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Abstract 

We introduce a variable step size algorithm for the pathwise numerical approximation of solutions to stochastic ordinary 
differential equations. The algorithm is based on a new pair of embedded explicit Runge-Kutta methods of strong order 
1.5(1.0), where the method of strong order 1.5 advances the numerical computation and the difference between approx- 
imations defined by the two methods is used for control of the local error. We show that convergence of our method 
is preserved though the discretization times are not stopping times any more, and further, we present numerical results 
which demonstrate the effectiveness of the variable step size implementation compared to a fixed step size implementation. 
(~) 1998 Elsevier Science B.V. All rights reserved. 
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I. Introduction 

We introduce a variable step size method for the pathwise (or strong) numerical approximation 
of the solution to the stochastic ordinary differential equation (SODE) 

dX,,=-f(Xt)dt+g(Xt)odW. Xto =Xo, (1) 

in Stratonovich form, where f and g are real valued functions and (Wtt)t>~0 is a scalar Wiener 
process. The random variable X0 denotes the random initial value at time t = to. Step size control 
is an important technique widely used in the numerical solution of ordinary differential equations 
(ODEs) (see for example [6, 11]), but existing implementations for the numerical solution of SODEs 
nearly always use a fixed step size (for exceptions see [9, 12]). Our method for step size control 
when solving a SODE (1) is based on a pair o f  embedded explicit stochastic Runge-Kutta methods 
(SRK methods) of strong order 1.5(1.0), where one of the methods is used for error control and the 
other advances the numerical computation. 
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An outline of  the paper is as follows: In Section 2 we review existing approaches to the con- 
struction of  explicit SRK methods. In particular we give the order conditions derived by K. Burrage 
and P.M. Burrage [2] for strong order 1.0 and strong order 1.5 explicit SRK methods. On the basis 
of  these order conditions we construct a pair of  embedded SRK methods of strong order 1.5(1.0) 
in Section 3. The deterministic components of  these methods are Runge-Kutta methods of order 4 
and order 2, respectively. 

Then, in Section 4, we present our variable step size method. First, in Section 4.1, we show how 
to simulate a trajectory of the two-dimensional normally distributed random variable 

odWss, J, j od~,ds: , 

which is contained in the embedded SRK method, over all time intervals of  the form [k/2 m, k + 1/2 m] 
for k, m E ~d, m ~< mmax. This special structure of  the available time steps leaves us with the restriction 
that new step sizes are only derived from previous ones by halving or doubling. Section 4.2 describes 
our actual step size control mechanism. In every integration step we take the difference between the 
two approximations defined by the embedded SRK method as an estimate for the local error. If the 
estimate of the local error is smaller than a given tolerance, then we accept the step, otherwise we 
reject it. The estimate of the local error is used furthermore for choosing a new step size taking 
into account the restriction mentioned above. Section 4.3 deals with the problem of convergence 
of our variable step size method. In general, proofs of strong convergence of numerical methods 
for SODEs are based on the assumption of  a fixed step size or at least on the assumption that the 
discretization points are all stopping times for the forward motion. This is obviously not the case 
for a method with step size control. However, it follows from a result of  Gaines and Lyons [9] that 
our embedded SRK method converges to the true solution of (1), even if the discretization times are 
not stopping times. In the final section, Section 5, we present numerical results that demonstrate the 
effectiveness of  the variable step size implementation compared to a fixed step size implementation. 

