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A general reaction–diffusion system modelling glycolysis is investigated. The parameter regions for
the stability and instability of the unique constant steady-state solution is derived, and the existence
of time-periodic orbits and non-constant steady-state solutions are proved by the bifurcation method and
Leray–Schauder degree theory. The effect of various parameters on the existence and non-existence of
spatiotemporal patterns is analysed.
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1. Introduction

In the early 1950s, the British mathematician Turing (1952) proposed a model that accounts for pattern
formation in morphogenesis. Turing showed mathematically that a system of coupled reaction–diffusion
equations could give rise to spatial concentration patterns of a fixed characteristic length from an arbi-
trary initial configuration due to so-called diffusion-driven instability, that is, diffusion could destabi-
lize an otherwise stable equilibrium of the reaction–diffusion system and lead to non-uniform spatial
patterns.

Turing’s analysis stimulated considerable theoretical research on mathematical models of pattern
formation, and a great deal of research have been devoted to the study of Turing instability in chemical
and biology contexts; see for example, Auchmuty & Nicolis (1975a,b), Brown & Davidson (1995),
Catllá et al. (2012), Ghergu (2008), Ghergu & Rădulescu (2010), Kolokolnikov et al. (2006), Peng &
Wang (2005), You (2007) and Zhou & Mu (2010) for Brusselator model; Doelman et al. (1997), Hale
et al. (1999), Mazin et al. (1996), McGough & Riley (2004), Peng & Wang (2009), Wei (2001) and You
(2011a,b, 2012b) for Gray–Scott model; Du & Wang (2010), Jang et al. (2004), Jin et al. (2013), Ni
(2004), Ni & Tang (2005) and Yi et al. (2008, 2009b) for Lengyel–Epstein model; Peng & Sun (2010),
You (2012a) for a Oregonator model and Ghergu & Radulescu (2011), Iron et al. (2004), Schnakenberg
(1979), Ward & Wei (2002) and Wei & Winter (2008, 2012) for Schnakenberg model.

Glycolysis, which occurs in the cytosol, is thought to be the archetype of a universal metabolic
pathway for cellular energy requirement. The wide occurrence of glycolysis indicates that it is one of
the most ancient known metabolic pathways and a common way of providing limited energy for the
organism in living nature. However, its significance lies in that it can supply the energy with a rapid
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speed, but more importantly under oxygen-free conditions such as strenuous exercise and high-altitude
hypoxia. Glycolysis model turns out to be a classic and representative system in biochemical reaction.
All glycolysis models are based on the same reaction scheme. The difference between the model stems
from the difference in the mechanism for key enzyme reaction (see Bhargava, 1980; Guo et al., 2012;
Higgins, 1964; Peng et al., 2008; Sel’Kov, 1968). In Segel (1980), Othmer & Aldridge (1977) and
Tyson & Kauffman (1975), the following dimensionless glycolysis system was proposed:

⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
= d1

∂2u

∂x2
+ bv − u + u2v, x ∈ (0, �), t> 0,

∂v

∂t
= d2

∂2v

∂x2
+ a − bv − u2v, x ∈ (0, �), t> 0.

(1.1)

Here, the reactions occur in an interval (0, �), u(x, t) and v(x, t) represent chemical concentrations, d1 and
d2 are the diffusion coefficients, a is the dimensionless input flux and b is the dimensionless constant rate
for the low activity state. Concerning this model for a two-cell system, there are some stability results
(see Ashkenazi & Othmer, 1977; Tyson & Kauffman, 1975). For b = 0, the model is called Sel’klov
model, which was studied extensively in recent years (see Davidson & Rynne, 2000; Furter & Eilbeck,
1995; López-Gómez et al., 1992; Peng, 2007; Peng et al., 2006; Sel’Kov, 1968; Wang, 2003).

The goal of this paper is to give a comprehensive mathematical study of the general glycolysis
model. In particular, we are interested in the spatiotemporal pattern formation and bifurcations in the
glycolysis model, and the effect of system parameters and diffusion coefficients on the glycolysis model
dynamics. For that purpose, we consider the following system defined in a general bounded domain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1Δu + bv − u + f (u)v, x ∈Ω , t> 0,

∂v

∂t
= d2Δv + a − bv − f (u)v, x ∈Ω , t> 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω , t> 0,

u(x, 0)= u0(x)� 0, v(x, 0)= v0(x)� 0, x ∈Ω ,

(1.2)

where Ω ⊂ RN , N � 1, is a bounded domain with a smooth boundary ∂Ω , Δ is the Laplace operator
with respect to the spatial variable x = (x1, . . . , xN ) and a no-flux boundary condition is assumed so that
the chemical reactions occur in a closed reactor. The parameters a, b, d1 and d2 are the same as in (1.1),
and a, b, d1 and d2 positive constants. The function f is always assumed to satisfy

(f0) f ∈ C1(0, ∞) ∩ C[0, ∞), f (0)= 0, f (u) > 0 and f ′(u) > 0 for u ∈ (0, ∞).

A typical choice of f (u) is f (u)= um for m � 1 in the context of autocatalytic chemical reactions, and m
is the order of chemical reaction. It is known that the exponent m may have an impact on the stability of
non-constant steady-state solutions of (1.2) (Iron et al., 2004; Wei & Winter, 2014). Here we use a rather
general form of f (u), so it can also be used for non-power function-type reaction rates. For example,
the Hill function f (u)= um/(hm + um) is often used in chemical kinetics when (1.2) is derived from a
larger system under a quasi-steady-state assumption (Higgins, 1964; Sel’Kov, 1968).
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1705

The existence and uniqueness of a solution u(x, t), v(x, t) to the evolution system (1.2) for t ∈ (0, ∞),
x ∈ Ω̄ can be obtained by applying a result in Hollis & Pierre (1987) if (f0) is strengthened to

(f1) f ∈ C1[0, ∞) and there exist constants C> 0 and γ > 1 such that |f (u)| � C(1 + u)γ for any
u � 0.

If f only satisfies (f0) and f is assumed to be sublinear, that is,

(f2) for u ∈ (0, ∞), the function f (u)/u is non-increasing and limu→∞(f (u)/u)= 0,

then the existence of a global solution to (1.2) follows from the proof of Theorem 2.1 in Ghergu &
Rădulescu (2010). In this paper, we focus on the question of existence and stability of steady-state
solutions and periodic orbits of (1.2). The steady-state equation associated with (1.2) is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d1Δu + bv − u + f (u)v = 0, x ∈Ω ,

d2Δv + a − bv − f (u)v = 0, x ∈Ω ,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω ,

(1.3)

It is easy to see that (1.3) possesses a unique positive constant steady-state solution

(u, v)= (a, a/λ), (1.4)

where λ := f (a)+ b. Since f is increasing, then λ is a more convenient parameter to use than b, and we
will use λ as an equivalent parameter in many places of the paper.

Our main results for (1.2) and (1.3) can be summarized as follows:

(a) The constant steady-state solution (a, a/λ) is locally asymptotically stable either when b is large
or a is small (regardless of d1 and d2), or when d1/d2 is large (regardless of a and b); in a
certain more special choice of parameters and function f (u), it is shown that (a, a/λ) is globally
asymptotically stable (see Section 2.2).

(b) The constant steady-state solution (a, a/λ) is the only steady-state solution of (1.2) either when
a is small (regardless of b, d1 and d2), or when d1 is large (regardless of a, b and d2) (see
Section 3.2).

(c) Fixing a, d1 and d2, and using b as the bifurcation parameter, there exist n0 + 1 Hopf bifurcation
points where periodic orbits of (1.2) bifurcating from the constant solution (a, a/λ), and there
exist n1 steady-state bifurcation points where non-constant steady-state solutions of (1.2) bifur-
cating from the constant solution (a, a/λ). Here n0 and n1 are non-negative integers which are
determined by the domain Ω , and parameters a, d1 and d2 (see Sections 2.3 and 2.4).

(d) When the fixed-point index of the constant steady-state solution (a, a/λ) is −1, then there
exists at least a non-constant steady-state solution of (1.2). It is shown that the fixed-point
index of (a, a/λ) being −1 can be achieved for a non-empty region in the parameter space of
(a, b, d1, d2). In particular, for fixed a, d1 and d2, such region for b is the union of finitely many
non-overlapping intervals; and for fixed a, b, d2 satisfying an additional condition, such region
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1706 J. ZHOU AND J. SHI

for d1 is the union of infinitely many non-overlapping intervals which converge to d1 = 0. All
these intervals can be explicitly calculated (see Section 3.3).

The results in parts (a) and (b) indicate for what parameter ranges, non-constant patterns are not
possible for (1.3); and the results in parts (c) and (d) show that, for other parameter ranges, time-periodic
patterns and non-constant stationary patterns are possible. These patterns have been predicted by Turing
(1952) for a wide class of reaction–diffusion models. The results in part (c) are proved using bifurcation
theory, and the ones in part (d) are proved by using topological degree theory. These results complement
each other nicely: the bifurcation results can show the rough spatial profile of the patterns, but patterns
are only shown for parameters near bifurcation points; on the other hand, the degree theoretical results
hold for a larger parameter region, but there is no information about the pattern profile. By using both
techniques, a better picture of the non-constant patterns is obtained here.

The organization of the remaining part of the paper is as follows. In Section 2, we analyse the stabil-
ity of the uniform steady state (u, v)= (a, a/λ), and we use bifurcation theory to prove the existence of
periodic orbits and non-constant steady-state solutions. Some numerical simulations of periodic orbits
and non-constant steady-state solutions are also shown at the end of Section 2. In Section 3, we prove
the existence and non-existence of positive steady-state solutions by using a priori estimates, energy
estimates, asymptotic analysis and Leray–Schauder degree theory. Throughout this paper, N is the set
of natural numbers and N0 = N ∪ {0}. The eigenvalues of operator −Δ with homogeneous Neumann
boundary condition in Ω are denoted by 0 =μ0 <μ1 �μ2 � · · · �μn � · · · , and the eigenfunction
corresponding to μn is φn(x).

2. Stability and bifurcation

2.1 Stability with respect to the ODE model

We first consider the ODE model corresponding to (1.2) with f satisfying (f0):⎧⎪⎪⎨⎪⎪⎩
du

dt
= bv − u + f (u)v, t> 0,

dv

dt
= a − bv − f (u)v, t> 0.

(2.1)

By (1.4), (a, a/λ) is the unique positive equilibrium of (2.1). In the following, we fix the parameter
a> 0 and use λ as the main bifurcation parameter. Note that the parameter λ is equivalent to b with
b> 0 corresponds to λ> f (a). The Jacobian matrix of system (2.1) at (a, a/λ) is

L0(λ)=
(

A(λ) λ

B(λ) −λ
)

, (2.2)

where

A(λ)= af ′(a)
λ

− 1 and B(λ)= −af ′(a)
λ

. (2.3)

The characteristic equation of L0(λ) is

ξ 2 − T(λ)ξ + D(λ)= 0, (2.4)
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1707

where {
T(λ)= A(λ)− λ,

D(λ)= −λ(A(λ)+ B(λ))= λ.

