is represented by hT black subpixels. Fur-
thermore, for T ′ not contained in T , the distribution of subpixels on the transparencies �i with i ∈ T
is independent of the image IT ′ , i.e., the information of the transparencies �i with i ∈ T does not
suffice to recover the image IT ′ .

More formally, we define an S-extended visual cryptography scheme as follows. (See also [5] for
“usual” visual cryptography schemes and [4] for S-extended visual cryptography schemes.)

Definition 2.1. Let S ⊆ P({1, . . . , n})\{∅}.
An S-extended visual cryptography scheme is described by multisets CT of n× m Boolean ma-

trices for T ⊆ S. (For given T each Boolean matrix in CT describes the colors of the subpixels on
each transparency, where the corresponding pixel in image IT is black if and only if T ∈ T. For
encoding, each matrix in CT is chosen with the same probability.)

The multisets CT must satisfy the following conditions:
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(1) Let B ∈ CT. For {i1, . . . , iq} ∈ S the Hamming weight of the OR of the rows i1, . . . , iq of B is
h{i1,...,iq} if {i1, . . . , iq} ∈ T and l{i1,...,iq} otherwise, i.e.,

wHam((bi1,1, . . . , bi1,m) OR . . . OR (biq,1, . . . , biq,m)) =
{
h{i1,...,iq} if {i1, . . . , iq} ∈ T

l{i1,...,iq} if {i1, . . . , iq} /∈ T
.

(This means stacking the transparencies �i1 , . . . , �iq together we recover the image I{i1,...,iq}.)
(2) For {i1, . . . , iq} ⊆ {1, . . . , n} and T, T′ ⊆ S with T ∩ P({i1, . . . , iq}) = T′ ∩ P({i1, . . . , iq})we ob-

tain the same multisets if we restrict the matrices in CT and CT′
, respectively, to the rows

i1, . . . , iq.
(This condition guarantees the security of the different images.)

If S = P({1, . . . , n})\{∅} we simply call this an extended visual cryptography scheme.

In this paper, we are primarily interested in the minimal pixel expansionM(S) of an S-extended
visual cryptography scheme, but we also consider the optimal contrast values.

In [4] Droste gives the following construction for S-extended visual cryptography schemes using
(k , k)-threshold schemes.

Construction 2.2. For each T ∈ S we take 2|T |−1 subpixels and use them to construct a (|T |, |T |)-
threshold visual cryptography scheme. If i /∈ T the corresponding subpixels on �i will be black. The
S-extended visual cryptography scheme is achieved by putting all these schemes together. Since we
shall not need the details of this construction in the sequel, we omit a formal definition and refer to
[4].

The scheme obtained by this construction has pixel expansion

m =
∑
T∈S

2|T |−1

and the contrast of all encoded images is 1
m . Especially this proves

M(S) �
∑
T∈S

2|T |−1.

We shall prove in the following sections that this construction is optimal if S = P({1, . . . , n})\{∅}
but it is not optimal for general S.

3. Pixel expansion and contrast for the extended scheme

It is sufficient to consider the case of one single pixel. For a given non-empty subset T ⊆ {1, . . . , n}
let xT be the number of subpixels which are black exactly on the transparencies i for i ∈ T and
let us denote by x the vector of all the xT . For ∅ /= S ⊆ {1, . . . , n} let rS be the number of black
subpixels needed for the image IS . Formally we set r∅ = 0. We write r for the vector of all the rS
with ∅ /= S ⊆ {1, . . . , n}.
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This leads to the linear equation system given by

Mx = r (1)

where M = (mS ,T )∅ /=S ,T⊆{1,...,n} is defined by mS ,T = 1 if S ∩ T /= ∅ and mS ,T = 0 otherwise.
We note that by (1) an S-extended visual cryptography scheme is completely described. For

example

Example 3.1. Let S = P({1, 2, 3})\{∅}. For a construction of an S-extended visual cryptography
scheme we choose the following values for hT and lT :

h{1,2,3} = 13 l{1,2,3} = 12
h{1,2} = h{1,3} = h{2,3} = 12 l{1,2} = l{1,3} = l{2,3} = 11
h{1} = h{2} = h{3} = 9 l{1} = l{2} = l{3} = 8.