2. Runge-Kutta methods for SODEs 

An explicit s-stage Runge-Kutta method (ILK method) for calculating a numerical approximation 
to the solution of  an autonomous ODE 

fc = f ( x ) ,  x(to) = Xo, (2) 

is given by the recursive formula 

Y0 = x0 

Y,+1 = Y. + h, ~ ~if(rl i)  
(3) 

i=1 

with 
i--I 

qi = Y, + h, ~-~ ai:f(rlj) ,  
j = l  

i :  1 , . . . , s ,  
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where t0<tl < . . .  < t s  = T  is a discretization of  the integration interval [t0, T], h, = t , + ~ - t ,  and 
a~j, ~ E R for 1 ~< i ~< s, 1 ~< j ~< i - 1. To simplify notation we set aij = 0 for j >I i, A = (aij), and 
~z __ (a~). With the paper of  Butcher [4] it became customary to symbolize method (3) by the tableau 

0 
a21 0 

a31 a32 

asl as2 . . .  a s s - i  0 

Ixi ~2 . . .  O~s-i O~s 

For an autonomous Stratonovich SODE (1) we obtain by a straightforward generalization of  (3) the 
class of  methods 

Yo=Xo 

(4) 

i=l i=l 

with 

i--I i--I 

= Y,, + h, ~-~ai/f(I-!/)  + AW,  Z biJ 9(I-lj)' 
/=1 j=l  

i = 1,. . . ,  s, where A W~ = Wto+, - Wto = ftl °+' o d ~ is the increment of  the Wiener process from t, to 
t,,+~ and bij, ~ i E ~  for 1 <<.i<.s, 1 <<.j<~i- 1. Again we set bi j=O for j~>i.  A SRK method of  
this type is thus symbolized by the tableau 

0 0 
a21 0 b21 0 
a31 a32 b31 b32 

as1 a s 2 . . . a  ..... 1 0 bsl bs2 . . .bss - t  0 

ixJ ix2 ...  ixs-1 ixs 71 72 ...  7s-i Z~ 

Riimelin [17] has shown, however, that the local error of  a method which contains only the in- 
crements of  the Wiener process as stochastic components converges to 0 in the mean square sense 
with order at most 1.5. (See [14] for the different notions of  convergence in the stochastic setting.) 
To break this order barrier, the class of methods (4) has to be modified in some way so as to 
include further multiple stochastic integrals of  the stochastic Taylor formula apart from just AW,. 
This has been done by K. Burrage and P.M. Burrage in [2]. They proposed the following class of  
methods: 

Yo=Xo 

± ±( Y.+, = Y. + h. a,f(I-I,.) + 7~,)j I + 7~:) J,o'~ (5) 
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with 

i - -I  i--I  
H,. = Y. + hn Z aij f(I-Ij) + ~/ /~.( l )  r b!?) J l0  ) 

j : l  j : ,  \" 'J + - , ,  

for i = 1 , . . . , s .  Here 

[ tn+' Lgtt+lfttl $2 Jl = 0 dW~, Jlo = o dW~, ds2, 
-J t n 

- h ! ! ) = h f f ) = 0  for j > i ,  and -,s h!!),b}z),y}l),7}2)E~ for l~i<<.s, l<~j<<.i 1. Once again we set v,s -,s 
B o) = (h{!)~ B(2) = (b}))), yo)v = (7}1)) and 7 {2)v = (~2)). Besides the random variable J1, the class • ,vii t~ 
of methods (5) also contains the random variable J10. A method of type (5) is symbolized by the 
tableau 

0 

a21 0 

a31 a32 

0 

o 

b~ll ) ~(1)U32 

0 

b~] ) 0 

b~21 ) h(2) '-'32 

~ ~ N /~(1) ~(1) /~(1) n i~(2) /~(2) ~(2) n 
t*sl t~s2 . . .  tZss_ I v Usl Us2 . . .  Uss_ 1 v IUsl Us2 , . .  Uss_ I 

<" "' & 
. . . . . .  • Vs-I -s  " '"  ,Vs-I Ys 

(6) 