The equilibrium (a, a/λ) is locally asymptotically stable if T(λ) < 0 and D(λ) > 0. Apparently,
D(λ)> 0 holds for any λ> f (a), thus (a, a/λ) is locally asymptotically stable if A(λ) < λ. Indeed,
define

λ̄0 := −1 + √
1 + 4af ′(a)
2

. (2.5)

Then λ= λ̄0 is the only root of T(λ)= 0. The equilibrium (a, a/λ) is locally asymptotically stable if
λ> λ̄0, and it is unstable if λ< λ̄0. This bifurcation point λ= λ̄0 is only valid if λ̄0 > f (a). Recall that
a Hopf bifurcation value λ satisfies the following conditions:

T(λ)= 0, D(λ) > 0 and T ′(λ) �= 0.

Since T ′(λ)= −af ′(a)/λ2 − 1<−1< 0, then λ= λ̄0 is the unique Hopf bifurcation point for (2.2) if
f (a) < λ̄0. From Poincaré–Bendixson theory, the system (2.1) possesses a periodic orbit when λ< λ̄0,
but the uniqueness is not known.

2.2 Stability with respect to the PDE model

Next, we consider the stability of the constant equilibrium (a, a/λ) with respect to the PDE model (1.2).
Linearizing the system (1.2) about the constant equilibrium (a, a/λ), we obtain an eigenvalue problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d1Δφ + A(λ)φ + λψ =μφ, x ∈Ω ,

d2Δψ + B(λ)φ − λψ =μψ , x ∈Ω ,

∂φ

∂ν
= ∂ψ

∂ν
= 0, x ∈ ∂Ω ,

(2.6)

where A(λ) and B(λ) are defined as in (2.3).
Denote

L(λ) :=
(

d1Δ+ A(λ) λ

B(λ) d2Δ− λ

)
. (2.7)

For each n ∈ N0, we define a 2 × 2 matrix

Ln(λ) :=
(−d1μn + A(λ) λ

B(λ) −d2μn − λ

)
. (2.8)

Then, the following statements hold true by using Fourier decomposition:

1. If μ is an eigenvalue of (2.6), then there exists n ∈ N0 such that μ is an eigenvalue of Ln(λ).

2. The constant equilibrium (a, a/λ) is locally asymptotically stable with respect to (1.2) if and
only if, for every n ∈ N0, all eigenvalues of Ln(λ) have negative real part.
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1708 J. ZHOU AND J. SHI

3. The constant equilibrium (a, a/λ) is unstable with respect to (1.2) if there exists an n ∈ N0 such
that Ln(λ) has at least one eigenvalue with non-negative real part.

The characteristic equation of Ln(λ) is

μ2 − Tn(λ)μ+ Dn(λ)= 0, (2.9)

where

Tn(λ)= A(λ)− λ− (d1 + d2)μn, (2.10)

Dn(λ)= d1d2μ
2
n + (d1λ− d2A(λ))μn − λ(A(λ)+ B(λ)). (2.11)

Then (a, a/λ) is locally asymptotically stable if Tn(λ) < 0 and Dn(λ) > 0 for all n ∈ N0, and (a, a/λ) is
unstable if there exists n ∈ N0 such that Tn(λ)� 0 or Dn(λ)� 0.

To obtain more precise stability results, we define

T(λ,μ) := A(λ)− λ− (d1 + d2)μ= af ′(a)
λ

− 1 − λ− (d1 + d2)μ

D(λ,μ) := d1d2μ
2 + (d1λ− d2A(λ))μ− λ(A(λ)+ B(λ))

= (d1μ+ 1)(d2μ+ λ)− d2af ′(a)μ
λ

,

(2.12)

and

H := {(λ,μ) ∈ (0, ∞)× [0, ∞) : T(λ,μ)= 0},
S := {(λ,μ) ∈ (0, ∞)× [0, ∞) : D(λ,μ)= 0}.

Then H is the Hopf bifurcation curve and S is the steady-state bifurcation curve (see Wang et al., 2011;
Yi et al., 2009a). Furthermore, the sets H and S are graphs of functions defined as follows:

λH(μ)= 1

2
[−((d1 + d2)μ+ 1)+

√
((d1 + d2)μ+ 1)2 + 4af ′(a)],

λS(μ)= 1

2

(
−d2μ+

√
d2

2μ
2 + 4d2af ′(a)μ

d1μ+ 1

)
.

(2.13)

We also solve μ from D(λ,μ)= 0:

μ=μ±(λ)= d2A(λ)− d1λ±
√
(d2A(λ)− d1λ)2 − 4d1d2λ

2d1d2
. (2.14)

We have the following properties of the functions λH(μ) and λS(μ) (see Fig. 1).

Lemma 2.1 Suppose that a, d1, d2 > 0 are fixed. Let λ̄0 be defined as in (2.5), and let λH(μ) and λS(μ)

be the functions defined in (2.13). Then the following conditions are satisfied:

1. The function λH(μ) is strictly decreasing for μ ∈ [0, ∞) such that λH(0)= λ̄0 and
limμ→∞ λH(μ)= 0.
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1709

Fig. 1. The graphs of λH (μ) (decreasing curve) and λS(μ) (parabola-like curve). Left: λ̄0 <λ∗; middle: λ̄0 = λ∗ and right:
λ∗ < λ̄0.

2. Define

μ∗ := −√
d1d2 +

√
d1d2 + 4d1

√
d1d2af ′(a)

2d1
√

d1d2
. (2.15)

Then μ=μ∗ is the unique critical point of λS(μ), the function λS(μ) is strictly increasing for
μ ∈ (0,μ∗) and λS(μ) is strictly decreasing for μ ∈ (μ∗, ∞). Furthermore,

λS(0)= 0, λS(μ)� λS(μ∗)= d1d2μ
2
∗ := λ∗, lim

μ→∞ λS(μ)= 0.

Moreover, if f (a) < λ∗, then there exists exactly two positive constants μ1 <μ∗ <μ<μ2 such
that λS(μ

1)= λS(μ
2)= f (a), λS(μ) ∈ (f (a), λ∗] if μ ∈ (μ1,μ2), and 0<λS(μ) < f (a) if μ ∈

(0,μ1) ∪ (μ2, ∞). Consequently, for f (a)� λ� λ∗, μ±(λ) are well defined as in (2.14); μ+(λ)
is strictly decreasing in (f (a), λ∗), μ−(λ) is strictly increasing in (f (a), λ∗), μ+(f (a))=μ2,
μ−(f (a))=μ1 and μ+(λ∗)=μ−(λ∗)=μ∗.

3. {(λ,μ) ∈ (0, ∞)× [0, ∞) : T(λ,μ)< 0} = {λ> λH(μ), μ� 0} and {(λ,μ) ∈ (0, ∞)× [0, ∞) :
D(λ,μ)> 0} = {λ> λS(μ), μ� 0}.

Proof. We only prove the second conclusion since the first one is obvious by the fact that λH(μ) is the
inverse function of μH(λ) := (1/(d1 + d2))(af ′(a)/λ− 1 − λ), and the third one follows from the first
one and the second one. Differentiating λS(μ), we get

2λ′
S(μ)=

d2√
d2

2μ
2 + 4d2af ′(a)μ/(d1μ+ 1)

(
−
√

d2
2μ

2 + 4d2af ′(a)μ
d1μ+ 1

+ d2μ+ 2af ′(a)
(d1μ+ 1)2

)
= M (d1, d2, a,μ)(af ′(a)+ d2μ(d1μ+ 1)2 − d2μ(d1μ+ 1)3)

= M (d1, d2, a,μ)(af ′(a)− d1d2μ
2(d1μ+ 1)2)

= M (d1, d2, a,μ)(
√

af ′(a)+
√

d1d2μ(d1μ+ 1))(
√

af ′(a)−
√

d1d2μ(d1μ+ 1))

= M ′(d1, d2, a,μ)(μ∗ − μ),
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1710 J. ZHOU AND J. SHI

where

M (d1, d2, a,μ)= 4d2af ′(a)√
d2

2μ
2 + 4d2af ′(a)μ

d1μ+1

(√
d2

2μ
2 + 4d2af ′(a)μ

d1μ+1 + d2μ+ 2af ′(a)
d1μ+12

)
(d1μ+ 1)4

> 0,

M ′(d1, d2, a,μ)= M (d1, d2, a,μ)(
√

af ′(a)+
√

d1d2μ(d1μ+ 1))

×
(
μ+

√
d1d2 +

√
d1d2 + 4d1

√
d1d2af ′(a)

2d1
√

d1d2

)
> 0.

Furthermore,

lim
μ→∞ 2λS(μ)= lim

μ→∞
4d2af ′(a)μ/(d1μ+ 1)

d2μ+
√

d2
2μ

2 + 4d2af ′(a)μ/(d1μ+ 1)
= 0.

So the second conclusion follows. �

Remark 2.2 After some calculations, we obtain that

λ∗ = λ∗(D)= 1

2D

√
1 + 4

√
Daf ′(a)

(√
1 + 4

√
Daf ′(a)− 1

)
,

where D = d1/d2. Then it is obvious that limD→0 λ∗ = ∞ and limD→∞ λ∗ = 0. Furthermore, by the fact
of λ∗(D) is a continuous function for D ∈ (0, ∞), we can confirm that all cases listed in Fig. 1 are
possible by choosing D properly.

Now, we can give a stability result regarding the constant equilibrium (a, a/λ) by the analysis above
and the restriction λ> f (a). To this end, we define

λ̄1 = max
n∈N

λS(μn)� λ∗. (2.16)

Theorem 2.3 Assume a, d1, d2 are fixed. Let λ̄0, λ∗ and λ̄1 be the constants defined in (2.5), (2.15) and
(2.16), respectively. Then the constant equilibrium (a, a/λ) is locally asymptotically stable with respect
to (1.2) if λ satisfies

λ>max{f (a), λ̄0, λ̄1}. (2.17)

In particular (2.17) holds if λ>max{f (a), λ̄0, λ∗}.

The result in Theorem 2.3 implies that the constant equilibrium (a, a/λ) is locally asymptotically
stable when the parameter b satisfies b>max{λ̄0 − f (a), λ∗ − f (a)}. Note that λ̄0 only depends on a
while λ∗ depends on D = d1/d2. Hence a diffusion-induced instability can be achieved if D = d1/d2 is
small.
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1711

In general, it is hard to determine whether (a, a/λ) is globally asymptotically stable with respect to
all initial conditions. In the remaining part of this section, we prove the global stability of (a, a/λ) with
respect to (1.2) for the special case f (s)= sm with m = 1 or 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1Δu + bv − u + umv, x ∈Ω , t> 0,

∂v

∂t
= d2Δv + a − bv − umv, x ∈Ω , t> 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω , t> 0,

u(x, 0)= u0(x)� 0, v(x, 0)= v0(x)� 0, x ∈Ω .

