
The routine design–modular distributed modeling platform
for distributed routine design and simulation-based testing
of distributed assemblies

M. TANER ESKIL,1 JON STICKLEN,2 AND CLARK RADCLIFFE3

1Computer Science and Engineering Department, Faculty of Engineering, Işık University, Istanbul, Turkey
2Intelligent Systems Laboratory, Michigan State University, East Lansing, Michigan
3Dynamic Systems Laboratory, Michigan State University, East Lansing, Michigan

(RECEIVED May 6, 2005; ACCEPTED February 1, 2007)

Abstract

In this paper we describe a conceptual framework and implementation of a tool that supports task-directed, distributed rou-
tine design (RD) augmented with simulation-based design testing. In our research, we leverage the modular distributed
modeling (MDM) methodology to simulate the interaction of design components in an assembly. The major improvement
we have made in the RD methodology is to extend it with the capabilities of incorporating remotely represented off-the-shelf
components in design and simulation-based testing of a distributed assembly. The deliverable of our research is the RD-
MDM platform, which is capable of automatically selecting intellectually protected off the shelf design components
over the Internet, integrating these components in an assembly, running simulations for design testing, and publishing
the approved design without disclosing the proprietary information.

Keywords: Distributed Simulation; Modular Modeling; Off-the-Shelf Parts; Proprietary Information; Routine Design

1. INTRODUCTION

During the initial stages of a design process, designers
typically seek to obtain broad and general knowledge to un-
derstand and analyze the problem, to produce a conceptual
design, to select materials, and to specify manufacturing
processes (Nowack, 1997). In the later stages, which are non-
trivial and in general nonlinear, the knowledge gathered and
organized will be used to test the simulated performance of
candidate solutions (Rodgers et al., 1999). Both the concep-
tual design and analysis stages need a large knowledge base
to be brought together and developed by the design team.
The successful development of a design, and consequently,
the competitiveness of a company, depends on acquiring
and organizing relevant knowledge in a timely manner
(Smith & Reinertson, 1991; Court et al., 1997).

Developing the necessary knowledge base, which consists
of searching for and locating the required knowledge, has
been estimated to take 30–40% of the design time (Cave
& Noble, 1986; Marsh, 1997). Rodgers’ (1997) research on

the knowledge requirements of design teams in a telecommu-
nications company in the United Kingdom revealed that the
initial point of contact for the design teams is a file 40% of
the time, and external personnel more than 25% of the
time. “File” in the context of this research refers to a mostly
electronic-based, internal, or external document. External
documents include the International Standards Organisation
(ISO) documents and contractors’ design knowledge.

Availability of reliable, high-speed electronic connectivity
enables designers turn to the Internet when knowledge is
stored externally, whether the assistance they seek is design
knowledge (e.g., CAD drawings) or design expertise (e.g.,
an expert contacted by e-mail). One of the most profound
ways the Internet is affecting engineering design is by allow-
ing companies to be more externally focused. The Internet
has enabled design teams to function irrespective of the loca-
tion of the knowledge, by rapid part ordering from electronic
catalogs, use of distributed design and simulation tools, and
so forth. On the consumers’ side, the Internet allows compa-
nies to drive consumers’ demands into the design process
quickly, which in turn, increases the commercial agility of
the company. On the supplier side, as products become
more complex, 60–80% of parts are outsourced. For instance,

Reprint requests to: M. Taner Eskil, Computer Science and Engineering
Department, AMF 336, Faculty of Engineering, Işık University, Şile,
34980 Istanbul, Turkey. E-mail: eskil@isikun.edu.tr

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2008), 22, 1–18. Printed in the USA.
Copyright # 2008 Cambridge University Press 0890-0604/08 $25.00
DOI: 10.1017/S0890060408000012

1

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

in the year 2000, Daimler/Chrysler outsourced 65–75% of
each manufactured car (Ames, 2000). A closer collaboration
between a company, its customers, and suppliers has the
potential to bring more innovative products to market and to
do so in economically viable ways.

Online design collaboration between suppliers and manu-
facturers is likely to increase as Internet tools become more
supportive and secure. To utilize the Internet for information
gathering and modeling in the design process in a secure way,
a new generation of supporting tools and methodologies will
be required. There are a number of studies undertaken in this
area, focusing on how designers find, access, retrieve, and
manage knowledge throughout the design process (Dong &
Agogino, 1996; Marsh, 1997; Schott et al., 1997; Keskinocak
et al., 2001; Zhang et al., 2003).

The research on online design collaboration has already
generated a relatively secure environment for designers to
share their design knowledge over the Internet with suppliers
and manufacturers under strict legal contracts. On the surface,
this competitive change should result in lower pricing and
higher quality products. However, to protect intellectual
property, suppliers are reluctant to share the designs of their
products with “window shoppers” without strong and en-
forceable legal agreements. Putting in place such legal agree-
ments (typically, proprietary information or nondisclosure
agreements) requires both money and, more importantly,
time. It is not uncommon for such agreements to take between
6 months and 1 year to put into place. This delay lengthens the
time to market, hampering the search for lower price and
higher quality products, and slowing down the response to
changes in the market.

The difficulties in design collaboration do not end with the
realization of nondisclosure agreements between a manufac-
turer and suppliers. On the contrary, the constant evolution of
the market makes it intractable to keep an error-free database
of models. A good example of this is from the automotive
industry in which each manufactured vehicle consists up to
15,000 parts and many of these may be supplied by different
vendors. Daimler Chrysler’s experience with the product
data management system dialog has shown that keeping a
database of thousands of model constraints defect free is
extremely difficult, if not impossible, because of constant
change in part models (Sinz et al., 2003).

The challenges discussed above recur in the design testing
stage in which running simulations for verification of the
design functionality is desirable. Furthermore, the iterative
nature of time-sliced simulations brings in another critical
challenge in the case of distributed simulations; keeping the
network traffic in the limits of its bandwidth. This problem
could appear at first consideration to be simply an exercise
in distributed object-oriented simulation. However, such a
position would be incorrect because it does not take into
consideration the reality of the Internet world.

