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In this paper an improved version of Differential Evolution (DE) technique called Differential Evolution
with Wavelet Mutation (DEWM) is applied to the infinite impulse response (IIR) system identification
problem. Instead of fixed value of scaling factor in standard DE, an iteration dependent scaling factor
governed by the wavelet function during the mutation process is adopted in the proposed technique.
This modification in the mutation process ensures not only the faster searching in the multidimensional
search space but also the solution produced is very close to the global optimal solution. Apart from this,
the proposed technique DEWM has alleviated from inherent drawbacks of premature convergence and

ﬁeRy:éoargfi've filter stagnation, unlike Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The simulation results
RGA obtained for some well known benchmark examples justify the efficacy of the proposed system iden-
PSO tification approach using DEWM over GA, PSO and DE in terms of convergence speed, plant coefficients
DE and mean square error (MSE) values produced for both the same order and reduced order models of
DEWM adaptive IIR filters.

Evolutionary optimization techniques
Mean square error
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1. Introduction

A filter is a frequency selective device, designed and used to
extract or enhance the useful portion of information from the signal
according to the set values of design parameters. An adaptive
system also behaves like a filter with the exception of iteration
based coefficient values due to incorporation of adaptive algorithm
to cope up with ever changing environmental condition and/or
unknown system parameters. The adaptive algorithm varies the
filter characteristic by manipulating or varying the filter coefficient
values according to the performance criterion of the system. In
most of the cases error between input and output signals of the
unknown system is considered as the important performance
criterion and adaptive filter works toward the minimization of er-
ror signal with the proper adjustment of the filter coefficients.
Design of such adaptive filter may be alternatively considered as
system identification problem. Adaptive filter has got a wide scope
of applications in different fields such as communication, sonar,
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navigation, control, biomedical engineering, seismology, radar and
many more. In these fields different types of applications are
noticed, namely system identification, inverse system identifica-
tion, prediction and array processing etc.

Finite impulse response (FIR) and infinite impulse response (IIR)
filters are the two types of digital filters. For IIR filter, due to
recursive nature, present output depends not only on present input
but also the previous inputs and outputs. But in case of FIR filter, the
present and past inputs are required to calculate the present
output. Hence, more design complexity and larger memory space
are demanded for IIR filter optimization problem. But an IIR filter
requires lower order compared to FIR filter [1]. In the present work
adaptive IIR filter is considered for identifying/modelling an un-
known plant.

Previously, as a classical approach of adaptive filtering, Least
Mean Square (LMS) technique and its variants are used extensively
as optimization tools for adaptive filter. This high acceptance of
classical optimization technique is due to the low complexity and
simplicity of implementation. But the main drawback of LMS tech-
nique is its slow convergence speed to reach the optimal solution.
Several measures have been reported to increase the speed [2,3].

In adaptive IIR filtering applications, non-differentiable and
multimodal nature of cost function is a major point of concern.
Classical optimization methods such as least mean square
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technique are gradient based optimization methods. They are
incapable to handle such optimization problems due to following
inherent deficiencies:

e Requirement of continuous and differentiable cost function,

o Usually converges to the local optimum solution or revisits the
same suboptimal solution,

¢ Incapable to search the large problem space,

e Requirement of the piecewise linear cost approximation (linear
programming),

o Highly sensitive to starting points when the number of solution
variables is increased and as a result the solution space is also
increased.

Because of the above shortfalls of classical optimization
methods, heuristic and meta-heuristic evolutionary search algo-
rithms have got attention for adaptive filtering optimization
problems. Different evolutionary optimization techniques aptly
used are as follows: genetic algorithm (GA) is inspired by the
Darwin’s “Survival of the Fittest” strategy [4]; human searching
nature is mimicked in seeker optimization algorithm (SOA) [5];
the cat swarm optimization (CSO) is based upon the behaviour of
cat’s tracing and seeking of an object [6]; bee colony algorithm
(BCA) is based upon honey searching behaviour of the bee swarm
[7,8]; gravitational search algorithm (GSA) is motivated by the
gravitational laws and laws of motion [9]; food searching behav-
iour is mimicked in bacterial foraging algorithm [10] and swarm
intelligence is mimicked in particle swarm optimization (PSO) and
its variants [11—20]. Conventional PSO has mimicked the behav-
iour of bird flocking or fish schooling [1,11,15,16,30,31]; in quan-
tum behaved PSO (QPSO) quantum behaviour of particles in a
potential well is adopted in conventional PSO algorithm [18]; in
PSO with Quantum Infusion (PSO-QI), a hybridized version of PSO
and QPSO in which fast convergence property of PSO and the
property of convergence to a lower average error of QPSO have
been combined to enhance the performance [13]. In Adaptive
Inertia Weight PSO (AIW-PSO), a modified Versoria function is
introduced to alter inertia weight of the basic PSO for the
improvement of convergence speed and optimization efficiency of
standard PSO [14]. To increase the randomness by the process of
mutation, a random vector is introduced in the basic QPSO for the
enhancement of global search ability [15]. Biological evolutionary
strategy is adopted in the development of differential evolution
(DE) algorithm [21,22].

Naturally, it is a vast area of research continuously being car-
ried out. In this paper, the capability of global searching and
finding near optimum result of GA, PSO, DE and DEWM is inves-
tigated thoroughly for GA, PSO, DE and DEWM in identifying the
unknown IIR system with the help of optimally designed adaptive
IIR filters of same order and reduced order as well. GA is a prob-
abilistic heuristic search optimization technique developed by
Holland [23].

PSO is swarm intelligence based algorithm developed by Eber-
hart et al. [24,25]. Several attempts have been taken towards the
system identification problem with basic PSO and its modified ver-
sions [11—20]. The key advantage of PSO is its simplicity in compu-
tation and a few number of steps are required in the algorithm.

The DE algorithm was first introduced by Storn and Price in 1995
[21]. Like GA, it is a randomized stochastic search technique
enriched with the operations of crossover, mutation and selection
but unlike GA, stagnation and entrapment to local minima are not
associated to it [22].

It has been realized that GA is incapable for local searching
[22] in a multidimensional search space and GA, PSO and DE
suffer from premature convergence and are easily trapped to

suboptimal solution [8,26,27]. So, to enhance the performance of
optimization algorithm in global search (exploration stage) as
well as local search (exploitation stage), wavelet mutation in
association with DE called differential evolution with wavelet
mutation (DEWM) is prescribed by authors as an alternative
technique for handling IIR system identification problem. The
optimal FIR filter design problem using DEWM was reported in
Ref. [28].

In this paper the performances of all the optimization algo-
rithms are analyzed with four benchmarked IIR plants and adaptive
filters of same and reduced orders. Simulation results obtained
with the proposed DEWM technique are compared to those of real
coded genetic algorithm (RGA), PSO, and DE to demonstrate the
effectiveness and better performance of the proposed technique for
achieving the global optimal solution in terms of filter coefficients
and the mean square error (MSE) of the adaptive system identifi-
cation problem.

The rest of the paper is organized as follows: in Section 2,
mathematical expression of an adaptive IIR filter and the objective
function are formulated. In Section 3, different evolutionary tech-
niques under consideration, namely, RGA, PSO, DE and DEWM are
discussed briefly for adaptive IIR filter design problem. In Section 4,
comprehensive and demonstrative sets of data and illustrations are
given to make a floor of comparative study among different algo-
rithms. Finally, Section 5 concludes the paper.

2. Design formulation

The main task of the system identification is to vary the pa-
rameters of the adaptive IIR filter iteratively using evolutionary
algorithms unless and until the filter’s output signal matches to the
output signal of unknown system when the same input signal is
applied simultaneously to both the adaptive filter and unknown
plant under consideration. In other way, it can be said that in the
system identification, the optimization algorithm searches itera-
tively for the adaptive IIR filter coefficients such that the filter’s
input/output relationship matches closely to that of the unknown
system. The basic block diagram for system identification using
adaptive IIR filter is shown in Fig. 1.

This section discusses the design strategy of IIR filter. The input—
output relation is governed by the following difference equation

[1]:
yp)+ D> ay—k = > bx(p -k (1)
k=1 k=0

where x(p) and y(p) are the filter’s input and output, respectively
and n( > m) is the filter’s order. With the assumption of coefficient
ag = 1, the transfer function of the adaptive IIR filter is expressed as
given in Eq. (2).

i bz
H(z) = =% (2)

n
1+ Z ClkZ_k
k=1

In this design approach the unknown plant of transfer function
Hy(z) is to be identified with the adaptive IIR filter Hy(z) in such a
way so that the outputs from both the systems match closely for the
given input.

In this transfer function, filter order is n and n > m. In the system
identification problem mean square error (MSE) of time samples, J
is considered as the objective function, also known as error fitness
function, expressed as in Eq. (3).
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Fig. 1. Adaptive IIR filter for system identification.