Now suppose we want to encode a black pixel on the images I{1}, I{1,2}, I{2,3} and I{1,2,3} and a white
pixel on all other images. Eq. (1) leads to




1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 1 0 1 1 1
0 0 0 1 1 1 1
1 0 1 1 1 1 1
0 1 1 1 1 1 1
1 1 1 1 1 1 1







x{1}
x{2}
x{1,2}
x{3}
x{1,3}
x{2,3}
x{1,2,3}




=




9
8
12
8
11
12
13



.

(The unusual ordering of the variables will become clear in the induction of Lemma 3.2.)
We solve this equation and find that x{1} = x{3} = x{2,3} = 1, x{2} = x{1,2} = 2 and x{1,3} = x{1,2,3} =

3. We distribute these black subpixels at random to satisfy the security condition (2) in Definition
2.1.

Solving the corresponding equations we can obtain the distribution of black subpixels for every
possible combination of black and white pixels on the images, i.e., we have a complete description
of an S-extended visual cryptography scheme with the given contrast values.

Of course not every solution of Eq. (1) results in a visual cryptography scheme. We have the
additional condition that the variables xT have to be non-negative integers. Thus we can view
the construction of an S-extended visual cryptography scheme as an integral linear programming
problem. In the next lemma, we will prove that for integral values hT and lT the solution variables
xT will be automatically integral. Lemma 3.3 helps us to simplify the linear programming problem.

Lemma 3.2. Eq. (1) has a unique integral solution.

Proof . We prove this by induction on the number n of transparencies.
Sort the variables xT by the following order: first we enumerate all subsets that do not contain n.

The next subset is the set {n}. Then the other subsets containing n follow.
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Writing M1 = (1), we obtain the following recursion formula which follows directly from the
definition:

Mn+1 =

Mn 0 1,n Mn

01,n 1 11,n

Mn 1n,1 1n,n


 .

Here the index denotes the number of transparencies. 0i,j or 1i,j , respectively, denotes an
(2i − 1)× (2j − 1) matrix with all entries 0 or 1, respectively.

With M−1
1 = (1) we obtain the following recursion formula forM−1

n :

M−1
n+1 =


 0n,n −M−1

n 1n,1 M−1
n

−11,nM
−1
n 0 11,nM

−1
n

M−1
n M−1

n 1n,1 −M−1
n


 .

Thus M is invertible, i.e., Eq. (1) has a unique solution.
We notice that the components ofM−1

n 1n,1 are only −1, 0 and 1 and that 11,nM
−1
n 1n,1 = 1. Then the

formula can be proved by induction.
Thus M−1

n contains only the entries −1, 0 and 1 and therefore the solution of Eq. (1) is
integral. �
Lemma 3.3. The solution of (1) is non-negative if and only if for each S�{1, . . . , n} the condition∑

S⊆T⊆{1,...,n}
(−1)|S|+|T |rT � 0 (2)

is satisfied.

Proof . We claim that x = (xS) with

xS =
∑

{1,...,n}\S⊆T⊆{1,...,n}
(−1)|T |+|S|+n+1rT (3)

solves Eq. (1) and due to Lemma 3.2 this solution is unique.
To prove this we substitute x in Eq. (1). For ∅ /= U ⊆ {1, . . . , n} the line of the system of linear

equations corresponding to U yields

∑
∅ /=S⊆{1,...,n}

mU, SxS =
∑

S⊆{1,...,n}
mU, S

∑
{1,...,n}\S⊆T⊆{1,...,n}

(−1)|T |+|S|+n+1rT

=
∑

T⊆{1,...,n}

∑
{1,...,n}\T⊆S⊆{1,...,n}

(−1)|T |+|S|+n+1rT mU, S (4)

=
∑

∅ /=T⊆{1,...,n}
(−1)|T |rT

∑
{1,...,n}\T⊆S⊆{1,...,n}

(−1)|S|+n+1mU, S .
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If T �⊆ U we choose t ∈ T \U and obtain