The common currency of the simulation world, the deciding
factor between any two simulation approaches that both yield
accurate results, has been the speed a simulation approach

engenders. Moreover, because earlier simulation approaches
have dealt the “all codes available” situation, this speed factor
has been pushed down to the speed with which a single com-
puter (or a tightly coupled cluster) can complete a simulation.
In other words, if a given simulation is slower than desired at
completing a simulation, and no other approaches are avail-
able, then the solution has always been to obtain a more power-
ful computer.

However, in relation to the Internet-based simulations this
view is misguided and misleading. The limiting factor on sim-
ulation time in a world in which models are distributed across
the Internet is the Internet transmission time of information
necessary to support the simulation. Shortening this time could
be approached in one of two fundamental ways: decrease Inter-
net packet transmission times or lower the number of Internet
packets needed to transfer the needed information that drives
the simulation. The first path is not practically feasible as a
part of any single project such as ours. Moreover, the number
of packets to be transferred in a traditional simulation problem
of even moderate complexity such as dynamic response of a
mechanical system (e.g., a bridge structure) would produce
such a large number of packets as to bring the speed of a
distributed simulation to its knees. The second path thus is
the only feasible solution in the current wired world.

In this paper we introduce routine design–modular distrib-
uted modeling (RD-MDM) platform, an integrated distrib-
uted design and simulation environment, which effectively
deals with these impediments on online design collaboration.
RD-MDM enables system integrators to rapidly design their
products and perform simulation-based design testing using
intellectually protected computational models that are distrib-
uted over the Internet. We handle the challenges mentioned
above by utilizing the MDM methodology that was intro-
duced by Byam and Radcliffe (1999), and later employed
by the Internet-Engineering Design Agents group at Michi-
gan State University (Eskil et al., 2003; Reichenbach,
2003). As we will detail in Section 3, the crux of the MDM
methodology is to share input–output models of engineering
artifacts without disclosing their internal connections or
dynamics, hence protecting the proprietary information.
The MDM models are kept at the supplier side to ensure
up-to-date information, and the number of transmitted pack-
ages during an online simulation is reduced to one for each
MDM model embedded in a design.

In the big picture, RD-MDM is a cooperative engineering
design tool for distributed black-box modeling and simulation
of engineered artifacts in an open, competitive e-commerce.
With our approach, vendors will be able to make their core
models available to the public without disclosing proprietary
information such as the internal architecture or utilized compo-
nents. Designers, contrarily, will be able to automatically
search and incorporate these models as off-the-shelf parts
into their designs and simulate them as integrated components
of the virtually distributed assembly.

This paper details our approach and presents the results we
obtained with the proposed technique. Section 2 presents the

M.T. Eskil et al.2

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

related studies and identifies the challenges in distributed
agent-based design. Sections 3 and 4 describe the MDM
technique and the RD methodology. Section 5 details the
extensions we have made to both approaches and introduces
the integrated RD-MDM platform. Section 6 provides an
example to illustrate the problem solving process with
RD-MDM. Section 7 summarizes the outcomes of this re-
search, and Section 8 points out the limitations and possible
future directions.

2. RELATED STUDIES

Early distributed problem-solving approaches assumed that
knowledge pertaining to the problem domain could be gath-
ered and represented on a network of closely bound computers,
in compliance with a particular architecture. As the problem
gets more complex, gathering and organizing the widespread
expert knowledge becomes impractical. An example is the
engineering design problems, for which the information is
widespread, unorganized, and in general beyond the reach of
a single designer (Alexander, 1964). MacGregor and Thomson
(2001) also emphasized the lack of common terminology
between teams of expertise and unawareness of existence of
knowledge. In the literature there have been two approaches
to solving the common terminology problem: standardizing
the representation of knowledge (Augenbroe, 1995; Fruchter
et al., 1995) and encapsulating the knowledge in data wrappers
and enabling communication through a predetermined ter-
minology (Cutkosky et al., 1993; Maturana & Norrie, 1996;
Shen & Barthes, 1996; Chan et al., 1998; Maturana et al.,
1999). We will make a brief review of these approaches below.

The most notable examples of model standardization
frontier are STEP of ISO and Integrated Data Model of
COMBINE (Augenbroe, 1995). STEP is oriented toward
exchanging the geometric model of the data, but not the func-
tion of the model (Kopena & Regli, 2003). To incorporate the
designer’s ideas about the model, Fruchter et al. (1995)
built Interdisciplinary Communication Medium, using the
propose/interpret/critique/explain paradigm in a cycle of
collaborative design. Ball et al. (1998) and Fruchter et al.
(1995, 1996) developed prototypes that capture design
rationale. Rosenman and Gero (1996) proposed a paradigm
to describe the semantics of the model, known as purpose–
function–behavior structure.

Standardization of model representation requires massive
conversions from legacy design development platforms,
and its success heavily depends on its widespread acceptance.
The cost of interoperability efforts in the United States is
estimated as $2 billion per year (Schlenoff et al., 2000).
Wallace et al. (2001) state that the money spent yearly on
the integration work in Ford Motor Company alone is in
the order of hundreds of million dollars. A comprehensive
conversion to standardized representation ontology would
indeed discontinue such expenses, but it would be extremely
expensive as these figures illustrate. This fact encouraged
many researchers to develop ways to encapsulate knowledge

in modular units called agents and enable communication
between agents over a predetermined ontology.

Wooldridge (1997) defines an agent as “an encapsulated
computer system that is situated in some environment and
can act flexibly and autonomously in that environment to
meet its design objectives.” Jennings and Bossmann (2003)
elaborate on this definition and states the distinguishing char-
acteristics of agents: agents are problem-solving entities with
clearly defined boundaries and interfaces. They have partial
knowledge and control in their surroundings. They have
objectives, and they exhibit autonomous behavior in pursuit
of their goals. Objects, in contrast, are passive in nature.
They are suitable for encapsulating information but they
lack autonomous behavior.

