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Determining the Points of Change in Time
Series of Polarimetric SAR Data

Knut Conradsen, Allan Aasbjerg Nielsen, and Henning Skriver, Member, IEEE

Abstract

We present the likelihood ratio test statistic for homogeneity of several complex variance-covariance matrices that
may be used in order to assess whether at least one change has taken place in a time series of SAR data. We furthermore
give a factorization of this test statistic into a product of test statistics that each tests simpler hypotheses of homogeneity
up to a certain point and that are independent if the hypothesis of total homogeneity is true. This factorization is used
in determining the (pixelwise) time points of change in a series of six L-band EMISAR polarimetric SAR data. The
pixelwise analyses are applied on homogeneous subareas covered with different vegetation types using the distribution
of the observed p-values.

http://www.imm.dtu.dk/pubdb/p.php?6825.
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I. Introduction

CHANGE detection is a very important method for many applications of remotely sensed data from satellites.
Especially SAR data are useful due to its all-weather capabilities, and hence planned acquisitions for change

detection are normally secured. A number of studies have applied SAR data to change detection applications in
single-channel SAR images applying different methods using e.g. the classical ratio detection [1], [2], the Kittler-
Illingworth threshold selection criterion [3]–[6], hidden Markov chains for thresholding [7], wavelets [8]–[11], linear
features [12], Kullback-Leibler divergence [13], multivariate gamma distributions [14], neural networks [15], fusion of
multi-similarity measures [16], and Markov random fields [17], where most of the methods are based on the classic
ratio detector and improvements thereof. Also, methods for change detection using multichannel SAR data (e.g.
polarimetric) have been studied using e.g. polarimetric parameters [18], [19], Markov random fields for multichannel
SAR data [20], [21], generalized maximum likelihood test for covariance matrices [22] and the same test statistics for
classification [23], partial vectors for suppression of the backscatter coefficient influence [24], the Hotelling-Lawley
trace statistic [25], and a non-Wishart change detector [26], where a characteristic of the multichannel change detectors
is that they are used for change detection between bi-temporal acquisitions.

In change detection between two polarimetric SAR images, tests comparing two complex variance-covariance
matrices have turned out to be very efficient. This is used in e.g. [22] where the likelihood ratio test statistic is
derived and an approximate expression for the distribution of the statistic under the hypothesis that no changes
have occurred is found. In the radar literature the term “variance-covariance matrix” is not commonly used. We use
the term to indicate that we here deal with quadratic, positive definite (dispersion) matrices and not cross-covariance
matrices between different multivariate observations. In the paper, we apply the test statistics developed to multilook
SAR data in the so-called complex covariance formulation. In this paper we will use the usual radar term ”covariance
matrix”.

When comparing several images one may apply the simple approach making pairwise comparisons. However,
this approach makes it virtually impossible to control the rates of false positives (postulating a change when there
actually is none) and of false negatives (missing an actual change). In general, a better approach for comparing
several distributions is to perform a simultaneous test of the hypothesis of homogeneity of the said distributions, a
so-called omnibus test, see for example [27]. In this paper we enable this by deriving the likelihood ratio test statistic
for equality of several, say k, complex variance-covariance matrices and finding an approximation for the distribution
of this test statistic under the hypothesis of equality. If the conclusion of such an analysis is that the parameters in
the underlying Wishart distributions are not constant, i.e. we have a non-stationary time series, then the question
naturally arises, when do the changes actually occur? In this paper we present a factorization of the likelihood ratio
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statistic into a product of test statistics that each test simpler hypotheses of homogeneity up to a certain point and
that are independent if the hypothesis of total homogeneity is true. We show how this may be used in setting up a
change detector for solving the said problem.

The first results in this paper are direct generalizations of the k = 2 case reported in [22] and further described
in [28]. As mentioned above some other studies have been reported on change detection between two polarimetric
SAR images, but the approach presented in this paper of detecting changes in a series of polarimetric SAR data in
the covariance matrix representation is new. The launches of a number of satellite SAR systems during the latest
more than 10 years have made it more common to use SAR data and especially time series of SAR data for different
applications. The SAR systems include e.g. the ALOS satellites, the Radarsat satellites, the TerraSAR-X, the COSMO-
SkyMed satellites, and the Sentinel-1 mission. Some of these systems have a full polarimetric mode, whereas others
have single and/or dual polarization. The time series of SAR data enable a number of applications where a core
method for the utilization of the data is detection of changes in the time series, e.g. detection of a specific event for
an agricultural crop (e.g. sowing or harvesting), detection of a flooding event in a monitoring system, or detection
of changes in an urban area.

Section II includes a description of the covariance representation of polarimetric SAR data and describes the data set
we have used in the demonstration of the test statistics. Section III gives the basic results on the omnibus test statistic
and on its decomposition into a product of test statistics that test simpler hypotheses in the general, complex Wishart
case. Since the real Gamma distribution is a univariate special case, the theory is exemplified on this distribution.
Also, a scheme for using the test statistics in a change detection method to detect the changes in a time series is
shown. Section IV shows the results of change detection in multi-temporal polarimetric data over five time points
for the omnibus test and six time points for the decomposition, respectively. Section V contains the conclusions. An
appendix gives details on the new test statistics and their distributions.

II. Data
This section first describes the covariance representation of multilook polarimetric SAR data followed by a descrip-

tion of the SAR data used in the study.

A. Polarimetric SAR
A fully polarimetric SAR measures the 2 by 2 complex so-called scattering matrix at each resolution cell on the

ground. The scattering matrix relates the incident and the scattered electric fields, [29]. If Srt denotes the complex
scattering amplitude for receive and transmit polarization (r, t ∈ {h, v} for horizontal and vertical polarization), then
reciprocity, which normally applies to natural targets, gives Shv = Svh (in the backscattering direction using the
backscattering alignment convention) [29]. Assuming reciprocity, the scattering matrix is represented by the three-
component complex target vector s = [Shh Shv Svv]T, where the superscript T denotes the matrix transpose.

The inherent speckle in the SAR data can be reduced by spatial averaging at the expense of spatial resolution. In
this so-called multi-look case (below n is the number of looks) a more appropriate representation of the backscattered
signal is the covariance matrix in which the average properties of a group of resolution cells can be expressed in a
single matrix formed by the outer products of the averaged target vectors. The sample covariance matrix is defined
as [29]

⟨C⟩f ull = ⟨s(i)s(i)H⟩ (1)

=


⟨ShhS∗hh⟩ ⟨ShhS∗hv⟩ ⟨ShhS∗vv⟩
⟨ShvS∗hh⟩ ⟨ShvS∗hv⟩ ⟨ShvS∗vv⟩
⟨SvvS∗hh⟩ ⟨SvvS∗hv⟩ ⟨SvvS∗vv⟩


where ⟨·⟩ denotes ensemble averaging, the ∗ denotes complex conjugation, and the superscript H denotes the com-
plex conjugate transpose. Reciprocity results in a covariance matrix with rank 3. n⟨C⟩ follows a complex Wishart
distribution.

Spaceborne instruments often transmit only one polarization, say horizontal, and receive both polarizations giving
rise to dual polarization data, e.g. Shh and Shv. In this case we have the components ⟨ShhS∗hh⟩, ⟨ShhS∗hv⟩ and ⟨ShvS∗hv⟩
only. The resulting covariance matrix

⟨C⟩dual =

 ⟨ShhS∗hh⟩ ⟨ShhS∗hv⟩
⟨ShvS∗hh⟩ ⟨ShvS∗hv⟩

 (2)

has rank 2. The availability of full-polarimetric data allows us to extract dual-polarimetric subsets.
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B. Multitemporal EMISAR Data Set
The SAR data used in the study have been acquired by the fully polarimetric Danish airborne SAR system, EMISAR,

which operates at two frequencies, C band (5.3 GHz/5.7 cm wavelength) and L band (1.25 GHz/24 cm wavelength)
[30]. The nominal one-look spatial resolution is 2 m by 2 m, the ground range swath is approximately 12 km and
typical incidence angles range from 35◦ to 60◦. The processed data from this system are fully calibrated by using an
advanced internal calibration system [31]. In 1998 L-band data were acquired over a Danish agricultural test site on
21 March, 17 April, 20 May, 16 June, 15 July, and 16 August.