(2.18)

For the special system (2.18), we have the following global convergence result.

Theorem 2.4 Let (u(x, t), v(x, t)) be a solution of (2.18) with (u0(x), v0(x))� ( �≡)(0, 0). Then
limt→∞(u(x, t), v(x, t))= (a, a/λ) if

(1) m = 1 and b> a; or

(2) m = 2, b> 4a2 and b � (maxx∈Ω̄ u0(x))2.

The proof of Theorem 2.4 is given in Appendix. The convergence result in Theorem 2.4 for m = 2
also holds when

b>
am

m−1 − m−m
and b> am

(
max
x∈Ω̄

u0(x)

)m−1

. (2.19)

The convergence result for m = 1 is global for any initial conditions, and the one for m � 2 is not global
as the initial value u0 has to be small. If d1 = d2 = d > 0, we can remove the condition on initial data in
(2.19) and get a global stability result as the m = 1 case. In fact, by letting w(x, t)= u(x, t)+ v(x, t), it
follows from (2.18) that w satisfies wt = dΔw + a − u � dΔw + a + a/b + ε − w for t � Tε1 for some
Tε1 since v(x, t)� a/b + ε. Thus lim supt→∞ maxx∈Ω̄ w(x, t)� a + a/b + ε. Then there exists Tε2 > Tε1
such that u(x, t)� w(x, t)� a + a/b + 2ε for t � Tε2 . So, limt→∞(u(x, t), v(x, t))= (a, a/λ) if b is large
enough such that

b>
am

m−1 − m−m
and b> am

(
a + a

b

)m−1
.

2.3 Hopf bifurcations

In this subsection, we analyse the Hopf bifurcations from the constant equilibrium (a, a/λ) for (1.2), and
we will show the existence of spatially homogeneous and spatially inhomogeneous periodic orbits of
system (1.2). In this subsection and also Section 2.4, we assume that all eigenvalues μi of −Δ in H1(Ω)

are simple, and denote the corresponding eigenfunction by φi(x)where i ∈ N0. Note that this assumption
always holds when N = 1 for domainΩ = (0, �π), as for i ∈ N0,μi = i2/�2 and φi(x)= cos(ix/�), where
� is a positive constant; and it also holds for a generic class of domains in higher dimensions.
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1712 J. ZHOU AND J. SHI

Recall that b = λ− f (a); then (1.2) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1Δu + (λ− f (a))v − u + f (u)v, x ∈Ω , t> 0,

∂v

∂t
= d2Δv + a − (λ− f (a))v − f (u)v, x ∈Ω , t> 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω , t> 0,

u(x, 0)= u0(x), v(x, 0)= v0(x), x ∈Ω .

(2.20)

Again (2.20) has a unique positive constant equilibrium (a, a/λ), and we use λ as the main bifurca-
tion parameter. To identify possible Hopf bifurcation value λH , we recall the following necessary and
sufficient condition from (Hassard et al., 1981; Yi et al., 2009a).

(AH) There exists i ∈ N0 such that

Ti(λ
H)= 0, Di(λ

H) > 0 and Tj(λ
H) �= 0, Dj(λ

H) �= 0 for all j �= i,

where Ti(λ) and Di(λ) are defined in (2.10) and (2.11), respectively; and for the unique pair
of complex eigenvalues α(λ)± iω(λ) near the imaginary axis,

α′(λH) �= 0 and ω(λH) > 0.

For i ∈ N0, we define

λH
i = λH(μi), (2.21)

where the function λH(μ) is defined in (2.13). Then Ti(λ
H
i )= 0 and Tj(λ

H
i ) �= 0 for j �= i. By Lemma 2.1,

it is easy to see that λH
i is strictly decreasing in i and

max
i∈N0

λH
i = λH

0 = λ̄0 and lim
i→∞

λH
i = 0,

where λ̄0 is defined in (2.5). Since we require f (a) < λ̄0, then there exists an n0 ∈ N0 such that
λH

n0+1 � f (a) < λH
n0

. Then we have n0 + 1 possible Hopf bifurcation points at λ= λH
j (0 � j � n0) defined

by (2.21), and these points satisfy

f (a) < λH
n0
<λH

n0−1 < · · ·<λH
1 <λ

H
0 .

Next, we show that under some additional conditions, Dj(λ
H
i ) > 0 for 0 � i � n0 and j ∈ N0; then

in this case we must have Di(λ
H
i ) > 0 and Dj(λ

H
i ) �= 0 for 0 � i � n0 and j ∈ N0, as required in the

condition (AH).
If

d1f 2(a)+ d2f (a)− d2af ′(a)� 0, (2.22)
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1713

then

Dj(λ
H
i )= d1d2μ

2
j + 1

λH
i
(d1(λ

H
i )

2 + d2λ
H
i − d2af ′(a))μj + λ> 0.

On the other hand, if (2.22) does not hold, then we still have

Dj(λ
H
i )� d1d2μ

2
j +
(

2
√

d1d2 − d2af ′(a)
f (a)

)
μj + λ

� 4d1d2λ− (2
√

d1d2 − d2af ′(a)/f (a))2

4d1d2
� 4d1d2f (a)− (2

√
d1d2 − d2af ′(a)/f (a))2

4d1d2
> 0,

given that

4d1d2f (a) >

(
2
√

d1d2 − d2af ′(a)
f (a)

)2

. (2.23)

Finally, let the eigenvalues close to the pure imaginary one near λ= λH
i , 0 � i � n0 be α(λ)± iω(λ).

Then

α′(λH
i )=

T ′
i (λ

H
i )

2
= 1

2

(
−af ′(a)

λH
i

− 1

)
<−1

2
< 0,

ω(λH
i )=

√
Di(λ

H
i ) > 0.

Now, by using the Hopf bifurcation theorem in Yi et al. (2009a), we have the following theorem.

Theorem 2.5 Suppose that a, d1, d2 > 0 are fixed such that f (a) < λ̄0 and either (2.22) or (2.23) holds,
where λ̄0 is defined in (2.5). Let Ω be a bounded smooth domain so that the spectral set S = {μi}i∈N0

satisfies that:

(S1) all eigenvalues μi are simple for i ∈ N0.

Then there exists an n0 ∈ N0 such that λH
n0+1 � f (a) < λH

n0
and for (2.20), there exist n0 + 1 Hopf bifur-

cation points λH
j , j = 0, 1, 2, . . . , n0, defined by (2.21), satisfying

f (a) < λH
n0
<λH

n0−1 < · · ·<λH
1 <λ

H
0 = λ̄0.

At each λ= λH
j , the system (2.20) undergos a Hopf bifurcation, and the bifurcation periodic orbits

near (λ, u, v)= (λH
j , a, a/λH

j ) can be parameterized as (λ(s), u(s), v(s)), so that λ(s) ∈ C∞ in the form of
λ(s)= λH

j + o(s) for s ∈ (0, δ) for some small δ > 0, and{
u(s)(x, t)= a + saj cos(ω(λH

j )t)φj(x)+ o(s),

v(s)(x, t)= a/λH
j + sbj cos(ω(λH

j )t)φj(x)+ o(s),

where ω(λH
j )=

√
Dj(λ

H
j ) is the corresponding time frequency, φj(x) is the corresponding spatial eigen-

function and (aj, bj) is the corresponding eigenvector, i.e.

[L(λH
j )− iω(λH

j )I][(aj, bj)
�φj(x)] = (0, 0)�,
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1714 J. ZHOU AND J. SHI

where L(λ) is defined in (2.7) and I is the identity map. Moreover, the following conditions are
satisfied:

1. The bifurcating periodic orbits from λ= λH
0 = λ̄0 are spatially homogeneous, which coincide

with the periodic orbits of the corresponding ODE system.

2. The bifurcating periodic orbits from λ= λH
j , 1 � j � n0, are spatially non-homogeneous.

Remark 2.6 (i) If f (a)� λ̄0 does not hold, then (a, a/λ) is locally asymptotic stable for every b> 0
or λ> f (a). This occurs for f (u)= u for which f (a)= a> (−1 +

√
1 + 4a2)/2 = λ̄0 for any

a> 0.

(ii) If f (u)= um with m> 1, then the assumptions f (a) < λ̄0, and (2.22) or (2.23) are all satisfied if

d2 < d1, and min

⎧⎨⎩ m

√
d2(m − 1)

d1
,

m

√
(2

√
d1 − m

√
d2)2

4d1

⎫⎬⎭� a< m
√

m − 1. (2.24)

When m = 2, then (2.24) becomes

d2 < d1, and min

{√
d2

d1
, 1 −

√
d2

d1

}
� a< 1. (2.25)

(iii) The condition (2.22) or (2.23) is sufficient but not necessary, and Hopf bifurcations indeed occur
for a much wider range of parameters (a, d1, d2) described by (2.22) or (2.23).

The spatially non-homogeneous periodic orbits bifurcating from λ= λH
j , 1 � j � n0, are all unstable

as L(λH
j ) possesses at least one pair of eigenvalues with positive real part. The stability of the spatially

homogeneous periodic orbits bifurcating from λ= λ0
j can be determined via calculation of normal form.

In the next result, we consider the bifurcation direction and stability of the bifurcating periodic orbits
bifurcating from λ= λH

0 for the case of f (s)= s2 according to Yi et al. (2009a).

Theorem 2.7 Let λH
0 be defined as in Theorem 2.5. Then, for the system (2.20) with f (u)= u2,

1. If a>
√

2/4 (or equivalently λH
0 > 1/2), then the Hopf bifurcation at λ= λH

0 is supercritical.
That is, for small ε > 0 and λ ∈ (λH

0 , λH
0 + ε), there is a small amplitude spatially homogeneous

periodic orbit, and this periodic orbit is locally asymptotically stable.

2. If a<
√

2/4 (or equivalently λH
0 < 1/2), then the Hopf bifurcation at λ= λH

0 is subcritical. That
is, for small ε > 0 and λ ∈ (λH

0 − ε, λH
0 ), there is a small amplitude spatially homogeneous peri-

odic orbit, and this periodic orbit is unstable.

The proof of Theorem 2.7 is given in Appendix. Note that in the case of a subcritical Hopf bifur-
cation, there must be another large amplitude spatially homogeneous limit cycle for λ ∈ (λH

0 − ε, λH
0 )

from the Poincaré–Bendixson theory.
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1715

2.4 Steady-state bifurcation

In this part, we analyse the properties of steady-state solution bifurcations for (1.3). Similarly to (2.20),
we make the transformation λ= f (a)+ b> f (a), then (1.3) becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d1Δu + (λ− f (a))v − u + f (u)v = 0, x ∈Ω ,

d2Δv + a − (λ− f (a))v − f (u)v = 0, x ∈Ω ,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω .

(2.26)

We identify steady-state bifurcation value λS of (2.26), which satisfies the following steady-state
bifurcation condition (Yi et al., 2009a):

(AS) there exists n ∈ N0 such that

Dn(λ
S)= 0, Tn(λ

S) �= 0, Dj(λ
S) �= 0v and Tj(λ

S) �= 0 for any j ∈ N0 and j �= n,

and

D′
n(λ

S) �= 0,

where Tn(λ) and Dn(λ) are defined in (2.10) and (2.11), respectively.
Apparently, D0(λ)= λ> f (a), hence we only consider n ∈ N. In the following, we fix an arbitrary

a> 0, and determine λ-values satisfying condition (AS). We note that Dn(λ)= 0 is equivalent to λ=
λS(μn), where λS(μ) is defined in (2.13). Here, we make the following additional assumption on the
spectral set S = {μi}i∈N0 according to Lemma 2.1:

(S2) There exist p, q ∈ N, p � q such that μp−1 �μ1 <μp �μq <μ
2 �μq+1, where μ1 and μ2 are

defined in Lemma 2.1.

In the following, for p, q ∈ N, we denote

〈p, q〉 :=
{

[p, q] ∩ N, if p< q;

{p}, if p = q,

λS
n := λS(μn) for n ∈ 〈p, q〉.

(2.27)

The points λS
n defined above are potential steady-state bifurcation points. It follows from Lemma 2.1

that, for each n ∈ 〈p, q〉, there exists only one point λ= λS
n such that Dn(λ

S
n)= 0. On the other hand, it is

possible that, for some λ ∈ (f (a), λ∗) and some i, j ∈ 〈p, q〉, i< j such that

μi =μ−(λ) and μj =μ+(λ), (2.28)

where μ±(λ) is defined in (2.14). Then for this λ, 0 is not a simple eigenvalue of L(λ), which is defined
in (2.7), and we shall not consider bifurcations at such points. On the other hand, it is also possible that

λS
i = λH

j (a Hopf bifurcation point) for some i, j ∈ 〈p, q〉. (2.29)
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1716 J. ZHOU AND J. SHI

However, from an argument in Yi et al. (2009a), for N = 1 and Ω = (0, �π), there are only countably
many �, such that (2.28) or (2.29) occurs for some i �= j. For general bounded domains in RN , one can
also show that (2.28) or (2.29) does not occur for generic domains (Wang et al., 2011).

To satisfy the bifurcation condition (AS), we only need to verify whether D′
n(λ

S
n) �= 0, which is

proved in the following lemma.

Lemma 2.8 Let λS
n and λ∗ be defined in (2.27) and Lemma 2.1, respectively. If λS

n �= λ∗, then D′
n(λ

S
n) �= 0.

Proof. By differentiating D(λS(μ),μ)= 0 with respect to μ, where D(λ,μ) is defined in (2.12), we
have

∂D

∂λ

dλS

dμ
+ ∂D

∂μ
= 0.

If, to the contrary, we assume that D′
n(λ

S
n)= 0, then

∂D

∂λ
(λS

n ,μn)= 0.

From λS
n �= λ∗, it follows from Lemma 2.1 that (dλS/dμ)(μn) �= 0. Hence, we have

∂D

∂μ
(λS

n ,μn)= 0.

Then, we can deduce λS
n = λ∗ from above relation, which is a contradiction. �

Summarizing the above discussion and using a general bifurcation theorem (Shi & Wang, 2009;
Wang et al., 2011), we obtain the main result of this part on bifurcation of steady-state solutions.

Theorem 2.9 Suppose that a, d1, d2 > 0 are fixed such that f (a) < λ∗, where λ∗ is defined in
Lemma 2.1. Let Ω be a bounded smooth domain so that the spectral set S = {μi}i=∈N0 satisfy that
(S1) and (S2). Then for any n ∈ 〈p, q〉, which is defined in (2.27), there exists a unique λS

n ∈ (f (a), λ∗]
such that Dn(λ

S
n)= 0. If in addition, we assume λS

n |= λ∗, and

λS
n �= λS

j for any j ∈ 〈p, q〉 and n �= j, and λS
n �= λH

j for any j ∈ 〈p, q〉, (2.30)

where λH
j is defined in (2.21), then

1. there is a smooth curve Γn of positive solutions of (2.26) bifurcating from (λ, u, v)=
(λS

n , a, a/λS
n), with Γn contained in a global branch Σn of positive non-trivial solutions of (2.26);

2. near (λ, u, v)= (λS
n , a, a/λS

n), Γn = {λn(s), un(s), vn(s) : s ∈ (−ε, ε)}, where{
un(s)= a + sanφn(x)+ sψ1,n(s),

vn(s)= a/λS
n + sbnφn(x)+ sψ2,n(s),

for some C∞ smooth functions λn,ψ1,n,ψ2,n such that λn(0)= λS
n and ψ1,n(0)=ψ2,n(0)= 0.

Here (an, bn) satisfies
L(λS

n)[(an, bn)
�φn(x)] = (0, 0)�,

where L(λ) is defined in (2.7).
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1717

Proof. Since f (a) < λ∗, then f (a) < λS
n <λ∗. Thus the condition (AS) has been proved in the previous

paragraphs, and the bifurcation of solutions to (2.26) occur at λ= λS
n . Note that we assume (2.30) holds,

so λ= λS
n is always a bifurcation from simple eigenvalue point. From the global bifurcation theorem in

Shi & Wang (2009), Γn is contained in a global branchΣn of solutions. Hence the results stated here are
all proved except proving that Σn only consists of positive solutions to (2.26). This is true for solutions
on Γn as a> 0 and a/λS

n > 0. Suppose that there is a solution on Σn which is not positive. Then by the
continuity ofΣn, there exists a point (λ̂, û, v̂) ∈Σn such that λ̂ ∈ R, û(x)� 0, v̂(x)� 0 for all x ∈ Ω̄ , and
there exists x0 ∈ Ω̄ such that û(x0)= 0 or v̂(x0)= 0. We discuss the following possible cases:

(a) x0 ∈Ω and v̂(x0)= 0. By the second equation of (2.26), we have 0 � −d2Δv̂(x0)= a> 0, which
is a contradiction to the fact that x0 is the minimum of v̂.

(b) x0 ∈Ω , û(x0)= 0 and v̂(x0) > 0. By the first equation of (2.26), we have 0 � −d1Δû(x0)=
(λ̂− f (a))v̂(x0) > 0, which is again a contradiction to the fact that x0 is the minimum of û.

(c) x0 ∈ ∂Ω , and v̂(x0)= 0. Since d2Δv̂ − bv̂ − f (û)v̂ = −a � 0 in Ω , and v̂ reaches its minimum at
x0 ∈ ∂Ω , it follows that by the Hopf boundary lemma, either v ≡ 0 or ∂ v̂(x0)/∂ν < 0. However,
a> 0; then v̂ = 0 is not possible for a solution (û, v̂) of (2.26), and the other alternative contradicts
with the Neumann boundary condition in (2.26).

(d) x0 ∈ ∂Ω , and û(x0)= 0. Since d1Δû − û = −bv̂ − f (û)v̂ � 0 in Ω , it follows that we can get a
similar contradiction as (c).

Therefore any solution of (2.26) on Σn is positive. This completes the proof. �

2.5 Numerical simulations

To visualize the cascade of Hopf bifurcations and steady-state bifurcations described in Theorems 2.5
and 2.9, we consider two numerical examples. In both examples, we assume the spatial dimension
N = 1, Ω = (0, 3π) and f (u)= u2. Then μi = i2/9, i ∈ N0.

Example 2.10 We choose a = 0.5, d1 = 1 and d2 = 0.8. Then the conditions in Theorem 2.5 (especially
(2.22)) are satisfied; then steady-state bifurcations cannot occur and Hopf bifurcation points are

λH
0 ≈ 0.366>λH

1 ≈ 0.3274> f (a)= 0.25>λH
2 ≈ 0.2446.

The curves ΓH = {(a, b) : λ= b + a2 = λ̄0} and several Γi = {(a, b) : λ= b + a2 = λS
i } (i ∈ N) are shown

in Fig. 2. The region below the curve ΓH is the parameter set (a, b) so that the equilibrium (a, a/λ)
is unstable for the ODE dynamics and a spatially homogeneous periodic orbit exists for such (a, b).
The parameter region below Γi is where Di(λ) < 0, but these regions are all below ΓH , hence non-
homogeneous steady-state solutions may be unstable or do not exist (in case a = 0.5. Figure 3 shows
a numerical simulation for (a, b)= (0.5, 0.1) so that (a, b) in the region {b< λ̄0 − a2}, and the solution
converges to a spatially homogeneous periodic orbit.

Example 2.11 We choose a = 3.5, d1 = 0.01 and d2 = 1. Then μ∗, μ1, μ2 in Lemma 2.1 can be calcu-
lated as

μ∗ ≈ 36.312, f (a)= 12.25< 13.186 ≈ d1d2μ
2
∗, μ1 ≈ 17.417, μ2 ≈ 70.333.
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1718 J. ZHOU AND J. SHI

Fig. 2. Graph of Γi : b = λS
i − a2, 0 � i �5 and ΓH : b = λ̄0 − a2, where d1 = 1 and d2 = 0.8.

Fig. 3. Numerical simulation of the system (2.20) with f (u)= u2, d1 = 1, d2 = 0.8, a = 0.5, b = 0.1 (λ= 0.35) and initial values
u0(x)= 0.5 + 0.1 sin(x), v0(x)= 1.429 + 0.1 sin(x). The solution converges to a spatially homogeneous periodic orbit.

We can easily find that

μ12 = 16<μ1 <μ13 ≈ 18.778<μ14 < · · ·<μ18

= 36<μ∗ <μ19 ≈ 40.111<μ9 < · · ·<μ25 ≈ 69.444<μ2 <μ30 ≈ 75.111,

hence the interval (μ1,μ2) contains the eigenvalues μi (13 � i � 25). This gives possible steady-state
bifurcation points

λS
18 ≈ 13.185>λS

19 ≈ 13.165>λS
17 ≈ 13.155>λS

20 ≈ 13.100>λS
16 ≈ 13.069

>λS
21 ≈ 12.996>λS

15 ≈ 12.921>λS
22 ≈ 12.858>λS

14 ≈ 12.706

>λS
23 ≈ 12.690>λS

24 ≈ 12.498>λS
13 ≈ 12.417>λS

25 ≈ 12.286,

while the largest Hopf bifurcation point λH
0 = λ̄0 ≈ 4.4749 which is much smaller. Hence, for this param-

eter set (a, d1, d2)= (3.5, 0.01, 1), when b or λ decreases, the first bifurcation point encountered is
λS

18 ≈ 13.185, and a steady-state bifurcation (Turing bifurcation) occurs there. Figure 4 shows the curves
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1719

Fig. 4. Graph of Γi : b = λS
i − a2, i = 0, 1, 2, 4, 5, 12, 13, 24, 25, 26 and ΓH : b = λ̄0 − a2, where d1 = 0.01 and d2 = 1.