∑
{1,...,n}\T⊆S⊆{1,...,n}

(−1)|S|+n+1mU, S

=
∑

{1,...,n}\{T∪{t}}⊆S⊆{1,...,n}\{t}
(−1)|S|+n+1mU, S + (−1)|S|+1+n+1mU,S∪{t} = 0

since mU, S = mU,S∪{t}.
If T�U and T /= ∅ we find

∑
{1,...,n}\T⊆S⊆{1,...,n}

(−1)|S|+n+1mU, S =
∑

{1,...,n}\T⊆S⊆{1,...,n}
(−1)|S|+n+1 = 0

since mU, S = 1.
But for ∅ /= T = U we find

∑
{1,...,n}\T⊆S⊆{1,...,n}

(−1)|S|+n+1mU, S =
∑

{1,...,n}\T⊆S⊆{1,...,n}
(−1)|S|+n+1 − (−1)|{1,...,n}\U |+n+1

= (−1)|{1,...,n}\U |+n

since mU, S = 1 for S �⊆ {1, . . . , n}\U .
Thus Eq. (4) yields

∑
∅ /=S⊆{1,...,n}

mU, SxS =
∑

∅ /=T⊆{1,...,n}
(−1)|T |rT

∑
{1,...,n}\T⊆S⊆{1,...,n}

(−1)|S|+n+1mU, S

= (−1)|U |rU (−1)|{1,...,n}\U |+n

= (−1)2nrU = rU .

This proves that x is a solution of Eq. (1) and the lemma follows. �
Now we can solve (2) to derive bounds for the pixel expansion and the contrast.

Theorem 3.4. An extended visual cryptography scheme with n transparencies needs at least 1
2 (3

n − 1)
subpixels. Hence Construction 2.2 is optimal with respect to the pixel expansion, i.e.,

M(P({1, . . . , n})\{∅}) = 1
2
(3n − 1).

Proof . In left hand side of inequality (2) we have the sum over rT for |S| + |T | even and over −rT
for |S| + |T | odd. This becomes maximal if all rT with |S| + |T | even are as large as possible (i.e.,
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equal hT ) and all rt with |S| + |T | odd are as small as possible (i.e., equal lT ). Thus an extended
visual cryptography scheme exists if and only if

∑
S ⊆ T ⊆ {1, . . . , n}
|S| ≡ |T | mod 2

hT �
∑

S ⊆ T ⊆ {1, . . . , n}
|S| �≡ |T | mod 2

lT (5)

holds for each S�{1, . . . , n}.
For each ∅ /= T ⊆ {1, . . . , n} let �T = hT − lT . Our goal is to prove that

m � h{1,...,n} �
∑

∅ /=T⊆{1,...,n}
�T 2|T |−1. (6)

As the first step in this proof we show that, for given values �T (for ∅ /= T ⊆ {1, . . . , n}), the number
h{1,...,n} is minimal if for all S�{1, . . . , n} inequality (5) is satisfied with equality.

To this end, suppose
∑

S ⊆ T ⊆ {1, . . . , n}
|S| ≡ |T | mod 2

hT <
∑

S ⊆ T ⊆ {1, . . . , n}
|S| �≡ |T | mod 2

lT

for some S�{1, . . . , n}. But the contrast levels

h̄T =
{
hT for T ⊆ S

hT − 1 otherwise

and

l̄T =
{
lT for T ⊆ S

lT − 1 otherwise

satisfy (5), since

|{T | S ⊆ T ⊆ {1, . . . , n}; |T | ≡ |S| mod 2}| = |{T | S ⊆ T ⊆ {1, . . . , n}; |T | �≡ |S|mod 2}|.

This proves that if inequality (5) is not satisfied with equality we can find smaller values for
the parameters lT and hT which also satisfy (5). Thus in an optimal scheme (i.e., a scheme with
the smallest possible values for lT and hT ) inequality (5) is satisfied with equality for each
T�{1, . . . , n}.

Next we claim that

hT =
∑

∅ /=T ′⊆{1,...,n}
�T ′2|T ′|−1 −

∑
T�T ′⊆{1,...,n}

�T ′2|T ′|−1−|T | (7)

for ∅ /= S ⊆ {1, . . . , n} satisfy (5) with equality.
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To prove this we have to show that