All acquisitions have been co-registered by identifying ground control points in the images and using an interfer-
ometric DEM acquired by the EMISAR system [18]. Before the resampling, the original one-look scattering matrix
data have been transformed to covariance matrix data, and these data have been averaged to reduce the speckle
by a cosine-squared weighted 9 by 9 filter. The new pixel spacing in the images is 5 m by 5 m, and the effective
spatial resolution is approximately 8 m by 8 m at mid-range. After the averaging the equivalent number of looks is
approximately 13.

Figure 1 row-wise shows RGB combinations of the diagonal elements of the full polarimetry covariance matrix at
L-band for March, April, May (top row, left to right) and June, July, August (bottom row, left to right), respectively.
⟨ShvS∗hv⟩ (red) is stretched linearly between –36 dB and –6 dB, ⟨ShhS∗hh⟩ (green) between –30 dB and 0 dB and ⟨SvvS∗vv⟩
(blue) between –24 dB and 0 dB. The darker areas in the March and April images are bare surfaces corresponding to
spring crops, and the very bright areas in all images are forest areas, primarily coniferous forest. The development
of the crops during the growing season is clearly seen in the series of images from March to August.

The changes we are looking for are changes in the average properties of the pixels/fields, i.e., the speckle patterns
are not correlated. The images used are acquired with about one month interval, and the areas used are vegetated
areas, forest and agricultural fields. The speckle patterns of such areas are very likely uncorrelated after one month.
We are dealing with incoherent change detection, where it seems realistic to assume that the measurements on the
same pixel taken a month apart in scenes with natural vegetation are temporally independent.

III. Theory
In this section we first discuss the challenges of the multiple testing problem. We then give the test statistic for the

equality of several complex Wishart distributed matrices and the associated probability measure. Following this, the
test statistic is factorized into independent test statistics for partial hypotheses. These two results are used in setting
up the pixelwise change detector and this is finally used in defining the fieldwise change detector.

A. The Multiple Testing Problem
In our setting we consider pixels from a series of images taken at time points t1 < · · · < tk with distributions

characterized by – often multivariate – parameters µ1, · · · , µk. We are concerned with detecting changes in those
parameters, i.e. in assessing situations like

µ1 = · · · = µi−1 , µi = · · · = µℓ−1 , µℓ = · · · = µk, (3)

which states that we have change only after time point i − 1 and again after time point ℓ − 1. A simple approach
would be sequentially testing hypotheses µ j = µ j−1 against µ j , µ j−1. However, this may give tests with a large false
negative rate. For example, small gradual changes may not be detected, even when there is a clear trend throughout
the time series. Therefore, we suggest to apply an omnibus test of hypothesis H0 : µ1 = µ2 = · · · = µk against all
alternatives, [27]. If this test is accepted, we conclude that no changes have occurred in the time interval [t1, tk]. If
we reject the hypothesis, we may determine the occurrence of changes by suitable post hoc analysis using the results
in Section III-C.

To clarify some concepts let us briefly summarize some definitions in hypothesis testing theory. In general, if we
test a statistical hypothesis H0, i.e. the item studied has no effect (here corresponding to no change over time), against
the alternative H1, i.e. the item has an effect (here corresponding to change over time), we may commit two different
types of errors, i.e.
• Type I error: Rejecting a true hypothesis (false positive, false alarm). The significance level α of the test or the false

positive rate is the probability of committing a type I error, or, if we have a composite hypothesis, the maximum
of the possible probabilities.

• Type II error: Accepting a false hypothesis (false negative). The type II error rate, miss rate or the false negative rate β
is the probability of committing a type II error. The power of the test is 1 − β.

If a decision procedure is based on multiple (say n) independent tests, each with significance level αc, then the
combined significance level α = αFWER, the so-called Family-Wise Error Rate is determined as α = αFWER = 1− [1−αc]n.
This error rate increases with n. For αc = 0.05 and n=5, 10 and 15 we obtain the values 0.2262, 0,4013, and 0.5367,
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Figure 1. RGB images of diagonal elements of the L-band data March, April, May (top row, left to right), June, July, August (bottom row, left to
right).

thus giving rather substantial false positive rates. If the individual tests are not independent, we can still say α =
αFWER ≤ nαc. This is used in the so-called Bonferroni correction, where we put the per comparison significance level
α = αFWER/n in order to control the family-wise error, see for example [32].

Example. We shall briefly outline some of the problems of multiple comparisons by a very simple example. We
consider independent random variables X1, · · · ,Xk with means µ1, · · · , µk and (known) standard deviation σ. We
furthermore consider two different types of changes corresponding to two simple mean value structures, namely i),
a signal which is linearly increasing with time (a constant increase of 2σ from one time period to the next), or ii), a
piecewise constant signal with a jump/step at a given time point (a constant value until time point t j, where it jumps
sσ and again constant from then on), cf. Figure 2.

In situation i) it is difficult to detect the changes by comparing successive observations. If we are using standard
statistical test using the test statistic Um = (Xm − Xm− j+1)/(

√
2σ) and significance level 5%, the false negative rate is

as high as 70.70% for j = 2. However, if we consider comparisons between measurements corresponding to j = 3, 4
and 5, the false negative rates will decrease to 19.26%, 1.12%, and 0.01%, but at the cost of an increased family-wise
error rate, cf. the above.

If we try to compensate for this increased FWER by using the Bonferroni correction for 10 comparisons, i.e. use
α = 0.5% giving αFWER ≤ 5%, the false negative rates will be 91.82%, 49.15%, 7.56%, and 0.22% for j = 2, 3, 4, and
5, i.e. considerably higher than above. Thus, it may be difficult to control the family-wise error rate and at the same
time avoiding that the false negative rate is unnecessarily large.

If we instead use the omnibus test in the case with true means µ, µ + 2σ, µ + 4σ, µ + 6σ, µ + 8σ (situation i), the
(likelihood ratio) test statistic is Σ(Xi − X)2/σ2, which is non-centrally chi-squared distributed with k − 1 degrees of
freedom and non-centrality parameter Σ(µi − µ)2/σ2. If we use significance level 5%, the false negative rate becomes
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Figure 2. The two mean value situations i and ii considered in the text. The blue line corresponds to a steady increase, the red to a discontinuous
jump.

0.02%. If the same overall change in the means happens instantaneously after time period 3 (situation ii), the true
means are µ, µ, µ, µ + 8σ, µ + 8σ (corresponding to situation ii)) and the false negative rate becomes 0.00%. This
example enhances advantages of the omnibus test with respect to limiting the error rates. �

B. Test for Equality of Several Complex Covariance Matrices

As stated in Section II-A the sample covariance matrix of multilook, fully polarimetric SAR data when multiplied
by the number of looks will follow a complex Wishart distribution. In order to test for possible changes between
several, say k, time points, we therefore must investigate whether we may assume that several sample covariance
matrices have the same expected value, say Σ, or whether we must assume that the expected values are different,
equal to say Σi, i = 1, . . . , k, where at least two Σi differ. In a general setting we therefore consider independent
random variables Xi, i = 1, . . . , k that follow complex Wishart distributions

Xi ∼WC(p, n,Σi), i = 1, . . . , k (4)

where E{Xi/n} = Σi and want to test the null hypothesis H0

H0 : Σ1 = Σ2 = · · · = Σk (5)

against all alternatives, we use the following test statistic (see appendix for the derivation; for the real case see [33];
for the case with two complex matrices see [22])

Q = kpnk
∏k

i=1 |Xi|n
|X|nk

=

kpk
∏k

i=1 |Xi|
|X|k


n

. (6)

Here | · | denotes the determinant, the independent Xi = n⟨C⟩i follow the complex Wishart distribution, i.e., Xi ∼
WC(p,n,Σi), and X =

∑k
i=1 Xi ∼ WC(p,nk,Σ), where n is the number of looks. Also under H0, Σ̂ = X/(kn). Q ∈ [0, 1]

with Q = 1 for equality. For the logarithm of the test statistic we get

ln Q = n

pk ln k +
k∑

i=1

ln |Xi| − k ln |X|
 . (7)

If

f = (k − 1)p2 (8)

ρ = 1 − (2p2 − 1)
6(k − 1)p

(
k
n
− 1

nk

)
(9)

ω2 =
p2(p2 − 1)

24ρ2

(
k

n2 −
1

(nk)2

)
− p2(k − 1)

4

(
1 − 1
ρ

)2

(10)
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then the probability of finding a smaller value of −2ρ ln Q is

P{−2ρ ln Q ≤ z} ≃ P{χ2( f ) ≤ z} (11)
+ ω2[P{χ2( f + 4) ≤ z} − P{χ2( f ) ≤ z}],

where z = −2ρ ln q and q is a particular realization (an observed value) of the stochastic variable Q. Instead of q we
may write qobs; q and qobs are used interchangeably below. See also the appendix.

