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A B S T R A C T

Texture analysis is a major task in many areas of computer vision and pattern recognition, including biolog-
ical imaging. Indeed, visual textures can be exploited to distinguish specific tissues or cells in a biological
sample, to highlight chemical reactions between molecules, as well as to detect subcellular patterns that can
be evidence of certain pathologies. This makes automated texture analysis fundamental in many applica-
tions of biomedicine, such as the accurate detection and grading of multiple types of cancer, the differential
diagnosis of autoimmune diseases, or the study of physiological processes. Due to their specific characteris-
tics and challenges, the design of texture analysis systems for biological images has attracted ever-growing
attention in the last few years. In this paper, we perform a critical review of this important topic. First, we
provide a general definition of texture analysis and discuss its role in the context of bioimaging, with exam-
ples of applications from the recent literature. Then, we review the main approaches to automated texture
analysis, with special attention to the methods of feature extraction and encoding that can be successfully
applied to microscopy images of cells or tissues. Our aim is to provide an overview of the state of the art, as
well as a glimpse into the latest and future trends of research in this area.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Texture analysis: definition and main application areas

Texture analysis attempts at the formalisation of an inher-
ently informal concept, that is the appearance and feel of visual

textures in an image. Generally speaking, visual textures are non-
random arrangement of entities (subpatterns [1]) with a certain
distribution of brightness, colours, shapes, etc. (see Fig. 1). The
fine aggregation of the subpatterns in the observer’s eye generates
the perception of texture as a whole, even in absence of well-
defined boundaries.

Texture analysis has received attention from the research com-
munity since the early 70s, and over the years it has been successfully

http://dx.doi.org/10.1016/j.csbj.2016.11.002
2001-0370/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Visual textures with corresponding subpatterns.

applied to a large number of tasks in computer vision. Among the
others:

– Image segmentation. Leveraging on the variation of textures
with respect to the background, it is possible to identify objects
or regions of interest, even though their boundaries are poorly
defined or non-existent. For example, a traditional application
in computer vision is the segmentation of natural scene images,
especially from remote sensing devices [2, 3].

– Object classification. Textural characteristics allow to infer
physical or chemical properties of the imaged objects. This
allows, for example, to classify objects’ materials [4] or, in case
of medical images, to categorise a patient into a specific range
of diseases [5].

– Image and video compression. Robust texture representations
are essential to achieve efficient and loss-less compressions of
digital images [6].

– Content-based image retrieval. Texture descriptors provide
compact characterisations of the image content, allowing the
automatic retrieval of images from databases without need of
metadata indexing [7].

– 3D scene reconstruction and rendering. 3D shape informa-
tion about objects can be inferred from two-dimensional
texture using cameras from specific viewpoints (shape-from-
texture [8, 9]).

The perception and segregation of different textures in an image
has much to do with the way the visual patterns are processed
and aggregated by the human visual cortex. Even for the simplest
forms of textures, the formalisation of this process into compact
mathematical definitions can be very challenging, and may require a-
priori assumptions about the distribution of intensities in subregions
of the image. Such assumptions are unavoidably context-specific, as
they depend on the unique characteristics of the targeted images.

General approaches of texture analysis can be shared among
different applications and types of images. Nevertheless, spe-
cific imaging contexts, such as bioimage processing, need textural

descriptors able to reflect their peculiar characteristics and chal-
lenges [10].

In this paper, we will go deeper into the role and fundamentals of
textural analysis in bioimage informatics.

2. Texture analysis in biological imaging

The automated analysis of textures has always been a topic of
importance in biomedical imaging and especially in the radiology
sector, involving different imaging techniques such as X-ray radiog-
raphy, ultrasound (US), computed tomography (CT), positron emis-
sion tomography (PET) and magnetic resonance imaging (MRI) [11].
Due to its superior characteristics in terms of image definition and
soft tissues discrimination capabilities, MRI is by far the one where
texture analysis has found the highest variety of applications, which
include the segmentation of different anatomical areas, the differ-
entiation between normal and pathological subjects as well as the
classification and grading of a large number of pathological condi-
tions. For example, widely referenced studies on brain MRI leverage
on automated texture analysis to segment the cerebellum, the hip-
pocampus or the corpus callosum, to aid the automated diagnosis of
encephalopathy, multiple sclerosis or Alzheimer’s disease, as well as
to classify hippocampal alterations into different grades [12].

While the automated analysis of textures in medical images (e.g.
MRI) has a quite consolidated tradition, microscopy-based bioimag-
ing is a context where the human evaluation of the images has
prevailed for a long time. Indeed, the interpretation of the biolog-
ical specimens is traditionally considered a very complicated task,
requiring experienced and well-trained operators. This complication
is a consequence of the extreme variability affecting the images,
where a “biological” noise, due to different types of cells and cor-
puscles of variable morphology coexisting in the same specimens, is
added to a “technological” noise, due to the general lack of standards
in the image generation and acquisition process [13].

Nonetheless, the considerable technological advance of
microscopy and the increased availability of computational power
at a lower cost have recently determined a growing interest of

Fig. 2. Different textures in H&E pulmonary tissues: (a) Sarcomatoid mesothelioma (cancerous). (b) Active fibrosis (non-cancerous).
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Fig. 3. Textures categories in HEp-2 cell images for the differential diagnosis of autoimmune diseases.

pathologists and biotechnologists for quantitative analysis systems,
where the interpretation of the biological specimens is not left to
the subjective evaluation of a human operator but based on ana-
lytic features automatically extracted from the digital images [14].
The reason of this interest is two-fold. First, higher accuracy and
repeatability of the analysis’ outcome. Second, reduced need for
highly specialised operators, and hence much lower costs for the
health system [15]. Hence, in the last few years the automated anal-
ysis of biological textures has become increasingly popular among
computer scientists.