1 N
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where the error signal is e(p) = d(p) — y(p); d(p) is the response of
the unknown plant; y(p) is the response of the adaptive IIR filter
and N is the number of samples. The main objective of any evolu-
tionary algorithm considered in this work is to minimize the value
of the error fitness J with proper adjustment of coefficient vector w
of the transfer function of the adaptive filter so that output re-
sponses of filter and plant match closely and hence the error fitness
function is minimized.
Here & = [agay...anbgb;...bm)".

3. Evolutionary algorithm employed

Evolutionary algorithms stand upon the platform of meta-heu-
ristic optimization methods, which are characterized as stochastic,
adaptive and learning in order to produce intelligent optimization
schemes. Such schemes have the potential to adapt to their ever
changing dynamic environment through the previously acquired
knowledge. Few such efficient algorithms have been discussed here
for the identification of some benchmarked IIR systems.

3.1. Real coded genetic algorithm (RGA)

Standard Genetic Algorithm (also known as real coded GA) is
mainly a probabilistic search technique, based on the principles of
natural selection and evolution built upon the Darwin’s “Survival of
the Fittest” strategy [23]. Each encoded chromosome that consti-
tutes the population is a solution to the unknown system under
study. These solutions may be good or bad, but are tested rigorously
through the genetic operations such as crossover and mutation to
evolve a near global optimal solution to the problem at hand.
Chromosomes are constructed over some particular alphabet {0, 1},
so that chromosomes’ values are uniquely mapped onto the real
decision variable domain. Each chromosome is evaluated by the
fitness function or objective function of the corresponding opti-
mization problem. Each chromosome has a probability of selection
and has to take part in the genetic operation based upon the Rou-
lette’s wheel strategy. In the genetic operations, crossover and
mutation bring the variation in alleles of gene in the chromosome
population along with the alleviation of trapping to local optimal
solution.

Steps of RGA as implemented for the optimization of coefficient
vector w are as follows [29,30]:

Step 1: Initialize the real coded chromosome strings (w) of n,
population, each consisting of a number of numerator and

denominator filter coefficients by and a, respectively. Co-
efficients are generated in random manner within the range of
maximum (hpax) and minimum (hpip) values, (hmin = —2,
hmax = 2); number of samples = 128; maximum iteration
cycles =200 (for Examples 1 and 3) and 300 (for Examples 2 and
4).

Step 2: Decoding of the strings and evaluation of the cost
function J according to (3).

Step 3: Selection of the elite strings in order of increasing J
values from the minimum value.

Step 4: Copying the elite strings over the non selected strings.
Step 5: Crossover and mutation generate offspring.

Step 6: Genetic cycle updating.

Step 7: The iteration stops when the maximum number of cycles
is reached. The grand minimum error and its corresponding
chromosome string or the desired solution having same or
reduced number of coefficients of the adaptive IIR filter are
finally obtained.

3.2. Particle swarm optimization (PSO)

PSO is a flexible, robust, population based stochastic search al-
gorithm with attractive features of simplicity in implementation
and ability to quickly converge to a reasonably good solution.
Additionally, it has the capability to handle larger search space and
non-differential objective function, unlike traditional optimization
methods. Eberhart et al. [24,25] developed PSO algorithm to
simulate random movements of bird flocking or fish schooling.

The algorithm starts with the random initialization of a swarm
of individuals, which are known as particles within the multidi-
mensional problem search space, in which each particle tries to
move toward the optimum solution, where the next movement is
influenced by the previously acquired knowledge of particle best
and global best positions once achieved by the individual and the
entire swarm, respectively. The features incorporated within this
simulation are velocity matching of individuals with the nearest
neighbour, elimination of ancillary variables and inclusion of
multidimensional search and acceleration by distance. Instead of
the presence of direct recombination operators, modifications of
acceleration and position supplement the recombination process in
PSO. Due to the aforementioned advantages and simplicity, PSO has
been applied to different fields of practical optimization problems.

To some extent, adaptive IIR filter design with PSO is already
reported in Refs. [11—18]. A brief idea about the algorithm for a D-
dimensional search space with n, particles that constitutes the
flock is presented here. Each ith particle is described by a position
vector as: S; = (Si,Sp, ...,Sip)" and the velocity is expressed by
V; = (vi1,vi2,...,vip)". The best position that the ith particle has
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reached previously pbest; = (pj1,Pi2, ...7p,-D)T7 and the group best
is expressed as ghest = (Pg1,Pg2, ....,pgD)T.

The maximum and minimum velocities are Vinax, Vimin, respectively.
Viax = (UmaxlvvmaXZ»vamaxD)T and Viyin = (Vmin1 stin2=---aninD)T-

The positive constants Cj, C; are related with accelerations and
rand;, rand, lie in the range [0, 1]. The inertia weight w is a con-
stant chosen carefully to obtain fast convergence to optimum
result. k denotes the iteration number.

The basic steps of the PSO algorithm are as follows [31]:

Step 1: Initialize the real coded particles (w) of n, population,
each consisting of a number of numerator and denominator
filter coefficients b, and a; respectively; dimension of the
search space, D, which is equal to the number of adaptive
filter coefficients, need to be optimized; minimum and
maximum values of adaptive filter coefficients, hpin = -2,
hmax = 2; number of samples = 128; maximum iteration
cycles = 200 (for Examples 1 and 3)/300 (for Examples 2
and 4).

Step 2: Compute the error fitness value J for the current position
S; of each particle.

Step 3: Each particle can remember its best position (pbest)
which is known as cognitive information and that would be
updated with each iteration.

Step 4: Each particle can also remember the best position the
swarm has ever attained (gbest) and is called social information
and would be updated in each iteration.

Step 5: Velocity and position of each particle are modified ac-
cording to Eqgs. (4) and (5), respectively [24].

ka”) = W*Vi(k) + C1*rand1*{pbesti(k) - S§k>}

(4)
+ Cz*randz*{gbest,.(k) - Sgk)}
Vi =V, for V; >V,
Where 1 max 1 max
= Vmin for Vi < Vmin
k+1) (k) (k+1)
S = 59 4 v (5)

Step 6: The iteration stops when maximum number of cycles
is reached. The grand minimum error value and its corre-
sponding particle or the desired solution having same or
reduced number of coefficients of the adaptive IIR filter are
finally obtained.

3.3. Differential evolution (DE) algorithm

The DE algorithm was first introduced by Storn and Price in 1995
[21]. The crucial idea behind DE algorithm is a scheme for gener-
ating trial parameter vectors and adds the weighted difference
between two population vectors to a third one. Like any other
evolutionary algorithm, DE algorithm aims at evolving a population
of np, D-dimensional parameter vectors, so-called individuals,
which encode the candidate solutions, i.e.,

Xig = {X1ig:X2ig, - XDig} (6)
wherei=1,2,3, ..., np. The initial population (at g = 0) should cover

the entire search space as much as possible by uniformly
randomizing individuals within the search constrained by the

prescribed minimum and maximum parameter bounds:
— —
Xmin = {X1 min, ---vXD,min} and X'max = {X1,max> - XD, max }-

For example, the initial value of the jth parameter of the ith
vector is

Xj‘i‘O = vamm +rnd* (xj,max — xj,min)v where _] = 1,2, 3, .. .,D (7)

The random number generator, rnd returns a uniformly
distributed random number from the range [0,1]. After initializa-
tion, DE enters a loop of evolutionary operations: mutation,
crossover, and selection.

i) Mutation

Once initialized, DE mutates and recombines the population to
produce new population. For each trial vector x;¢ at generation g, its
associated mutant vector Vg = {v1gV2ig,.--,Vpig} Can be

generated via certain mutation strategy. Five most frequently used
mutation strategies in the DE codes are listed as follows:

“DE/rand/1": Wiz = Xy o+ F(Yrvz,g - 7@@) (8)
“DE/best/1": Vig = X pestg + F(?r‘l e Xn g> 9)

“DE/rand — to — best/1” : ;4

= Xi,g-i-F(Xbest,g_ Xi,g) +F(Xr'1g_ Xr'z.g)
“DE/best/2" : V'i4
= Xbestg +F(xr'1,g — Xr'z’g> +F(Xr‘3«,g — Xrlvg>
“DE/rand /2" : 7,-<g
(12)

= ?rl £ + F(?rzg — ?r;.,g> + F(?r;vg — ?r;,g>

The indices ry, 1,, 13, 1, Ts are mutually exclusive integers
randomly chosen from the range [1, np] and all are different from
the base index i. These indices are randomly generated once for
each mutant vector. The scaling factor F is a positive control
parameter for scaling the difference vector. Xpestg is the best indi-
vidual vector with the best fitness value in the population at gen-
eration ‘g’.

ii) Crossover

To complement the differential mutation search strategy,
crossover operation is applied to increase the potential diversity of
the population. The mutant vector v;g exchanges its components
with the target vector x;¢ to generate a trial vector:

-
Uig = {U1ig.Usig,.- Upjg} (13)

In the basic version, DE employs the binomial (uniform) cross-
over defined as

g if(mdij <G orj= jrand)
Ujig = { Xijg otherwise (14)

where j = 1, 2,..., D; rnd;; returns a uniformly distributed random
number from within the range [0,1]. The crossover rate C; is user-
specified constant within the range (1, 0), which controls the
fraction of parameter values copied from the mutant vector. jgnq is
a randomly chosen integer in the range [1, D]. The binomial
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crossover operator copies the jth parameter of the mutant vector
7'ig to the corresponding element in the trial vector H',Avg if rnd;;

< Cr oOr j = jrnq: otherwise, it is copied from the corresponding
target vector X; .

iii) Selection

To keep the population size constant over subsequent genera-
tions, the next step of the algorithm calls for selection to determine
whether the target or the trial vector survives to the next genera-
tion, i.e., at g = g + 1. The selection operation is described as (15).