∑
S ⊆ T ⊆ {1, . . . , n}
|S| ≡ |T | mod 2


 ∑

∅ /=T ′⊆{1,...,n}
�T ′2|T ′|−1 −

∑
T�T ′⊆{1,...,n}

�T ′2|T ′|−1−|T |



=
∑

S ⊆ T ⊆ {1, . . . , n}
|S| �≡ |T | mod 2





 ∑

∅ /=T ′⊆{1,...,n}
�T ′2|T ′|−1 −

∑
T�T ′⊆{1,...,n}

�T ′2|T ′|−1−|T |

 − �T




or equivalently

∑
∅ /=T ′⊆{1,...,n}

�T ′




∑
S ⊆ T ⊆ {1, . . . , n}
|S| ≡ |T | mod 2

2|T ′|−1 −
∑

S ⊆ T�T ′
|S| ≡ |T | mod 2

2|T ′|−1−|T |




=
∑

∅ /=T ′⊆{1,...,n}
�T ′




∑
S ⊆ T ⊆ {1, . . . , n}
|S| �≡ |T | mod 2

2|T ′|−1 −
∑

S ⊆ T�T ′
|S| �≡ |T | mod 2

2|T ′|−1−|T |


 + �T ′

(−1)|T ′|+|S| − 1
2

.

(Note that the last summand is equal to −�T ′ for |T ′| �≡ |S| mod 2 and equal to 0 otherwise.)
Comparing coefficients for each �T ′ we obtain

2n−|S|−1 · 2|T ′|−1 −
∑

S ⊆ T�T ′
|S| ≡ |T | mod 2

2|T ′|−1−|T |

= 2n−|S|−1 · 2|T ′|−1 −




∑
S ⊆ T�T ′

|S| �≡ |T | mod 2

2|T ′|−1−|T |


 + (−1)|T ′|+|S| − 1

2
, (8)

but this is true since

(−1)|T ′|−|S| = (1 − 2)|T ′|−|S|

=
|T ′|−|S|∑
i=0

( |T ′| − |S|
i

)
(−2)i
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=
|T ′|−|S|∑
i = 0
i even

( |T ′| − |S|
i

)
2i −

|T ′|−|S|∑
i = 0
i odd

( |T ′| − |S|
i

)
2i

=
∑

S ⊆ T ⊆ T ′
|T ′| ≡ |T | mod 2

2|T ′|−|T | −
∑

S ⊆ T ⊆ T ′
|T ′| �≡ |T | mod 2

2|T ′|−|T |, since
( |T ′| − |S|

i

)
=

∑
S ⊆ T ⊆ T ′
|T | − |S| = i

1.

Thus

∑
S ⊆ T ⊆ T ′

|T ′| ≡ |T | mod 2

2|T ′|−|T | =




∑
S ⊆ T ⊆ T ′

|T ′| �≡ |T | mod 2

2|T ′|−|T |


 + (−1)|T ′|−|S|

and therefore



∑
S ⊆ T�T ′

|T ′| ≡ |T | mod 2

2|T ′|−|T |


 + 1 =




∑
S ⊆ T�T ′

|T ′| �≡ |T | mod 2

2|T ′|−|T |


 + (−1)|T ′|+|S|.

(Note that (−1)|T ′|−|S| = (−1)|T ′|+|S|.) Division by 2 gives




∑
S ⊆ T�T ′

|T ′| ≡ |T | mod 2

2|T ′|−1−|T |


 =




∑
S ⊆ T�T ′

|T ′| �≡ |T | mod 2

2|T ′|−1−|T |


 + (−1)|T ′|+|S| − 1

2

as required for Eq. (8).
Suppose that h̄T (for ∅ /= T ⊆ {1, . . . , n}) satisfy (5) with equality, too.
If inequality (5) is satisfied with equality for all a subsetsS , we can solve these equations recursively

and get

hS = h{1,...,n} + FS(�T | T ⊆ {1, . . . , n}),

for some function FS . Since inequality (5) is satisfied with equality for the contrast values hT and
h′T this yields

h̄S = hS + h̄{1,...,n} − h{1,...,n}.

But forS = ∅ inequality (5) yields h̄{1,...,n} = h{1,...,n} and therefore h̄T = hT for all∅ /= T ⊆ {1, . . . , n}.
This proves that (7) is the only solution of (5) that satisfies all inequalities with equality.
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Thus we find

m � h{1,...,n} �
∑

∅ /=T ′⊆{1,...,n}
�T ′2|T ′|−1 �

∑
∅ /=T ′⊆{1,...,n}

2|T ′|−1 = 1
2
(3n − 1). �

Remark 3.5. Note that in no equation in the proof of Theorem 3.4 we have a variable lT and a
variable hS with |S| = |T |. Thus we have proven even the following theorem:

Let S = P({1, . . . , n})\{∅}. Assume that the images IS and IT are equal whenever |S| = |T |. Then
the minimal pixel expansion needed to achieve that S-extended visual cryptography scheme is
1
2 (3

n − 1).