In the biological images, we can call “texture” any special spatial
arrangements of the biological components appearing in the image,
which may have some relevance to a clinical or biological applica-
tion. Depending on the scale of this spatial arrangement, we can
roughly group these textures into two categories:

– In tissue textures, texture is a property of a tissue, or in general
of a large area of the sample, and it is generated by a specific
spatial arrangement of the cells in such area. In other words,
the way the cells are positioned within the tissue have some
kind of ordered structure, which can be defined as a texture
(see two examples in Fig. 2).

– In cell textures, texture is a property of the individual cells. In
this case, the special arrangement of the sub-cellular compo-
nents (e.g. the nuclear chromatin) gives a well-recognisable
pattern to the cells (see few examples in Fig. 3).

From a technological point of view, the spatial arrangement of
the biological components is made visible to a microscope by chemi-
cal reactions between the biological sample and an external contrast
agent, which are able to reveal specific cells or cellular parts of the
specimen. Hence, the properties of the generated texture (spatial
scale and colour of the patterns, noise level, etc.) depend not only
on the type of cells/tissues, but also on the type of contrast agent
and the chemical bond it exploits, which is characteristic of a specific
microscope imaging technology.

In traditional light microscopy, the contrasting process is based
on staining. For example, in Hematoxylin and Eosin histology (H&E,
the most commonly used staining technique) Hematoxylin stains
nuclei blue due to its affinity to the nucleic acids contained in the
cell nucleus, while eosin, an acidic dye, stains the cytoplasm of
the cells pink [16]. Thanks to the staining process, any nonrandom
arrangements of the cells (cells more or less packed, with circular or
elongated nuclei, disorganised or with a preferential direction, etc.)
generate distinct blue & pink tissue textures in the biological image,
as in Fig. 2.

The automated representation and classification of such textures
can help in identifying specific tissues. This is exploited for a large
number of useful purposes, including the segmentation of tissue
areas, the discrimination between benign or malign lesions, as well
as the identification and grading of cancers. For example, in Ref. [17],
a large set of textural and nuclear architecture based features are

extracted from H&E breast biopsy images. Then, automated clas-
sification based on support vector machines (SVM [18]) is used
to distinguish between cancerous and non-cancerous images and
to categorise the former ones into different grades of cancer. In
Ref. [19], colour texture features are extracted to perform the auto-
mated segmentation of H&E follicular lymphoma cells. In Ref. [20],
automated texture analysis based on statistical descriptors is suc-
cessfully applied to H&E stained liver sections of rats to automatically
distinguish subjects with fibrosis.

Differently from traditional staining techniques, the imaging
technologies leveraging on immunohistochemistry (IHC) are able
to reveal textures at a much finer spatial scale, because they can
highlight very small molecular complexes such as proteins, carbohy-
drates or lipids [21]. Hence, such images can be exploited not only for
tissue texture but also for cell texture analysis. IHC techniques rely on
antibodies conjugated to either enzymes, that can catalyse colour-
producing reactions, or to fluorophores (i.e. immunofluorescence).
The antibodies specifically bind the target antigens in the tissue
sample and create an antibody-antigen bond can be revealed using
fluorescence microscopy or confocal laser microscopy, allowing to
discriminate sub-cellular textures with a good level of detail.

The automated analysis and classification of the sub-cellular
textures from IHC images can be exploited to obtain a subtle cate-
gorisation of many cellular types, which is useful to several clinical
purposes. For example, the automated classification of epithelial
type-2 (HEp-2) cell textures in immunofluorescence imaging allows
the differential diagnosis of a number of serious autoimmune dis-
eases such as lupus, rheumatoid arthritis and scleroderma. This
application, called antinuclear antibody (ANA) test, has recently
attracted a lot of attention from the research community. The specific
sub-cellular patterns revealed on the HEp-2 cells are a consequence
of the presence in the patients’ serum of specific antibodies that
are held responsible for the diseases (see few examples in Fig. 3).
The correct identification of the HEp-2 pattern helps identifying the
type of antibody, hence it indirectly allows a differential diagnosis
of the autoimmune disease. In the last few years, many researchers
have exploited the analysis of HEp-2 textures to either perform the
automated classification of HEp-2 patterns [22, 23], the automated
segmentation of HEp-2 cells [24, 25] or the recognition of mitotic
processes within the HEp-2 samples [26, 27], which are all important
tasks in the ANA testing procedure.

Depending on the specific application and on the imaging tech-
nology, the characteristics of the tissue or cell patterns in terms of
scale, colour distribution, contrast, signal-to-noise ratio may change
considerably (see Figs. 2 and 3 as examples). Nonetheless, all the
applications share two major points, that effective automated tex-
ture analysis systems need to handle.

First, as a drawback of the microscopy imaging technology per
se, images are subject to major sources of noise and artefacts. For
example, in cyto/histological imaging, noise might originate from a
specific staining of the background or of structures which are not the
intended targets. In fluorescence microscopy, image degradations
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Fig. 4. Computation of a normalised co-occurrence matrix with d = 1 and h = 0.

might derive from the bleaching of the fluorophores after exposure
to light. In general, major variabilities might occur due to changes
in the instrument setup, or due to unwanted contaminations of the
biological samples.

Second, differently from artificial ones, biological objects are
naturally subject to shape and size variability. This variability is
considerably amplified in presence of pathological phenomena. For
example, cancer is often characterised by uncontrolled and irregu-
lar cellular growth, which alters the natural cell arrangement of the
tissues. As such, basic definitions of texture as the repetitive and
ordered arrangement of well-defined sub-patterns simply do not
hold in this context.

In the following, we will discuss the basics and major trends of
texture analysis, with special regard to approaches and techniques
for the classification and segmentation of textures in biological
images.

3. The texture analysis framework

A classic framework for texture analysis consists of three main
steps:

1. Feature extraction: a set of local texture descriptors are com-
puted from patches of the input image (or a region of interest
obtained by image segmentation) and concatenated into a
feature vector.