For full polarimetry data p = 3, for dual polarimetry p = 2, and for single band (HH, HV or VV) data p = 1. In the
latter case Xi and X are Gamma distributed scalar random variables Xi and X, and Q becomes

Q =

kk
∏k

i=1 Xi

Xk


n

. (12)

For two time points, i.e., k = 2 this is equivalent to the classical ratio detector [1], [2].

C. Test for Equality of First j < k Complex Covariance Matrices
If the above test shows that we cannot reject the hypothesis of equality, no change has occurred over the time span

covered by the data. If we, on the other hand, can reject the hypothesis, change has occurred at some time point.
In order to establish at which time a change has occurred we shall use the fact that the likelihood ratio test statistic
may be decomposed into a product of test statistics that test simpler hypotheses and that are independent if H0 is
true. To test whether the first j, 1 < j < k complex covariance matrices Σi (p by p) are equal, i.e., given that

Σ1 = Σ2 = · · · = Σ j−1 (13)

then the likelihood ratio test statistic R j for testing the hypothesis

H0, j : Σ j = Σ j−1 against H1, j : Σ j , Σ j−1 (14)

is

R j =
j jpn

( j − 1)( j−1)pn

|X1 + · · · + X j−1|( j−1)n|X j|n

|X1 + · · · + X j| jn

=

 j jp

( j − 1)( j−1)p

|X1 + · · · + X j−1|( j−1)|X j|
|X1 + · · · + X j| j

n

(15)

or

ln R j = n{p( j ln j − ( j − 1) ln( j − 1)) (16)

+ ( j − 1) ln |
j−1∑
i=1

Xi| + ln |X j| − j ln |
j∑

i=1

Xi|}.

Furthermore

Q =
k∏

j=2

R j, (17)

and if H0 is true, then the random variables R2, · · · ,Rk are independent.
Finally, letting

f = p2 (18)

ρ j = 1 − 2p2 − 1
6pn

(
1 +

1
j( j − 1)

)
(19)

ω2 j = −p2

4

(
1 − 1
ρ j

)2

+
1

24n2 p2(p2 − 1)
(
1 +

2 j − 1
j2( j − 1)2

)
1
ρ2

j

(20)

we get

P{−2ρ j ln R j ≤ z} ≃ P{χ2( f ) ≤ z} (21)
+ ω2 j[P{χ2( f + 4) ≤ z} − P{χ2( f ) ≤ z}],
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where z = −2ρ j ln r j and r j is a particular realization (an observed value) of the stochastic variable R j. Instead of
r j we may write r j,obs; r j and r j,obs are used interchangeably below. See the appendix which also gives the resulting
formulas for the Gamma distributed scalar case.

D. Pixelwise Change Detection
We start by looking at the Gamma distributed case, cf. the appendix. This will allow a more intuitive presentation

e.g. by plotting the power of the SAR signal as a function of time. Furthermore the notation becomes somewhat
simpler. We have time points t1, . . . , tk corresponding to parameters β1, . . . , βk and introduce the global hypotheses

H(ℓ)
0 : βℓ = βℓ+1 = · · · = βk, ℓ = 1, . . . , k − 1, (22)

i.e. the last k − ℓ + 1 of all the parameters are equal. Furthermore we consider the marginal hypotheses

H(ℓ)
0, j : βℓ+ j−1 = βℓ+ j−2(= βℓ+ j−3 = · · · = βℓ), j = 2, . . . , k − ℓ + 1, (23)

i.e. the first j of the parameters in the global hypothesis H(ℓ)
0 are equal.

The omnibus test statistic for testing H(ℓ)
0 against all alternatives based on Xℓ,Xℓ+1, . . . ,Xk is

Q(ℓ) =

{
(k − ℓ + 1)k−ℓ+1 Xℓ · · ·Xk

(Xℓ + · · · + Xk)k−ℓ+1

}n

. (24)

Let us assume that H(ℓ)
0, j−1 is true, i.e. that the first j − 1 parameters are equal or βℓ = βℓ+1 = · · · = βℓ+ j−2. Then the test

statistic for testing H(ℓ)
0, j against the alternative βℓ+ j−1 , βℓ+ j−2, i.e. for testing that the jth parameter is equal to the j−1

preceding ones becomes

R(ℓ)
j =

{
j j

( j − 1) j−1

(Xℓ + · · · + Xℓ+ j−2) j−1 Xℓ+ j−1

(Xℓ + · · · + Xℓ+ j−1) j

}n

, j = 2, . . . , k − ℓ + 1 (25)

and

Q(ℓ) = R(ℓ)
2 · · ·R

(ℓ)
k−ℓ+1 (26)

with independence if H(ℓ)
0 is true.

In broad terms the algorithm becomes
1) Set ℓ = 1.
2) Test H(ℓ)

0 against all alternatives.
If accepted, conclude that there are no changes in the interval [tℓ, tk]. Go to 5.
If rejected, conclude that there is at least one change in the interval [tℓ, tk] and go to 3.

3) Test the marginal hypotheses H(ℓ)
0, j and let the first significant hypothesis be H(ℓ)

0,r+1.
Conclude that we have a change in [tℓ+r−1, tℓ+r].

4) Set ℓ = ℓ + r and go to 2.
5) Finish.

The algorithm is illustrated in the next example.
Example. We now consider (hypothetical), for example ⟨ShhS∗hh⟩ values (corresponding to 13-look EMISAR data)

from eight time points. The observations are given in Table I. It is assumed that they represent independent realizations
of Gamma distributed random variables Xi ∼ G(13, βi), i = 1, . . . , 8.

Table I. The (hypothetical) data considered for the Gamma distribution example.

j 1 2 3 4 5 6 7 8

x j 1.3338 2.0683 1.3494 1.3858 0.0806 1.6302 1.5201 1.9932

By direct computation we get that −2 ln Q = 54.2510, and comparing this to quantiles in a χ2(7)-distribution ((k −
1)p2 = 7 for k = 8 and p = 1) shows that P{Q(1) < q(1)} ≃ 0, i.e., this value is significant at all reasonable levels. Therefore,
we conclude that we have (at least) one change in the time period considered, i.e., i = 1, . . . , 8. We want to determine
the time point for the first change. Therefore we successively compute the quantities R(1)

j and P{R(1)
j < r(1)

j }, j = 2, . . . , 8,
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Table II. The p-values of the different test statistics for the Gamma distributed random variables. The change indices are highlighted in
yellow and the p-values for the associated global tests in green. We need calculate the highlighted numbers only, the other numbers are

shown for illustrative purposes.