PACT (Cutkosky et al., 1993) is one of the most well-
known projects that advocate encapsulation of tool data and
model representations rather than standardizing them. In
PACT, each tool uses the most appropriate internal data
structures and representation of models and communicates
with languages of varying complexities. To support the com-
plicated nature of communication between PACT agents, a
facilitator mechanism is implemented. The facilitator pro-
vides an interface between a local network of agents and
remote agents. Its responsibilities include routing and trans-
lating messages and monitoring the local problem-solving
process. The collection of autonomous agents under facilita-
tors is called a federation architecture.

MetaMorph (Maturana et al., 1999) is another project that
uses the federation architecture to integrate distributed intelli-
gent systems and concurrent engineering tools. In this archi-
tecture, the coordination of virtual groups of intelligent
agents is realized by the mediator mechanism (Maturana &
Norrie, 1996). The DIDE project (Shen & Barthes, 1996)
proposes asynchronous cognitive agents for integrating de-
sign and engineering tools and human specialists. In DIDE,
agents work independently during the design process, but
their results are generally monitored by a human agent before
they are broadcast to the community. WELD (Chan et al.,
1998) makes use of the encapsulation strategy to enable
complete distribution of users, tools, and services. This is
accomplished by treating every component as potentially
mobile. For uniform and reliable communication, WELD
avoids any coupling between components. Its communica-
tion protocols are built on generic string-based messages
for extendibility.

The approaches mentioned above primarily focus on
collaboration in engineering design and fail to address simu-
lation of distributed assemblies or protection of proprietary
resources. Gu et al. (2002) provide a discussion of the need
for protecting proprietary information in engineering design
and analysis and propose an encapsulation-based method
for simulation of coupled systems with minimum information
disclosure. With this method the initial state and implementa-
tion details of component models are not required, but the
protection of proprietary information is not guaranteed either.
Gu et al. also draw attention to the need of integrating

RD-MDM for distributed design and simulation 3

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

powerful and adaptive methods for design parameterization
in simulation architectures.

Silva and Katz (1995) and Hauck and Knoll (1998) pro-
posed cryptographic techniques for transferring simulation
models of components without revealing proprietary infor-
mation. These cryptographic techniques are simulator depen-
dent and require manufacturers to maintain a different data-
base of appropriate simulation models for each technique. More-
over, they require considerable effort to update transferred
representations when the core model is changed. Helaihi and
Olukotun (1997), Dalpasso et al. (1999, 2002), and Fin et
al. (2000) addressed these issues and proposed simulation to
take place on the manufacturer site by use of ad hoc languages
to model the functionality of the component. These ap-
proaches offer a solution to the protection of proprietary infor-
mation at a cost of extra work and possible discrepancies between
the design and component models. Another disadvantage is the
increased complexity of assembling a design that incorporates
components from different vendors.

The DOME project (Pahng et al., 1998; Abrahamson et al.,
2000) deals with the protection of the proprietary data by
encapsulating services in wrappers, thus creating a modeling in-
frastructure for individuals to share their simulation services re-
lated to their expertise. The ultimate goal is to allow individuals
to design and understand complex systems by use of latest mod-
eling technology offered by experts. The infrastructure serves as
an interface for the modeling tool once it is published on the
DOME server. This research aims more or less toward our
goal: allowing individuals to design, simulate, and understand
complex systems. In the DOME approach this is realized by
making design and simulation tools available to individuals
on the Internet, whereas our focus is on sharing device models.
Abrahamson et al. (2000) point out the growing need for devel-
oping shared ontologies to be used with the DOME architecture.

Although the state-of-the-art approaches prove to be valu-
able search and decision tools, they provide very limited ca-
pability in automated design and analysis in the context of
open e-commerce. Shakeri and Brown (2004) point out the
need for resource sharing across disciplines and provide a
new knowledge-based methodology for simulation of a design
process. Spiller and Newton (1997) envision the future of the
Engineering Design and Analysis community organized in
an integrated and distributed environment. Interoperability
between tools and design libraries will create an evolvable,
customizable, and adaptable virtual design network. Such
an organization would also enable querying products and serve
as a virtual consultant to researchers and individuals. Regli
(1997) emphasizes the importance of online smart catalogs
supported with intelligent agents that can also filter relevant
information. Such computer-interpretable information models
augmented with the issues of security and trust can be
integrated with existing tools and services to develop entirely
automated and distributed design platforms. In contrast, as
Regli draws attention to this, advances in distributed design
bring about the problem of handling gigabytes of information
flow over slow World Wide Web protocols.

Today, the prominent challenges in distributed agent-based
design are the following:

1. difficulty of defining a complete product model because
of the model complexity or size (Cera et al., 2004);

2. insufficiency of design tools that address design across
different engineering domains (Shakeri & Brown,
2004);

3. unavailability of compatible models across different
engineering domains (Cera et al., 2004), even between
different manufacturers within the same engineering
domain (Szykman et al., 2001);

4. unavailability of knowledge on design products for pro-
prietary reasons (Cera et al., 2004);

5. keeping network traffic within manageable levels dur-
ing online collaboration efforts (Regli, 1997); and

6. unavailability of tools that support both distributed de-
sign and simulation of distributed assemblies for design
testing.

3. DISTRIBUTED COMPUTATIONAL MODELS:
THE MDM PLATFORM

The Internet-Engineering Design Agents group of Michigan
State University successfully developed an infrastructure
capable of supporting a community of MDM agents (Eskil
et al., 2003; Radcliffe & Sticklen, 2003; Reichenbach, 2003;
Eskil, 2004). The ensemble of MDM agents are capable of
supporting Internet-based cooperative engineering design and
simulation, but with the constraint of device knowledge hiding.
The conceptual building block to enable MDM is a fixed but
autonomous MDM agent. An MDM community is

1. an Internet-based distribution of fixed MDM agents
where

2. each MDM agent holds knowledge of a single manu-
factured device (or a family of similar manufactured
devices) and

3. each MDM agent is an instance of one member of a
typology of MDM agents.