2. Feature coding (optional): local descriptors are converted into
a compact statistical representation based on a pre-defined
coding structure or dictionary.

3. Texture classification: the texture features (either from step 1 or
2) are fed into a classifier, that categorises unlabelled images
or regions of interest into a certain number of texture classes.
The classification can either be supervised, leveraging on pre-
labelled training samples, or unsupervised, where the texture
classes are gathered from the analysis of the hidden structure
of input data in the features space.

While most of the algorithms proposed for step 3 are machine
learning approaches that are well-established in all areas of com-
puter vision (e.g. Support Vector Machines [28, 29], boosting algo-
rithms [30, 31], neural networks [32, 33], and random forest tech-
niques [34, 35]), most of the efforts of the research community
are directed towards designing suitable texture descriptors for spe-
cific biological applications. Indeed, literature suggests that a smart
choice and encoding of the features is by far the most important
aspect in obtaining a accurate texture discrimination [36].

In the following, we give an overview of texture feature extraction
and coding with special regard to biological image applications, and

provide just a few glances to the classification step. For this, the inter-
ested reader can refer to the surveys on machine learning published
by Refs. [37, 38].

4. Texture feature extraction

4.1. Geometrical or structural methods

This category of approaches apply the basic definition of tex-
ture as a regular repetition of sub-patterns or primitives. Based on
this concept, they first identify such primitives, also called texture
elements (e.g. edges, Voronoi polygons, and blobs), and then com-
pute either statistical or morphological descriptors assuming certain
placement rules of the primitives [39]. For example, in Ref. [40]
segmented regions and lines in confocal scanning laser microscopy
images of fetal liver cells are interpreted as texture primitives and
stored in a uniform data structure that reflects the arrangement of
the chromatin in the cell nuclei.

The assumption of homogeneous placement of the primitives is
a major limitation. While this hypothesis generally holds very well
for artificial textures, it is most of the times disproved in biological
images. Hence, this approach is mostly unsuccessful when applied to
images of cells or tissues.

4.2. Statistical methods

Texture can be defined not only as a deterministic repetition of
sub-patterns, but also as a non-deterministic spatial distribution of
intensity values. This latter definition is at the base of statistical
methods for texture analysis.

The spatial distribution of intensities related to texture can
be mathematically represented by a set of first- or second-order
statistics:

– First-order statistics relate to the likelihood of individual pixels
having specific intensity values.

– Second-order statistics relate to the joint likelihood of two ran-
dom pixels in the image having specific pairs of intensity
values.

First order statistics are gathered from the normalised intensity
histogram of the image, that is a version of the intensity histogram
where the grey level occurrences are normalised in order to obtain
an estimation of the probability density function of the intensities.
To characterise the shape of the intensity distribution, and hence the
texture of the image, a set of statistical descriptors such as mean,
variance, skewness, kurtosis, energy, and entropy can be computed
either from the global histogram or from local intensity histograms
of image patches [41].
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Fig. 5. Computation of local binary patterns.

While first order statistics have major advantages of simplicity
and low computational cost, they are way too simple to characterise
complex textures, hence they find little application to biological
images. Much more attention is given to second order statistics,
where the joint probability of pixel pairs are taken into account. They
require to compute a second-order intensity histogram, the so-called
co-occurrence matrix [42], that is a square matrix where each element
in position (i, j) contains the probability for a pair of pixels located at a
distance d and direction h in the image to have intensity levels i and j,
respectively (see example in Fig. 4). Starting from the normalised co-
occurrence matrix, a number of texture descriptors can be computed
such as angular second moment, contrast, homogeneity, entropy,
and maximum joint probability.

Widely known studies on texture visual perception by a promi-
nent visual neuroscientist, B. Julesz, showed that textures sharing
the same second order statistics are not perceived as different by
human observers, even if they have very different third order statis-
tics [43, 44]. This suggests that second order descriptors might have
the highest discriminative capability, even compared to higher order
ones. Sure enough, as the computational complexity increases expo-
nentially with the order of the statistics, second order descriptors are
most of the times preferred in texture analysis literature [45].

On the other hand, this type of descriptor has two major limi-
tations. First, the difficulty to set the orientation of the dipole (d, h)
in order to obtain optimal texture discrimination, which might be
very image-dependent. Second, the lack of invariance of the obtained
descriptors to size and rotation. Hence, rotated or scaled versions
of the very same texture will be labelled differently, leading to
classification errors. To partially overcome this problem, texture
classification can be performed based on the mean and variance
of second order statistics extracted for different values of d and
h [42]. Recent works also propose multi-scale extensions of the
traditional co-occurrence matrix descriptors, based on combining
features extracted from the entire matrix as well as from sub-
windows [46].

4.3. Local binary patterns

As a clever unification of structural and statistical texture anal-
ysis approaches, local binary patterns (LBP) were first proposed in
1994 [47, 48]. The basic idea behind this descriptor is to describe
texture as a histogram of LBPs, i.e. binary patterns representing the
intensity relations between a pixel and its neighbours. For each
image pixel, a LBP is obtained by binarizing its neighbouring region
using the intensity of the pixel as threshold, and then by converting
the resulting binary pattern to a decimal number (see Fig. 5). Finally,
a histogram is generated by taking into account the occurrences of
all the LBPs in the image. This is a very simple yet powerful textu-
ral descriptor, whose main advantage is the invariance to changes of
illumination over the image.

Recent literature proposes several variants of classical LPB for-
mulation that are supposed to extend and improve its descriptive
capabilities. Among the others:

– Rotation-invariant uniform LBPs (LBPriu2) Binary patterns are
called uniform if they contain very less spatial transitions
(i.e., no more than two bitwise 0/1 changes). As they contain
fewer spatial transitions, uniform patterns are more tolerant
to unwanted changes upon rotation. Hence, they are the most
discriminative for characterising most textures. In Ref. [49],
uniformity is exploited to generate compact rotation-invariant
feature vectors.