<. _ ﬁi‘g iff(ﬁi.,g) §f(?i‘g) 1
Xigr = {7i,g otherwise (13)

where f(x) is the objective/cost function to be minimized. So, if the
new vector yields an equal or lower value of the objective function,
it replaces the corresponding target vector in the next generation;
otherwise the target is retained in the population. Hence, the
population either gets better (with respect to the minimization of
the objective function) or remains the same in fitness status, but
never deteriorates.

The above three steps are repeated generation after generation
until some specific termination criteria are satisfied.

3.3.1. Control parameter selection of DE

Proper selection of control parameters is very important for the
success and performance of an algorithm. The optimal control pa-
rameters are problem-specific. Therefore, the set of control pa-
rameters that best fit each problem is to be chosen carefully. Values
of F lower than 0.5 may result in premature convergence, while
values greater than 1 tend to slow down the convergence speed.
Large populations help maintaining diverse individuals, but also
slow down convergence speed. In order to avoid premature
convergence, F or np should be increased or .. should be decreased.
Larger values of F result in larger perturbations and better proba-
bilities to escape from local optima, while lower C; preserves more
diversity in the population, thus avoiding local optima.

Algorithmic steps of DE are as follows:

Step 1. Generation of initial population: Set the generation counter
g = 0 and randomly initialize D-dimensional n, individuals
(parameter vectors/target vectors), Yi.g = {X1ig:X2ig, - XDig}s
where D is equal to the number of adaptive filter coefficients;
need to be optimized; minimum and maximum values of adap-
tive filter coefficients (hmin = —2, hmax =2); andi=1,2,3, ..., np.
The initial population (at g = 0) should cover the entire search
space as much as possible by uniformly randomizing individuals
within the search constrained by the prescribed minimum and
maximum parameter bounds: X i, = {X1,min>--»Xp min} and

.
Xmax = {X1,max> ---»XD,max -

Number of samples = 128; maximum iteration cycles = 200 (for
Examples 1 and 3)/300 (for Examples 2 and 4).

Step 2. Mutation: For i = 1 to np, generate a mutated vector,
Vig = {v1ig:v2ig: - Vpig} corresponding to the target vector
71-.g via any one of 5 mutation strategies mentioned earlier.

In this work, Eq. (10) is chosen as the best mutation strategy
determined after some experimentation. F = 0.5.

Step 3. Crossover: Generation of a trial vector ﬂ’,;g for each target
— —
vector Xz where Uz = {Uyg,Upig, - Upg}-

fori=1 to np; jrand = [rnd*D]; for j = 1 to D.

Uiig = Uj,i,g lf (T'Tldij < Cr or ] = jr_and)
e Xijg otherwise.

‘rnd;j is an uniformly distributed random number generated within
[0,1]. The crossover rate C; is user-specified constant within the
range [1,0], which controls the fraction of parameter values copied
from the mutant vector. jy,g is @ randomly chosen integer in the
range [1, D]. The binomial crossover operator copies the jth
parameter of the mutant vector v'; ¢ to the corresponding element
in the trial vector E)i,g if rnd;j < Gy or j = jgng; otherwise, it is
copied from the corresponding target vector, @}

Step 4. Selection: for i = 1 to np, Xjg.1

— { 7i.g if f(ﬂ)llg) Sf(?i,g)
Xig otherwise.

Increment the generation count g =g + 1.

The limitations of RGA, PSO and DE are that they may be influ-
enced by parameter convergence and stagnation problem
[8,22,26,27]. To overcome stagnation and suboptimal convergence
problems associated with RGA, PSO and DE; this paper adopts the
modified DE algorithm known as differential evolution with
wavelet mutation algorithm (DEWM) for the purpose of finding
optimal set of adaptive IIR filter coefficients.

3.4. Differential evolution with wavelet mutation (DEWM)

3.4.1. Basic wavelet theory: a concept

Certain seismic signals can be modelled by combining trans-
lations and dilations of an oscillatory function with a finite duration
called a “wavelet”. Wavelet transform can be divided in two cate-
gories: continuous wavelet transform and discrete wavelet trans-
form. The continuous wavelet transform W, ;(x) of function f(x)
with respect to a mother wavelet y(x)eL?(R) is given by the
following equation [26,32,33].

+ 0
1 \
Wep(X) = —= FX)Yqp(x)dx (16)
Gy Z

N

where Y, 5(x) = (1/Va)y(x—b/a); xeR, a,beR, a>0

In Eq. (16), (*) denotes the complex conjugate, a is the dilation
(scale) parameter, and b is the translation (shift) parameter. It is to
be noted that a controls the spread of the wavelet and b determines
its control position. A set of basis functions ¥, ,(x) is derived from
scaling and shifting the mother wavelet. The basis function of the
transform is called the daughter wavelet. The mother wavelet has
to satisfy the following admissibility condition.

‘ 2

o dw < » (17)

)
Cv, =27 /
where y(v) is the Fourier transform of ¥(w) and is given by the
following equation (18).

- 1

4o
o) = 7= / Y(x) x e T9%dx (18)

Most of the energy ¥(x) is confined to a finite domain and is
bounded.
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Fig. 2. Morlet wavelet.

3.4.2. Association of wavelet based mutation with DE (DEWM)

It is proposed that every element of the particle of the popula-
tion will mutate. Among the population, a randomly selected ith
particle and its jth element (within the limits (Sj min, Sjmax)) at the
kth iteration (S} 9, vector Sgk) same as ?i‘g/updated V'ig of (10)) will
undergo mutation as given in the following equation (19).
w0 _ Sl(»_l_;) +0x (Sj‘,max —Sg_l;»)), if 6>0 (19)
4 St + 0% (S = Sjmin), if 0<0
where ¢ = Y,9(x) = (1/Va)¥(x/a); Eq. (19) represents the new
mutation strategy by which DEWM differs from DE; otherwise all
other steps of DE and DEWM are the same. A Morlet wavelet
(mother wavelet) is defined in the following equation (20). It is also
shown in Fig. 2.

Y(x) = €3 cos (5x) (20)
Thus,
o= \/Lae L cos (5 (g)) (21)

Different dilated Morlet wavelets are shown in Fig. 3. From this
Figure, it is clear that as the dilation parameter a increases, the
amplitude of ¥, o(x) will be scaled down. In order to enhance the
searching performance in the fine tuning stage, this property will
be utilized in mutation operation. As over 99% of the total energy of
the mother wavelet function is contained in the interval [-2.5, 2.5],
x can be randomly generated from [-2.5 x a,2.5 x a] [26,32,33].
The value of the dilation parameter a is set to vary with the value of
k/K in order to meet the fine tuning purpose; where k is the current
iteration cycle and K is the maximum number of iteration cycles. In
order to perform a local search when k is large, the value of a should
increase as k/K increases to reduce the significance of the mutation.
Hence, a monotonic increasing function governing a and k/K may
be written as given in the following equation:

Swm

a = e—ln(gl)x(l—ﬁ) +In(gy) (22)
where &, is the shape parameter of the monotonic increasing
function, and g; is the upper limit of the parameter a. The value of a
is between 1 and 10,000. The magnitude of mutation operator o
decreases as a increases towards g; with increasing iteration cycle,
hence, resulting in appreciable mutation during early search or
exploration stage and fine tuning (i.e., lesser mutation) during local
search or exploitation stage near the end of maximum iteration
cycles. A perfect balance between the exploration of new regions
and the exploitation of the already sampled regions in the search
space is expected in DEWM. This balance, which critically affects

a=1 a=h a=10 a=a0
1 1 1 1
05 0s 04a 105
0 0 0 \/\/\/\/ 0 S\
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Fig. 3. Morlet wavelet dilated by different values of parameter a.
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Table 1 Table 3
Control parameters of RGA, PSO, DE and DEWM. MSE value for Example 1 (Case 1).

Parameters RGA PSO DE DEWM Run RGA PSO DE DEWM

Population size 120 25 25 25 1 0.0529 0.0051 9.4261e-005 8.5220e-006

Iteration cycles 200/300 200/300  200/300 200/300 2 0.0733 0.0013 8.2321e-005 5.8399e-006

Crossover rate 1 — — — 3 0.0472 0.0028 3.7453e-004 2.6659e-006

Crossover Two point crossover — - - 4 0.0139 0.0054 9.0273e-004 7.8974e-006

Mutation rate 0.01 — — — 5 0.0464 0.0016 3.7453e-004 6.2787e-005

Mutation Gaussian mutation - - -

Selection Roulette - - -

Selection probability 1/3 - - -

1. G - 205,205 — - Table 4 )

pmin, max _ 001,10 — _ Statistical analysis of MSE (dB) for Example 1 (Case 1).