Note that the class of methods (4) is contained in (5). The rest of this section is concemed 
with the problem of determining the strong order of convergence of SRK methods (5). In the 
case of RK methods for deterministic problems the order of  accuracy is found by comparing the 
Taylor series expansion of the approximate solution to the Taylor series expansion of the exact 
solution over one step assuming exact initial values. In 1963 Butcher [3] introduced the theory 
of rooted trees in order to compare these two Taylor series expansions in a systematic way. In 
[2] K. Burrage and P.M. Burrage have extended this idea of  using rooted trees to the stochas- 
tic setting. They used the set of  bi-coloured rooted trees, i.e., the set of rooted trees with black 
(deterministic) and white (stochastic) nodes to derive a Stratonovich Taylor series expansion of 
the exact solution and a Stratonovich Taylor series expansion of the approximation defined by 
the numerical method (5). By comparing these two expansions, they could prove the following 
theorem: 

Theorem 1. The SRK method (5) is of  strong order 1.0, /f  

otTe = 1, 

I ?O)T(e, d,  b) = (1, --7(2)Tb,  ~) ,  

~(2)T(e, d )  = (0 ,  0 ) .  
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The SRK method is o f  strong order 1.5, i f  in addition 

0~T(d, b) = (1,0), 

1 '~ v(2)Tl~d 7(1)1(c, b2,B(l)b, d2,B(Z)d) = (1, l, g, - _ ,  v-,  -~(2)T(B(2)b + B(I)d)), 

7(2)T(c, b 2 , BO)b, d 2, B(2)d) = ( - l, -270)Tbd, -7(1)a'(B(2)b + BO)d), O, 0). 

Here, e T = ( 1 , . . . , 1 ) ,  c=Ae,  b=B(l)e and d=B(2)e. 

Proof. See [2], but note that the orders of  convergence, which arc given there and are claimed to 
be orders of  strong convergence, are in fact orders of  the local error in the mean square sense. By 
[16] one has to subtract l to get the order of  the global error in the mean square sense and Jensen's 
inequality [ 1 ] shows that this order gives a lower bound for the order of  strong convergence of the 
method. [] 

3. An embedded stochastic Runge-Kutta method 

An embedded SRK method consists of  two SRK methods which both use the same function values 
of f and g. We are thus looking for a scheme of  coefficients 

0 

a2~ 0 

a31 a32 

0 

bill) 0 

0 

b~21 ) 0 

b~]) /~(2) 
"32 

asl  as2 . . .  a s s - i  0 

~1 ~2 . . .  ~ s - i  ~s 

~l ~2 ... ~s-1 ~s 

such that 

b(l) t,(1) /~(1) 0 /~(2) h(2) b (2) 0 
sl ~s2 " '"  Uss--I Usl ~s2 " '"  ss--I 

• . -  y s - i  Zs U l  . . .  ~)s-i 

Ys--I ~)s Yl " ' "  ~ s - l  ~s 

s ±( ?) 
Y1 = Yo + h ~ ~,f(H/)  + 7}l)J1 + ~}2) g(Hi) 

i :1  i=1 

is of  strong order p, and 

i=1 i=1 

(7) 

(8) 

(9) 

is of  strong order ~b < p. Using the same terminology as in the deterministic setting we call such 
a method an embedded SRK method of  strong order p(/3). We choose /3 = 1.0. By Theorem 1 the 
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method given by the tableau 

0 0 0 

2 o 2 o o o  

1 310 0 

(10) 

has strong order of  convergence /3= 1.0. Since B(2)=0 and 7(2)=0, method (10) is actually a 
method of  type (4). K. Burrage and P.M. Burrage [2] have shown that method (10) is optimal in 
that class regarding the principal local truncation error. We choose now p = 1.5. Since it is not 
possible to construct a SRK method of  type (5) of  order p - - 1 . 5  with s ~< 3 (see [2]), we set s = 4 .  
Accordingly, we try to find a scheme of coefficients 

0 0 0 

2 0 2 ~ 0 0 0 

a3, a32 0 b~l, ) ~'32h(') 0 b~2, ) '-32t'(:) 0 ( l l )  

a41 a42 a43 0 bill ) ~42 h(1) "43/~(1) 0 b]21 ) "42/~(2) "43h(2) 0 

0(1 (X 2 0 ~  3 0~41711) ] ) ~ 1 ) 7 ~ 1 ) 7 ( 1 ) 7 { 2 ) 7 ~ 2 ) 7 ~ 2 ) 7 ~ 2 )  

which complies with the conditions of  Theorem 1. We have 27 free parameters and there are 18 
equations to be satisfied. We choose the deterministic part of  (11 ) such that it yields a RK method 
of  order 4. This ensures that our method works well in the case of  small stochastic influence. If  we 