Marg. Hyp. Global Hypotheses H(ℓ)
0 , ℓ = 1, . . . , 7

β1 = · · · = β8 β2 = · · · = β8 β3 = · · · = β8 β4 = · · · = β8 β5 = · · · = β8 β6 = · · · = β8 β7 = β8

H(ℓ)
0, j P{R(1)

j < r(1)
j } P{R(2)

j < r(2)
j } P{R(3)

j < r(3)
j } P{R(4)

j < r(4)
j } P{R(5)

j < r(5)
j } P{R(6)

j < r(6)
j } P{R(7)

j < r(7)
j }

β2 = β1 0.2653

β3 = β2 0.5013 0.2780

β4 = β3 0.6801 0.5423 0.9459

β5 = β4 0.0000 0.0000 0.0000 0.0000

β6 = β5

-
0.3587 0.3378 0.0723 0.0151 0.0000

β7 = β6 0.6096 0.6057 0.2980 0.2129
-

0.0824 0.8585
β8 = β7 0.1581 0.1642 0.0744 0.0636 0.0442 0.4831 0.4903

P{Q(ℓ) < q(ℓ)} 0.0000 0.0000 0.0000 0.0000 0.0000 0.7696 0.4903

where the upper index (1) indicates that we are looking at the first global hypothesis presented in Table II, column
2.

In the decomposition of the likelihood ratio test statistic Q we see that R(1)
5 is the first significant component

corresponding to rejection of the hypothesis β5 = β4. The conclusion is thus so far that we may assume that β1 =
β2 = β3 = β4, and we must investigate whether there are changes in the period i = 5, . . . , 8, i.e., test the global
hypothesis H(5)

0 : β5 = . . . = β8. Based on the observations X5, . . . ,X8 we compute the likelihood ratio test statistic
for H(5)

0 and find that P{Q(5) < q(5)} ≃ 0. We conclude that there is at least one change in the period considered and
decompose the likelihood ratio statistic. We see that R(5)

2 is the first significant component corresponding to rejection
of the hypothesis β6 = β5. We thus have a change between time points 5 and 6. Then we must investigate whether
there is a change between the last three time points, i.e., we consider the global hypothesis H(6)

0 : β6 = β7 = β8. We
find that P{Q(6) < q(6)} = 0.7696, i.e., we assume that we have no changes in this period.

The conclusion is thus that we observe significant changes between
• β4 and β5,
• β5 and β6,

and therefore we conclude that we have the following distinct populations
• β1 = β2 = β3 = β4,
• β5,
• β6 = β7 = β8.

Remark. If we introduce the term change index for the relevant quantities P{R(ℓ)
j < r(ℓ)

j }, we have that large values
of one minus the change index correspond to changes. From a statistical point of view, the threshold 0.95 seems
natural. In the Gamma case we may plot the observations as well as the quantities one minus the change index in
the same coordinate system. This is done in Figure 3 which illustrates the outcome of the change detection algorithm.

�
The above description of the change detection algorithm may immediately be generalized to the complex Wishart

distribution by simply replacing the parameter β with Σ and by using (6) and (15) in setting up the global and
marginal test statistics based on the last k − ℓ + 1 observations. A detailed description of the algorithm is given in
Figure 4.

E. Fieldwise Change Detection

Before defining the change index for a field, let us initially state some facts from statistical testing theory. The
p-value of a statistical test is the probability of getting a test statistic that is at least as extreme as the one observed,
assuming that the null hypothesis is actually true (and that the assumptions of the analysis are met). If the p-value is
smaller than the prescribed significance level α (e.g. α = 0.05) we reject the hypothesis since the discrepancy between
the data and the hypothesis is too large.

Furthermore, if the sampling distribution is continuous, the distribution of the p-values will be uniform over the
interval [0, 1] if the null hypothesis is true. This implies, of course, that if the same experiment is replicated many
times, if the hypothesis is true and if we test on a 5% level of significance, then 5% of the p-values will fall in the
interval [0, 0.05], and the remaining p-values will be larger than 0.05. If the null hypothesis is not true, then the
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Figure 3. The (hypothetical) observations and the change indices for the Gamma distribution example.

fraction of p-values falling in the interval [0, 0.05] will in general be much larger than 5%. How large, depends on
the power of test.

The change index for a field may now be defined by first considering the empirical distributions of the different
p-values obtained (i.e., the P{Q < q} = 1 − P{−2ρ ln Q ≤ −2ρ ln q} and P{R(ℓ)

j < r(ℓ)
j } = 1 − P{−2ρ ln R(ℓ)

j ≤ −2ρ ln r(ℓ)
j }

values) for each pixel observed over the time span considered and then apply the one-pixel definition on suitable
measures of location for those distributions, like for example mean or median.

IV. Results
In this section the data set described in Section II-B is used to illustrate different aspects of the test statistics, and in

that process we utilize different parts of the time series to provide illustrative examples. We first show the strength
of the omnibus test statistic Q when applied to three different areas covering forest, a rye field, and a grass field,
respectively, using data over five time points from March to July only. We then proceed to show the power of the
factorization of Q into the R js, this time using data from six time points from March to August.

A. Change Indices for Three Different Cases: Forest, Rye and Grass
Figure 5 shows −2ρ ln qobs for full polarimetry (left image), and P{Q ≥ qobs} (right image). Here ρ = 0.91282 and
ω2 = 0.023577. The left-hand image shows low values for the forest areas, which indicates that no changes have
occurred during the five time points, which is a reasonable results for the coniferous forest areas.

In order to provide explanations of the results for the test statistics the following analysis will be based on results
from areas like fields with a given crop, where we have in situ information on ground usage. In this subsection we
show the results for three cases with different change patterns over time: a forest area with no changes, a rye field
where changes may be detected by both the omnibus test and the pairwise tests, and a grass area where changes
may be detected only by the omnibus test and not the pairwise tests.

Backscatter coefficients for these areas are shown in Figure 6, and polarimetric entropy and alpha angle parameters
from the Cloude-Pottier eigenanalysis decomposition [34] are shown in Figure 7. The forest area has a very constant
backscatter through all the images. The entropy for the forest area is very close to one for all acquisitions, and the
alpha angle is approximately 50◦, which indicates as expected that the backscatter from the forest is dominated by
volume scattering. It is clearly seen from these results, that no changes occur for the forest area through all the
acquisitions.

For the grass and rye areas, on the other hand, the backscatter coefficients as well as the entropy and alpha angle
parameters change through the time series. For the rye field the entropy and alpha angles values show for the
first four acquisitions that the backscattering mechanism is the medium entropy surface scattering type [34], which
indicates rough surface scattering with canopy penetration effects. Rye is a relatively sparse crop, which corresponds
to the results that the backscatter is dominated by surface scattering affected by the vegetation layer. Between April
and May we see an increased influence of the vegetation layer by the increase in the HH backscatter (cf. Figure 6(b)).
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Figure 4. Flow chart for the change detection method. µ is a generic name for the unknown parameters considered. In the leftmost part we are
investigating whether there are changes in the interval [tl, tk] using the Q-test statistic (6). If the answer is no, the analysis is finished. If the answer
is yes, i.e. we have at least one change in [tl, tk], we go to the column in the middle. Based on observations at tℓ, · · · , tℓ+s we (for s = 1, · · · , k − 1)
successively investigate whether there are changes between time points tℓ+s−1 and tℓ+s. This is done by testing the hypothesis Hℓ0, j+1 : µℓ+ j = µℓ+ j−1

corresponding to H0, j from (14) using the test statistic R(ℓ)
j corresponding to R j from (15). If we do not identify any changes before time point tk−1

we conclude that the change in the interval [tℓ, tk] falls in the interval [tk−1, tk]. If the first change we identify, occurs in [tℓ+r−1, tℓ+r] we conclude
that there are no changes in the interval [tl, tℓ+r−1] and a change in [tℓ+r−1, tℓ+r]. We then update ℓ to ℓ + r and start again in the leftmost column.
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(a) (b)

Figure 5. (a) −2ρ ln qobs for full polarimetry (stretched linearly between 0 and 300), and (b) P{Q ≥ qobs}, both based on data from March to July.
In both images low values (dark tones) correspond to no change.
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Figure 6. Backscatter coefficients for forest (a), rye (b), and grass (c). In the legend vv denotes ⟨SvvS∗vv⟩, hh denotes ⟨ShhS∗hh⟩, and xp denotes
⟨ShhS∗vv⟩.
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Figure 7. Entropy (a) and alpha angle (b) for grass, rye, and forest. Entropy has no unit, alpha angle is in degrees.