Wmax, Wmin - 10,04 - - MSE statistics RGA PSO DE DEWM

G, F - — 03,05 03,05

Eoms &1 — — — 2.0, 1000 Best —18.5699 —28.8606 —40.8449 —55.7416
Worst -11.349 -22.6761 —30.4444 —42.0213
Mean —13.8559 —25.5896 —-36.0153 -50.3637
Variance 6.0642 6.3817 15.6950 20.5908
Standard deviation 2.4626 2.5262 3.9617 4.5377

the performance of DEWM, is governed by the right choices of the
control parameters, e.g., the swarm size (..), the probability of
mutation (pp), and the shape parameter of WM (&, ). Changing the
parameter &, will change the characteristics of the monotonic
increasing function of WM. The dilation parameter a will take a
value to perform fine tuning faster as &, increases. A larger value
of £, is to be used to increase the step size (o) for the early mu-
tation. Rigorous sensitivity analysis with respect to the dependence
of a on (k/K), £,,» and g; was performed to determine the indi-
vidual best values of £,,, and g;. The individual best values of &,
and gq are 2.0 and 1000, respectively. In general, if the optimization
problem is smooth and symmetric, it is easier to find the solution,
and the fine tuning can be done in early iteration cycle.
Steps of DEWM algorithm are as follows:

Step 1: Initialize D dimensional population or swarm of, n,
particle vectors where D is equal to the number of adaptive filter
coefficients, need to be optimized; maximum iteration
cycles = 200 (for Examples 1 and 3)/300 (for Examples 2 and 4);
minimum and maximum values of filter coefficients (hpjp = —2,
hmax = 2); number of samples = 128; wavelet mutation pa-
rameters: g; = 1000, &,,,, = 2, crossover ratio, C; = 0.3.

Step 2: Generate initial n, particle vectors of adaptive filter,
randomly within limits; computation of initial error cost func-
tions (cost) of the total population np.

Step 3: Computation of the initial population based best solution
(hgpest) vector.

Step 4: Compute the wavelet parameters ‘a’ as per (22);
compute x = 2.5%a if rnd (0,1) > 0.5, otherwise, x = —2.5%a;
compute ¢ as per (21); updating the particle vectors as per the
new mutation formula (19), named as hy,; and checking against
the limits of the filter coefficients.

Step 5: Formation of trial vectors: If Cr is >rand (1), a trial vector
(T) is formed by hy,, vector, otherwise by previous h vector; this
is done for the total population; then, computation of costs
(costryiar) for all trial vectors.

Step 6: Selection: If cost of h vector is >costryia of T vector, then,
a selected vector hgelect is formed by T vector otherwise by h
vector; this is done for the whole population.

Step7: Compute the costs (coStseject) Of all hgelect Vectors and
update the hgpese vector; replace all hselect vVectors as h vectors
and all costgelecr Values as re-initialized cost values.

Step 8: Iteration continues from Step 4 till the maximum iter-
ation cycles or the convergence of minimum costgeject Values;
finally, hgpes: is the vector of optimal adaptive IIR filter co-
efficients, which are used for identifying the unknown IIR plant.

4. Simulation results and discussions

Extensive MATLAB simulation studies have been performed for
the performance comparison of four algorithms namely, RGA, PSO,
DE and DEWM for the unknown system identification optimization
problems. The values of the control parameters used for RGA, PSO,
DE, and DEWM are given in Table 1. All optimization programs were
run in MATLAB 7.5 version on core (TM) 2 duo processor, 3.00 GHz
with 2 GB RAM.

The simulation studies have been carried out on four different
benchmarked examples and for all examples, two different cases
are studied, one with the same order filter and the other with the
reduced order filter. For each case, independent 50 independent
runs were performed using all four algorithms for analyzing the

Table 2
Optimized coefficients for Example 1 (Case 1).
Run RGA PSO DE DEWM
by by by by by by by b
aq az ay az ay az ay az
1 0.2888 —0.6827 0.0645 —0.4585 0.0435 -0.3871 0.0501 —0.3997
-1.0373 0.1755 —0.9596 0.0912 —-1.1509 0.2679 -1.1327 0.2522
2 —-0.0764 -0.4239 0.0131 —0.3583 0.0590 -0.4108 0.0490 —0.3976
—0.5655 —0.2752 -1.1530 0.2691 -1.1237 0.2436 -1.1356 0.2542
3 —0.0892 —0.4069 0.0982 —0.4637 0.0659 -0.4270 0.0486 -0.3976
-0.6710 —0.1705 —-1.0705 0.1955 —1.1050 0.2277 -1.1334 0.2520
4 —0.0247 —0.2479 0.0134 —0.4012 0.0223 -0.3734 0.0522 —0.4040
-1.3363 0.4315 -1.0177 0.1454 -1.1340 0.2519 -1.1268 0.2464
5 0.2536 —0.6584 0.0614 —0.4384 0.0659 -0.4270 0.0479 -0.3927
-0.9675 0.1112 —-1.0541 0.1798 -1.1050 0.2277 -1.1478 0.2653
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Fig. 5. Algorithm convergence profile for Example 1 (Case 1).

consistency and usefulness of the results obtained. The results for
the best 5 runs are reported in this work.

4.1. Example 1

In this example, a second order IIR plant is considered and is
taken from Refs. [5,6,8,9,12,15,18—20,22]. The transfer function is

15
Table 6
MSE value for Example 1 (Case2).
Run RGA PSO DE DEWM
1 0.4495 0.2397 0.0681 0.0058
2 0.3431 0.2297 0.0794 0.0042
3 03723 0.2373 0.0955 0.0052
4 0.2736 0.2021 0.0623 0.0077
5 0.6260 0.2418 0.0439 0.0046
Table 7
Statistical analysis of MSE (dB) for Example 1 (Case2).
MSE statistics RGA PSO DE DEWM
Best —5.6288 —6.9443 —13.5754 —23.7675
Worst —2.0343 —6.1654 —10.2000 —-21.1351
Mean —4.0145 —6.3897 —11.7002 —22.6961
Variance 1.4592 0.0826 1.2763 0.8344
Standard deviation 1.2080 0.2874 1.1297 09134
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Fig. 6. Coefficient convergence profile of DEWM for Example 1 (Case 2).
1. Case 1

This second order plant Hs(z) can be modelled using second
order IR filter Hyf (z). Hence the transfer function of the adaptive IIR
filter model is assumed by (24).

. -1
shown in Eq. (23). b1 +byz
a- (23) Ho(z) = — 32— (24)
1+a1z7' +ayz
0.05—-0.4z1 .
Hs(z) = T 113127 + 02522 (23) In Eq. (24), by, by, a; and a, are the numerator and denominator
— L3lzm 40257 coefficients, respectively. Tables 2 and 3 show the optimized co-
efficients and MSE values obtained over the five best independent
Table 5
Optimized coefficients for Example 1 (Case2).
Run RGA PSO DE DEWM
b a b a b a b a
1 —0.4336, -0.7181 -0.3278, —0.8998 -0.3330, —0.8867 -0.2207, -0.9249
2 —0.1634, -0.9449 —0.2948, —0.9096 —0.3242, —0.9031 -0.3142, —-0.9023
3 -0.3877, ~0.7963 ~0.3174, -0.9123 ~0.3064, ~0.8509 ~0.2900, -0.9121
4 —0.4091, -0.8787 -0.3239, -0.9142 -0.3289, —0.8994 -0.1483, -0.9513
5 -0.7182, —0.8092 —0.3153, —0.9038 —0.3104, —0.9098 —0.3289, —0.9014
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Fig. 7. Algorithm convergence profile for Example 1 (Case 2).

runs for four optimization techniques, namely, RGA, PSO, DE, and
DEWM, respectively. Statistically analyzed results, reported in
Table 4 provide a platform of judgement to identify the best opti-
mization technique. It is observed that all MSE (dB) values obtained
by the DEWM are lower as compared to others and the lowest MSE
(dB) value of —55.7416 dB is achieved using DEWM. It is also
noticed from Table 2 that the optimized coefficients obtained with
DEWM are more accurate in approximating the coefficients of the
unknown plant.