2 that a~ + a2 + ~3 ~t_ ~4 1, a~ = a2 and a 3 = O~ 4 we get require in addition to a21 = 5 = 

0 

2 0 g 
I 

5 1 - ~ 2 0  
! 3 3 !  
8 8 8 8  

as the only solution for the deterministic part of  (11). The remaining system, which consists of  
17 equations (aTe = 1 is already fulfilled) with 18 free parameters, was solved using MAPLE. This 
leads to a number of  possible methods and the following method was selected due to its symmetry 
in B(2): 

0 

2 0 

1 

5 1 - ~  ~ 2 0  

0 

2 0 

1 1 - ~  - g  0 

1 1 - ~  ~ O0 
I 
8 

0 

0 0 

1 1 0 

1 1 0 0 

3 3 '1 ' 3 ,13 3 3 3 - -  - ~  ~ 0 8 8 8 2 4 4 4  4 

(12) 
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The constructed embedded SRK method of  strong order 1.5(1.0) is thus symbolized by the tableau 

0 

2 0 

1 

5 1  1 - ~ 2 0 - ~  

0 0 
2 0 0 0 

l 10 1 1 

ll ~ O0 

0 
(13) 

1 0 0  
I 3 3 1  1 3 0 1 3  3 3  3 

8 8 8 - ~  4 0 0 2 ~ - ~ 4 - ~  
1 3 l 3 0 0 0 0 ~ 0 0  

The deterministic part of  (13) is an embedded RK method of  order 4(2). Therefore, the inequalities 

/3 < p ,.< 2/3, 

which were derived by Deufelhard and Bomemann [6] for a deterministic algorithm that uses two 
approximations of  order p and /3  for step size control, are satisfied. 

4. Step size control 

Using the difference between the two approximations, given by the embedded SRK method of  the 
previous section, as an estimate for the local error we now want to write a code which automatically 
adjusts the step size in order to achieve a prescribed tolerance of  the local error. Whenever a step 
is tried for which the estimate of  the local error is greater than the prescribed tolerance, the step is 
rejected and a new step with a smaller step size is tried. This leads to difficulties in the simulation 
of  the random variables Jl and Jl0 which occur in (8) and (9). In Section 4.1 it is shown how 
these difficulties can be overcome. Next, in Section 4.2 the automatic step size control mechanism 
is introduced. Finally, Section 4.3 deals with the question as to whether numerical approximations 
defined by our algorithm converge to the true solution of  the given SODE (1). 

4.1. Simulation of  the random variables .11 and Jlo 

Fto+h Fto+h ~s2 
Since ,/1 = Jto odW~ and Jlo = Jto ~to odW~, ds2, the two-dimensional random variable (JI,Jlo) 

is normally distributed with expectation and covariance matrix 

E((J~,J,o))=(O,O) and Cov((J j ,J ,o))--  ½h2½h3 ] 

(see [14]). Accordingly, one gets (Ji,Jl0) by means of  the transformation 

1 
J l : N i v / - h  and J l o : ~ v ~ ( N l q - - - ~ N 2 )  (14) 

with two independent standard normally distributed random variables NI  and N2. 
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Remark 2 (S imula t ion  o f  (Ji,Ji0)). We use an inversive congruential generator (with parameters 
p=231 - 1, a = b =  1, see [8]) for generating a sequence of independent uniformly distributed 
pseudorandom numbers in the interval [0, 1 ). By the polar method [7], we transform in each step two 
successive pseudorandom numbers into two independent standard normally distributed pseudorandom 
numbers and we obtain two pseudorandom numbers which simulate a realization of  (J~,J,0) by 
transformation (14). 