Next we prove a trade-off between the contrast of the different images.

Theorem 3.6. For ∅ /= T ⊆ {1, . . . , n} let �T = hT−lT
m be the contrast of the image IT . The contrast

levels of the images satisfy∑
∅ /=T⊆{1,...,n}

2|T |−1�T � 1. (9)

Further let �′
T � 0 (for ∅ /= T ⊆ {1, . . . , n}) satisfy (9). Then for every ε > 0 there exists a general-

ized visual cryptography scheme with contrast levels �T (for ∅ /= T ⊆ {1, . . . , n}) where |�T − �′
T | < ε

for non-empty subsets T of {1, . . . , n}.
Proof . Let �T = hT − lT . By (7) we conclude

m � h{1,...,n} �
∑

∅ /=T⊆{1,...,n}
�T 2|T |−1

and therefore
∑

∅ /=T⊆{1,...,n}
2|T |−1�T = 1

m

∑
∅ /=T⊆{1,...,n}

�T 2|T |−1 � 1.

Now assume (9) holds for �′
T . Then we choose �T ∈ � and M ∈ � with

0 � �′
T − �T

M
� ε.

By (7) we know that there exists an extended visual cryptography scheme with contrast levels
hT − lT = �T and minimal pixel expansion

m =
∑

∅ /=T⊆{1,...,n}
2|T |−1�T .

Since �T
M � �′

T and �′
T satisfy (9) we find m < M .

If we add useless subpixels (e.g., subpixels that are always black) to the extended visual cryp-
tography scheme constructed above, we obtain a scheme with contrast �T = �T

M . This proves the
theorem. �
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4. Pixel expansion and contrast for the S-extended scheme

In the previous section, we proved that Construction 2.2 is optimal if S = P({1, . . . , n})\{∅}.
Let now S be arbitrary. If we set �T = 1 for T ∈ S and �T = 0 for T /∈ S in Eq. (7) we obtain

the same contrast values as in Construction 2.2. In this sense Construction 2.2 can be viewed as a
(P({1, . . . , n})\{∅})-extended visual cryptography scheme with degenerated contrast values.

Now fix a subset {i1, . . . , ik} of {1, . . . , n} and assume {i1, . . . , ik} /∈ S. The security condition (Con-
dition (2) in Definition 2.1) assures that the gray level of the stack of the transparencies i1, . . . , ik
depends only on the images IS ′ with S ′ ⊂ {i1, . . . , ik}. Now assume that no subset S ′ of {i1, . . . , ik} is
in S. In this case the gray level of the stack of the transparencies i1, . . . , ik is entirely independent of
the chosen images and hence constant. Thus we have proven.

Theorem 4.1. Let S ⊆ P({1, . . . , n})\{∅} satisfy that S /∈ S implies S ′ /∈ S for each subset S ′ of S.
Then an S-extended visual cryptography scheme must be realized as a (P({1, . . . , n})\{∅})-extended

visual cryptography scheme with degenerated contrast values.
In particular Theorem 3.6 implies

M(S) =
∑
S∈S

2|S|−1.

We now give an example in which Construction 2.2 is not optimal.

Example 4.2. Let S = P({1, . . . , n})\{∅, {1, . . . , n}} and n even then Construction 2.2 is not optimal.

Proof . Let �T = 1 for ∅ /= T�{1, . . . , n} and �{1,...,n} = 0. Then hT and lT = hT − �T as in (7) satisfy
(5) and these are the solutions given by 2.2.

We show that we can find a better construction in the sense that fewer subpixels are required.
Setting hT = hT − 1 and lT = lT − 1 for ∅ /= T ⊆ {1, . . . , n} and h∅ = l∅ = 0 we observe that inequal-
ity (5) still holds for all S /= ∅. Thus the solution x = (xT )∅ /=T⊆{1,...,n} of Eq. (1) satisfies xT � 0 for
T /= {1, . . . , n}.

The value of x{1,...,n} will be non-negative unless rT = hT for |T | even and rT = lT for |T | odd. In
this special case Eq. (3) gives the solution x{1,...,n} = −1. To obtain a solution with positive x{1,...,n}
we adjust the value of r{1,...,n} from h{1,...,n} to h{1,...,n} − 1. (This is possible, since {1, . . . , n} �∈ S which
means that the number of black subpixels in the stack of all transparencies does not matter.) Now
(3) reveals the solution

x{1,...,n} =
∑

T⊆{1,...,n}
(−1)|T |+1rT

=
∑

T ⊆ {1, . . . , n}
|T | odd

lT −




∑
T ⊆ {1, . . . , n}

|T | even

hT


 + 1 = −1 + 1 = 0.