Coefficient convergence profile is shown in Fig. 4 for the best run
(run 3 in Table 3) which produces the lowest MSE for the proposed
optimization technique DEWM in unknown IIR system identifica-
tion problem. Finally, optimized coefficient values obtained after
200 iteration cycles can also be tallied with the reported coefficient
values in Table 2. The algorithm convergence characteristics for the

Table 9
MSE value for Example 2 (Case 1).
Run RGA PSO DE DEWM
1 0.1393 0.0286 0.0237 2.8617e-005
2 0.2406 0.0537 0.0048 7.7061e-005
3 0.1024 0.0420 0.0190 4.0690e-004
4 0.2872 0.0642 0.0088 7.1474e-005
5 0.1503 0.0619 0.0111 6.0337e-005
Table 10
Statistical analysis of MSE (dB) for Example 2 (Case 1).
MSE statistics RGA PSO DE DEWM
Best —9.8970 —15.4363 —23.1876 —45.4338
Worst —-5.4182 —11.9246 —16.2525 —33.9051
Mean —7.6586 —13.1824 —-19.3509 —40.8246
Variance 2.6672 1.6891 6.0763 14.2990
Standard deviation 1.6331 1.2997 2.4650 3.7814
1
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0.6 J"J
Il
o4l bo| |
S o b2 |
< U — b4
«E 0'2—1‘1“ ———b6[ |
Q@ a2
2 o as|
g a6
O 0.2
0.4 ﬂ
0.6 -
-
0.8
0 50 100 150 200 250 300

lteration cycle

Fig. 8. Coefficient convergence profile of DEWM for Example 2 (Case 1).

Table 8
Optimized coefficients for Example 2 (Case 1).
Run RGA PSO DE DEWM
bo bz bo bz bo bz bo bz
b4 bs b4 be b4 bs b4 bs
as ag a ag az ay az ay
as as ds ds
1 0.9310 —0.1148 0.9308 —0.4207 0.9155 —-0.2397 1.0000 —0.6267
0.1204 —0.1874 -0.1991 0.1162 -0.1617 —-0.0977 —0.7357 0.3429
0.6074 0.0078 0.7917 0.4188 0.5922 0.4339 0.9969 0.8521
-0.2221 0.3106 0.0767 0.8420
2 0.6139 -0.1314 0.8717 —0.3294 0.9358 —-0.1877 0.9939 —0.1991
0.5322 —0.3720 —-0.0215 —0.0841 —0.6138 0.1874 —0.5851 0.1883
0.4983 -0.1153 0.6586 0.2894 0.5630 0.8824 0.5688 0.8567
—0.4428 0.0249 0.4936 0.4830
3 0.9935 0.1947 0.9877 0.1551 1.0000 —-0.3383 0.9938 —-0.0145
0.1964 —0.1032 0.0655 —0.2683 —0.2830 0.0431 —0.5279 0.1440
—-0.0516 04113 0.1764 0.3803 0.6812 0.5070 0.3595 0.8807
—0.4227 —0.2953 0.2648 0.3329
4 0.5028 0.2695 0.9162 0.1397 0.9419 0.4739 1.0000 —0.0932
0.0443 —0.2906 0.1329 —0.2267 —0.0934 -0.1772 —0.5299 0.1437
0.1570 0.3649 0.2003 0.4068 —-0.1054 0.6380 0.4636 0.8433
—-0.3789 —-0.2201 —0.2876 0.3820
5 0.6399 0.1936 0.9842 —0.7823 0.9667 0.6263 0.9999 -0.1149
—0.1298 —0.0238 —0.9822 0.3705 —0.0208 —0.2205 —0.5376 0.1528
0.1647 0.6216 0.9985 0.9399 -0.2671 0.6424 0.4850 0.8434
—0.0082 0.9025 —0.4070 04018
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same order IIR model using RGA, PSO, DE, and DEWM, as shown in
Fig. 5, provide a qualitative measure of the performance of the four
algorithms. From Fig. 5, it can be observed that the proposed
optimization technique DEWM has converged to the lowest MSE

17
Table 12
MSE value for Example 2 (Case2).
Run RGA PSO DE DEWM
1 0.5104 0.2238 0.0526 0.0016
2 0.5304 0.1915 0.0758 4.0185e-004
3 0.4682 0.2636 0.0656 0.0011
4 0.5185 0.2325 0.0358 0.0016
5 0.3520 0.2168 0.0336 0.0016
Table 13
Statistical analysis of MSE (dB) for Example 2 (Case2).
MSE statistics RGA PSO DE DEWM
Best —4.5346 -7.1783 —14.7366 —33.9594
Worst —2.7540 —5.7906 -11.2033 —27.9588
Mean -3.2715 —6.4891 —13.0044 —29.4844
Variance 0.4325 0.2018 1.9579 5.4036
Standard deviation 0.6576 0.4493 1.3993 2.3246

level at 171st iteration cycle without entrapment to suboptimal
solution, unlike others.

2. Case 2

In this case a higher order plant is modelled by a reduced order
filter. For the situation under consideration a second order plant as
in Eq. (23) is modelled by a first order IIR filter given in Eq. (25).

Table 11
Optimized coefficients for Example 2 (Case2).
Run RGA PSO DE DEWM
by b by by by by by by
by by by by by by by by
b, by b, by b, by b, bg
4 % 4 % 9 @ a4 @
a a, as a, ajy a, ay a
as a5 as a5
1 0.9601 —-0.5228 0.8256 —0.1669 0.9489 —-0.3308 0.9943 -0.0158
0.4939 -0.4814 —0.3022 —-0.1525 0.1527 —0.2845 0.0562 0.2218
0.0485 0.2293 0.3542 0.2980 -0.1127 0.2054 —-0.2344 —-0.1387
—0.5557 0.4872 —0.0694 —0.5724 —-0.2701 -0.2116 0.0004 —0.3020
—0.6541 —-0.1409 —-0.1381 -0.2700 —0.0902 —0.6341 0.1871 —-0.5818
—0.0050 0.2340 0.2900 -0.1792
2 1.1007 —-0.0739 0.8479 —0.0830 0.8884 —0.2491 0.9770 —0.0105
0.6934 0.1519 —0.2502 —-0.0361 0.2485 0.0545 0.3338 -0.0115
0.1998 0.0409 0.0351 0.2926 —-0.0386 —0.1347 -0.3370 0.0097
0.0694 0.2199 0.0340 —0.6859 —-0.2275 —0.1387 —0.0011 —0.0180
03775 —0.2902 —0.2400 —0.2091 0.1628 -0.6724 —0.0038 —0.8405
0.0910 0.2590 -0.0134 0.0063
3 0.5935 —-0.1381 1.2239 —0.6695 1.0407 0.4450 09117 0.4657
0.1643 —0.3046 —0.8226 0.5371 —0.6995 —0.3966 0.2746 0.1562
0.3040 0.1382 0.2998 —0.0096 0.1895 0.1798 —0.2482 —-0.1105
-0.1755 —-0.5417 —0.4348 —0.9576 0.3570 —0.9780 0.5349 —0.0471
-0.1124 —-0.2760 0.6025 0.0959 —0.3663 0.0540 —0.0266 —0.8053
0.2381 -0.1470 0.0430 -0.4239
4 0.9659 —-0.7096 0.9252 —0.5404 0.9258 0.2240 1.0005 0.0943
0.6918 —-0.5039 0.3061 —0.6424 -0.0739 —0.0223 0.0697 —0.0748
05122 —0.4622 0.1333 02117 —0.0487 0.0677 —-0.2501 0.0209
—0.7352 0.2400 —0.4254 —-0.1841 0.2895 —0.4072 0.1027 —-0.2573
—0.1393 —0.1788 —0.3832 —0.3898 —0.1292 —0.4759 -0.1019 —-0.6267
-0.1191 0.4401 -0.1185 0.0042
5 0.9690 0.0424 0.8390 —-0.2955 0.9835 0.4533 0.9880 —-0.0097
0.2493 0.4077 -0.2772 0.0731 0.3121 -0.0977 0.1300 —-0.3025
0.2574 0.2316 0.3500 —0.2949 —-0.3410 0.0277 —0.2927 0.1662
0.1030 -0.0419 -0.6174 —0.4508 0.4791 —-0.0880 -0.0279 —-0.2480
0.4907 —0.0465 0.5137 —0.3982 —0.2768 —0.7762 —-0.2661 —0.6354
0.1998 0.0105 —0.1463 0.2736
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Fig. 10. Coefficient convergence profile of DEWM for Example 2 (Case 2).

b

T 1tazl (25)

Haf(z)

In Eq. (25), b and a are the numerator and denominator co-
efficients, respectively. Optimized coefficients and MSE values ob-
tained over the best five independent runs for four optimization
techniques, namely, RGA, PSO, DE and DEWM are shown in Tables 5
and 6, respectively. Statistically analyzed results for MSE (dB)
values are reported in Table 7. From Table 7 it is observed that all
MSE (dB) values obtained by the DEWM are lower as compared to
others and the lowest MSE value of —23.7675 dB is achieved using
DEWM. Consistency of results is established with the small values
of variance and standard deviation for all concerned algorithms for
unknown system identification problem.