Whenever the algorithm tries a step of step size h, the simulation according to Remark 2 yields 
a value jl  c ~ for the random variable J~ = ft0+h o d ~  and a value j,0 E ~ for the random variable J l 0 

fto+h s2 
JI0 = ~t0 fro o d ~ .  ds2. In case the chosen accuracy criterion for the local error is not met, the 

algorithm has to repeat the step with a smaller step size /~ < h. Thus the problem of  simulating 

o d ~ ,  l od~, ds2 (15) 
d to d to 

under the condition 

odW~, odW~, ds2 = ( j l , j l 0 )  (16) 
d l 0 d l 0 l 0 

arises. A method for the simulation of 

to+h to+h 
I o d ~  under thecondi t ion I o d ~ = j l  
J tO J / 0  

has been proposed by Lrvy [15]. As far as we know there is no corresponding method for the simula- 
tion of the two-dimensional random variable (15) under the condition (16). We decided therefore to 
simulate (J~,J~o) according to Remark 2 relative to a time discretization to <fi < ".- <tN = T, T E ~ ,  
with a fixed step size h of  the form 

1 
h - for mmax E ~. 

mmax 

Values of  the same realization of (Ji,Jl0) to step sizes of the form 1/2 m, 0 ~<m<mmax , are then 
obtained recursively by the following consideration: Let tl <t2 <t3. We set J~,t,,t/= ftl j o dWs and 

Jlo, t,,tj = fti' ftl ~2 o d ~ ,  ds2 for i , j =  1,2,3. Then 

Jl,tl,t3 = Jl,q,t2 -[- JI,t2,t3, 

~ / i  t3 ~ t l  $2 Jlo, t,,t3 = o d ~ ,  ds2 

= o d ~ ,  ds2 q- o d ~ ,  ds2 
. II 

=Jlo,  t,,,2 + o d ~ ,  + o d ~ ,  ds2 

= Jlo, t,,t2 + Jl,tl,t2(t3 -- t2) + Jlo, t2,t3. 
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Accordingly, during the numerical integration we can use all time steps of the form tstar t ~ ten d with 

t s t a r t = i + k / 2  m and t e n d = i + ( k +  l)/2 m, (17) 

where i E N ,  O<~i<<.T-1, m E N ,  0~m~<mmax and k E M ,  0~<k~<2m-  1. 

4.2. Automatic step size control 

Whenever a starting step size h has been chosen, method (13) of  Section 3 yields two approxima- 
tions to the solution, yl and 33~. An estimate of  the error for the less precise result )3~ is [y~ - )31 [. 
We require that the step size control routine accepts only steps with 

ly, - 3 ,  I ~< tol, (18) 

where tol denotes the desired tolerance. We have chosen 

tol--- Atol + max{ly0l, ly, I} Rtol, (19) 

where Atol and Rtol are tolerances prescribed by the user (relative errors are considered for Atol = 0, 
absolute errors for Rtol = 0). For choosing a step size we proceed as follows: As a measure of the 
error we take 

err = lY, - )31 I/t°l (20) 

and compare err to 1 in order to find an optimal step size. Since/3 = 1.0, the local error of  the less 
precise method converges in the mean square sense to 0 with order 1.5. It follows therefore from 
Jensen's inequality that the expectation of  the local error converges to 0 with order 1.5, too. As 
lYl - )~l] gives an estimate for the local error, we assume 

err.~ C h 15 (21) 

for some constant C > 0. Note that we use thereby an estimate for the average local error as a rough 
estimate for the local error in a particular realization. Since we require err ~ 1 for an optimal step 

~1.5 
size hopt, we get 1 ~ Chop t. This implies 

( 1  ~ 1/l5 
]'/opt =h  \~-*~.] 