4. Each query that an MDM agent receives is drawn from
a known and well-defined typology of possible quer-
ies.

5. An MDM agent will respond to queries using a set
answer syntax that is implied by the specific query.

6. Each query that an MDM agent will receive is focused
either

a. on a quality of the device held by the MDM agent or
b. on a functional response of the device held by the

MDM agent.

7. Each MDM agent contains the knowledge and compu-
tational resources to effectively answer those valid
queries that it chooses to answer.

M.T. Eskil et al.4

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

8. Each MDM agent composes answers to queries such
that implementation details of the device it holds are
not revealed.

9. Any MDM agent may hold a device that internally
includes parts (or assemblies) held by other MDM
agents.

Capabilities 1 and 2 express the need to “publish” to the In-
ternet an MDM agent that acts, according to capability 8, as
a buffer between the world and internally held device knowl-
edge. The MDM agent will allow the world to know what its
device is functionally capable of, and what the qualities of its
device are, but that is all. Capability 3 is a statement that
MDM agents are of known types. An example of an MDM
agent type would be “mechanical structures.”

Capabilities 4 and 5 express the need for structured com-
munication. To conceive, design, and implement the infra-
structure for the Internet community for cooperative design
in an e-commerce setting, and equally importantly, to gain
acceptance within the manufacturing and engineering
communities, communication of MDM agents must be de-
monstrably fail-safe, and to those ends structured interagent
communication is essential.

Capability 6 sets in broad terms the semantics of MDM
agent communication. Subcapabilities 6a and 6b set the
two broad areas of queries that can be accepted by and
MDM agent. Quality refers to an inherent property of an
MDM agent’s device. Examples include weight and size.
Functional response refers to the manner in which the
MDM agent’s device will interact with the world when
supplied external inputs of specified type. Examples include
static mechanical response to applied loads and dynamic me-
chanical response to applied forces. Capability 6a refers to
one-shot queries and responses on a quality of the MDM
agent. To achieve capability 6b in a feasible manner in the
Internet environment, we will utilize the novel approach
that was introduced by Byam and Radcliffe (1999, 2000) and
detailed in Section 3.1.

Capability 7 sets the goal that MDM agents will be able to
answer legal queries that it receives, where what is legal is cov-
ered in capability 6. There is an important but easily missed
point here. The queries that an MDM agent will answer are a
subset, and possibly a proper subset, of the queries that would
be legal for a given MDM agent. The reason for this point is
that although a manufacturer may wish to publish an MDM
agent for a device offered for sale, the manufacturer may
want to hold some information that would normally be
available for the device. This flexibility provides members
participating in an MDM agent network the ability to make in-
formation available to potential buyers in a selective manner.

Capability 9 sets the need for MDM agents to allow a re-
cursive structure that mirrors engineering device/subdevice
decompositions. For example, an automobile is composed
of drive train system, suspension system, and so forth. A drive
train system is further composed of transmission system,
differential system, and so forth. Hierarchical decomposition

is the means by which engineers (and engineering as a broad
field) handle the complexity of modern manufactured de-
vices. In design, engineers typically try to use off-the-shelf
parts and subassemblies when designing new (or improved)
devices. However, each of those off-the-shelf items may
also be composed of other off-the-shelf items. Enabling
engineers who are working within an MDM community to
quickly incorporate into a new design off-the-shelf parts
offered by other members of the MDM community, and to
analyze a new design by running simulations is the bedrock
motivation for our research.

The flow of information inside an MDM agent is demon-
strated in Figure 1. As addressed by capability 9, an MDM
agent (M) may be a component itself or composed of remote
components assembled through the action of Assembler (A)
and Join (J) constraints. The subcomponents likewise may be
atomic—a part without subcomponents—or assembly. They
can also be local (C)—a part whose representation is readily
available on the local computer—or remote MDM agents
(M). Conceptually, parts/assemblies from other MDM
agents can be made a component of a given MDM agent
(e.g., a fuel injector becomes a component of a Fuel System)
but only device qualities and functional responses are known
to other agents. It is not that one agent device model contains
or has access to full descriptions of the devices held by other
agents.

The sketch shown in Figure 2 depicts three MDM agents
connected physically via the Internet. It is important to note
that in response to queries, MDM agents would not reveal
an internal virtual linkage; such virtual linkages can be
used to express an internal structure that includes parts/
assemblies of other MDM agents. Two additional MDM re-
sources can be seen in Figure 2: Query Ontology and Agent
Registry. Referring back to the list of MDM agent character-
istics enumerated at the start of this section, specifically char-
acteristic 4, the query ontology is an MDM network resource
that makes available to any MDM agent the typology of legal
queries. The Agent Registry meets characteristic 3, and is an
MDM network resource that makes available to any MDM
agent both the agent types and the list of all existing MDM
agents. Of particular importance in Figure 2 are the two types
of connections between MDM agents. Both the physical
connection via the Internet and the linkage that represents
device hierarchy relationships are sketched.

The MDM approach asserts that how a specific product is
designed and its design details does not have any relevance to
how the product integrates structurally and functionally in a
larger design. Therefore, a distributed model can reside on
any platform of its designer’s convenience and communicate
by string passing on a predetermined ontology that specifies
the query and response formats while hiding the proprietary
knowledge.

MDM offers a unique platform to easily locate and inte-
grate a product as a part of an assembly while eliminating
the proprietary data concerns. Most other techniques such
as Universal Description, Discovery, and Integration Protocol

RD-MDM for distributed design and simulation 5

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

(www.UDDI.org) focus only on locating the right product or
service and connecting its provider with the receiver.
RD-MDM has the characteristic of not only searching but
also integrating multiple components in an assembly and run-
ning simulations on the virtually assembled product. We will
discuss these capabilities further in Sections 4 and 5.