Coefficient convergence profile for the best run (run 2 in Table 6)
of the proposed optimization technique, DEWM is shown in Fig. 6
and optimized coefficient values obtained after 200 iteration cy-
cles can also be tallied with the reported coefficient values in
Table 5. The convergence characteristics for the reduced order
model using RGA, PSO, DE, and DEWM, as shown in Fig. 7 provide a
qualitative measure of the performance of the four algorithms.
From Fig. 7, it can be observed that the proposed optimization
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Fig. 11. Algorithm convergence profile for Example 2 (Case 2).

technique DEWM has converged to the lowest MSE level at the 20th
iteration cycle without entrapment to suboptimal solution, unlike
others.

4.2. Example 2

In this example, a sixth order IIR plant is considered from Refs.
[8,13] and the transfer function is shown in (26).

1-04z2-0.65z2%+0.26z°

He(z) —
s(2) = 7707722 —0.84982% 1 064862

(26)

1. Case 1

This sixth order plant Hs(z) can be modelled using sixth order [IR
filter Hyf(2). Hence the transfer function of the adaptive IIR filter
model is assumed by

- bo + b2272 + b4z*4 + +b6276

H.(z) = 27
o (2) 1—ayz=2 —a4z—% + agz 5 (27)

In Eq. (27), bg...bg and a;...ag are the numerator and denomi-
nator coefficients, respectively. Tables 8 and 9 show the optimized
coefficients and MSE values obtained over the best five indepen-
dent runs for four optimization techniques, namely, RGA, PSO, DE
and DEWM, respectively. It is also noticed from Table 8 that the
optimized coefficients obtained with DEWM are more accurate in
approximating the coefficients of the unknown plant. Statistically
analyzed results of MSE (in dB) are reported in Table 10. From
Table 10 it is observed that all MSE (dB) values obtained by the
DEWM are lower as compared to others and the lowest MSE value
of —45.4338 dB is achieved using DEWM.

Coefficient convergence profile is shown in Fig. 8 for the best run
(run 1 in Table 9) which produces the lowest MSE for the proposed
optimization technique DEWM in unknown IIR system identifica-
tion problem. Settled values of coefficients obtained after 300
iteration cycles can also be verified with the reported coefficient
values in Table 8 for the concerned run. The convergence charac-
teristics for the same order model using RGA, PSO, DE and, DEWM,
as shown in Fig. 9 provide a qualitative measure of the performance
of the four algorithms. From Fig. 9, it can be observed that the
proposed optimization technique DEWM has converged to the
lowest MSE level at the 77th iteration cycle without entrapment to
suboptimal solution, unlike others.

2. Case 2

In this case the sixth order plant as in Eq. (26) is modelled by a
fifth order IIR filter presented in Eq. (28).

Ho(2) by +biz 1+ byz72 + byz3 + byz* + byz > (28)
o 1+diz ' —az?2+a3z3 —dz 4 +agz>

In Eq. (28), by...b5 and dj...a5 are the numerator and denomi-
nator coefficients, respectively. Tables 11 and 12 show the opti-
mized coefficients and MSE values obtained over the best five
independent runs for four optimization techniques, namely, RGA,
PSO, DE and DEWM, respectively. Statistically analyzed results for
MSE (dB) are reported in Table 13. It is observed that all MSE (dB)
values obtained by the DEWM are lower as compared to others and
the lowest MSE value of —33.9594 dB is achieved using DEWM.

Coefficient convergence profile for the best run (run 2 in
Table 12) of the proposed optimization technique DEWM is shown
in Fig. 10 and optimized coefficient values obtained after 300
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Table 14
Optimized coefficients for Example 3 (Case 1).
Run RGA PSO DE DEWM
bo by bo by bo by bo by
b by by by
a; a; ay az ap az ay az
as as as as
1 —0.4997 0.2674 -0.2710 0.2062 -0.2830 0.3661 —0.2986 0.3926
—0.2969 -0.2721 —0.4683 —0.4934
0.5833 0.2049 0.9890 0.0908 1.1291 —-0.3135 1.1755 —0.4496
—0.0036 —0.2556 -0.0174 0.0729
2 —0.4646 -0.2778 —0.3493 0.3568 —0.2680 0.3139 -0.3078 0.4159
0.0476 —-0.5155 —-0.4277 -0.5150
—0.3786 0.6997 0.8477 —0.1698 1.1267 -0.3171 1.2155 —0.5463
0.4009 0.0888 —0.0063 0.1291
3 —0.1010 -0.1050 —0.2683 0.2123 -0.2612 0.3437 -0.2992 0.3953
—0.0780 —-0.4383 —0.4699 —0.4983
1.0792 0.0150 0.7581 0.0093 1.3106 —0.7430 1.1853 -0.4789
—0.2497 0.0032 0.2451 0.0924
4 —-0.3753 -0.1301 —0.2861 0.2902 —0.3325 0.4388 -0.3029 0.4041
—-0.2632 —0.4866 -0.5287 —0.5008
—0.0093 0.2352 0.9197 -0.3881 1.0930 —0.3416 1.1870 -0.4702
0.4266 0.2430 0.0380 0.0824
5 0.0202 —0.0720 —0.2938 0.3465 —0.2904 0.3898 -0.3017 0.3998
—0.4208 —0.4609 —0.5024 -0.5019
0.2354 0.4981 0.9737 —0.0461 1.2697 —0.6848 1.1792 -0.4701
0.0177 -0.1377 0.2195 0.0888
iteration cycles can also be tallied with the reported coefficient 1. Case 1

values as shown in Table 11. The convergence characteristics for the
reduced order model using RGA, PSO, DE and DEWM, as shown in
Fig. 11 provide a qualitative measure of the performance of the four
algorithms. From Fig. 11, it can be observed that the proposed
optimization technique DEWM has converged to the lowest MSE
level at the 192nd iteration cycle without entrapment to subopti-
mal solution, unlike others.

4.3. Example 3

In this example, a third order IIR plant is considered from Refs.
[5,12,15,18] and the transfer function is shown in Eq. (29).

~03+04z1-05z72

Hs(z) = 29
@ =T 727 7+0522-01z3 (29)

Table 15

MSE value for Example 3 (Case 1).
Run RGA PSO DE DEWM
1 0.1162 0.0330 0.0037 2.1626e-004
2 0.2257 0.0234 0.0047 3.1700e-004
3 0.1168 0.0422 0.0071 3.8177e-005
4 0.1385 0.0248 0.0038 8.3466e-005
5 0.2469 0.0109 0.0034 7.9325e-005

Table 16

Statistical analysis of MSE (dB) for Example 3 (Case 1).
MSE statistics RGA PSO DE DEWM
Best -9.3479 -19.6257 —24.6852 —44.1820
Worst —6.0748 —13.7469 —21.4874 —34.9894
Mean —7.9597 -16.1102 —23.5944 —39.5225
Variance 1.9945 3.9329 1.3243 10.8608
Standard deviation 14123 1.9831 1.1508 3.2956

This third order plant Hs(z) can be modelled using third order IIR
filter Hyr(2). Hence the transfer function of the model is assumed by

bo +b1z 1+ byz 2
H = 30
o (2) 1-—a1z7! —ayz2 —a3z3 (30)

In Eq. (30), by...b, and ay...a3 are the numerator and denomi-
nator coefficients, respectively. Tables 14 and 15 show the opti-
mized coefficients and MSE values obtained over the best five
independent runs for four optimization techniques, namely, RGA,
PSO, DE, and DEWM, respectively. Statistically analyzed results for
MSE (dB) are reported in Table 16. It is observed that the MSE values
obtained by the DEWM are the lowest as compared to others and
the lowest MSE value of —44.1820 dB is achieved. It is also noticed
from Table 14 that the optimized coefficients obtained with DEWM
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Fig. 12. Coefficient convergence profile of DEWM for Example 3 (Case 1).
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Fig. 13. Algorithm convergence profile for Example 3 (Case 1).

is more accurate in approximating the coefficients of the unknown
plant.

Coefficient convergence profile is shown in Fig. 12 for the best
run (run 3 in Table 15) which produces the lowest MSE for the
proposed DEWM based IIR system identification problem. Finally,
optimized coefficient values obtained after 200 iteration cycles can
also be tallied with the reported coefficient values in Table 14. The
algorithm convergence characteristics for the same order model,
using RGA, PSO, DE, and DEWM, as shown in Fig. 13, provide a
qualitative measure of the performance of the above mentioned
algorithms. From Fig. 13, it can be observed that the proposed
optimization technique DEWM has converged to the lowest MSE
level at 174th iteration cycle without entrapment to suboptimal
solution, unlike others.