For S /= {1, . . . , n} and |S| even we obtain
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xS =
∑

{1,...,n}\S⊆T⊆{1,...,n}
(−1)|T |+|S|+n+1rT

=
∑

{1, . . . , n}\S ⊆ T ⊆ {1, . . . , n}
|T | odd

lT −




∑
{1, . . . , n}\S ⊆ T ⊆ {1, . . . , n}

|T | even

hT


 + 1 = 0 + 1 = 1.

For |S| odd we obtain

xS =
∑

{1,...,n}\S⊆T⊆{1,...,n}
(−1)|T |+|S|+n+1rT

=




∑
{1, . . . , n}\S ⊆ T ⊆ {1, . . . , n}

|T | even

hT


 − 1 −

∑
{1, . . . , n}\S ⊆ T ⊆ {1, . . . , n}

|T | odd

lT

>
∑

{1, . . . , n}\S ⊆ T ⊆ {1, . . . , n}
|T | even

lT −




∑
{1, . . . , n}\S ⊆ T ⊆ {1, . . . , n}

|T | odd

hT


 − 1 = −1.

Thus all possible values of r lead to non-negative solutions for x, hence an S-extended vi-
sual cryptography scheme with m = h{1,...,n} < h{1,...,n} exists, i.e., the solution given by 2.2 is not
optimal. �

We notice that the proof is also valid if �T = 0 for some T (i.e., if some contrast values degenerate).
In fact, it is sufficient to assume hT /= 0 where hT is defined by (7). A short calculation proves that
this is the case if S �⊆ P(S) for a proper subset S of {1, . . . , n}. Thus we find

Corollary 4.3. For S ⊆ P({1, . . . , n})\{∅, {1, . . . , n}}, S �⊆ P(S) for any proper subset S of {1, . . . , n}
and n even, Construction 2.2 is not optimal, i.e.,

M(S) <
∑
T∈S

2|T |−1.

We can generalize the idea behind Example 4.2 to get the following theorem:

Theorem 4.4. Let S = P({1, . . . , n})\{∅, {1, . . . , n}} then

M(S) =
{

1
2 (3

n − 1)− 2n−1 − 1 for n even
1
2 (3

n − 1)− 2n−1 for n odd.
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Proof . As in the proof of Theorem 3.4 we use Lemma 3.3 to derive inequalities in lT and hT .
Especially for T = {1, . . . , i − 1, i + 1, . . . n} we find hT � M(S) and as in the proof of Theorem 3.4
we see that for a scheme with minimal pixel expansion these inequalities are satisfied with equality.

Now we consider a set S /= ∅. Without loss of generality we assume n ∈ S . Now we set r{1,...,n−1} =
M(S) and thus r{1,...,n} = M(S) in Lemma 3.3. We choose the remaining values as in the proof of
Theorem 3.4 and find

∑
S ⊆ T ⊆ {1, . . . , n}
|S| ≡ |T | mod 2

hT �
∑

S ⊆ T ⊆ {1, . . . , n}
|S| �≡ |T | mod 2

lT

where we formally set l{1,...,n} = h{1,...n} = M(S). Following the arguments in the proof of Theorem
3.4 we see that in a scheme with minimal pixel expansion these inequalities are satisfied with equality
and therefore

hS = M(S)−
∑

S�T�{1,...n}
2|T |−1−|S|

(compare Eq. (7)).
Now we set S = ∅. Lemma 3.3 yields

±r{1,...n} +
∑

T�{1, . . . , n}
|T | even

hT �
∑

T�{1, . . . , n}
|T | odd

lT . (10)

where the sign of r{1,...,n} depends on the parity of n. From this inequality we get a bound for
M(S), i.e., for the pixel expansion.

If n is even the sign of r{1,...,n} is positive and thus we choose r{1,...,n} = l{1,...,n−1} = M(S)− 1 to get
the lowest possible bound. For nodd the sign of r{1,...,n} is negative and thus we choose r{1,...,n} = M(S)

to get the lowest possible bound.
As in Theorem 3.4 we can solve inequality (10) and get

M(S) �

{
1
2 (3

n − 1)− 2n−1 − 1 n even
1
2 (3

n − 1)− 2n−1 n odd.