Fig. 5. Numerical simulation of the system (2.20) with f (u)= u2, d1 = 0.01 and d2 = 1, a = 3.5, b = 0.25 (λ= 12.5) and initial
values u0(x)= 3.5 + 0.1 sin(x), v0(x)= 0.28 + 0.1 sin(x). The solution converges to a spatially non-homogeneous steady-state
solution.

Γi and ΓH in the case. At any parameter value (a, b) satisfying λ̄0 − a2 < b<λS
i − a2 for some i, such

Turing bifurcation can occur. In the (a, b)-plane shown in Fig. 4, this corresponds to the region above
the curve ΓH but below some Γi. A numerical simulation for (a, b)= (3.5, 0.25) is shown in Fig. 5,
where a non-homogeneous steady-state solution can be observed for large time t.

3. A further analysis of the steady-state solutions

In Section 2.4, we obtain the existence of non-constant solutions of (1.3) by using bifurcation methods.
Since the global structure of the set of positive solutions to (1.3) is still not clear despite the results in
Theorem 2.9, the bifurcation result is most useful near the bifurcation points. In this section, we obtain
some further existence/non-existence results for the steady-state system (1.3) by using energy estimates
and topological methods. The section is divided into three parts. In the first part, we give some a priori
estimates of the solution of (1.3), which are useful in the later discussions. In Part 2, we study the
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1720 J. ZHOU AND J. SHI

non-existence of non-constant solutions of (1.3), while in Part 3 we study the existence of non-constant
solutions via Leray–Schauder degree.

3.1 A priori estimates

First, we recall the following maximum principle (see Lou & Ni, 1996, Proposition 2.2 or Lou & Ni,
1999, Lemma 2.1).

Lemma 3.1 Let g ∈ C(Ω̄ × R) and bj(x) ∈ C(Ω̄), j = 1, 2, . . . , N . Then the following conditions are
satisfied.

(i) If w ∈ C2(Ω) ∩ C1(Ω̄) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δw +

N∑
j=1

bj(x)wxj + g(x, w(x))� 0 in Ω ,

∂w

∂ν
� 0 on ∂Ω ,

and w(x0)= maxx∈Ω̄ w(x), then g(x0, w(x0))� 0.

(ii) If w ∈ C2(Ω) ∩ C1(Ω̄) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δw +

N∑
j=1

bj(x)wxj + g(x, w(x))� 0 in Ω ,

∂w

∂ν
� 0 on ∂Ω ,

and w(x0)= minx∈Ω̄ w(x), then g(x0, w(x0))� 0.

A key result in our further analysis is the next lemma which establishes basic a priori estimates for
the solutions of (1.3).

Lemma 3.2 Any solution (u, v) of (1.3) satisfies

ab

b + f (a + ad2/(bd1))
� u(x)� a + ad2

bd1
, x ∈ Ω̄ , (3.1)

a

b + f (a + ad2/(bd1))
� v(x)� a

b
, x ∈ Ω̄ . (3.2)

Proof. Let x0 ∈ Ω̄ be a maximum point of v. Then it follows from Lemma 3.1(i) that a − bv(x0)−
f (u(x0))v(x0)� 0, which implies v(x)� v(x0)� a/b for x ∈ Ω̄ . Let w = d1u + d2v. Adding the first two
equations in (1.3), we have

−Δw = a − u, x ∈Ω ,
∂w

∂ν
= 0, x ∈ ∂Ω .
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1721

Let x1 ∈ Ω̄ be a maximum point of w; then it follows from Lemma 3.1(i) that u(x1)� a. Hence we have

d1u(x)� w(x)� w(x1)= d1u(x1)+ d2v(x1)� ad1 + ad2

b
, x ∈ Ω̄ .

This yields the upper bound of u in (3.1).
Let x2 ∈ Ω̄ be a minimum point of v; then it follows from Lemma 3.1(ii) that a − bv(x2)−

f (u(x2))v(x2)� 0, thus it follows from the upper bound of u in (3.1) that

a � (b + f (u(x2)))v(x2)� (b + f (a + ad2/(bd1)))v(x2),

which provides the lower bound of v in (3.2). Finally, let x3 ∈ Ω̄ be a minimum point of u, then it follows
from Lemma 3.1(ii) that 0 � bv(x3)− u(x3)+ f (u(x3))v(x3)� bv(x3)− u(x3). Then it follows from the
lower bound of v in (3.2) that

u(x)� u(x3)� bv(x3)�
ab

b + f (a + ad2/(bd1))
, x ∈ Ω̄ .

�

Furthermore by standard elliptic regularity theory and Lemma 3.2, we obtain the following
proposition.

Proposition 3.3 Let ε, A, b, D1, D2,Θ > 0 be fixed. Then we have the following conditions:

(i) there exist two positive constants C1 and C2 depending only on ε, A, b,Θ such that any solution
(u, v) of (1.3) satisfies C1 < u(x), v(x) <C2 for x ∈ Ω̄ if ε� a � A and 0< d2/d1 <Θ;

(ii) for any α ∈ (0, 1), there exist a positive constant C depending on A, b, D1, D2,Θ ,α, N ,Ω such
that, for all 0< a � A, d1 � D1, d2 � D2 and 0< d2/d1 �Θ , any solution (u, v) of (1.3) satisfies
‖u‖C2+α(Ω̄) + ‖v‖C2+α(Ω̄) � C.

Proof. (i) It follows from Lemma 3.2 that, for all ε� a � A, d1 � D1 and 0< d2 � D2, any solution
(u, v) of (1.3) satisfies

εb

b + f (A + AΘ/b)
� u(x)� A + AΘ

b
, x ∈ Ω̄ ,

ε

b + f (A + AΘ/b)
� v(x)� A

b
, x ∈ Ω̄ .

(3.3)

Then the conclusion of (i) follows. For (ii), we first rewrite (1.3) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δu = 1

d1
(bv − u + f (u)v), x ∈Ω ,

−Δv = 1

d2
(a − bv − f (u)v), x ∈Ω ,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω .
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1722 J. ZHOU AND J. SHI

Define

Λ1 := 1

D1

(
2A + AΘ + A

b
f (AΘ)

)
, Λ2 := 1

D2

(
2A + A

b
f (AΘ)

)
;

by (3.3), it holds∥∥∥∥ 1

d1
(bv − u + f (u)v)

∥∥∥∥
L∞(Ω)

�Λ1 and

∥∥∥∥ 1

d2
(a − bv − f (u)v)

∥∥∥∥
L∞(Ω)

�Λ2.

Then, the conclusion can be obtained by a bootstrap argument. �

For any solution (u, v) of (1.3), we denote by ū and v̄ the average over Ω of u and v, respectively,
i.e.

ū = 1

|Ω|
∫
Ω

u dx, v̄ = 1

|Ω|
∫
Ω

v dx,

where |Ω| denotes the Lebesgue measure of Ω . Integrating (1.3) over Ω , we obtain that

ū = a and
∫
Ω

(b + f (u))v dx = a|Ω|. (3.4)

Let φ = u − ū andψ = v − v̄. The next result provides a priori L2-estimates for φ,ψ and their gradients.

Proposition 3.4 Let (u, v) be a non-constant solution of (1.3). Then

(i)

d2
2μ

2
1

2d2
1μ

2
1 + 2d1μ1 + 1

�
‖∇φ‖2

L2(Ω)

‖∇ψ‖2
L2(Ω)

�
(

d2

d1

)2

;

(ii)

d2
2μ

3
1

(μ1 + 1)(2d2
1μ

2
1 + 2d1μ1 + 1)

�
‖∇φ‖2

L2(Ω)
+ ‖φ‖2

L2(Ω)

‖∇ψ‖2
L2(Ω)

+ ‖ψ‖2
L2(Ω)

�
(

1 + 1

μ1

)(
d2

d1

)2

.

Proof. Let w = d1φ + d2ψ ; then it follows from (1.3) and (3.4) that

Δw = φ, x ∈Ω ,
∂w

∂ν
= 0, x ∈ ∂Ω . (3.5)

Multiplying the equation in (3.5) by φ and integrating over Ω , we have∫
Ω

∇w · ∇φ dx = −
∫
Ω

φ2 dx,

which yields

d2

∫
Ω

∇φ · ∇ψ dx = −
∫
Ω

φ2 dx − d1

∫
Ω

|∇φ|2 dx. (3.6)
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1723

By using (3.6), we obtain that

0 �
∫
Ω

|∇w|2 dx = d2
1

∫
Ω

|∇φ|2 dx + 2d1d2

∫
Ω

∇φ · ∇ψ dx + d2
2

∫
Ω

|∇ψ |2 dx

= −d2
1

∫
Ω

|∇φ|2 dx − 2d1

∫
Ω

φ2 dx + d2
2

∫
Ω

|∇ψ |2 dx

� d2
2

∫
Ω

|∇ψ |2 dx − d2
1

∫
Ω

|∇φ|2 dx,

which implies the upper bound in (i).
Next, by multiplying the equation in (3.5) by w and integrating over Ω , we obtain∫

Ω

|∇w|2 dx = −
∫
Ω

wφ dx,

which can be expanded as

d2
1

∫
Ω

|∇φ|2 dx + 2d1d2

∫
Ω

∇φ · ∇ψ dx + d2
2

∫
Ω

|∇ψ |2 dx = −d1

∫
Ω

φ2 dx − d2

∫
Ω

φψ dx.

By using (3.6), it follows that

d2
2

∫
Ω

|∇ψ |2 dx = d2
1

∫
Ω

|∇φ|2 dx + d1

∫
Ω

φ2 dx − d2

∫
Ω

φψ dx.

On the other hand, by using Young’s inequality, we have

−d2

∫
Ω

φψ dx � 1

2μ1

∫
Ω

φ2 dx + d2
2μ1

2

∫
Ω

ψ2 dx.