Table III. The average probabilities of obtaining more extreme values of the test statistic for the forest, rye and grass areas for pairwise
comparisons and for the omnibus test, data fromMarch to July. Values below 0.05 indicate statistically significant changes.

Average P{Q < qobs} Pairwise comparisons Omnibus test

Hypothesis H(ℓ)
0 Mar=Apr Apr=May May=Jun Jun=Jul Mar=Apr=May=Jun=Jul

Forest 0.3925 0.6235 0.4913 0.4567 0.3823
Rye 0.4249 0.0131 0.3344 0.0242 0.0000

Grass 0.2808 0.0638 0.1244 0.4311 0.0001

For the July acquisition the vegetation layer has become so dense that we now see volume scattering, i.e., increased
cross-polarized backscatter (cf. Figure 6(b)), and increased entropy (cf. Figure 7(a)). Finally, for the August acquisition
the crop is now dried out, so less volume scattering occurs, and hence decreasing cross-polarized backscatter and
smaller entropy.

The scattering mechanism for the grass area changes from surface scattering affected by the vegetation layer in
March and April with entropy and alpha angles values similar to the rye field (cf. Figure 7), over volume scattering
in May with some contribution of double-bounce scattering with an alpha angle of about 60◦ (cf. Figure 7(b)), to
full volume scattering in June and July with the entropy close to 1 (cf. Figure 7(a)). These changes correspond to
the growth and conditions of the grass. In March, April and May the radar wave can penetrate the not so dense
grass vegetation, and in May the vegetation is, however, sufficiently dense to result in volume scattering from the
vegetation. At the same time the vegetation is still so sparse that some double bounce scattering can occur, and in
the June and July acquisitions the vegetation is so dense, that volume scattering occurs. In August, the grass is cut,
and hence the entropy and alpha angle now show surface scattering behavior (cf. Figure 7), and the VV-backscatter
increases and the cross-polarized backscatter decreases (cf. Figure 6(c)).

Table III shows the average probabilities of the test statistics for the forest, the rye and the grass areas using the first
five acquisitions. The values shown are the average values over all pixels for each area of the observed significance
levels αobs (i.e. the probabilities P{Q < qobs} of getting values of the test statistic that are more extreme than the
observed under the null hypothesis). In the table both the results of performing consecutive pairwise comparisons
between the acquisitions (corresponding to the test statistic in [22]), and the results of using the omnibus test statistic
presented in this paper (cf. (11)).

It is clear that no change can be detected for the forest area, neither in the pairwise comparisons nor in the omnibus
test. For the rye area the omnibus test clearly detects change in the time series. From the pairwise comparisons, it is
seen, that changes can be detected at a 5% significance level between the April and May acquisitions, and between the
June and July acquisitions, corresponding to the observed changes in the polarimetric parameters described above.

The omnibus test for the grass area shows clearly that the parameters over the five acquisitions have not been
constant, i.e. changes have occurred during this period. The pairwise comparisons, however, show no changes at
a 5% significance level. Even though the polarimetric analysis above describes some relatively significant changes
during the five acquisitions, the pairwise comparisons do not pick up these changes. This result shows the power
of the omnibus test, where the changes between the consecutive images are too small to be detected, but the overall
change during all the acquisitions is significant.
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B. The Points of Change for Three Different Cases: Forest, Rye and Grass
In Table IV we have shown the p-values for the forest area, and the corresponding path leading to the change index

for the forest area computed by looking at the averages described above. In Table V we have shown the equivalent
results for a rye field, and in Table VI for a grass field.

In Tables IV-VI the first number in each column corresponds to tests for the relevant pairwise comparisons, see (6)
where k = 2 in the pairwise case.

For the forest results in Table IV is it seen from the P{Q < q} value in the first column that no change has occurred
for all acquisitions (with a significance level of 0.05). This is also seen from the individual P{R(Mar)

j < r(Mar)
j } values in

the first column.
For the rye results in Table V the P{Q < q} value for the first column shows that a change has occurred, and

according to the P{R(Mar)
j < r(Mar)

j } values in the first column this change has occurred between April and May. Now
moving to the third column in Table V, the P{Q < q} value here shows that a change has occurred between May and
August. The P{R(May)

j < r(May)
j } values in the third column shows that the change has occurred between June and July.

Finally, moving to the fifth column, it is seen that a change has occurred between July and August. We thus conclude
that we have the following distinct populations for rye

1) March = April,
2) May = June,
3) July, and
4) August.
Using the same methodology for grass in Table VI we find that changes have occurred between April and May,

and between July and August. In this case the distinct populations are
1) March = April,
2) May = June = July, and
3) August.
These populations are consistent with the analysis of the polarimetric parameters described in Section IV-A. The

forest areas clearly show no change for all six acquisitions. The rye field has four distinct populations, i.e., March-
April, May-June, July, and August, as seen above. For March and April, surface scattering is dominating, and in May
and June an increased contribution from volume scattering is seen. In July, more volume scattering is seen, and finally,
in August less volume scattering is seen, due to drying out of the crop. For the grass field, three distinct populations
are identified, i.e. March-April, May-June-July, and August. From the backscatter coefficients in Figure 6(c), and the
entropy and alpha angle in Figure 7 groupings of the parameters according to these populations are clearly seen,
and it also corresponds to the analysis of the scattering mechanisms given in Section IV-A.

C. Distribution of the p-Values for Forest and Grass
The question naturally arises whether the chosen mean values are proper descriptors of the underlying distributions.
In Figure 8 the histograms (presented rowwise) behind the six p-values that constitute the change index for forest are

shown. For the forested area no changes are seen, and the means of the p-values (p̄) for the omnibus test P{Q < q} (p̄ =
0.3494) and for the marginal tests P{R(ℓ)

j < r(ℓ)
j } (p̄ = 0.3925, 0.5469, 0.4121, 0.4229, and 0.4116) are fairly representative

for the histograms. We only have minor deviations between the histograms and the theoretical uniform distribution
that we would get assuming that no changes have occurred. The reason for these minor deviations is probably
twofold: Firstly there may very well be changes in small patches, and secondly, some of the assumptions behind the
sampling theory (independence of observations, distributional properties) may not be fulfilled.

The grass field shows a slightly more complicated scenario. The first three histograms in Figure 9 show the
distribution of the p-values for testing the hypotheses: total homogeneity (rejected, p̄ = 0.0000), Apr = Mar (accepted,
p̄ = 0.2808), and May = Apr (= Mar) (rejected, p̄ = 0.0112). Having a change between May and Apr, we perform an
omnibus test on the remaining months, i.e. we test May = Jun = Jul = Aug. Here p̄ = 0.0000 (histogram not shown),
we reject and we test Jun = May (accept, p̄ = 0.1244), Jul = Jun (= May) (accept, p̄ = 0.3879), and Aug = Jul (= Jun =
May) (reject, p̄ = 0.0000). For the three p-values that are smaller than 0.05 it is seen from the histograms that almost
all values (actually between 97.8% and 100%) lie in the interval [0, 0.05] so a small mean p-value is consistent with
all pixels in the area showing changes. For the values above 0.05 it follows that a substantial fraction of the observed
p-values are larger than 0.05, i.e., the majority of the corresponding pixels show no changes. However, e.g., in the case
June = May (second row, second column) we have an over-representation of low p-values when comparing with the
uniform distribution. This might be due to changes in smaller patches, possibly a sign of local delays of the changes
we saw between May and Apr.