– Completed LBPs (CLBP) In classical LBPs, all pixels are bina-
rised using the central one as threshold. Hence, only the sign
of the difference between the center and the neighbour grey
values is relevant. Conversely, Completed Local Binary Pat-
terns (CLBP [50]) represent each neighbourhood by its center
pixel as well as by a local difference sign-magnitude transform
(LDSMT). This way, they take into account both the sign and the
magnitude of the difference between the central pixel and its
neighbours.

– Co-occurrence of Adjacent LBPs (CoALBP) In the original expres-
sion of LBPs structural information among different binary
patterns is missing. This is the idea behind the formulation pro-
posed in Ref. [51], where the co-occurrence of multiple LBPs
(and in particular, adjacent LBPs) is taken into account.

– Rotation-Invariant Co-occurrence of Adjacent LBPs (RIC-LBP) As
CoALBP features are very dependent on the orientation of the
target object, a work by Ref. [52] proposes a rotation invariant
formulation. A rotation invariant label is attached to each LBP
pair, so that all CoALBPs corresponding to different rotations of
the same pattern are equivalent.

– Globally rotation invariant multi-scale co-occurrence local binary
pattern (MCLBP) In MCLBPs, a smart encoding of local binary
patterns is performed at multiple scales, in order to increase
their discriminative capabilities [53]. All the co-occurrence pat-
terns are arranged into groups according to properties of the
co-patterns, and features are extracted from each group based
on three different encoding strategies, designed to capture the
correlation information between different scales and maintain
rotation invariance.

Thanks to their advantages in terms of accurate and robust
description of local information, LBPs have been successfully used
to identify and classify biological textures in a number of impor-
tant applications. For example, in Ref. [54] classical LBP and shape
descriptors were used to classify lymphocyte cells and diagnose
Acute Lymphoblastic Leukemia from optical microscopy images of
blood samples. In Ref. [55], LBPriu2 features were used to detect
candidate cells for apoptosis in phase-contrast microscopy images.
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In Ref. [22], CoALBP and RIC-LBP features applied to the classi-
fication of HEp-2 cell patterns for ANA testing outperformed a
large number of other texture analysis methods applied to the
same image datasets. In Ref. [56], a three-layered feature learn-
ing framework based on local binary patterns was successfully
applied to protein classification in HeLa and Pap-smear fluorescence
images.

On the other hand, the main disadvantage of LBPs is the compu-
tational burden of processing large number of features, especially for
the most sophisticated formulations. Hence, several works suggest
the use of feature reduction techniques such as Sequential Feature
Selection [57] and Minimum Redundancy and Maximum Relevance
(mRMR) algorithms [58].

4.4. Model-based methods

Generative models of the images can be applied to describe the
main structural characteristics of visual textures. In model based
methods, the estimated parameters of the a priori models assume
the role of texture descriptors and can be used for either texture
synthesis, classification or segmentation. The most used models in
literature are:

– Autoregressive models. They assume a direct local interaction
between the image pixels, so that pixel intensity is a weighted
sum of pixel intensities in a neighbourhood of the pixel and
an identically distributed noise. The model parameters are
represented by the vector of weights. In a typical texture anal-
ysis problem, the parameters are first identified for a given
image region by either least square error (LSE) or maximum
likelihood estimation (MLE) algorithms, and then used for tex-
ture discrimination. For example, in Ref. [59], this approach is
exploited to develop a image-guided decision support system
able to identify different cases of lymphoproliferative disorders
from peripheral blood smears images. In the Local Config-
uration Pattern (LCP) proposed by Guo and Pietikinen [60],
microscopic interactions between image pixels and local shape
information are integrated by coupling a linear configuration
model with weights determined with LSE optimisation and
LBP-based features.

– Random fields . Texture can be viewed as a finite sample of
a two-dimensional random process that can be described by
its statistical parameters. Markov Random Fields (MRFs) are a
multidimensional generalisation of the Markov chains, defined
in terms of conditional probabilities associated with spatial
neighbourhoods. In other words, the probability of a certain
cell of a lattice being in a given state (i.e. of a pixel having a
specific intensity) is directly determined by the state of neigh-
bouring cells. Hence, texture representation and analysis is
translated into a statistical inference problem, where global
statistics are expressed in terms of the local neighbourhood
potentials. Various formulations of MRFs have been applied
to biological texture analysis, especially with the aim of cell
and tissue segmentation [61, 62] or cell tracking in time-lapse
microscopy [63]. In Ref. [61], texture contextual information
is incorporated into an unsupervised binary Markov Random
Field segmentation model to automatically detect leucocytes
in bone marrow leukemia cell images. In Ref. [62], statisti-
cal image modelling of spatial interactions based on Gaussian
Markov random fields drives to successful segmentation of cer-
vical tissue images, which is a step towards less expensive
cervical pre-cancer detection methods. In Ref. [63], texture-
adaptive snakes based on Random Markov Fields are exploited
to identify cell trajectories, which is important for the analy-
sis of physiological events in computerized Video Time-lapse

Microcopy. The main drawback of these techniques is the com-
putational burden due to the iterative energy optimisation
schemes.

– Fractals. A fractal is a mathematical concept where a multi-
scale set exhibits the same repeating pattern at every scale,
which is a paradigm that can be easily transferred to texture
analysis. Indeed, fractal parameters can be viewed as a mea-
sure of irregularity or heterogeneity of spatial arrangements.
Hence, in the last few years there has been growing inter-
est in the application of fractal geometry to observe spa-
tial complexity of natural features at different scales. A
number of studies propose inference methods to estimate
two main fractal parameters, the dimension and the lacu-
narity [64–66]. These parameters are correlated to texture
coarseness (i.e. the larger the fractal dimension and lacunar-
ity, the rougher the texture), and hence can be used as tex-
ture descriptors in classification problems where textures are
characterised by high irregularity, as in histological images
of cancer tissues. Examples of successful application of this
approach in recent literature include the accurate classifica-
tion of cancer cells in breast [67], prostate [68] as well as brain
tumours [69].