Bandwidth is a major concern in distributed simulations,
especially when the simulation is iterative in nature. Func-
tional response models (FRMs; Byam & Radcliffe, 2000)
overcome the bandwidth problem by reducing the required
number of communications between each pair of components
to one for the entire simulation. Instead of many thousands of
iterations between a requesting MDM agent and the respond-

ing MDM agent, FRM technique enables one response to be
made by the responder. The requesting MDM agent is then
able to use the single functional response answer as the basis
for local (to it) simulation that incorporates the device of the
responding MDM agent into its own (the requesting MDM
agent) device assembly.

3.1. Functional response modeling

When an MDM agent is queried, it may return a one-shot
response (e.g., price, delivery time, color) or an FRM of
the queried attribute. FRMs are critical in development of a
methodology and computational mechanism that allows us
to achieve functional response of the device held by the
MDM agent. Some discussion here is necessary before we
move on to the integration of the MDM architecture with
the RD methodology.

We start with an observation: traditional methods of device
simulation will not be effective over the Internet. Even very
sophisticated simulation methods relying on object-oriented
design currently still entail a large amount of communication
between various components of a simulation object. In a
tightly connected, high-speed environment, this may be
effective. In the current Internet environment it will not be
effective because of the enormous load on network traffic
that would be entailed. Consider, for example, a state space
simulation where multiple communications between deriv-
ative functions are required for each time step of the simu-
lation. The situation for state space simulation is not unusual
in terms of required communication load. Thus, a major

Fig. 2. A sketch of the modular distributed modeling agent community.

Fig. 1. A sketch of the information exchange topology. [A color version of
this figure can be viewed online at www.journals.cambridge.org]

M.T. Eskil et al.6

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

hurdle we had to overcome was to conceptualize and imple-
ment as proof of principle a new way to carry out simulation
of engineered devices that would minimize Internet traffic.

We have surmounted that hurdle by conceptualizing a type
of simulation output that for MDM agents is in response to
questions asking for a functional response answer. Instead
of many thousands of iterations between a requesting
MDM agent, and the responding MDM agent, our output
form enables one response to be made by the responder.
The requesting MDM agent is then able to use the single
functional response answer as the basis for local (to it) simu-
lation that incorporates the device of the responding MDM
agent into its own (the requesting MDM agent) device assem-
bly. This is the core result that will enable MDM communities
in an Internet environment.

Next, we will discuss one specific type of functional re-
sponse: functional response answers to queries of mechanical
structures in the domain of structural analysis. Although the
example below is distinctly in the realm of mechanical
engineering, it is centrally important to remember that our en-
tire approach depends on the ability to both hide proprietary
simulation models, while at the same time incorporating the
device represented by its MDM agent into a higher level
simulation model. The example sketched below is a proof
of principle result that developing functional response
methodology is feasible explicitly in the structural analysis
domain.

Figure 3 shows a diagram of a contracted model for an In-
ternet design agent model. The component’s algebraic model
is in the standard stiffness form. Modular modeling element
graphical notation represents user-defined multiport, multiple
degree of freedom subsystem models with a rectangle. The
bold lines represent the power ports with implicit standard-
ized direction of positive power into the element and enforce
a standardized input–output port causality. Standardization of
positive power direction and input–output causality standard-
izes the modular modeling elements’ internal formulation,
which is the essence of modular modeling.

In this example, the detailed physical response model of a
component is in the standard stiffness form

Ky ¼ u, (1)

where K is the component stiffness matrix, y is the compo-
nent generalized displacement vector, and u is the component

input vector. In general, component stiffness matrix is singu-
lar and cannot be inverted. This situation occurs because
component models have zero eigenvalues from “rigid-body
modes” representing components with no applied boundary
conditions. An example for this situation is an unconnected
structural element, such as a beam that is free to translate in
any direction.

Modular modeling connector constraints implement stan-
dard output and power constraints. The connector constraint
forces two connected modular element ports’ outputs, i and
j, to be equal and their power flow to sum to zero to conserve
power. The power flow constraint is translated to equal and
opposite inputs at connected modular element ports because
the product of power port variables is power.

The modular modeling connector constraint graphical no-
tation represents connectors with a bold port line between
modular elements as shown in Figure 4. By definition, con-
nectors have the compatible input–output structure to modu-
lar elements. The bold lines have implicit standardized direc-
tion of positive power into connected modular element ports i
and j and modular connector constraints. The modular con-
nector has the flexibility to assemble by pairs any number
of modular element power ports because modular modeling
elements have an internal junction structure at each port.
The only function of modular modeling connectors is to con-
strain connected modular element ports.

3.2. Deriving FRMs for assemblies using the Join
procedure

The subsystem model depicted in Figure 4 is a demonstration
of the possible situations that can arise when components are
assembled into subsystems. It has two components connected
via constraints on port variables on ports 3 and 4. It has inter-
nal component ports 2 and 5 that are not connected externally.
Finally, the assembly has ports 1 and 6 that can be connected
externally. Once assembled, a new algebraic equation set in
the form of Eq. (1) is required so that this system can be
used in higher level system models. Because the component
models are often singular, the subsystem model will also be
singular in general. Only when assembled with sufficient

Fig. 3. Modular modeling element graphical notation. [A color version of
this figure can be viewed online at www.journals.cambridge.org]

Fig. 4. The subsystem model with two components. [A color version of this
figure can be viewed online at www.journals.cambridge.org]

RD-MDM for distributed design and simulation 7

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

boundary constraints do models become nonsingular and
solvable.

For deriving the FRM for the assembly, the equations for
each of the components are first assembled into the uncon-
strained system matrix, which is the unassembled dynamic
inverse simulation model for the assembly.