(see [5]). We multiply hopt by a safety factor f a c < l  (for example fac--0.8) so that the step size 
hopt 

hop, = fach \~ -~ /  (22) 

will be acceptable the next time with high probability. In the deterministic setting the following 
method for choosing a new step size is well known (see for example [11]): If  e r r > l ,  the step 
with step size h is rejected and the computations are repeated with the step size hopt <h.  In case 
err ~< 1, the computed step is accepted and the solution is advanced with y~ as new initial value 
and a new step is tried with step size hopt. But on account of  the special structure of the available 
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time steps one cannot transfer this method directly to the stochastic setting. New step sizes are only 
derived from previous ones by halving or doubling. Therefore we propose the following procedure: 
In case err > 1, the step with step size h is rejected and a new step with step size h/2 is tried, as 
long as h/2 ~> 1/2 mmax, otherwise the code stops. If err ~< 1, the step is accepted. For the next step 
one takes Yl as new initial value and the step size h either remains unchanged or is doubled. We 
double the step size only if the following three conditions are fulfilled, where the first and second 
condition result from the special structure of the available time steps, and the third condition comes 
from (22): 
(1) 2h ~< 1, 
(2) The current time has to be the initial point of  an admissible time step of length 2h. For 

example, if an initial step of length 0.125 is taken at time t = 0, then the second step, taken at 
time t = 0.125, cannot be of length 0.25, since steps of length 0.25 can only be taken over the 
time intervals [0, 0.25], [0.25, 0 .5] , . . . .  

(3) We require that hopt >~2h, hence by (22) that 

( 1 ~  '/L' 
fac \~ -~ /  1> 2, 

which together with (19) and (20) yields 

lY~ - P~I ~< - -  (Atol + max{[y0[, ly~l}Rtol). 

If  we doubled the step size after each accepted step as long as the structure of the available time 
steps allowed for an increase in step size at that point and if we did not require condition 3 to 
be complied with, the double step size would be too large in many cases and would consequently 
result in a rejection of  this step (see the negative numerical results in [9]). Condition 2 ensures 
that the step size cannot be increased after a step which was carried out right after a step rejec- 
tion. This is advisable according to [18]. The fact that the step size is at most doubled after an 
accepted step of step size h, even if hopt > 2 h, prevents the code from too large step increases and 
contributes to its safety. On the other hand, after a rejected step of step size h the step size is only 
halved even for hopt < ½h. This prevents the code from an unnecessary increase in computational 
work. 

4.3. Convergence of  the embedded SRK method with step size control 

In Sections 4.1 and 4.2 we have outlined an algorithm using variable time steps. Naturally the 
question arises as to whether this algorithm converges to the true solution of the given SODE (1). 
In general, proofs of  strong convergence of numerical methods, like the proof of  Theorem 1, are 
based on the assumption of  a fixed step size or at least on the assumption that the discretization 
points are all stopping times for the forward motion. In the case of  an algorithm with automatic step 
size control the discretization points are obviously not stopping times, since it is only once a step 
has been taken and the error estimated that the decision is made to continue or to retreat and take a 
smaller time step. But the following proposition ensures that the embedded SRK method (13) with 
the automatic step size control mechanism described in the previous subsection yields approximations 
which converge to the true solution of  (1). 
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Proposition 3. Each S R K  method  (5) which satisfies the 6 conditions o f  Theorem 1 f o r  an order 
1.0 strong me thod  yields approximations  converging to the solution o f  (1), as long as the m a x i m u m  
step size converges to O, even i f  the discretization points  are not stopping times. 