Combining the last two relations, we obtain that

d2
2

∫
Ω

|∇ψ |2 dx � d2
1

∫
Ω

|∇φ|2 dx +
(

d1 + 1

2μ1

)∫
Ω

φ2 dx + d2
2μ1

2

∫
Ω

ψ2 dx. (3.7)

By Poincaré’s inequality we have∫
Ω

φ2 dx � 1

μ1

∫
Ω

|∇ψ |2 dx,
∫
Ω

ψ2 dx � 1

μ1

∫
Ω

|∇ψ |2 dx. (3.8)

Therefore, from (3.7) and (3.8) we obtain

d2
2

∫
Ω

|∇ψ |2 dx � 2d2
1μ

2
1 + 2d1μ1 + 1

μ2
1

∫
Ω

|∇φ|2 dx,

which completes the proof of (i).
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1724 J. ZHOU AND J. SHI

The proof of (ii) follows directly from (i) together with the following estimate, which is a direct
consequence of Poincaré’s inequality:

μ1‖∇φ‖2
L2(Ω)

(μ1 + 1)‖∇ψ‖2
L2(Ω)

�
‖∇φ‖2

L2(Ω)
+ ‖φ‖2

L2(Ω)

‖∇ψ‖2
L2(Ω)

+ ‖ψ‖2
L2(Ω)

�
(μ1 + 1)‖∇φ‖2

L2(Ω)

μ1‖∇ψ‖2
L2(Ω)

.

�

3.2 Non-existence of non-constant steady-state solutions

Here, we first prove that (1.3) has no non-constant solutions if the first non-zero eigenvalue μ1 is large.

Theorem 3.5 Let a, b, d1, d2 > 0 be fixed. Then there exists a positive constant L depending only on
a, b, d1 and d2 such that (1.3) has no non-constant solutions if μ1 > L.

Proof. Let φ = u − ū and ψ = v − v̄, where (u, v) is any solution of (1.3). Multiplying the first equation
of (1.3) with φ and integrating over Ω . By Lemma 3.2, Young’s inequality and Poincaré’s inequality,
we obtain

d1

∫
Ω

|∇φ|2 dx = b
∫
Ω

vφ dx −
∫
Ω

φ2 dx +
∫
Ω

f (u)vφ dx

= b
∫
Ω

φψ dx −
∫
Ω

φ2 dx +
∫
Ω

f (u)φψ dx +
∫
Ω

v̄(f (u)− f (ū))φ dx

� C3

∫
Ω

|φψ | dx + v̄
∫
Ω

(∫ 1

0
f ′(θu + (1 − θ)ū) dθ

)
φ2 dx

� C4

∫
Ω

(|φψ | + φ2) dx � 2C4

∫
Ω

(φ2 + ψ2) dx

� 2C4

μ1

∫
Ω

(|∇φ|2 + |∇ψ |2) dx,

where C3, C4 depend only on a, b, d1 and d2. Similarly, we get

d2

∫
Ω

|∇ψ |2 dx � 2C5

μ1

∫
Ω

(|∇φ|2 + |∇ψ |2) dx,

where C5 depends only on a, b, d1 and d2. Adding the above two inequalities, we find

min{d1, d2}(‖∇φ‖2
L2(Ω) + ‖∇ψ‖2

L2(Ω))�
C6

μ1
(‖∇φ‖2

L2(Ω) + ‖∇ψ‖2
L2(Ω)), (3.9)

where C6 depends only on a, b, d1 and d2. Then it follows from (3.9) that ‖∇φ‖2
L2(Ω) = ‖∇ψ‖2

L2(Ω) = 0,
that is, u and v are constant functions if μ1 >C6/min{d1, d2}. �

Next, we prove the non-existence of non-constant solutions of (1.3) when d1 is large or a is small.
To achieve that, we first prove the following lemma.
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1725

Lemma 3.6 (i) Let a, b, d2 > 0 be fixed and let {σn} ⊂ (0, ∞) be such that σn → ∞ as n → ∞. If
(un, vn) is a solution of (1.3) with d1 = σn, then

lim
n→∞

(
‖un − a‖C2(Ω̄) +

∥∥∥∥vn − a

f (a)+ b

∥∥∥∥
C2(Ω̄)

)
= 0.

(ii) Let b, d1, d2 > 0 be fixed and let {an} ⊂ (0, ∞) be such that an → 0 as n → ∞. If (un, vn) is a
solution of (1.3) with a = an, then

lim
n→∞(‖un‖C2(Ω̄) + ]|vn‖C2(Ω̄))= 0.

Proof. We only give the proof of (i) since the proof is similar for the second one. By Proposition 3.3,
the sequence {(un, vn)} is bounded in C2+α(Ω̄)× C2+α(Ω̄) for any α ∈ (0, 1). Hence, by passing to a
subsequence if necessary, {(un, vn)} converges in C2(Ω̄)× C2(Ω̄) to some (u, v) ∈ C2(Ω̄)× C2(Ω̄).
Dividing the first equation of (1.3) by d1 and then passing to the limit with n → ∞, we obtain that (u, v)
satisfies the following relations in view of (3.4):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δu = 0, x ∈Ω ,

−d2Δv = a − bv − f (u)v, x ∈Ω ,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω ,∫

Ω

u(x) dx = a|Ω| =
∫
Ω

(b + f (u(x)))v(x) dx.

(3.10)

From the first, third and fourth relations in (3.10), we know that u ≡ a. Thus v satisfies⎧⎪⎨⎪⎩
−d2Δv = a − (b + f (a))v, x ∈Ω ,

∂v

∂ν
= 0, x ∈ ∂Ω ,

(3.11)

which has the unique non-negative solution v(x)≡ a/(b + f (a)). �

Now we can prove the non-existence of non-constant solutions of (1.3) when d1 is large or a is
small.

Theorem 3.7 (i) Let a, b, d2 > 0 be fixed. Then there exists a positive constant D depending only
on a, b and d2 such that (1.3) has no non-constant solutions if d1 >D.

(ii) Let b, d1, d2 > 0 be fixed. Then there exists a positive constant A depending only on b, d1 and d2

such that (1.3) has no non-constant solutions if 0< a< A.

Proof. Denote

Hν(Ω)=
{

w ∈ W 2,2(Ω) :
∂w

∂ν
= 0 on ∂Ω

}
and L2

0(Ω)=
{

w ∈ L2(Ω) :
∫
Ω

w dx = 0

}
.
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1726 J. ZHOU AND J. SHI

Let w = u − a and σ = 1/d1; then by (3.4), the weak formulation of (1.3) is equivalent to⎧⎪⎨⎪⎩
−Δw = σ(bv − a − w + f (w + a)v), x ∈Ω ,

−d2Δv = a − bv − f (w + a)v, x ∈Ω ,

w ∈ Hν(Ω) ∩ L2
0(Ω), v ∈ Hν(Ω).

(3.12)

Define F : R × (Hν(Ω) ∩ L2
0(Ω))× Hν(Ω)→ L2

0(Ω)× L2(Ω) by

F(σ , w, v) :=
(
Δw + σP(bv − w + f (w + a)v)

d2Δv + a − bv − f (w + a)v

)
,

where P : L2(Ω)→ L2
0(Ω) is the projection operator form L2(Ω) into L2

0(Ω), i.e.

Pϕ = ϕ − 1

|Ω|
∫
Ω

ϕ dx for any ϕ ∈ L2(Ω).

We claim that (3.12) is equivalent to F(σ , w, v)= (0, 0)�. Indeed, if (σ , w, v) is a solution of (3.12), it
is obvious that F(σ , w, v)= (0, 0)�. On the other hand, if F(σ , w, v)= (0, 0)�, then

d2Δv + a − bv − f (w + a)v = 0 in Ω , v ∈ Hν(Ω).

By integration, it is easy to see that the above equation implies bv − a + f (w + a)v ∈ L2
0(Ω). Since

w ∈ L2
0(Ω), this yields bv − a − w + f (w + a)v ∈ L2

0(Ω), so we have

P(bv − w + f (w + a)v)= bv − a − w + f (w + a)v.

Therefore, (σ , w, v) satisfies (3.12).
The proof of Lemma 3.6 implies that the equation F(0, w, v)= (0, 0)� has a unique non-negative

solution (w, v)= (0, a/(f (a)+ b)). Furthermore, the Frechét derivative of F at (σ , 0, a/(f (a)+ b)) is
given by

D(w,v)F(0, 0, a/(f (a)+ b)) :=
(
Δ− σ σ(b + f (a))P

0 d2Δ− b − f (a)

)
.

It is easy to see that D(w,v)F(0, 0, a/(f (a)+ b)) is invertible, so it follows from the Implicit Func-
tion Theorem that there exist positive constants σ0 and r such that (0, 0, a/(f (a)+ b)) is the unique
solution of F(σ , w, v)= (0, 0)� if (σ , w, v) ∈ [0, σ0] × Br(0, a/(f (a)+ b)), where Br(0, a/(f (a)+ b))
denotes the open ball in (Hν(Ω) ∩ L2

0(Ω))× Hν(Ω) centred at (0, a/(f (a)+ b)) with radius r.
Now, let {σn} be a sequence of positive numbers such that σn → ∞ as n → ∞ and let (un, vn) be a

solution of (1.3) for a, b, d2 fixed and d1 = σn. Letting wn = un − a, it follows that F(1/σn, wn, vn)=
(0, 0)�. According to Lemma 3.6(i), we have (wn, vn)→ (0, a/(f (a)+ b)) in C2(Ω̄) as n → ∞.
This means that, for n � 1 large enough, (1/σn, wn, vn) ∈ [0, σ0] × Br(0, a/(f (a)+ b)) which yields
(wn, vn)= (0, a/(f (a)+ b)). Hence, for d1 = σn large enough, the only non-negative solution of (1.3) is
the constant solution (a, a/(f (a)+ b)), which is part (i).

For part (ii), we consider a solution sequence {(un, vn)}∞n=1 of (1.3) with a = an such that an → 0 as
n → ∞. In view of Lemma 3.6(ii), we obtain (un, vn)→ (0, 0) in C2(Ω̄)× C2(Ω̄). Obviously, (0, 0)
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PATTERN FORMATION IN A GENERAL GLYCOLYSIS REACTION-DIFFUSION SYSTEM 1727

is the unique solution of (1.3) with a = 0. Furthermore, by Theorem 2.3, (0, 0) is locally asymptoti-
cally stable for (1.2) with a = 0. Since (1.3) is a regular perturbation problem for a → 0, it follows
from the regular perturbation theory of linear operators (Kato, 1976) that the solution (un, vn) is also
linearly stable if n is large enough. Consequently, the well-known implicit function theorem shows that
(a, a/(f (a)+ b)) is the unique positive solution to (1.3) if a is sufficiently small. �

3.3 Existence of non-constant steady-state solutions

In this section, we use degree theory to prove the existence of non-constant solutions of (1.3) for a
certain parameter range. For that purpose, we define

X :=
{

w = (u, v) ∈ [C1(Ω̄) ∩ C2(Ω)]2 :
∂u

∂ν
= ∂v

∂ν
= 0 on ∂Ω

}
, (3.13)

and let

X+ := {(u, v) ∈ X : u(x) > 0, v(x) > 0, x ∈ Ω̄}.