K1 0
0 K2

� �
x1

x2

� �
¼ f1

f2

� �
, (2)

or in the expanded form,

k11 k12 k13

k21 k22 k23

k31 k32 k33

2
64

3
75 [0]

[0]

k44 k45 k46

k54 k55 k56

k64 k65 k66

2
64

3
75

2
66666666666664

3
77777777777775

x1

x2

x3

2
64

3
75

x4

x5

x6

2
64

3
75

2
66666666666664

3
77777777777775

¼

f1
f2

f3

2
64

3
75

f4

f5

f6

2
64

3
75

:

3
77777777777775

2
66666666666664

(3)

The subsystem components are uncoupled in this form.
The modular matrix assembly equations transform the com-
ponent input–output pairs (fi, xi) to assembly input–output
pairs (ui, yi). The Join output constraint defines each compo-
nent’s output vectors (x̃) in terms of the assembly output vec-
tor (y).

x̃ ¼ Sy: (4)

The power constraint on the assembly requires the sum of the
work into all joined component ports Wi ¼ xi fi to equal the
applied work W̃j ¼ yjuj. The causality in energy domains is
defined such that this holds for every physical system in these
domains.

x̃T f̃ ¼ yT u: (5)

Applying the power constraint on (4) results in the modular
Join input constraint between assembly’s component input
vectors f̃ and assembly input vector u for all nonzero assem-
bly outputs y.

ST f̃ ¼ u: (6)

The results we obtained in Eqs. (1)–(6) are all that is needed to
derive the FRM for the assembly. Model assembly starts with
the unconstrained grouping of all component models into an
unconstrained assembly model as shown in Eq. (2),

K̃x̃ ¼

[K1] [0] [0] [0]
[0] [K2] [0] [0]

[0] [0] . .
.

[0]
[0] [0] [0] [Kn]

2
6664

3
7775

x1

x2

..

.

xn

2
6664

3
7775 ¼

f1

f2

..

.

fn

2
6664

3
7775: (7)

To obtain a concise modular model, we apply the constraints
through matrix operations. The assembly output constraint is
applied by substituting constraint (4) into (7):

K̃Sy ¼ f̃: (8)

Multiplying both sides with ST and using (6) yields the con-
strained assembly internal stiffness model

K̂y ¼ u, (9)

where K̂ ¼ [ST K̃S].
This simple system is the assembled dynamic inverse

simulation model. It has constants from the original system
contributing to an algebraic combination of addition subtrac-
tion, and multiplication. The particular form of this function
is dependent on the topology of the subsystem and is non-
linear in the parameters. The original engineering data from
which this model is developed is well protected from reverse
engineering—one principle objective of this modeling
system.

4. DESIGN ARCHITECTURE: RD

Quite often when an engineer designs similar artifacts over
and over again, he/she achieves a grasp of the routine nature
of the process and starts discovering effective ways to de-
compose the design process into smaller design problems.
Although all possible situations that might occur in a design
process may not be known beforehand, it is nevertheless pos-
sible to acquire an understanding of design choices and plans
that specify the order of making the choices. RD is a pro-
cedure that aims to capture this “expert” knowledge of the
designer and realize it in computer environment.

Experience has shown that design of a complex system
can be effectively fulfilled by breaking the functionality of
the overall system into simpler and sometimes existing sub-
components and developing an assembly plan to bring these
subcomponents together. Particularly in the design of domestic
consumer products such as household goods, furniture, and
automobiles, the focus is not to produce a product from
scratch, but to modify certain aspects of an available design in
an attempt to improve performance. Typically in such design
tasks the design knowledge is available, but an understanding
of how exactly the design knowledge should be applied is
lacking (Hubka & Eder, 1996; Rodgers et al., 1999).

For instance, the first step in RD of an automobile would be
the hierarchical decomposition of the task of overall design
until manageable complexities are achieved in each subtask.
After the design knowledge is incorporated in the subtasks, it
is up to the strategies of RD process to carry out necessary
modifications and most importantly the assembly process
methods to bring together the individual components into a
complete automobile.

RD should not be considered as a design tool that is
applicable only to simple design problems. A complete RD

M.T. Eskil et al.8

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

structure could represent any complex design for which the
domain knowledge is available and could offer numerous
solutions to a design problem. RD is not applicable only to
novel design problems in which the required knowledge
about the design strategies or potential design components
(attributes of component types in case of configuration
design) are unavailable, or obtained during the design process.

In a series of studies over the past decade, the Intelligent
Systems Laboratory of Michigan State University developed
several computer-based tools for engineering design and
analysis. Among these tools, generic task RD (GT-RD)
architecture was first suggested and implemented by Brown
and Chandrasekaran (1989) and developed later on in the
Intelligent Systems Laboratory (Kamel & Sticklen, 1994),
which will be discussed in the next two sections.

4.1. RD using the GT approach

The introduction of the GT approach (Chandrasekaran, 1988)
lead Brown and Chandrasekaran (1989) to define RD method-
ology and its representation language, Design Specialists and
Plans Language (DSPL). The GT-RD architecture is capable
of solving complex design problems (Sticklen et al., 1992;
Chandrasekaran & Johnson, 1993; Kamel & Sticklen, 1994;
Lenz et al., 1996) when an abstract design plan is obtained
from a domain expert and captured in the GT-RD representa-
tional language.

DSPL deals with complex design cases by breaking the
functionality of the overall system into simpler and existing
subcomponents and capturing assembly plans to bring these
subcomponents together. Currently, this method is applicable
only when all subcomponent models are available locally.
Worldwide exposure of all competing suppliers on the
MDM platform would lead to numerous better parts, offered
at lower prices. Therefore, a successful incorporation of GT-
RD into MDM has the potential to realize lower cost and
higher quality solutions to complex design problems.

4.2. Procedure of GT-RD

GT-RD decomposes the design problem into a hierarchy of co-
operating specialists, each responsible for a specific aspect of
the overall design. Typically, lower level specialists in this
hierarchy represent actual components of the design and are
responsible for parameterizing the design with a suitable com-
ponent or parameterizing a generic component. As RD pro-
ceeds higher in the specialist hierarchy, conceptual aspects of
the design problem become more and more pronounced.