Proof. Let r0 and fl~ denote the rooted trees which consist only of a black and white root, re- 
spectively, and fll~ the rooted tree which consists of  a white root and another white node. By [2] 
and with the notation introduced there we obtain as Stratonovich Taylor series expansion of the 
numerical method (5) 

I Y(to + h) = )(to + (b(flo ) F(flo ) h + ~(fl~ ) F(fl ,  ) + qb(tff,, ) F(fl ,  z ) ~ + C( h '5 ) 
1 = X t  o -[- (7 T ef(Xto ) h + zTeg(Xto ) + 2 zTZeg'g(Xto ) ~ + (9(h 15), 

where Z =B¢I)J~ + B(Z)J~o/h, z =  y(l~Jl+y(Z)Jlo/h and (9(h ~5) denotes the order in the mean square 
sense. From the 6 conditions of  Theorem 1 for an order 1.0 method it follows that aTe = 1, zTe = Jl 

1 2 _ _  and zTZe = 5JI -- Jll and thus Corollary 4.4 in [9] yields the assertion. [] 

5. Numerical results 

In this section, numerical results from the implementation of  the embedded SRK method (13) 
of  strong order 1.5(1.0) with the automatic step size control mechanism presented in Section 4 are 
compared to those from the implementation of the SRK method (12) of  strong order 1.5 with fixed 
step size. These methods will be denoted by M1 and M2, respectively. We compare the average error 
of  these two methods when using the same amount of  computational work. To this end we proceed 
as follows: As test problems we take several problems from [14], for which the exact solution in 
terms of  the Wiener process is known. We first compute with method M1 and prescribed tolerances 
Atol and Rtol for N = 1000 trajectories of  the Wiener process approximate solutions over the interval 
[0, 10]. We denote by Stned and Staken the average number of steps tried and taken, respectively. By 
comparing the approximate solutions at t = 0, 1,2, . . . ,  10 to the exact solutions at the same points 
of  time, we get the average error at these times. This is exactly the error one wants to minimize 
by constructing methods of  strong convergence. This error will be indicated by a solid line in the 
following figures. We want to compare this error of  method M1 to the error of  method M2 when 
using the same amount of  computational work. Since the amount of computational work of both 
methods is more or less directly proportional to the number of steps tried and since, because of the 
embedded structure of  M1, a step with M1 is as expensive as a step with M2, we choose as fixed 
step size h for method M2 

h = T/Stned. (23) 

Consequently, the numbers of  steps taken by M2 for an integration along each trajectory equals the 
average number of  steps tried by an integration with M1. 

Remark 4. Method M1 can adjust the number of  integration steps according to the structure of  the 
respective trajectory of  the Wiener process. For an integration along a trajectory which makes the 
integration difficult M1 uses more steps than for an integration along a trajectory with a simpler 
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Fig. 1. fl=0.1, Atol= 10 -5, Rtol= 10 -4, Staken/Stried =0.82. 

structure. Whereas a method which uses only a fixed step size cannot adjust the number of  steps to 
the structure of  the different trajectories. 

We compute with method M2 and fixed step size (23) once again for N = 1000 trajectories of  
the Wiener process the approximate and the exact solution at t = 0, 1 ,2 , . . . ,  10 and determine the 
average error at these times. This error will be indicated by a dashed line in the following figures. 

Test Problem 1 ([14, Problem 4.4.46]) 

dXt = - ( 1  + fl2Xt)(1 - X t 2 ) d t  + fl(1 -X,2)dWt, Xo =0, 

with solution 

exp( -2 t  + 2flWt) - 1 
Xt ---- (24) 

exp( -2 t  + 2flWt) + 1" 

This problem was solved numerically twice, first with /6 = 0.1 and secondly with fl = 1. This 
demonstrates the variation in emphasis of  the stochastic and deterministic parts of  the SODE. For 
/3=0.1 (relatively weak stochastic influence) solution (24) converges rapidly to - 1  and is almost 
constant after t = 4 .  The errors of  method M1 and M2 are shown in Fig. 1. For t ~<4 method M1 is 
superior to method M2, whereas for t > 4  M2 gives better results than M1, since M2 takes smaller 
steps in [4, 10]. For fl = 1 (moderately large stochastic influence) the solution shows the asymptotic 
behaviour considerably later, especially when the Wiener process takes on large positive values. In 
this case method M1 is superior to method M2 on the whole interval [0, 10] (see Fig 2). For both 
fl -- 0.1 and fl = 1 the maximum value of  the error of  method M2 is larger than that of  M1, namely 
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Fig. 2. r= 1, A t o l =  10 -4, R t o l =  10 -3, Staken/Stried =0.77. 

for fl = 0.1 approximately 3 times as large as that for M1 and for fl = 1 approximately 2.5 times as 
large. 