We have already seen that these bounds are sharp (Example 4.2 and the preceding remark). �
To illustrate Theorem 4.4 we give two examples.

Example 4.5. Perhaps the difference between the construction of Theorem 4.4 and Construction
2.2 or a (P({1, . . . , n})\{∅})-extended visual cryptography scheme with degenerated contrast values
can be best understood in the simple case n = 2, i.e., in the case of an {{1}, {2}}-extended visual
cryptography scheme.

Construction 2.2 requires two subpixels. On the first transparency the second subpixel is always
black and the image is represented by the first subpixel. On the second transparency the roles of the
subpixels are interchanged. This enforces that the stack of the two transparencies is black.



A. Klein, M. Wessler / Information and Computation 205 (2007) 716–732 729

But we have no restriction on the stack of the two transparencies. Thus the optimal solution is
simply to take two “normal” transparencies with no encoding. This is exactly the solution produced
by Theorem 4.4 in the case n = 2.

We can view this as follows:
Construction 2.2 guarantees that the stack of the transparencies �i with i ∈ S does not reveal any

information about the images IT with T /= S . But if we can stack all transparencies �i with i ∈ S
we can also stack the transparencies �i with i ∈ S ′ for each subset S ′ of S . Thus the guarantees of
Construction 2.2 are too strong. We only need that the stack of the transparencies �i with i ∈ S
does not reveal any information about the images IT with T �⊆ S . (Note that in the situation in
“ordinary” secret sharing we have a corresponding requirement. If S is a qualified subset we require
that all supersets of S are qualified, too.)

Although this example is a good illustration it is not so interesting, since no image is reconstructed
by a proper stack of transparencies. For this reason we give a more complex example with four
transparencies.

Example 4.6. Now we look at the construction of the (P({1, . . . , 4})\{{1, 2, 3, 4}, ∅})-extended visual
cryptography scheme. By Theorem 4.4 this scheme requires 31 subpixels and hence the contrast is
1
31 . This is too small for a physical realization. Furthermore the 15 possible images imply 215 possible
white/black combinations and therefore the formal description of a (P({1, . . . , 4})\{{1, 2, 3, 4}, ∅})-
extended visual cryptography scheme requires 215 multisets of 4 × 31 boolean matrices.

Thus we restrict ourselves to a {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}-extended visual cryptography
scheme. If we use degenerated contrast values in the construction of Theorem 4.4 we need 15
subpixels whereas Construction 2.2 needs 16 subpixels.

There are five different cases. The first case is that all images show a white pixel. In this case the
multiset C∅ contains the matrix

B0 =




1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
1 0 0 1 1 0 1 1 1 1 0 0 1 1 0
0 1 0 1 0 1 1 1 0 0 1 1 1 1 0
0 0 1 0 1 1 0 0 1 1 1 1 1 1 0




and all matrices obtained by permutations of columns of B0.
Representative for the case that one image shows a black pixel and the other images show white

pixels we construct the multiset C{{1,2,3}}. This multiset contains

B1 =




1 0 0 1 0 0 1 1 1 1 1 1 1 0 0
0 1 0 0 1 0 1 1 1 1 1 0 0 1 1
0 0 1 0 0 1 1 1 1 0 0 1 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 1 1 1




and all column permutations of that matrix.
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Representative for the case that two images show a black pixel and the other images show white
pixels we construct the multiset C{{1,2,3},{1,2,4}}. This multiset contains

B2 =




1 0 1 1 0 0 0 0 1 1 1 1 1 0 1
0 1 0 0 1 1 0 0 1 1 1 1 0 1 1
0 0 1 0 1 0 1 1 1 1 0 0 1 1 1
0 0 0 1 0 1 1 1 0 0 1 1 1 1 1




and all its column permutations.
Representative for the case that three images show a black pixel and only one image shows a

white pixel we construct the multiset C{{1,2,3},{1,2,4},{1,3,4}}. This multiset contains