Each specialist in the decomposition structure is furn-
ished with a set of design plans. These plans are specified
by the designer during the structuring of the task-specific
RD system. To choose an appropriate design plan, a spe-
cialist invokes the plan selector, which in turn, refers to the
sponsors of each plan, as depicted in Figure 5. A plan spon-
sor matches the status of the design with the conditions for
applicability of the plan and reports the level of suitability of

the plan it represents. A plan is initiated only when it is eval-
uated as suitable by its plan sponsor and chosen by the plan
selector.

Design plans consist of ordered instructions for assigning
values to parameters of generic components in accordance
with the design goals of the specialist. To fulfill its task, an
initiated design plan may invoke other specialists, execute de-
sign tasks, and check constraints. In case the design of a sub-
system fails, design critique at that abstraction level tries to
determine the reason for the failure and invokes the rede-
signer to take corrective actions, which may result in selection
of a new plan (Brown & Chandrasekaran, 1989).

When a specialist successfully completes the part of the de-
sign it is responsible from, it hands in the design parameters to
its parent specialist, where all subdesigns from one lower
level are merged into a higher level design and checked for
constraints. The design of the artifact becomes more complete
as the design process progresses up in the design abstraction
hierarchy.

5. THE INTEGRATED RD-MDM PLATFORM

Referring back to the challenges in distributed agent-based
design that were enumerated in Section 2, the first challenge
of defining an inclusive model for complex designs is gener-
ally dealt with breaking the functionality of the overall system
into simpler and sometimes existing subsystems and devising
an assembly plan to bring these subsystems together. GT-RD
platform implicitly achieves this functionality provided that
design strategies, models of potential design components,
or physical attributes of components to be parameterized,
and assembly plans are known beforehand. It also addresses
to the second problem of design across different domains by
offering GTs (Section 4.1), each of which captures the
knowledge and control strategies that are characteristic to its
type.

Fig. 5. The architecture of generic task routine design.

RD-MDM for distributed design and simulation 9

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

The MDM architecture deals with the third challenge, the
unavailability of compatible models, by keeping agent
communication as simple as possible with a well-defined
typology of possible queries. The MDM approach asserts
that the internal architecture of a model does not have any
relevance to how the product integrates structurally and
functionally in a larger design. MDM agents communicate
only through message passing, and integrate in complex
designs through FRMs (Section 3.1), which are nothing but
representations of n-dimensional response surfaces. Because
the actual models are not transferred between platforms, the
problem of uniform model representation across platforms
is alleviated.

The MDM approach also addresses challenges 4 and 5,
which are protection of proprietary data and keeping the network
traffic in manageable levels by use of the FRM technique.
The FRM technique loses the internal topology of the assem-
bled device, thus hiding the proprietary data (Section 3.2).
Transfer of FRMs during simulation reduces the number of
communications to one for each subcomponent, significantly
reducing the network traffic.

An integrated RD-MDM platform therefore meets challenge
6, unavailability of distributed design and simulation tools, by
incorporating the merits of both RD and MDM techniques. In
the rest of this section we will extend the GT-RD framework
with the selection of remotely represented MDM agents and
elaborate the integration of MDM in the RD methodology
for simulation based testing of distributed assemblies.

5.1. Selection of off-the-shelf components

GT-RD decomposes the overall problem into a hierarchy of
cooperating specialists, each responsible for a specific part
of the design (Fig. 5). Typically, higher level specialists repre-
sent the conceptual aspects of the design, whereas lower level

specialists are responsible for selecting actual components. In
the current RD platform, designers are allowed to use a pool
of locally represented, generic components for parameteriza-
tion of the design. We aim to enhance the RD platform by
enabling the selection of alternatives among remotely distrib-
uted components, that is, off-the-shelf parts.

From the perspective of a designer, any remote design
agent is nothing but a representation of the external behavior
of a subsystem. This perspective is also valid for an RD
process; when a lower level specialist selects suitable sub-
system parameters (for component, material, process, or plan),
the generated subsystem functions as a knowledge base
that will have to be incorporated into the design. Thus, the
RD system can be extended to implement a Remote Agent
Selection Task (Fig. 6) to parameterize the design by
choosing a suitable remote agent that belongs to a category
that is specified by the designer.

In the integrated RD-MDM architecture (Fig. 6), each spe-
cialist is furnished with an Assembler or Join to incorporate
the selected components in the design. Each specialist has
access to computational resources to effectively respond to
queries, depicted as External Services. An external service
can be any local tool such as MathWorks MATLAB or a
Dynamic Link Library. Off-the-shelf components are
searched and contracted by the Remote Agent Selection
Task, which carries out a multiattribute evaluation of the
queried MDM agents. In the current architecture all connec-
tions are point-to-point and asynchronous.

With this improved RD tool, designers have the option to
do multiattribute search and select among design parts that
are available locally and remotely in the form of an MDM
agent. If a commercially available MDM agent is an option,
the designer must create a remote agent selection task for
the related low-level specialist. This task specifies a category
of MDM agents (via Agent Registry) and the queries of

Fig. 6. The integrated routine design–modular distributed modeling architecture.

M.T. Eskil et al.10

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

concern (via Query Ontology) for selecting the right part.
Agent selection is made by matching the design requirements
with the agent performance figures.

When the most suitable remote agent is selected by the RD
process, it becomes a component of the design. The designer
may prefer to keep a virtual link to the remote agent, or he/
she may request and store an FRM of the remote agent. Keep-
ing only a virtual link would ensure up to date responses from
the remote agent, slightly slowing down the simulation for
large number of components. When the FRM of the agent
is stored on the local computer, analysis will be faster, but
periodic updating of the FRM representation will become a
necessity.

Consider an automobile manufacturing company that is
capable of manufacturing all of the needed components ex-
cept the drive train. An automobile designer of this company
sets up the RD system as usual but creates a remote agent
selection task in the plans of the drive train specialist. This
situation is depicted in Figure 7. When the design process
is started, remote agent selection task queries all MDM agents
in the “Drive Train” category, selects a suitable drive train,
and returns it to the drive train specialist. At this point, the
design is parameterized with a remote component and the
design can proceed to selection of other local or remote com-
ponents and their integration in the overall design.