We rewrite (2.26) (or equivalently (1.3)) in the following form:

− DΔw = G(w), w ∈ X+, (3.14)

where

D =
(

d1 0
0 d2

)
, G(w)=

(
(λ− f (a))v − u + f (u)v
a − (λ− f (a))v − f (u)v

)
For the calculation of degree, it is more convenient to write (3.14) as

H(w)= 0, w ∈ X+,

where

H(w)= w − (−Δ+ I)−1(D−1G(w)+ w), w ∈ X+. (3.15)

Let w0 = (a, a/λ) be the positive constant equilibrium of (1.2); then we have

DwH(w0)= I − (−Δ+ I)−1(I + D−1L0(λ)),

where L0(λ) is defined in (2.2). If DwH(w0) is invertible, by Nirenberg (2001, Theorem 2.8.1), the index
of H at w0 is given by

index(H , w0)= (−1)γ , (3.16)

where γ is the number of negative eigenvalues of DwH(w0). On the other hand, using the decomposition

X =
⊕
k�0

Xk , (3.17)
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where Xk is the eigenspace corresponding to μk , k ∈ N0. Since Xk is an invariant subspace of the linear
compact operator DwH(w0), then ξ ∈ R is an eigenvalue of DwH(w0) in Xk if and only if ξ is an
eigenvalue of (μi + 1)−1(μiI − D−1L0(λ)). Therefore, DwH(w0) is invertible if, and only if for any
i ∈ N0, the matrix μiI − D−1L0(λ) is invertible. Define

Q(a, λ, d1, d2,μ) := det(μI − D−1L0(λ)). (3.18)

Hence, if μiI − D−1L0(λ) is invertible for any i ∈ N0, then it is well known (see, for example Peng et al.,
2008) that

γ =
∑

i∈N0, Q(a,λ,d1,d2,μi)<0

e(μi), (3.19)

where e(μi) is the algebraic multiplicity of μi. A straightforward computation yields that

Q(a, λ, d1, d2,μ)= 1

d1d2
D(λ,μ), (3.20)

where D(λ,μ) is defined in (2.12). Here, we emphasize the dependence of Q on a, d1, d2 as well. If
λ< λ∗ (which is defined in Lemma 2.1), i.e.

af ′(a) > λ(1 +
√

d1λ/d2)
2, (3.21)

then, from Lemma 2.1, the equation Q(a, λ, d1, d2, ·)= 0 has two positive roots μ±(a, λ, d1, d2) which
are defined as in (2.14). Now, by using the same method as in Peng et al. (2008) (see also Ghergu, 2008;
Pang & Wang, 2004; Peng & Wang, 2005; Zhou & Mu, 2010), we have the following result.

Theorem 3.8 Assume that a,λ,d1, d2 satisfy (3.21), and there exist i, j ∈ N0 such that

(i) 0 �μj <μ
−(a, λ, d1, d2) < μj+1 �μi <μ

+(a, λ, d1, d2) < μi+1 and

(ii)
∑i

k=j+1 e(μk) is odd.

Then (2.26) (or equivalently (1.3)) possesses at least one non-constant solution.

Proof. We prove the result by using a degree theory via a homotopy argument in the parameter d1.
Suppose that (a, λ, d1, d2)= (ā, λ̄, d̄1, d̄2) are given and satisfy (3.21). From Theorem 3.7, for the given
(a, λ, d2)= (ā, λ̄, d̄2), there exists D1 > 0 such that when d1 >D1, system (2.26) has no non-constant
solutions. From Lemma 2.1 and Remark 2.2, one can choose D2 > 0 such that, for the given (a, λ, d2)=
(ā, λ̄, d̄2), when d1 >D2, then the corresponding λ∗(ā, λ̄, d1, d̄2) < λ (where λ∗ is defined in Lemma 2.1).
Hence we have

Q(ā, λ̄, d1, d̄2,μ)> 0, if μ� 0, d1 >D2. (3.22)

Furthermore, by Proposition 3.3, for the given (a, λ, d2)= (ā, λ̄, d̄2), there exist positive D3 > 0 and
two constants C1 and C2 depending only on D3 such that any solution (u, v) of (2.26) with (a, λ, d2)=
(ā, λ̄, d̄2) and d1 � D3 satisfies C1 < u(x), v(x) <C2 for x ∈ Ω̄ . We define D = max{D1, D2, D3}.
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Consider a mapping F̂ : M × [0, 1] → C(Ω̄)× C(Ω̄) by

F̂(w, t)= (−Δ+ I)−1

⎛⎜⎜⎜⎝
u +
(

1 − t

D
+ t

d1

)
[(λ̄− f (ā))v − u + f (u)v]

v + 1

d̄2
[ā − (λ̄− f (ā))v − f (u)v]

⎞⎟⎟⎟⎠ ,

where

M= {w = (u, v) ∈ C(Ω̄)× C(Ω̄) : C1 < u, v<C2 in Ω̄}.

It is easy to see that solving (2.26) is equivalent to finding a fixed point of F̂(·, 1) in M. According to
the choice of D, we have that w0 = (a, a/λ) is the only fixed point of F̂(·, 0). Furthermore, by (3.22) we
have

deg(I − F̂(·, 0),M, (0, 0))= index(I − F̂(·, 0), w0)= 1. (3.23)

Since I − F̂(·, 1)= H , and if (2.26) has no other solutions except the constant one w0, then, by (3.16)
and (3.19), we have

deg(I − F̂(·, 1))= index(H , w0)= (−1)
∑ i

k=j+1 e(μk) = −1. (3.24)

On the other hand, from the homotopy invariance of the Leray–Schauder degree, we have

1 = deg(I − F̂(·, 0),M, (0, 0))= deg(I − F̂(·, 1))= −1,

which is a contradiction. Therefore, there exists a non-constant solution of (2.26). �

The conditions (i) and (ii) in Theorem 3.8 defines a region in the parameter space {(a, λ, d1, d2)} for
which a non-constant solution of (1.3) exists. Because of the binary nature of the index, this parameter
region is usually a union of smaller connected components. When fixing all other parameters but freeing
one, the parameter set is usually a union of non-overlapping intervals. This can be seen in the following
corollary.

Corollary 3.9 Suppose that all eigenvalues μi (i ∈ N0) have odd algebraic multiplicity.

(i) Let a, d1, d2 > 0 be fixed, and let μ1,μ2 be defined as in Lemma 2.1. Suppose that the condition
(S2) in Section 2.4 is satisfied, and λS

n are defined as in (2.27). Assume that the set {λS
n : n ∈ 〈p, q〉}

can be relabelled to {λ̂S
i : 1 � i � q − p + 1} such that

f (a) < λ̂S
q−p+1 < · · ·< λ̂S

i+1 < λ̂
S
i < · · · · λ̂S

2 < λ̂
S
1 <λ∗.

Then (2.26) (or equivalently (1.3)) has at least one non-constant solution for

λ ∈
⋃

1�i�q−p+1, iis odd

(λ̂S
i+1, λ̂S

i ). (3.25)
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(ii) Let a, λ, d2 > 0 be fixed so that a, λ satisfy

af ′(a) > λ> f (a). (3.26)

Define

dn
1 = d2μn(af ′(a)− λ)− λ2

μnλ(d2μn + λ)
, (3.27)

for n ∈ {n ∈ N : d2μn(af ′(a)− λ)− λ2 > 0}. Assume that the set {dn
1 : n ∈ N, d2μn(af ′(a)− λ)−

λ2 > 0} can be relabelled to {d̂n
1 : n ∈ N} such that

d̂1
1 > d̂2

1 > · · ·> d̂ i
1 > d̂ i+1

1 > · · · , lim
i→∞

d̂ i
1 = 0.

Then (2.26) (or equivalently (1.3)) has at least one non-constant solution for

d1 ∈
⋃
i∈N

(d̂2i
1 , d̂2i−1

1 ). (3.28)

Proof. For (i), it is easy to see that γ defined in (3.19) is odd if λ satisfies (3.25); and for (ii), it is easy
to see that γ is odd when d1 satisfies (3.28). �

We remark that one can indeed show that λ= λS
n and d1 = dn

1 defined in Corollary 3.9 are bifurcation
points where non-constant solutions stem out from the branch of constant solution, by using the global
bifurcation theorem in Rabinowitz (1971). This would partially generalize the result in Theorem 2.9
where the eigenvalues μi are assumed to be simple. However, the result in Corollary 3.9 shows the
existence of non-constant solutions in some more specific parameter regions, which cannot be achieved
in bifurcation results.
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Appendix

A.1 Proof of Theorem 2.4

We first consider the following scalar problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂w

∂t
= dΔw + ζ(w), x ∈Ω , t> 0,

∂w

∂ν
= 0, x ∈ ∂Ω , t> 0,

w(x, 0)= w0(x)� 0, �≡ 0, x ∈Ω ,

(A.1)

where d > 0 is a constant. Then we have the following result for (A.1).

Lemma A.1 Assume ζ ∈ C[0, ∞] ∩ C1(0, ∞) satisfies that there exists a constant ε > 0 such that ζ
has only one root Cw ∈ (0, maxx∈Ω̄ w0(x)+ ε] and ζ ′(Cw) < 0. Then w(x, t) exists for all t> 0, and
limt→∞ w(x, t)= Cw uniformly in Ω̄ .

Proof. Let z(t, z0) be the solution of the following equation:⎧⎪⎨⎪⎩
dz

dt
= ζ(z), t> 0,

z(0)= z0,

where 0< z0 � maxx∈Ω̄ w0(x)+ ε. It follows from the assumption on ζ and theory of ODE that
lim

t→∞ z(t, z0)= Cw. By the strong maximum of parabolic equation, we know that w(x, t) > 0 in Ω̄ for

t> 0. Then we can take δ > 0 small enough so that

w̄0 := max
x∈Ω̄

w(x, t + δ) ∈
(

0, max
x∈Ω̄

w0(x)+ ε

]
,

w0 := min
x∈Ω̄

w(x, t + δ) ∈
(

0, max
x∈Ω̄

w0(x)+ ε

]
.

Then z(t, w0)� w(x, t + δ)� z(t, w̄0) by the comparison principle. Then the conclusion follows by the
fact that limt→∞ z(t, w0)= Cw = limt→∞ z(t, w̄0). �

Proof of Theorem 2.4. We only give the proof of case m = 2 since the proof of m = 1 is easier by
using similar methods. It follows from the second equation of (2.18) that vt − d2Δv � a − bv; then, by
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Lemma A.1 and the comparison principle, we get

lim sup
t→∞

max
x∈Ω̄

v(x, t)� a

b
:= v̄1.