B3 =




1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 1 1 1 1 0 0 1 1 0 1 1
0 0 1 0 1 1 0 0 1 1 1 0 1 1 1
0 0 0 1 0 0 1 1 1 1 0 1 1 1 1




and all column permutations of that matrix.
Finally we have to construct the multiset C{{1,2,3},{1,2,4},{1,3,4},{2,3,4}} which represents the case that

all images show a black pixel. This multiset contains

B4 =




1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 0 0 0 0 1 1 1 1 0 0 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 1 1 1
0 0 0 0 1 1 0 0 1 1 1 1 1 1 1




and all its column permutations.
As one can check these multisets satisfy Definition 2.1. For example, if we choose {i1, . . . , iq} =

{1, 2} in the second condition, Definition 2.1 claims that the first two rows of the matrices B0, . . . ,B4
may only differ in a column permutation and indeed in all matrices these rows are a permutation
of (

0 0 1 1 1 1 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

)
.

We now prove two useful recursion formulas for the minimal pixel expansion M(S).

Lemma 4.7. Let S ⊆ P(S) and T ⊆ P(T). If S ∩ T = ∅ we have

M(S ∪ T) � max{M(S),M(T)}.
Proof . Letm = max{M(S),M(T)}. We can construct anS- andT-extended scheme withm subpixels
each. (Just add unnecessary white subpixels.) The transparencies of these schemes form together an
(S ∪ T)-extended scheme. �
Lemma 4.8. Let S ⊆ P({1, . . . ,m}) and S ⊆ T ⊆ P({1, . . . , n}). If

(T\S) ∩ P({1, . . . m}) = ∅,
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then

M(T) � M(S)+
∑
T∈T\S

2|T |−1.

Proof . The idea of the proof is basically the same as behind Construction 2.2.
We use M(S) subpixels to construct an S-extended visual cryptography scheme. For each T ∈

T\S we use 2|T |−1 subpixels to construct the |T |-out-of-|T | visual cryptography scheme described
in [5]. For each participant i with 1 � i � m we set the subpixels belonging to the |T |-out-of-|T |
visual cryptography schemes with i /∈ T black and for each participant j with m < j � n we set the
subpixels belonging to the S-extended visual cryptography scheme and all pixels belonging to a
|T |-out-of-|T | visual cryptography schemes with j /∈ T black.

Formally we start with the contrast values hS , lS (S ∈ P({1, . . . ,m})) of the S-extended visual
cryptography scheme and define the contrast values of the T-extended visual cryptography scheme
by

ĥS =



M(S)+ ∑

S ′∈T\S 2|S ′|−1 − ∑
S ′ ∈ T\S
S�S ′

2|S ′|−1−|S| for S �⊆ {1, . . . ,m}

hS + ∑
S ′∈T\S 2|S ′|−1 − ∑

S ′ ∈ T\S
S�S ′

2|S ′|−1−|S| for S ⊆ {1, . . . ,m}

and check that the restrictions of Lemma 3.3 are satisfied. �
If we apply this Lemma to Example 4.2 we get:

Corollary 4.9. Let S ⊆ P({1, . . . , n})\{∅}. Let us assume that there exists a non-empty subset T ∈
P({1, . . . , n})\S with |T | even and that S ∩ P(T) �⊆ P(T ′) for each proper subset T ′ of T. Then Con-
struction 2.2 is not optimal.

Note that with the trivial bound M(∅) = 0 Lemma 4.8 yields

M(S) �
∑
T∈S

2|T |−1,

i.e., the bound given by Construction 2.2.

5. Conclusions and further remarks

Eq. (3) gives us a simple method to construct an S-extended visual cryptography scheme with
given contrast values lT andhT . Furthermore, for fixednandS, Eq. (3) leads to a linear programming
problem which describes all possible S-extended visual cryptography schemes. For small values of
n this problem can easily be solved.

In this article, we have given a full solution for the special cases S = P({1, . . . , n})\{∅} and S =
P({1, . . . , n})\{∅, {1, . . . , n}}. We close by presenting the following open problems:
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(1) We conjecture: Let S ⊆ P({1, . . . , n})\{∅}. Then Construction 2.2 is optimal for an S-extended
visual cryptography scheme if and only if for all ∅ /= T �∈ S we have either |T | odd or S ∩
P(T) ⊆ P(T ′) for some proper subset T ′ of T .

(2)An even harder problem is a full characterization of S-extended visual cryptography schemes
with minimal pixel expansion for arbitrary subsets S of P({1, . . . , n}), i.e., to find a formula for
the minimal pixel expansion M(S) depending on S.
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