4.5. Transform-based methods

Transform-based texture analysis exploits signal processing tech-
niques to transform the image into a different space, with the aim
of highlighting texture properties and maximise the geometrical
separability of different types of textures. Texture descriptors are
typically inferred from filtered images, on a number of different
domains. In the following, we list the most used ones.

– Spatial domain filters. Naive spatial-domain methods rely on
simple edge detection operators (e.g. Sobel, Roberts and
Laplacian filters) and then extract the density of the edges
in the filtered image, using it as a texture descriptor. This
approach allows to distinguish coarse from fine patterns, but
has heavy limitations handling irregular textures, that is the
routine in most biological images.

– Frequency domain filters. Frequency analysis can be applied,
either by means of 2-dimensional Discrete Fourier Transform
(DFT) or Discrete Cosine Transforms (DCT), to extract spatial-
frequency components of the images. In fact, in the spatial-
frequency domain global texture properties such as coarseness,
graininess, or repeating patterns can be easily identified. The

Fig. 6. Kernel of a Gabor filter (real part).
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coefficients of the transforms provide a compact represen-
tation of the original image where the most discriminative
patterns are emphasised. In literature, they are widely used
as texture descriptors, either as they are, or in the form of
statistical features or coefficient histograms [70]. However,
this approach is generally renowned for suffering from lack of
spatial localisation.

– Gabor and wavelet transforms. Differently from DCT and DFT,
wavelets perform spatial-frequency decompositions where the
sinusoidal basis is modulated with different-shaped window
functions. The presence of a window with a limited width gen-
erally allows much better localisation in the spatial domain
compared to traditional Fourier decompositions, ensuring the
best discrimination capabilities. On top of that, different win-
dow shapes can fit different types of textures. For example,
Gabor transform is characterised by a Gaussian-shaped win-
dow function (see Fig. 6), which makes it best suited to rep-
resent spotted and concentric textures, that are commonly
encountered sub-cellular patterns. This trait can be applied to
a number of important biological contexts. In Ref. [71], it is
exploited to classify 3D immunofluorescence images of HeLa
cells, leading to the accurate determination of protein expres-
sion changes in response to particular drugs or transgenes. In
Ref. [72], it is applied to the detection of sub-cellular changes
(e.g. variations of mitochondrial shape) in unstained living
cells, which opens the way to the study of programmed cell
death (apoptosis) and other fundamental biological processes.

5. Feature encoding and dictionary learning

As discussed in the previous sections, several types of descriptors
can be used to represent biological textures. Besides quantification,
fusing these multiple descriptors into compact and generalisable
representations is crucial for boosting the performance of a texture
classification system.

The most popular approach for this purpose is the Bag-of-Features
or Bag-of-Words (BoW) model, that was first applied to the context
of computer vision in 2009 [73] and then proposed in many variants
by the most recent literature, even on biological image analysis. This
model takes inspiration from a popular paradigma in text classifica-
tion, where a bag of words is a sparse vector of occurrence counts
of the most representative words in a document. As a parallel of this
concept, a bag of visual words is defined as a vector of occurrence
counts of a vocabulary consisting of local texture features.

Fig. 7 shows a simplified representation of the BoW model. First,
a large number of local texture features is extracted from the input

image (see previous sections). These local features can be either com-
puted from small overlapping patches (e.g. by cropping the image
with a regular grid or with a sliding window) or from representative
keypoints. A very popular descriptor for this purpose is, for example,
the scale-invariant-feature-transform (SIFT), where local gradient
information is exploited to extract a large number of keypoints over
the full range of scales and locations of the image [74]. As an alterna-
tive or in conjunction with SIFT, Speeded Up Robust Features (SURF)
can be also computed, that are local descriptors exploiting an inte-
ger approximation of the determinant of Hessian blob detector to
detect keypoints in the input image [75]. Then, the local features
extracted from a representative set of training images are exploited
to generate a so-called codebook, that is a limited dictionary of ele-
ments (the visual words) able to represent in a reduced space all
the shared characteristics of the local features from the training set.
In the simplest approaches, the generation of the codebook is per-
formed by applying clustering algorithms to the local features (e.g.
k-means clustering and its variants). By this means, the original N-
dimensional local feature space is reduced to a k-dimensional visual
words space, where k < N is the number of clusters, that is also
equal to number of visual words in the codebook. Variants of this
approach have also been proposed, where the codebook is learnt by
applying either supervised or unsupervised learning techniques (e.g.
restricted Boltzmann machines) [76]. Then, the occurrences of the
visual features are computed to obtain a feature vector. Another very
popular variant is VLAD (Vector of Locally Aggregated Descriptors)
encoding, where the codebook is learnt by classical k-means cluster-
ing, then the residuals of each descriptor with respect to its assigned
cluster are accumulated [77].

The step through which the visual features of a novel image
are projected onto the codebook elements is called feature coding.
Depending on the coding function applied to perform the projec-
tion, this step can be either performed by hard coding or by soft
assignment techniques. After feature coding, a feature pooling step
(typically based on sum or max operators) aggregates the projected
codes of all the local patches into a single feature vector, which can
finally be fed into a classifier to perform texture classification.

In the last few years, BoW framework was extensively applied to
the automated categorisation of histopathological images [78, 79].
For example, in Ref, [80] a codebook feature space is created by
extracting dense SIFT descriptors at fixed grid locations from a train-
ing set of two-photon excitation microscopy images with different
stages of liver fibrosis. Then, code vectors are fed into a weighted k-
NN classifier to automatically predict the fibrosis stage of unlabelled
images.