2. Case 2

In this case a higher order plant is modelled by a reduced order
filter. For the situation under consideration a third order plant as in
Eq. (29) is modelled by a second order IIR filter given in Eq. (31).

b, + b,z !
Hy(2) = 1 g1 (31)

C -1 )
—a;z71 —a,z
In Eq. (31), .. are the numerator and denominator coefficients,
respectively. Tables 17 and 18 show the optimized coefficients and
MSE values obtained over the best five independent runs for four

Table 18
MSE value for Example 3 (Case 2).
Run RGA PSO DE DEWM
1 0.1625 0.0164 0.0168 0.0021
2 0.4407 0.0165 0.0080 0.0026
3 0.1624 0.0312 0.0207 0.0023
4 0.1715 0.0265 0.0197 0.0026
5 0.2022 0.0234 0.0171 0.0026
Table 19
Statistical analysis of MSE (dB) for Example 3 (Case 2).
MSE statistics RGA PSO DE DEWM
Best —7.8941 —17.8516 —20.9691 —26.7778
Worst —3.5586 —15.0585 —16.8403 —25.8503
Mean —6.7887 —16.5621 —18.0563 —26.1423
Variance 2.7299 1.2430 2.2420 0.1435
Standard deviation 1.6523 1.1149 1.4973 0.3788
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Fig. 14. Coefficient convergence profile of DEWM for Example 3 (Case 2).

optimization techniques, namely, RGA, PSO, DE, and DEWM,
respectively. Statistically analyzed results for MSE (dB) are reported
in Table 19. It is observed that all MSE (dB) values obtained by
DEWM are lower as compared to others and the lowest MSE value
of —26.7778 dB is achieved. Consistency of results for DEWM is
established with the smallest value of variance and standard de-
viation for the rest algorithms in IIR system identification problem.

Table 17
Optimized coefficients for Example 3 (Case 2).
Run RGA PSO DE DEWM
by by by b} by by b by
q O q, @ a a a @
1 -0.2516 —0.0352 -0.3785 0.0287 —0.3958 —-0.0609 -0.4179 —0.1206
1.0023 —-0.1344 0.5228 03178 0.2322 0.5599 0.1603 0.6057
2 -0.2439 —0.0136 —0.3942 —0.0457 —0.3958 —-0.0420 -0.2421 —0.0485
—-0.7190 -0.3431 0.2289 0.5675 0.3321 0.4728 0.6305 0.2294
3 —0.3996 —-0.0575 —0.4346 —0.0945 —-0.3959 -0.1141 —0.4020 —-0.0745
0.2748 0.5313 0.2312 0.5528 0.1750 0.6194 0.2322 0.5656
4 -0.3254 -0.1106 —0.4025 —0.0858 -0.4012 -0.1041 —0.4406 —0.0631
0.2312 0.5666 0.2236 0.5573 0.1983 0.5796 0.2493 0.5560
5 -0.3797 —0.0305 -0.4204 0.0456 —0.3955 -0.1663 —0.3608 —-0.0641
0.2975 0.5239 0.4335 0.3923 0.0634 0.6824 0.2305 0.5897
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Fig. 15. Algorithm convergence profile for Example 3 (Case 2).

Coefficient convergence profile for the best run (run 1 in
Table 18) of the DEWM is shown in Fig. 14 and optimized coefficient
values obtained after 200 iteration cycles can also be tallied with
the reported coefficient values as in Table 17. The algorithm
convergence characteristics for the reduced order model for the
best runs using RGA, PSO, DE, and DEWM, as shown in Fig. 15,
provide a qualitative measure of the performance of the four al-
gorithms. From Fig. 15, it can be observed that the proposed opti-
mization technique DEWM has converged to the lowest MSE level
at the 56th iteration cycle without entrapment to suboptimal so-

lution unlike others.

4.4. Example 4

In this example, a third order IIR plant is considered from Refs.
[6,13,15] and the transfer function is given in (32).

Table 21

MSE value for Example 4 (Case 1).
Run RGA PSO DE DEWM
1 0.2472 0.0424 0.0078 1.1848e-004
2 0.3033 0.0549 0.0084 6.9920e-005
3 0.4271 0.0424 0.0076 4.6051e-005
4 0.1861 0.0464 0.0071 7.5623e-005
5 0.3442 0.0408 0.0064 1.1157e-004

Table 22

Statistical analysis of MSE (dB) for Example 4 (Case 1).
MSE statistics RGA PSO DE DEWM
Best —7.3025 —13.8934 —21.9382 —43.3676
Worst —3.6947 —12.6043 —20.7572 —39.2635
Mean —-5.3754 —-13.4570 —21.2907 —40.9846
Variance 1.5230 0.2155 0.1594 2.2298
Standard deviation 1.2341 0.4642 0.3993 1.4933

Hi(2) -02-04z1+05z22 (32)
s 1-06z1+025z2-02z3

1. Case 1

This third order plant Hs(z) can be modelled using third order IIR
filter Hyr(2). Hence the transfer function of the model is assumed by
Eq. (33).

bo +biz 1 +byz 2

Hye(2) =
af(2) 1-—a1z7! —ayz2 —a3z3

(33)

In Eq. (33), bg...b, and a;...a3 are the numerator and denomi-
nator coefficients, respectively. Tables 20 and 21 show the opti-
mized coefficients and MSE values obtained over the best five
independent runs for different optimization techniques, namely,

Table 20
Optimized coefficients for Example 4 (Case 1).
Run RGA PSO DE DEWM
bo by bo by bo by bo b,
b by by b,
ay az ay az ay az ay az
as as as as
1 —0.0471 —0.1900 -0.1274 —0.6637 —0.1946 —0.5377 —0.2014 —0.3990
0.1822 -0.2175 0.1560 0.5092
-0.2163 -0.1193 —0.5264 —0.2188 —0.0344 -0.3199 0.6199 —0.2569
—0.4565 —0.0656 —-0.0725 0.2206
2 —0.2862 —0.0699 -0.3173 —-0.2746 —-0.1810 —0.4074 —-0.2014 —0.4066
0.2352 0.2298 04712 0.4896
—0.0325 0.1102 03573 —0.3622 0.4841 -0.1393 0.5721 —0.2444
—0.0694 —0.0650 0.0662 0.1829
3 —0.4886 —0.5664 -0.1274 —-0.6637 —0.2000 —0.5083 —-0.2019 —0.4039
-0.3977 -0.2175 0.2875 0.4848
0.0645 —0.1555 —0.5264 —0.2188 0.1816 —0.2333 0.5723 —-0.2529
—0.0460 —0.0656 0.0278 0.1861
4 —0.0832 -0.2618 —0.2383 -0.3220 -0.1971 —0.3862 —0.1983 —0.4082
0.2736 03107 0.4217 0.4932
—-0.0752 —0.4531 0.2965 —0.1804 0.5844 —0.3930 0.5731 —0.2404
—0.2080 —0.1633 0.2439 0.1827
5 03577 —0.6459 -0.3814 -0.6817 -0.2014 —0.4853 —0.1965 —0.4145
0.2523 —0.1458 0.3401 0.4970
0.3976 0.1358 —0.4187 —-0.3618 0.2515 -0.2123 0.5805 —0.2484
0.1909 -0.1811 0.0110 0.1956
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2 Table 24
b0 MSE value for Example 4 (Case 2).
b1
15 b2 1 Run RGA PSO DE DEWM
al 1 03336 0.0747 0.0075 6.0850e-004
a2 2 03289 0.0527 0.0050 9.1221e-004
1 a3 3 0.2416 0.0490 0.0071 4.0182e-004
% 4 03274 0.0430 0.0053 9.0427e-004
> o 5 02273 0.0322 0.0051 9.7319e-004
5 osf ek
o N
© |
8 n SN
ol Table 25
| “ Statistical analysis of MSE (dB) for Example 4 (Case 2).
[ g we—
TVl MSE statistics RGA PSO DE DEWM
0.5 -
~ Best —6.4340 -14.9214 -23.0103 -33.9597
Worst -4.7677 ~11.2668 —21.2494 -30.1180
“ Mean —5.4099 -13.1467 —22.2857 -31.4142
0 50 100 150 200 250 300 Variance 05378 1.4176 0.5733 2.1395
Iteration cycle Standard deviation 0.7333 1.1906 0.7572 1.4627
Fig. 16. Coefficient convergence profile of DEWM for Example 4 (Case 1).
Coefficient convergence profile is shown in Fig. 16 for the best
run (run 3 in Table 21) which produces the lowest MSE for the
20 proposed optimization technique DEWM in IIR system identifi-
Sgg cation problem. Finally, optimized coefficient values obtained af-
104 DE ter 300 iteration cycles can also be tallied with the reported
DEWM coefficient values in Table 20. The algorithm convergence char-
0 \\\L acteristics for the same order model using RGA, PSO, DE, and
\ b DEWM, as shown in Fig. 17 provide a qualitative measure of the
— 4043 performance of the above mentioned algorithms. From Fig. 17, it is
g \M observed that the DEWM has converged to the lowest MSE level at
) Y 112th iteration cycle without entrapment to suboptimal solution
=20 | unlike others.
|
-30 ‘?\ 2. Case 2
W
-40 —— In this case a higher order plant is modelled by a reduced order
B filter. For the situation under consideration a third order plant as in
50 Eq. (32) is modelled by a second order IIR filter presented in Eq.
50 100 150 200 250 300

Iteration cycle

Fig. 17. Algorithm convergence profile for Example 4 (Case 1).