Thus, in both cases there is a good agreement between the conclusion based on the averages and what the
distribution of the p-values indicates for the area considered.
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Table IV. The p-values of the different test statistics for forest. The path leading to the change indices is indicated

Forest Global Hypothesis

Marg. Hyp. Mar= · · · =Aug Apr= · · · =Aug May= · · · =Aug Jun= · · · =Aug Jul=Aug
H(ℓ)

0, j P{R(Mar)
j < r(Mar)

j } P{R(Apr)
j < r(Apr)

j } P{R(May)
j < r(May)

j } P{R(Jun)
j < r(Jun)

j } P{R(Jul)
j < r(Jul)

j }
Apr = Mar 0.3925
May = Apr 0.5469 0.6235
Jun = May 0.4121 0.4085 0.4913
Jul = Jun 0.4229 0.4289 0.4629 0.4567
Aug = Jul 0.4116 0.4099 0.4095 0.4154 0.4523

P{Q < q} 0.3494 0.4218 0.4230 0.4108 0.4523

Table V. The p-values of the different test statistics for rye. The path leading to the change indices is indicated

Rye Global Hypothesis

Marg. Hyp. Mar= · · · =Aug Apr= · · · =Aug May= · · · =Aug Jun= · · · =Aug Jul=Aug
H(ℓ)

0, j P{R(Mar)
j < r(Mar)

j } P{R(Apr)
j < r(Apr)

j } P{R(May)
j < r(May)

j } P{R(Jun)
j < r(Jun)

j } P{R(Jul)
j < r(Jul)

j }
Apr = Mar 0.4249
May = Apr 0.0026 0.0131
Jun = May

-
0.1400 0.2599 0.3344

Jul = Jun 0.0002 0.0023 0.0237 0.0242
Aug = Jul 0.1758 0.1292

-
0.0669 0.0468 0.0208

P{Q < q} 0.0000 0.0001 0.0011 0.0080
-

0.0208

Table VI. The p-values of the different test statistics for grass. The path leading to the change indices is indicated

Grass Global Hypothesis

Marg. Hyp. Mar= · · · =Aug Apr= · · · =Aug May= · · · =Aug Jun= · · · =Aug Jul=Aug
H(ℓ)

0, j P{R(Mar)
j < r(Mar)

j } P{R(Apr)
j < r(Apr)

j } P{R(May)
j < r(May)

j } P{R(Jun)
j < r(Jun)

j } P{R(Jul)
j < r(Jul)

j }
Apr = Mar 0.2808
May = Apr 0.0112 0.0638
Jun = May

-
0.0056 0.0319 0.1244

Jul = Jun 0.1094 0.2386 0.3879 0.4311
Aug = Jul 0.0000 0.0000 0.0000 0.0000 0.0000

P{Q < q} 0.0000 0.0000
-
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Figure 8. The histograms of the p-values for testing the hypotheses Mar = Apr = May = Jun = Jul = Aug, i.e. no changes in the entire period,
and for testing Apr = Mar, May = Apr (= Mar), Jun = May (= Apr = Mar), Jul = Jun (= May = Apr = Mar), and Aug = Jul (= Jun = May = Apr
= Mar) for the forest area. These histograms present the distribution of the pixelwise change indices for the forest area. The averages are found
in Table IV.
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Figure 9. The histograms of the p-values for testing the hypotheses Mar = Apr = May = Jun = Jul = Aug, i.e. no changes in the entire period,
and for testing Apr = Mar, May = Apr (= Mar), Jun = May, Jul = Jun (= May), and Aug = Jul for the grass area. These histograms present the
distribution of the pixelwise change indices for the grass area. The averages are found in Table VI.

D. Imaging the Decomposed Test Statistics
To give a visual impression of the results, Figures 10 and 11 show zooms onto the grass field considered in Table VI.

Figure 10 shows images of the values of the different decomposed test statistics for the grass field. The first five rows
show −2ρ j ln r j,obs for full polarimetry data stretched linearly between 0 and 100; first column for March, April, May,
June, July and August; second column for April, May, June, July and August; third column for May, June, July and
August; fourth column for June, July and August; fifth column for July and August. Row six shows the corresponding
−2ρ ln qobs. The first images in all columns correspond to −2ρ ln qobs for the pair-wise differences, i.e., the image in
the first row, first column is −2ρ ln qobs in a k = 2 analysis for the pair March and April, the image in the second row,
first column is −2ρ ln qobs in a k = 2 analysis for the pair April and May, the image in the third row, second column
is −2ρ ln qobs in a k = 2 analysis for the pair May and June, the image in the fourth row, third column is −2ρ ln qobs
in a k = 2 analysis for the pair June and July, and the image in the fifth row, fourth column is −2ρ ln qobs in a k = 2
analysis for the pair July and August. Remember that if a change is detected at some point, the prerequisite for tests
of later changes is no longer valid.

Figure 11 shows images of the p-values, i.e., the no-change probabilities corresponding to the test statistics in
Figure 10 for the grass field. The values in the grass field in the center of the zoom images show clearly the same
trend as indicated for the average values in Table VI. The arrows in both figures show the same change patterns as
shown in Table VI and discussed in Section IV-A.

V. Conclusions
A test statistic for the equality of several covariance matrices following the complex Wishart distribution with an

associated p-value has been presented. The test statistics is a direct generalization of a previously defined test statistics
for pairwise comparison [22].

Using data from the airborne EMISAR system at L-band it is clearly shown how this test statistic is able to detect
changes in a series of images, where the pairwise comparison fails to detect the changes.

After having detected that at least one change has occurred in a series of polarimetric SAR data, we have shown
how one may decompose the likelihood ratio test statistic and thus obtain a procedure for determining the time
points of change. Using data from the airborne Danish EMISAR system at L-band clearly shows that this procedure
is able to identify the time points of change. The procedure may be extended to cope with other modes of SAR
operations, such as the block-diagonal case, including azimuthally symmetric and diagonal-only data, see [22] for
the situation with two time points.

Appendix
This appendix deals with the details of the likelihood ratio test statistics for comparing k Gamma and k complex

Wishart distributions. Section A describes the Gamma case. The likelihood ratio test statistic is presented in Theorem 1,
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Figure 10. Zoom on grass field reported on in Table VI. The p-value corresponding to each subimage has the same relative position as in Table VI.
Also, the path leading to the change indices is indicated in the figure as well as in the table. Rows 1-5: −2ρ j ln r j,obs for full polarimetry data
stretched linearly between 0 and 100; first column for March, April, May, June, July and August; second column for April, May, June, July and
August; third column for May, June, July and August; fourth column for June, July and August; fifth column for July and August. Last row:
corresponding −2ρ ln qobs (first column stretched between 0 and 500, second column between 0 and 400, third column between 0 and 300, fourth
column between 0 and 200, and last column between 0 and 100). Dark areas correspond to no change.
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Figure 11. Zoom on grass field reported on in Table VI. The p-value corresponding to each subimage has the same relative position as in Table VI.
Also, the path leading to the change indices is indicated in the figure as well as in the table. p-values, i.e., the no-change probability are stretched
linearly between 0 and 1. Dark areas correspond to change.
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and Theorem 2 gives the expected value of Qh which is used in providing the approximation formula in Theorem 3
using Box’s method, [22], [35]. The lemma is a well known result on the independence of sum and a ratio of
certain Gamma distributed random variables. This result is used in the proof of the (other) main result, namely the
decomposition of the likelihood ratio test into the product of independent (under H0) random variables R j. The R js
provide tests for when a change actually occurs. Their distributions may be written as a function of independent Beta-
distributed random variables, and consequently the distribution of Q may be written as a product of such variables
(Theorem 5), [22], [35]. In Theorem 6 it is shown how we may use the F-distribution in testing instead of the R js.
This enables two-sided testing. The initial theorems are well known, the later ones are not (readily) available in the
literature.

Section B addresses the same general problem as Section A but considering complex Wishart distributed random
variables. Theorems 8, 9 and 10 give the main results on the likelihood ratio test statistic, its expected values, and
the large sample distribution. The second main result is the decomposition of Q into independent components R j
presented in Theorems 13 and 14, and the approximative distribution given in Theorem 15. We may apply the
same philosophy with respect to mapping change patterns as was done in Section A. The results in the corollary in
Section B is similar to the result in the corollary in Section A and may be used in finding other approximations to
the distribution of Q.