While traditional BoW model is indeed a major improvement
over feature aggregation techniques based on simple concatenation

Fig. 7. Simplified scheme of BoW feature encoding model.
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Fig. 8. Deep neural network framework.

of descriptors, it still suffers from a major limitation, that is the
lack of structural discrimination. Indeed, as BoW representation is
entirely devoted to representing texture statistically in terms of fea-
ture occurrences, any information about object shapes as well as
about spatial relations between macro- and micro-structures within
the image is completely lost.

As a solution to this problem, recent works apply BoW models
coupled with Spatial Pyramid Matching (SPM) [81]. This technique
performs a hierarchical partitioning of the image with progres-
sively finer level of detail, obtaining at each level an increasingly
higher number of sub-images. BoW model is then applied to each
sub-image, obtaining a feature histogram pooled over all the cod-
ing vectors of such sub-image. Finally, a super-feature histogram
is obtained by concatenating all the feature histograms of all the
sub-images. This allows to embed the inner spatial relations among
sub-images into a compact BoW representation.

Its improved texture discrimination capabilities compared to
classical BoW have recently determined the successful application of
SPM to the context of cell pattern classification, that is an application
requiring fine discriminations of heterogeneous types of textures
(see Fig. 3). For this purpose, a variant of SPM called Cell Pyramid
Matching (CPM) was first proposed in Ref. [82], tailoring the proper-
ties of SPM to cell pattern classification. In CPM, each cell image is
first resized to a canonical size and then divided into small overlap-
ping patches. To improve spatial discrimination, leveraging on the
output of cell segmentation, each cell is also divided into an inner
region, which covers the cell content, and an outer region, contain-
ing information related to cell edges and shape. The patches are then
represented by patch-level features based on SIFT and DCT descrip-
tors. The local histogram from each patch is extracted by using a
pre-trained visual word dictionary, and the local histograms of each
region are pooled to compute the overall histogram of that region.
Finally, the cell image is represented by the concatenation of the
regional histograms. More recently, a two-level cell pyramid was
used in a similar fashion also by Manivannan et al. [83] to capture

spatial structure within immunofluorescent HEp-2 cells, leading to
highly accurate diagnosis of autoimmune diseases.

6. Latest trends: self-learnt features and deep learning models

All the works and techniques reviewed so far have a common
trait, in that they are all based either on handcrafted image descrip-
tors or on some predefined models of texture. As such, the discrim-
inative capabilities of each technique depend on (i) how faithful the
model is to the actual characteristics of the images to be analysed;
(ii) how efficient the descriptor is in terms of compactness as well as
of robustness to image variations, when it is fed into an automated
classifier. Hence, the general focus of the last decade’s research has
been on the design of texture representation schemes embedding
these two concepts.

However, this approach has two limitations. First, it requires deep
a-priori knowledge of the characteristics of the textures that have to
be analysed/segmented/classified. This is possible for artificial tex-
tures, but not so easy with natural textures, and even more difficult
when the texture is triggered by a biological reaction that is driven
by mostly unknown mechanisms. Second, it is strongly application-
dependent. That is to say, any texture model is at its best when
the imaging conditions are very limited and constrained. Hence, a
texture descriptor that is perfectly suited for a specific category of
images does not ensure the same performance when it is applied to
a different type of images.

Based upon these observations, the latest trend is to abandon
the design of handcrafted features, and let the texture analysis
framework learn the model directly from the images. The research
community agrees that deep learning (DL) has the highest potential
in this scenario [84–86].

In recent years, DL architectures have become more and more
popular in many sectors of computer vision and pattern recogni-
tion. These methods are essentially based on distributed represen-
tations of the information, with the underlying assumption that the
observed data can be represented by interactions between multi-
ple punctual factors, organised in layers. Each layer corresponds to
a different level of abstraction, on a hierarchical basis from the low-
est to highest: the former conveys more low-level information about
the distribution of pixel intensities, while the latter provides a more
abstract representation of the input. Hence, the level of abstraction
can be easily modulated by varying the number and size of the layers.

An image can fed into a deep learning network in its raw form, as a
vector of pixel values. Each layer is locally connected to the previous
one, and learns features that can be extrapolated to describe the tex-
ture of the input image at progressively higher levels of abstraction,
typically exploiting the backpropagation algorithm (see Fig. 8). A first

Fig. 9. Structure of a deep autoencoder with 5 hidden layers.
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Table 1
Results of the Performance evaluation of indirect immunofluorescence image analysis systems contest.

Ref. Textural features Classifier Accuracy

Mannivannan [23] Four types of local features with CPM-BoW encoding Ensemble SVMs 87.09%
Sansone [87] Dense local descriptors with BoW encoding SVM 83.64%
Theodorakopoulos [88] SIFT with VLAD encoding, LBP-based and morphological descriptors SVM 83.33%
Gao [89] Raw image data with deep CNNs Deep CNNs 83.23%
Paisitkriangkrai [90] Combination of different sets of low-level texture features Boosting classifier 81.55%
Ensafi [91] SIFT and SURF descriptors with BoW sparse encoding SVM 80.81%
Nanni [92] LBP-derived and morphological features SVM 78.27%
Codrescu [93] Raw image data Neural networks 74.93%
Taormina [94] Combination of different types of local texture features kNN 74.62%
Ponomarev [95] Morphological and shape descriptors SVM 73.53%
Roberts [90] Wavelet transform-based features SVM 66.99%

layer usually provides a map of the edges in the image at specific
locations or at specific orientations. A second layer performs rough
pattern detection, in that it detects particular arrangements of the
edges. A third layer might detect spatial combinations of such pat-
terns, and so on. Hence, deep learning architectures can be exploited
to obtain compact and non-redundant intermediate representations
of textures, obviating the extraction of handcrafted features [84].

Many deep learning algorithms can be applied to either super-
vised or unsupervised tasks. A detailed analysis of these algorithms
is out of the scope of this paper. In this section, we will give just a
glimpse into few of the most popular deep learning techniques in the
context of texture analysis, with special regard to biological imaging
applications.