RGA, PSO, DE, and DEWM, respectively. Statistically analyzed re-
sults for MSE (dB) are reported in Table 22. It is observed that all
MSE (dB) values obtained by the DEWM are lower as compared to
others and the lowest MSE value of —43.3676 dB is achieved. It is
also noticed from Table 20 that the optimized coefficients obtained
with DEWM are more accurate in approximating the coefficients of

the unknown plant.

(34).

by + byz7!

=0T % 34
1-dz71—a,z72 34)

Hyr (2)

In Eq. (34), by, b;, aj,a, are the numerator and denominator
coefficients, respectively. Tables 23 and 24 show the optimized
coefficients and MSE values obtained over best 5 independent runs
for different optimization techniques, namely, RGA, PSO, DE, and

DEWM, respectively. Statistically analyzed results for the MSE (dB)
are reported in Table 25. From Table 24 it is observed that all MSE

Table 23
Optimized coefficients for Example 4 (Case 2).
Run RGA PSO DE DEWM
by by by b} by by b by
q O q, @ a a a @
1 —-0.3826 0.2049 -0.3818 —-0.6029 —0.2082 -0.5021 -0.3671 -0.6107
0.7783 —-0.1056 —0.0899 -0.1757 -0.1511 —-0.3326 —0.1045 -0.1719
2 0.0804 —0.1459 —-0.0970 -0.5176 -0.2131 -0.6077 —0.0898 -0.4776
-1.1377 -0.6174 -0.1073 —0.2041 —0.1845 —-0.3889 -0.4824 —0.5456
3 —0.4050 —1.0205 -0.1387 -0.5367 -0.2379 -0.5751 —0.0599 —-0.5708
—0.2940 -0.0713 —0.4544 -0.3710 —0.0967 -0.2676 —0.2372 —-0.3089
4 0.0673 —0.1082 -0.1615 —0.5649 -0.2117 -0.5627 -0.0747 -0.5115
—-0.6519 -0.1326 —0.4358 -0.3394 —0.1595 —-0.3961 -0.3180 —-0.2549
5 —-0.3296 0.1456 -0.1270 -0.5104 -0.2071 —-0.5682 —0.2569 -0.5010
1.0482 —0.6442 -0.2241 -0.3377 -0.1661 -0.3931 -0.2330 —0.2031
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Fig. 18. Coefficient convergence profile of DEWM for Example 4 (Case 2).

(dB) values obtained by the DEWM are lower as compared to others
and the lowest MSE value of —33.9597 dB has been achieved.

Coefficient convergence profile for the best run (run 3 in
Table 24) of the DEWM is shown in Fig. 18 and optimized coefficient
values obtained after 300 iteration cycles can be tallied with the
reported coefficient values as in Table 23. The algorithm conver-
gence characteristics for the reduced order model using RGA, PSO,
DE, and DEWM, as shown in Fig. 19, provide a qualitative measure
of the performance of the four algorithms. From Fig. 19 it can be
observed that the DEWM has converged to the lowest MSE level at
the 52nd iteration cycle without entrapment to suboptimal solu-
tion, unlike others.

Performance of the DEWM is compared to other reported results
with the examples cited in this paper for IIR system identification
problem. Dai et al. used reduced model for Example 1 with SOA and
a MSE value of 8.2773e-2 is reported in Ref. [5]. Panda et al. in Ref.
[6] applied CSO and a MSE level of 6.36395e-5 and 0.0175154 are
achieved for same and reduced order models, respectively. ABC
algorithm is applied for the reduced order model by Karaboga in
Ref. [8] and a MSE level of 0.0706 is reported. In Ref. [9], Rashedi

15
| RGA et al. proposed GSA for the reduced order model and the best MSE
10 EEO [l value of 0.172 is reported in Ref. [9]. Chen et al. suggested PSO for
5 DEWM 1 the reduced order model and MSE of 0.275 is reported in Ref. [12]. A
o modified version of PSO, MuQPSO is proposed by Fang et al. for the
\ reduced order model and the lowest level of MSE 0.206 is reported
5 in Ref. [15]. Again Fang et al. suggested QPSO for the reduced order
g 0 L model and the best MSE level of 0.173 is reported in Ref. [ 18]. In Ref.
W [22], Karaboga has proposed DE algorithm and MSE level of 0.0685
= 5 for the reduced order model is reported in Ref. [22]. Majhi et al. [19]
2ol and Durmus and Gun [20] suggested PSO technique for same and
) 1‘ reduced order models with MSE levels of —38 dB [19] and 0.015
25 [20], respectively. In this paper, the authors have suggested DEWM
| . .
a0l L technique for the same and reduced order models with the best
N MSE levels of —55.7416 dB and —23.7675 dB, respectively.
35 '50 00 5 200 70 300 For Example 2, Karaboga suggested ABC algorithm for the
lteration cycle reduced order model and the best MSE level of 0.0144 is reported in
Ref. [8]. Luitel et al. in Ref. [13] proposed PSO-QI for same and
Fig. 19. Algorithm convergence profile for Example 4 (Case 2). reduced order models with the best MSE levels of 7.984e-4 and
Table 26
Performance comparison of different reported MSE values.
Example Reference Proposed algorithm MSE value
Same order Reduced order
Example 1 Dai et al. [5] SOA NR? 8.2773e-2
Panda et al. [6] Cso 6.36395e-5 0.0175154
Karaboga [8] ABC NR* 0.0706
Rashedi et al. [9] GSA NR? 0.172
Chen et al. [12] PSO NR? 0.275
Fang et al. [15] MuQPSO NR* 0.206
Fang et al. [18] QPSO NR? 0.173
Karaboga [22] DE NR? 0.0685
Majhi et al. [19] PSO —38dB NR*
Durmus et al. [20] PSO NR* 0.015
Present work DEWM 2.6659e-6 (=—55.7416 dB) 0.0042 (=—23.7675 dB)
Example 2 Karaboga [8] ABC NR? 0.0144
Luitel et al. [13] PSO-QI 7.984e-4 0.001
Present work DEWM 2.8617e-5 (=—45.4338 dB) 4.0185e-004 (=—33.9594 dB)
Example 3 Dai et al. [5] SOA NR? 5.1821e-3
Chen et al. [12] PSO NR* —17.4036 dB
Fang et al. [15] MuQPSO NR? 0.01374
Fang et al. [18] QPSO NR? 0.013
Present work DEWM 3.8177e-5 (=—44.1820 dB) 0.0021 (=—26.7778 dB)
Example 4 Panda et al. [6] CSO 6.35201e-5 0.001393846
Luitel et al. [13] PSO-QI 7.791e-4 0.004
Fang et al. [15] MuQPSO 2.041e-3 NR?
Present work DEWM 4.6051e-5 (=—43.3676 dB) 4.0182e-4 (=—33.9597 dB)

2 NR: not reported in the refereed literature.
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0.001, respectively. In this paper, DEWM yields MSE values
of —45.4338 dB and —33.9594 dB for same and reduced order
models, respectively.

For Example 3, Dai et al. suggested SOA technique for reduced
order model and the best MSE of 5.1821e-3 is reported in Ref. [5].
Chen et al. in Ref. [12] also suggested PSO for reduced order model
with best MSE level of —17.4036 dB. Fang et al. proposed MuQPSO
in Ref. [15] and QPSO in Ref. [18] for reduced order model with the
best MSE levels of 0.01374 and 0.013, respectively. In this paper, for
the same and reduced order models, DEWM yields the best MSE
values of —44.1820 dB and —26.7778 dB, respectively.

For Example 4, Panda et al. suggested CSO technique [6] for
same and reduced order models with MSE values of 6.35201e-5 and
0.001393846, respectively. Luitel et al. also suggested MSE values of
7.791e-4 and 0.004 for same and reduced order models, respec-
tively; with PSO-QI technique as reported in Ref. [13]. Fang et al. in
Ref. [15], suggested MuQPSO for same order model with the best
MSE level of 2.041e-3. In this paper, for same and reduced order
models, DEWM yields MSE levels of —43.3676 dB and —33.9597 dB,
respectively. All information given above for the comparative study
are presented in Table 26.

5. Conclusions

In this paper, an approach of applying proposed DEWM algo-
rithm for finding optimal set of adaptive IIR filter coefficients for
same order and reduced order models is shown for unknown sys-
tem identification problem. Morlet wavelet function is adopted to
bring reducing mutation in chromosome in DEWM optimization
technique. The adaptation of wavelet based mutation strategy
brings a noticeable improvement in mimicking the unknown plant
in terms of producing error fitness value and algorithm conver-
gence profile. No doubt, complexity of the basic DE algorithm is
increased with this mutation strategy, which has resulted in longer
computation time for finding optimal solution but the advantages
obtained in terms of quality output, have outweighed the disad-
vantage encountered with algorithm complexity. So, from the
simulation study it is established that the proposed optimization
technique DEWM for adaptive filtering is efficient in finding
optimal solution in multidimensional search space where the rest
algorithms are entrapped to suboptimal solution and hence it can
be concluded that the proposed technique is good enough to
handle such system identification problem.
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