Since b> 4a2, we can choose ε > 0 small enough so that 1 − 4b(v̄1 + ε)2 > 0. Then there exists a
constant Tε1 � 1 such that v(x, t)� v̄1 + ε for x ∈ Ω̄ and t � T ε1 . By the first equation of (2.18) we have,
for x ∈ Ω̄ and t> t � Tε1 ,

ut − d1Δu � (v̄1 + ε)u2 − u + b(v̄1 + ε) := ζ1(u).

It is easy to verify that ζ1(u) has two roots u1
ε , u2

ε and ζ ′
1(u

1
ε) < 0, where

u1
ε = 1 −

√
1 − 4b(v̄1 + ε)2

2(v̄1 + ε)
, u2

ε = 1 +
√

1 − 4b(v̄1 + ε)2

2(v̄1 + ε)
>

√
b.

Since maxx∈Ω̄ u0(x)�
√

b, there exists a positive constant ε such that ζ1(u) has only one root u1
ε ∈

(0, maxx∈Ω̄ u0(x)+ ε], by Lemma A.1, the comparison principle and letting ε→ 0, we have

lim sup
t→∞

max
x∈Ω̄

u(x, t)� 1 −
√

1 − 4bv̄2
1

2v̄1
= b − √

b2 − 4a2b

2a
:= ū1. (A.2)

Then, for ε > 0 small enough, there exists a constant Tε2 � 1 such that u(x, t)� ū1 + ε for x ∈ Ω̄ and
t � Tε2 . Then, by the second equation of (2.18), Lemma A.1 and letting ε→ 0, we get

lim inf
t→∞ min

x∈Ω̄
v(x, t)� a

b + ū2
1

:= v1 � v̄1. (A.3)

Since v1 � v̄1, we can choose 0< ε < v1 such that 1 − 4b(v1 − ε)2 > 0. Then there exists a constant
Tε3 � 1 such that v(x, t)� v1 − ε for x ∈ Ω̄ and t � T ε3 . By similar analysis as (A.2), we get

lim inf
t→∞ min

x∈Ω̄
u(x, t)� 1 −

√
1 − 4bv2

1

2v1
:= u1 � ū1.

Then, for any 0< ε < u1, there exists a constant Tε4 � 1 such that u(x, t)� u1 − ε for x ∈ Ω̄ and t � Tε4 .
By similar analysis as (A.3), we get

lim sup
t→∞

max
x∈Ω̄

v(x, t)� a

b + u2
1

:= v̄2.

Furthermore, one can show v1 � v̄2 � v̄1 by direct calculation. Similarly, we have

lim sup
t→∞

max
x∈Ω̄

u(x, t)� 1 −
√

1 − 4bv̄2
2

2v̄2
:= ū2,

and u1 � ū2 � ū1.
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Let

ϕ(s)= a

b + s2
, s> 0,

ψ(s)= 1 − √
1 − 4bs2

2s
, 0< s<

1

2
√

b
.

Then ϕ is decreasing and ψ is increasing. The constants ūi, v̄i, ui, vi, i = 1, 2, constructed above satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v1 = ϕ(ū1)� ϕ(u1)= v̄2 � v̄1 = a

b
,

u1 =ψ(v1)�ψ(v̄2)= ū2 � ū1 =ψ(v̄1),

v1 � lim inf
t→∞ min

x∈Ω̄
v(x, t)� lim sup

t→∞
max
x∈Ω̄

v(x, t)� v̄2,

u1 � lim inf
t→∞ min

x∈Ω̄
u(x, t)� lim sup

t→∞
max
x∈Ω̄

u(x, t)� ū2.

(A.4)

By induction, we can construct four sequences {v̄i}∞i=1, {ūi}∞i=1, {vi}∞i=1 and {ui}∞i=1 by

v̄1 = a

b
, ūi =ψ(v̄i), vi = ϕ(ūi), ui =ψ(vi), v̄i+1 = ϕ(ui), (A.5)

such that ⎧⎪⎨⎪⎩
vi � lim inf

t→∞ min
x∈Ω̄

v(x, t)� lim sup
t→∞

max
x∈Ω̄

v(x, t)� v̄i,

ui � lim inf
t→∞ min

x∈Ω̄
u(x, t)� lim sup

t→∞
max
x∈Ω̄

u(x, t)� ūi.

In view of (A.4), (A.5) and the monotonicity of φ and ψ , it follows{
vi � vi+1 = ϕ(ūi+1)� ϕ(ui)= v̄i+1 � v̄i,

ui � ui+1 =ψ(vi+1)�ψ(v̄i+1)= ūi+1 � ūi

by induction. From the monotonicity of the sequences, we may assume

lim
i→∞

ui = u, lim
i→∞

ūi = ū, lim
i→∞

vi = v, lim
i→∞

v̄i = v̄.

It is obvious that 0< u � ū, 0< v � v̄ and u, ū, v, v̄ satisfy

ū =ψ(v̄), v̄ = ϕ(u), u =ψ(v), v = ϕ(ū). (A.6)

With some elementary calculations, one can show that (A.6) is equivalent to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ū2v̄ − ū + bv̄ = 0,

u2v − u + bv = 0,

ū2v + bv − a = 0,

u2v̄ + bv̄ − a = 0.

(A.7)
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It follows from the first and fourth equations of (A.7) that

v̄(ū + u)(ū − u)+ a − ū = 0. (A.8)

By the second and third equations of (A.7), we have

v(ū + u)(ū − u)+ u − a = 0. (A.9)

Then it follows from (A.8) and (A.9) that

(ū + u)(v̄ + v)(ū − u)= 0,

i.e. ū = u = a. Then, by (A.7), we obtain v̄ = v = a/(a2 + b). �

A.2 Proof of Theorem 2.7

Proof of Theorem 2.7. Here we follow the notations and calculations in Yi et al. (2009a). When λ=
λH

0 = λ̄0 = (−1 + √
1 + 8a2)/2, (2.9) has a pair of purely imaginary eigenvalues μ= ±i

√
λ̄0. Let β =√

λ̄0; then for Jacobin matrix

L0(λ)=
(

A(λ̄0) λ̄0

B(λ̄0) −λ̄0

)
=
(

λ̄0 λ̄0

−1 − λ̄0 −λ̄0

)
=
(

β2 β2

−1 − β2 −β2

)
, (A.10)

and eigenvector q of eigenvalue iβ satisfying

L0q = iβq

can be chosen as q := (a0, b0)
� = (−β,β − i)�. Define the inner product in XC := X

⊕
iX = {x1 + ix2 :

x1, x2 ∈ X } by

〈w1, w2〉 =
∫
Ω

(ū1u2 + v̄1v2) dx,

where wi = (ui, vi)
� ∈ XC, i = 1, 2. We choose an associated eigenvector q∗ for the eigenvalue μ= −iβ

satisfying

L∗
0q∗ = −iβq∗, 〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0.

Then q∗ = (a∗
0, b∗

0)
� = ((−1 − iβ)/2β|Ω|, −i/2|Ω|)�.

Let h(u, v)= bv − u + u2v and g(u, v)= a − bv − u2v, by calculation, at(
a,

a

λ̄0

)
=
(
β√
2

√
1 + β2,

1√
2β

√
1 + β2

)
,

we have ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
guu = −huu, guv = −huv, guuv = −huuv,

hvv = hvvv = huvv = huuu = guuu = gvv = guvv = gvvv = 0,

huu =
√

2

β

√
1 + β2, huv =

√
2β
√

1 + β2, huuv = 2.

(A.11)
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By direct calculation, it follows that

c0 = huua2
0 + 2huva0b0 + hvvb2

0 = (
√

2 − 2
√

2β2)β
√

1 + β2 + 2
√

2β2
√

1 + β2i,

d0 = guua2
0 + 2guva0b0 + gvvb2

0 = −c0,

e0 = huu|a0|2 + huv(a0b̄0 + ā0b0)+ hvv|b0|2 = (
√

2 − 2
√

2β2)β
√

1 + β2,

f0 = guu|a0|2 + guv(a0b̄0 + ā0b0)+ gvv|b0|2 = −e0,

g0 = huuu|a0|2a0 + huuv(2|a0|2b0 + a2
0b̄0)+ huvv(2|b0|2a0 + b2

0ā0)+ hvvv|b0|2b0

= 2β2(3β − i),

h0 = guuu|a0|2a0 + guuv(2|a0|2b0 + a2
0b̄0)+ guvv(2|b0|2a0 + b2

0ā0)+ gvvv|b0|2b0 = −g0.

Denote

Qq,q =
(

c0

d0

)
, Qq,q̄ =

(
e0

f0

)
, Cq,q,q̄ =

(
g0

h0

)
. (A.12)

Then

〈q∗, Qq,q〉 =
∫
Ω

(−1 + iβ

2β�π
c0 + id0

2�π

)
dx = − c0

2β
,

〈q∗, Qq,q̄〉 =
∫
Ω

(−1 + iβ

2β�π
e0 + if0

2�π

)
dx = − e0

2β
,

〈q∗, Cq,q,q̄〉 =
∫
Ω

(−1 + iβ

2β�π
g0 + ih0

2�π

)
dx = − g0

2β
,

〈q̄∗, Qq,q〉 =
∫
Ω

(−βc0 + (β + i)d0) dx = − c0

2β
,

〈q̄∗, Qq,q̄〉 =
∫
Ω

(−βe0 + (β + i)f0) dx = − e0

2β
,

〈q∗, Qq,q〉 = 〈q̄∗, Qq,q〉, 〈q∗, Cq,q,q̄〉 = 〈q̄∗, Qq,q̄〉.

Hence,

H20 = (c0, d0)
� + c0

2β0
(a0, b0)

� + c0

2β0
(ā0, b̄0)

� = c0(1, −1)� + c0(−1, 1)� = 0,

H11 = (e0, f0)
� + e0

2β
(a0, b0)

� + e0

2β
(ā0, b̄0)

� = e0(1, −1)� + e0(−1, 1)� = 0,

which implies that ω20 =ω11 = 0, then

〈q∗, Qω11,q〉 = 〈q∗, Qω20,q̄〉 = 0. (A.13)
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Thus,

Re(c1(λ
H
0 ))= Re

{
i

2ω0
〈q∗, Qq,q〉 · 〈q∗, Qq,q̄〉 + 1

2
〈q∗, Cq,q,q̄〉

}

=
(
β2 − 1

2

)(
1 + β2 +

√
2

2

√
1 + β2

)
, (A.14)

where ω0 = β. From (A.14), we know that if 0<β <
√

2/2, then Re(c1(λ
H
0 )) < 0, and if β >

√
2/2,

then Re(c1(λ
H
0 )) > 0. From the proof of Theorem 2.5, we know that γ ′(λH

0 ) < 0. Hence we obtain the
direction of bifurcation according to Jin et al. (2013, Lemma 5.1). �
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