Most deep learning applications typically use feedforward neural
networks, where the network learns to map a fixed-size input (e.g.
the raw image) to a fixed-size output (e.g. a label, or a probability of
belonging to a specific texture category).

A popular architecture in this context is the deep Autoencoder,
a simple unsupervised network mapping the input to the output
through backpropagation algorithm. The aim is reproducing the
input with the least amount of distortion possible (see schematic
representation in Fig. 9). The architecture is composed of two,
symmetrical deep-belief networks, that respectively represent the
encoding and the decoding half of the net. The encoding layers pro-
duce a compressed representation of the input, with progressively
higher level of feature size reduction. The more the hidden layers, the
higher the level of size compression. The decoding layers reconstruct
the input at its original feature size. Hence, the intermediate layer
(code, in Fig. 9) provides a reduced set of representative features that
can be used for biological texture classification problems.

For example, autoencoders were successfully used to perform
nuclei detection on high-resolution histopathological images of
breast cancer. In a recent work by Xu et al. [96], the autoencoder
learns high-level features from raw pixel intensities to identify dis-
tinguishing textures of the nuclei. Image patches represented by
the autoencoder’s high-level features are subsequently fed into a
classifier which categorises each patch as nuclear or non-nuclear.

Inspired by the multi-stage processes in the visual cortex, in
the very last period supervised approaches based on Convolutional
Neural Networks (CNNs) have emerged as the state-of-the-art deep
networks. A typical CNN architecture contains a number of con-
volutional layers interlaced with subsampling layers (respectively
devoted to feature extraction and pooling), followed by fully-
connected layers devoted to classification. The key to the success
of CNNs is the ability to learn increasingly complex transformations
of the input and capture invariances from large labelled datasets.
This makes this deep network particularly suited to handle heteroge-
neous textures. On top of that, CNNs have shown promising results
in the emerging topic of domain transfer, where large image datasets
are exploited to obtain pre-trained general-purpose texture feature

extractors, that can be transferred to other domains of biological
imaging [97].

Hence, in recent years CNNs is becoming increasingly popular in
the field of biological texture analysis, with several important appli-
cations including mitosis detection in histology images [98–100] and
the classification and grading of cancer cells [101, 102]. The most
important drawback in this case is the need for very large datasets to
learn representative features, which is currently limiting a broader
applicability of this very promising technique.

For better positioning deep learning techniques (and CNN in par-
ticular) in the panorama of biological texture analysis, we chose to
show as a case-study the outcome of the most recent contest on flu-
orescence HEp-2 cell pattern classification hosted by ICPR, which is
one of the most reputed conferences on pattern recognition [90].
This case-study was chosen for two main reasons. First, because the
accuracy results are completely unbiased, as they were computed
based on one-image-out cross-validation by a third party (i.e. the
organisers of the contest) on a testing dataset that was at that time
unavailable to the participants. Second, because the competition had
been repeated three times since 2012, obtaining a very good par-
ticipation rate. This makes it a significant case-study not to merely
rank the individual descriptors (which would be anyway limited to
the context of HEp-2 classification), but rather to analyse the general
trends of the proposed research contributions, that is a concept that
can be generalised to other imaging applications.

While the participants of previous editions of the contest had
focused on identifying the best texture descriptors per se (e.g.
improved formulations of local binary patterns [22]), in the latest
edition most of the research groups directed their efforts to design-
ing more effective feature encoding techniques (such as CPM or
other BoW variants [23, 87, 88]). This suggests that the sophisticated
aggregation of different types of multi-scale descriptors by means of
feature encoding techniques is the state of the art at the moment.
Only one out of the eleven participants proposed a deep learning
approach, based on CNN [89] (highlighted in grey, in Table 1). This,
again, is not surprising, as deep networks are quite consolidated in
other fields of pattern recognition, but not much explored in the con-
text of texture analysis. Quite notably given the limited size of the
training set, which is a well-known drawback of deep learning, CNNs
performed comparably with the well-established approaches [90].

As the attractiveness of deep learning architectures is rapidly
growing, recent literature presents many more applications to bio-
logical texture analysis with encouraging results. For example, in
Ref. [103] a combination of hand-crafted features and features
learned through CNNs were applied to mitotic cells detection and
counting for breast cancer grading. In Ref. [104], deep learnt fea-
tures applied to the detection of basal-cell carcinomas were shown
to outperform pre-defined bag of words representations. Finally, an
increasing number of recent works successfully applied deep CNNs
to nucleus detection and classification, which is one of major tasks
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of histological image analysis. Among the others, Xie et al. [105]
recently proposed structural regression CNNs to learn a proximity
map of the cell nuclei, while Sirinukunwattana et al. [106] applied
a Spatially Constrained variant of Convolutional Neural Networks
(SC-CNN) to nucleus detection and classification in colon adenocarci-
nomas. Unlike previous works based on traditional texture analysis,
these approaches have the major advantage of not requiring a pre-
ventive segmentation of the nuclei.

7. Summary and outlook

Texture analysis is an important research topic in biological imag-
ing, because it allows the characterisation of subtle properties of cells
and tissues that cannot otherwise be easily quantified. As such, the
most successful techniques proposed by literature are the ones able
to cope with the inherent variability and noise of biological textures.
This can be obtained either by redesigning descriptors borrowed
from other computer vision applications, or by applying sophisti-
cated feature encoding techniques to condense different types of
local information into compact, multi-scale and invariant texture
representations.

Besides approaches based on the extraction and encoding of
handcrafted texture descriptors, the latest trend is to apply deep
learning architectures, that can learn the texture model directly from
the images. In spite of its shortcomings (first of all, the necessity of
very large image sets), it is very reasonable to think that deep learn-
ing will be attracting more and more attention in the near future, as
its full potentials in the context of biological texture analysis are yet
to be discovered.
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[99] Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in
breast cancer histology images with deep neural networks, Springer Berlin
Heidelberg, Berlin, Heidelberg. 2013;Ch8150411–8.