A. Comparing k Gamma Distributed Random Variables
Theorem 1. We consider the independent Gamma distributed random variables

Xi ∼ G(n, βi), i = 1, . . . , k (27)

where n is a shape parameter and βi is a scale parameter; E{Xi} = nβi. We want to test the hypothesis H0 against the
alternative H1 where

H0 : β1 = · · · = βk and H1 : ∃i, j : βi , β j. (28)

Then the likelihood ratio test statistic for testing H0 against the alternative H1 is

Q =

kk
∏k

i=1 Xi

Xk


n

. (29)

Proof. Obtained by direct calculations. Q.E.D.

Remark. In a one-sided analysis of variance (ANOVA, see for example [36]) with the same number of observations
f +1 in each group, the unbiased estimators s2

i of the within group variances σ2
i follow chi-squared distributions with

f degrees of freedom, i.e.,

s2
i ∼ σ2

i χ
2( f )/ f , i = 1, . . . , k, (30)

i.e.,

f s2
i ∼ σ2

i χ
2( f ) = G(

f
2
, 2σ2

i ). (31)

It now follows that the likelihood ratio test given above is equivalent to what is denoted Bartlett’s test for homogeneity
of variances in an ANOVA situation. �

There is no simple closed form for the distribution of Q in Theorem 1 but we may find large sample approximations
to the distribution. First we state

Theorem 2. We consider the likelihood ratio test statistic Q from Theorem 1. Then we have (h = 1, 2, 3, . . .)

E{Qh} = kknh
(
Γ(n(h + 1))
Γ(n)

)k
Γ(kn)

Γ(kn(h + 1))
. (32)

Proof. Obtained by direct calculations. Q.E.D.
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In most cases it will be sufficient to approximate the distribution of −2 ln Q with a χ2( f )-distribution (under H0).
But we may use Box’s approximation, [22], [35], to obtain the large sample distribution of − ln Q. We have

Theorem 3. Let the situation be as in Theorem 1. Then we define

f = k − 1 (33)

ρ = 1 − k + 1
6kn

(34)

ω2 = −1
4

(k − 1)(1 − 1
ρ

)2 (35)

and have

P{−2ρ ln Q ≤ z} ≃ P{χ2( f ) ≤ z} (36)
+ ω2[P{χ2( f + 4) ≤ z} − P{χ2( f ) ≤ z}].

Proof. Follows by straightforward calculations from Box’s theorem by letting

ξℓ = 0, η j = 0, a = k, b = 1, xℓ = n, y j = nk. (37)

Q.E.D.
We now want to write the likelihood ratio test statistic Q as a product of stochastically independent random

variables (if H0 is true). We start by introducing

Lemma. Let X and Y be independent and Gamma distributed G(n, β) and G(m, β) respectively. Then

S = X + Y and U =
X

X + Y
(38)

are independent random variables, and S follows a G(n +m, β)-distribution and U a Beta-distribution, Be(n,m).

Proof. Straightforward.
We now return to Gamma distributed random variables given in (27). We then have

Theorem 4. Let β1 = · · · = β j−1. Then the likelihood ratio test statistic for testing the hypothesis

H0, j : β j = β1 against H1, j : β j , β1 (39)

is

R j =
j jn

( j − 1)( j−1)n

(X1 + · · · + X j−1)( j−1)nXn
j

(X1 + · · · + X j) jn (40)

=
j jn

( j − 1)( j−1)n
U( j−1)n

j (1 −U j)n, j = 2, . . . , k

where U j = S j−1/S j for S j = X1 + · · · + X j. If all βs are equal then R2, . . . ,Rk will be independent random variables.

Proof. The result on R j being the likelihood ratio test statistic follows immediately from Theorem 1. According to
Theorem 2 S j and U j are independent. Therefore U j and S j+1 = S j + X j+1 will be independent and consequently U j
and U j+1 = S j/S j+1 will be independent and the theorem follows. Q.E.D.

Theorem 5. Let β1 = · · · = βk. Then we have

Q = R2 · · ·Rk = kkn
k∏

j=2

U( j−1)n
j (1 −U j)n (41)

where the U js are independent and Beta-distributed

U j ∼ Be(( j − 1)n,n). (42)
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Proof. Follows by direct computation and from Theorem 2. Q.E.D.

Theorem 6. The critical region for testing H0, j against H1, j is of the form

R j ≤ c ⇔
X j

S j−1
≤ c1 or

X j

S j−1
≥ c2 (43)

where c1 and c2 may be determined by realizing that

( j − 1)
X j

S j−1
∼ F(2n, 2( j − 1)n) (44)

if H0, j is true, and where F stands for Fisher’s F-distribution.

Proof. Straightforward.

B. Comparing k Complex Wishart Distributed Random Variables
We start by stating three basic theorems (7, 8 and 9) on the likelihood ratio test statistic and its distribution.

Theorem 7. We consider independent random variables

Xi ∼WC(p,n,Σi), i = 1, . . . , k. (45)

We wish to test the hypothesis

H0 : Σ1 = · · · = Σk against H1 : ∃i, j : Σi , Σ j. (46)

Then the likelihood ratio test statistic is

Q = kpnk
∏k

i=1 |Xi|n
|X|nk

(47)

=

kpk
∏k

i=1 |Xi|
|X|k


n

.

where X = X1 + · · · + Xk.

Proof. Obtained by direct calculations. Q.E.D.

Theorem 8. For the criterion Q we have

E{Qh} = kpknh

∏p
j=1 Γ(nk − j + 1)∏p

j=1 Γ(nk(1 + h) − j + 1)


∏p

j=1 Γ(n(1 + h) − j + 1)∏p
j=1 Γ(n − j + 1)


k

. (48)

Using the multivariate Gamma function of the complex kind, see for example [37],

Γp(n) = πp(p−1)/2
p∏

j=1

Γ(n − j + 1) (49)

we get

E{Qh} = kpknh Γp(nk)
Γp(nk(1 + h))

{
Γp(n(1 + h))
Γp(n)

}k

. (50)

Proof. We consider independent p-dimensional random variables

Yi j ∼ NC(µi,Σi), i = 1, . . . , k, j = 1, . . . ,n + 1. (51)
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For i = 1, . . . , k we introduce

Xi =

n+1∑
j=1

(Yi j − ave j(Yi j))(Yi j − ave j(Yi j))H (52)

(the superscript H denotes the complex conjugate transpose, and ave j means the average over index j) and have the
maximum likelihood estimators

Σ̂i =
1

n + 1
Xi (53)

with

Xi ∼WC(p,n,Σi). (54)

Setting X = X1 + · · · + Xk the test statistic for testing equality of the Σis becomes

Λ5 =

kpk

∏k
i=1 | 1

n+1 Xi|
| 1
n+1 X|k


n+1

(55)

=

kpk
∏k

i=1 |Xi|
|X|k


n+1

,

see e.g. [38] p. 12. Comparing this with the likelihood ratio test criterion Q in Theorem 4 we see that

Q = Λ
n

n+1
5 . (56)

Again following [38] we have

E{Λ5} = kpk(n+1)t
p∏

j=1

Γ(nk + 1 − j)
Γ(nk + t j + (n + 1)kt)

k∏
j=1

Γ(n + 1 − j + (n + 1)t)
Γ(n + 1 − j)

(57)

= kpk(n+1)t Γp(nk)
Γp(nk + (n + 1)kt)

{
Γp(n + (n + 1)t)

Γp(n)

}k

.

Therefore

E{Qh} = E{Λh n
n+1

5 } (58)

= kpknh Γp(nk)
Γp(nk + nkh)

{
Γp(n + nh)
Γp(n)

}k

.

and the theorem follows. Q.E.D.

Theorem 9. For Q as in Theorems 4 and 5 we define

f = (k − 1)p2 (59)

ρ = 1 − (2p2 − 1)
6(k − 1)p

(
k
n
− 1

nk

)
(60)

ω2 =
p2(p2 − 1)

24ρ2

(
k

n2 −
1

(nk)2

)
− p2(k − 1)

4

(
1 − 1
ρ

)2

(61)

and have

P{−2ρ ln Q ≤ z} ≃ P{χ2( f ) ≤ z} (62)
+ ω2[P{χ2( f + 4) ≤ z} − P{χ2( f ) ≤ z}].
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Proof. We rearrange the terms in Q and obtain

E{Qh} = kpknh Γp(nk)

Γp(n)k

Γp(n(1 + h))k

Γp(nk(1 + h))
(63)

= kpknh Γp(nk)

Γp(n)k

{∏p
j=1 Γ(n(1 + h) − j + 1)} · · · {∏p

j=1 Γ(n(1 + h) − j + 1)}∏p
j=1 Γ(nk(1 + h) − j + 1)

.