Test Problem 2 ([14, Problem 4.4.6]) 

dXt -- ~tXt dt + flXt d W,, X 0 = l ,  

with solution 

Xt = exp((~ - ½flz)t + flWt). 

For ~ = 1 and fl = 0.5 we get Xt = exp(0.875t+0.5 Wt), essentially an increasing exponential function. 
Since this function does not have "smooth" and "nonsmooth" sections, step size control is not of  
much use. This is shown in Fig. 3. If we choose ~ =  - 0 . 5  and r =  1, we get X~ = e x p ( - t  + Wt), 
a decreasing exponential function disturbed by the Wiener process. Method M1 is superior to M2 
until t = 7. The maximum value of  the error with M2 is almost twice as large as the corresponding 
value of  M1 (see Fig. 4). 

Test Problem 3 ([14, Problem 4.4.31]) 

dXt :-0.25Xt(1- Xf)dt + 0.5 (1-  Xf)dWt, X 0 : 0 ,  

with solution 

Xt = tanh(0.5 Wt). 



106 S. Mauthner/Journal of Computational and Applied Mathematics 100 (1998) 93-109 

1 0  3 

10 ~ 

101 

6 1o 0 

o~ 

10 -1 

1 0  -2 

I • [ I I 

/ 

10 I I 1 I I I I I I 
1 2 3 4 5 6 7 8 9 

time 

Fig. 3. ~ =  1, /~=0.5, A to l=  10 -3, Rto l=  10 -3, S t a k e n / a t r i e d  = 0 . 7 7 .  

10 

5 

!, 

2 

1 

10 -3 
I 

! ", 

l \ \ 
t \ 

I \ 

t k% 

I \ 

! • 

I I I I 

1 2 3 4 
I I 

5 6 
t ime 

I i I 

7 8 9 10 

Fig. 4. ~ = - 0 . 5 ,  f l=  1, A to l=  10 3, Rto l=  10 3 ~-~taken/gtried =0.78. 



S. Mauthner / Journal of Computational and Applied Mathematics 100 (1998) 93-109 107 

2.5 

2 

~) 
1.s 

4.5 x 10 -3 

4 

3.5 

i i i r i 

/ / 
/ /  

/ /  
/ /  

/ /  
/ /  

/ /  
/ /  

/ /  

/ 
/ 

/ 
/ 

/ 

/ 

/ 

1 

/ 
/ 

d 
/ 

/ 

0.5 / j 

I 

1 2 
I I I I f I I 

O0 3 4 5 6 7 8 9 10 
Ume 

Fig. 5. Ato l  = 10 -4 ,  Rtol  = 10 -3 ,  Staken/Stried = 0 . 7 5 .  

The solution of  this SODE is a Wiener process which is scaled by the factor 0.5 and which is, 
in addition to the scaling, damped by the tangens hyperbolicus. The effectiveness of a variable step 
size implementation for that problem is shown in Fig. 5. 

Test Problem 4 ([14, Problem 4.4.28]) 

7~ 
dXt=cosXts in3Xtdt -  sin=XtdWt, X 0 = ~ ,  

with solution 

Xt = arccot(Wt). 

The arcuscotangens function damps - -  in a manner a bit different to that of the tangens hyper- 
bolicus - -  the function t ~ Wt. Also for this test problem method M1 is clearly superior to method 
M2 (see Fig. 6). 

The results obtained show that a significant gain in efficiency can be achieved by step size control 
not only in the numerical solution of deterministic differential equations, but also in the numerical 
solution of stochastic differential equations. However, future work will be needed to extend this 
method of step size control to multidimensional stochastic differential equations. 
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