Please cite this article as: S. Cataldo, E. Ficarra, Mining textural knowledge in biological images: Applications, methods and trends,
Computational and Structural Biotechnology Journal (2016), http://dx.doi.org/10.1016/j.csbj.2016.11.002

http://dx.doi.org/10.1007/978-3-642-02193-0
http://dx.doi.org/10.1007/978-3-642-02193-0
http://dx.doi.org/10.1371/journal.pone.0083554
http://dx.doi.org/10.1016/j.imavis.2015.07.005
http://dx.doi.org/10.1016/j.imavis.2015.07.005
http://dx.doi.org/10.1016/j.patcog.2012.04.003
http://dx.doi.org/10.1016/j.patcog.2012.04.003
http://dx.doi.org/10.1007/s001380050104
http://dx.doi.org/10.1007/s001380050104
http://dx.doi.org/10.5244/C.25.119
http://dx.doi.org/10.1109/TIP.2005.852460
http://dx.doi.org/10.1109/TIP.2005.852460
http://dx.doi.org/10.1109/ISBI.2007.356798
http://dx.doi.org/10.1109/ISBI.2007.356798
http://dx.doi.org/10.1007/978-3-642-31254-0_58
http://dx.doi.org/10.1007/978-3-642-31254-0_58
http://dx.doi.org/10.1109/CVPR.2014.28
http://dx.doi.org/10.1142/S0219519409003097
http://dx.doi.org/10.1109/TPAMI.2008.111
http://dx.doi.org/10.1109/TPAMI.2008.111
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2012.09.007
http://dx.doi.org/10.1109/IEMBS.2008.4649862
http://dx.doi.org/10.1109/IEMBS.2008.4649862
http://dx.doi.org/10.1007/978-3-642-02976-9_17
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/I3A.2014.19
http://i3a2014.unisa.it/
http://i3a2014.unisa.it/
http://dx.doi.org/10.1145/2783258.2783304
http://dx.doi.org/10.1145/2783258.2783304
http://dx.doi.org/10.4103/2153-3539.112694
http://dx.doi.org/10.4103/2153-3539.112694
http://dx.doi.org/10.1016/j.csbj.2016.11.002


U
N

C
O

R
R
E
C
T
E
D

P
R
O

O
F

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

12 S. Cataldo, E. Ficarra / Computational and Structural Biotechnology Journal xxx (2016) xxx–xxx

ARTICLE IN PRESS

[100] Chen H, Wang X, Heng PA. Automated mitosis detection with deep regression
networks. 2016 IEEE 13Th International Symposium on Biomedical Imaging
(ISBI). 2016. p. 1204–7.

[101] Kashif MN, Raza SEA, Sirinukunwattana K, Arif M, Rajpoot N. Handcrafted
features with convolutional neural networks for detection of tumor cells in
histology images. 2016 IEEE 13Th International Symposium on Biomedical
Imaging (ISBI). 2016. p. 1029–32.

[102] Mishra M, Schmitt S, Wang L, Strasser MK, Marr C, Navab N. Structure-based
assessment of cancerous mitochondria using deep networks. 2016 IEEE 13Th
International Symposium on Biomedical Imaging (ISBI). 2016. p. 545–8.

[103] Wang H, Cruz-Roa A, Basavanhally A, Gilmore H, Shih N, Feldman M. Mito-
sis detection in breast cancer pathology images by combining handcrafted
and convolutional neural network features. J Med Imaging 2014;1(3):034003.
http://dx.doi.org/10.1117/1.JMI.1.3.034003.

[104] Cruz-Roa AA, Ovalle JEA, Madabhushi A, Osorio FAG. A Deep Learning Archi-
tecture for Image Representation, Visual Interpretability and Automated Basal-
Cell Carcinoma Cancer Detection. Berlin, Heidelberg: Springer Berlin Heidel-
berg; 2013,403–10. http://dx.doi.org/10.1007/978-3-642-40763-5_50.

[105] Xie Y, Xing F, Kong X, Su H, Yang L. Beyond Classification: Structured Regres-
sion for Robust Cell Detection Using Convolutional Neural Network. Springer
International Publishing.; 2015,358–65. http://dx.doi.org/10.1007/978-3-319-
24574-4_43.

[106] Sirinukunwattana K, Raza SEA, Tsang YW, Snead DRJ, Cree IA, Rajpoot NM.
Locality sensitive deep learning for detection and classification of nuclei in rou-
tine colon cancer histology images. IEEE Trans Med Imaging 2016;35(5):1196–
206.

Please cite this article as: S. Cataldo, E. Ficarra, Mining textural knowledge in biological images: Applications, methods and trends,
Computational and Structural Biotechnology Journal (2016), http://dx.doi.org/10.1016/j.csbj.2016.11.002

http://dx.doi.org/10.1117/1.JMI.1.3.034003
http://dx.doi.org/10.1007/978-3-642-40763-5_50
http://dx.doi.org/10.1007/978-3-319-24574-4_43
http://dx.doi.org/10.1007/978-3-319-24574-4_43
http://dx.doi.org/10.1016/j.csbj.2016.11.002

	Mining textural knowledge in biological images: Applications, methods and trendsxmltex	=0pt=-1.7pc?>Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact michael.evans@elsevier.com immediately prior to returning your corrections.xmltex	=1.5pc?>The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please confirm if they have been identified correctly.
	1. Texture analysis: definition and main application areas
	2. Texture analysis in biological imaging
	3. The texture analysis framework
	4. Texture feature extraction
	4.1. Geometrical or structural methods
	4.2. Statistical methods
	4.3. Local binary patterns
	4.4. Model-based methods
	4.5. Transform-based methods

	5. Feature encoding and dictionary learning
	6. Latest trends: self-learnt features and deep learning models
	7. Summary and outlook
	References