Letting

a = kp, b = p (64)
xℓ = n, ℓ = 1, . . . , kp (65)
y j = nk, j = 1, . . . , p (66)

K =
Γp(nk)

Γp(n)k
, (67)

we have

{
p∏

j=1

yy j

j }/{
kp∏
ℓ=1

xxℓ
ℓ } = (nk)pnk/nnkp = knkp. (68)

We define

η j = − j + 1, j = 1, . . . , p (69)

and we let the ξℓs be k versions of those numbers, i.e.,

ξℓ = −ℓ + 1, ℓ = 1, . . . , p (70)
...

ξℓ = −ℓ + (k − 1)p + 1, ℓ = (k − 1)p + 1, . . . , kp. (71)

It is now obvious that we may use the result of Box [35] for example in the form given in [22] in approximating the
distribution of Q. We have

f = −2{
∑
ℓ

ξℓ −
∑

j

η j −
1
2

(a − b)} (72)

= −2{k
p∑
ℓ=1

(−ℓ + 1) −
p∑

j=1

(− j + 1) − 1
2

(kp − p)}

= −2{−1
2

(k − 1)p(p − 1) − 1
2

(k − 1)p}
= (k − 1)p2.

Furthermore, for βℓ = (1 − ρ)n and ε j = (1 − ρ)nh we have

ω1 =
1
2
{

p∑
ℓ=1

k
nρ

B2((1 − ρ)n − ℓ + 1) −
p∑

j=1

1
ρnk

B2((1 − ρ)nk − j + 1)} (73)

=
1

2ρ
{k

p∑
ℓ=1

1
n

B2((1 − ρ)n − ℓ + 1) −
p∑

j=1

1
nk

B2((1 − ρ)nk − j + 1)}.

Now, for s = n or s = nk we have (straightforward calculations)

1
s

B2((1 − ρ)s − j + 1) = (1 − ρ)2s − 2(1 − ρ)B1( j) +
1
s

B2( j). (74)
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The sums of the Bernoulli polynomials are
p∑

j=1

B1( j) =
1
2

p2,

p∑
j=1

B2( j) =
1
6

p(2p2 − 1),
p∑

j=1

B3( j) =
1
4

p2(p2 − 1). (75)

Therefore

2ρω1 = k{p(1 − ρ)2n − 2(1 − ρ)
1
2

p2 +
1

6n
p(2p2 − 1)} (76)

−{p(1 − ρ)2nk − 2(1 − ρ)
1
2

p2 +
1

6nk
p(2p2 − 1)}

= −(k − 1)(1 − ρ)p2 +
1
6

p(2p2 − 1)(
k
n
− 1

nk
).

If we put ω1 = 0 we obtain

(k − 1)(1 − ρ)p2 =
1
6

p(2p2 − 1)(
k
n
− 1

nk
) (77)

or

(1 − ρ) =
1

6(k − 1)p
(2p2 − 1)(

k
n
− 1

nk
). (78)

For this value of ρ we want to determine ω2. We have

−6ρ2ω2 = k
p∑
ℓ=1

1
n2 B3((1 − ρ)n − ℓ + 1) −

p∑
j=1

1
(nk)2 B3((1 − ρ)nk − j + 1). (79)

Since
1
s2 B3((1 − ρ)s − j + 1) = s(1 − ρ)3 − 3(1 − ρ)2B1( j) +

1
s

(1 − ρ)3B2( j) − 1
s2 B3( j) (80)

we get

−6ρ2ω2 =
3
2

(k − 1)p2(1 − ρ)2 − 1
4

p2(p2 − 1)(
k

n2 −
1

(nk)2 ) (81)

or

ω2 = −(k − 1)
p2

4
(1 − 1

ρ
)2 +

1
24ρ2 p2(p2 − 1)(

k
n2 −

1
(nk)2 ) (82)

and the theorem follows. Q.E.D.
Coelho et al. [38] give other approximations to the distribution of expressions like Q.
In order to decompose the likelihood ratio criterion into independent components showing where possible changes

may take place we need some auxiliary results on distributions of complex matrices.

Lemma. Let the independent random variables X1 and X2 be complex Wishart distributed

Xi ∼WC(p,ni,Σ), i = 1, 2. (83)

Let

C = (X1 + X2)−1/2 (84)

be a matrix so that

C(X1 + X2)CH = I. (85)

Then

X1 + X2 and (86)
CX2CH = (X1 + X2)−1/2X2{(X1 + X2)−1/2}H (87)
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are independent.

Proof. First we consider random variables Ui, i = 1, 2 that are Wishart distributed with Σ = I. In this case the joint
density is

f (u1,u2) = K exp(−trace(u1 + u2))|u1|n1−p|u2|n2−p. (88)

In this case the theorem follows directly from, e.g., [39]. The general case now follows by considering the transfor-
mation given by

Xi = Σ
1/2Ui(Σ1/2)H. (89)

We then obtain

I = C(X1 + X2)CH (90)
= CΣ1/2(U1 +U2)(CΣ1/2)H (91)

CX2CH = CΣ1/2U2(CΣ1/2)H. (92)

Thus, the previous results applies to U1,U2 and the theorem follows. Q.E.D.

Returning to the likelihood ratio statistic Q we can now prove

Theorem 10. Given that

Σ1 = Σ2 = · · · = Σ j−1 (93)

then the likelihood ratio test statistic R j for testing the hypothesis

H0 : Σ j = Σ j−1 against H1 : Σ j , Σ j−1 (94)

is

R j =
j jpn

( j − 1)( j−1)pn

|X1 + · · · + X j−1|( j−1)n|X j|n

|X1 + · · · + X j| jn
. (95)

Furthermore

Q =
k∏

j=2

R j. (96)

Proof. Straightforward. Q.E.D.

Theorem 11. If the hypothesis

H0 : Σ1 = · · · = Σk (97)

is true and n ≥ p, then the quantities R2, . . . ,Rk are independent.

Proof. We find C j so that

C j(X1 + · · · + X j)CH
j = I (98)

and put

E j = C j(X1 + · · · + X j−1)CH
j (99)

getting

I − E j = C jX jCH
j . (100)

From the above lemma it follows that E j is independent of X1 + · · ·+X j and therefore also independent of X1 + · · ·+
X j + X j+1. This implies that

E j and C j+1(X1 + · · · + X j)CH
j+1 = E j+1 (101)
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are independent. Arguing along those lines gives the theorem. Q.E.D.

Corollary. The quantities R j and Q may be written

R j =
j jpn

( j − 1)( j−1)pn
|E j|( j−1)n|I − E j|n (102)

Q = kkpn
k∏

j=2

|E j|( j−1)n|I − E j|n. (103)

Proof. Straightforward. Q.E.D.

We conclude this section by stating a theorem on the distribution of the components R j in the decomposition of
the likelihood ratio citerion.

Theorem 12. Let the situation be as in Theorem 10. Letting

f = p2 (104)

ρ j = 1 − 2p2 − 1
6pn

(
1 +

1
j( j − 1)

)
(105)

ω2 j = −p2

4

(
1 − 1
ρ j

)2

+
1

24n2 p2(p2 − 1)
(
1 +

2 j − 1
j2( j − 1)2

)
1
ρ2

j

. (106)

Then

P{−2ρ j ln R j ≤ z} ≃ P{χ2( f ) ≤ z} (107)
+ ω2 j[P{χ2( f + 4) ≤ z} − P{χ2( f ) ≤ z}].

Proof. Follows from the two-sample test for equality of complex Wishart matrices. Q.E.D.

Coelho et al. [38] give other approximations to the distribution of the expression like R j.
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