5.2. Joining selected components—Integrating
components in an assembly

Selection of components that are represented remotely as
MDM agents corresponds to selecting commercially avail-
able parts from a catalog for use in design. In a real-world
design problem, the next step would be incorporating these
parts in the overall design and analyzing their interactions.
For this purpose we use the MDM Join operations (Section
3.2) and extend RD by implementing a new simulation tool
in GT-RD.

In extended GT-RD, only the lower level specialists are re-
sponsible for selecting remote agents. Involving with a single
component, these specialists do not require any Join opera-
tions. However, as the design proceeds up to higher level spe-
cialists, different local and remote models will start merging
together. In any one of these specialists, the designer may
need to define the Join operation that brings subassemblies
together, optionally followed by a simulation.

MDM methodology can be incorporated in GT-RD as a re-
cursive process that starts with merging the FRMs of locally
represented components and/or distributed off-the-shelf
parts and proceeds with merging the FRMs of subassemblies
at higher abstraction levels (Fig. 6). The addition of a design
testing capability at every abstraction level resolves the design
failures at the lowest abstraction level they occur. In this
scheme a subassembly that does not conform to the rest of
the design will be discarded in order to generate a new and
viable subassembly, before the design progresses to higher
levels of abstraction.

The incorporation of MDM in GT-RD is accomplished by
furnishing each parent specialist with an external service for
simulation. To carry out a simulation, the responses of its
every child have to be joined together. After the completion
of each Join operation, the parent specialist becomes a rep-
resentative of a joined, single component. This component
is declared as a local MDM agent, which is not accessible
from the outside world. Simulation of this assembly corre-
sponds to querying the local agent with inputs and retrieving
the outputs.

As discussed in Section 4.2 and depicted in Figure 6, every
parent specialist follows a strategy as dictated by one of its
plans. When the simulation of the outcome of a plan fails, re-
designers are invoked and the design proceeds downward with
the selection of a new plan. If the simulation is successful,
the design will proceed upward, through parent specialists,
their Join operations, and simulations. With each successful
simulation, the designer is given the option of registering

Fig. 7. Automated routine design of an automobile using modular distributed modeling agents.

RD-MDM for distributed design and simulation 11

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

the local agent that was created for simulation purposes. When
registered, it becomes accessible to the MDM community. This
functionality will most often be used for the output of the top-
level specialist, that is, the product that is being designed.

6. AN EXAMPLE—FUEL CELL VEHICLE
DESIGN

6.1. Setting up the routine designer and component
selection process

We carried out our experiments using an MDM population of
4 electric motor, 6 transmission, and 12 fuel cell agents, com-
municating over 32 predefined queries. These agents were
distributed over three servers, communicating with each other
over TCP/IP. The Agent Registry and Query Ontology Agents
were held on a separate server. A client computer was used to
run the RD-MDM designer and communicate with the Agent
Registry, Query Ontology, and MDM model servers.

In a real-world application the MDM agents will be pub-
lished by their suppliers on the Agent Registry and the queries
will be defined centrally by the Query Ontology. Therefore, a
fuel cell vehicle designer’s tasks will start with the setting up
of the routine designer and not its components. The demon-
stration below will also assume that an MDM population
and the necessary ontologies are readily available and pro-
ceed to the RD-MDM designer platform. The reader is re-
ferred to Eskil (2004) for generation of an MDM population.

As explained in Section 4.2, an RD problem solver is com-
posed of specialists, their design plans, and plan tasks, each
equipped with one or more steps of operations. To avoid re-
petition, we will only demonstrate the component selection
process for the electric motor in this paper. The design of a
fuel cell vehicle starts with the top specialist, which is called
the “fuel cell vehicle specialist.” This specialist has only one
plan, whose items are calls to (Fig. 8)

1. drive equipment specialist,
2. fuel equipment specialist,
3. acceleration simulation, and
4. fuel consumption simulation.

When RD-MDM is run with a set of design requirements,
the top specialist determines the design requirements for
the drive equipment according to its design plan, and hands
them to drive equipment specialist. As shown in the design
decomposition, the drive equipment specialist is responsible
for selection and (optionally) assembly of the drive train
components. The drive equipment specialist transfers the re-
lated design requirements to electric motor and transmission
specialists. Selection of the electric motor component
depends on the acceleration requirement on the vehicle.
After the selection of the electric motor, the electric motor
specialist returns the name of the selected agent to the drive
equipment specialist, who in turn, hands the control to the
transmission specialist. The design proceeds with the fuel

equipment specialist and its subspecialist, the hydrogen
fuel cell specialist.

Our extension to RD for selection of off-the-shelf compo-
nents (Section 5.1) enables the selection of remote MDM
agents in the “Selection Steps.” Each of these steps compares
the remote agent responses with the selection criteria set by
the designer. A selection step evaluates agents in the specified
agent category and puts them in bins ranging from “perfect”
to “neutral” and “rule out.” This step offers the flexibility to
do a multiattribute search and the designer is free to choose
as many selection criteria as needed. For instance, the deliv-
ery time for the part, or the characteristics of previously deter-
mined design subassemblies could also be incorporated in
this step.

At this point it is important to note that the outcome of our
research is the infrastructure that is used to build the fuel cell
vehicle routine designer, and not the designer itself. It is the
human designer’s responsibility to build such an RD struc-
ture with respect to techniques and knowledge that pertain to
the domain. This distributed RD infrastructure gives designers
the capability of applying the RD technique in various do-
mains and across platforms, where the technique is applicable.

6.2. Assembling the selected components and
simulation-based design testing

Let us step back and look at the plan items of the top spe-
cialist, that is, the fuel cell vehicle specialist. The drive equip-
ment and fuel equipment specialists, as discussed above,
will control the selection of suitable remote agents that will
be incorporated as the electric motor, transmission, and fuel
cell components in the fuel cell vehicle design. When the
fuel equipment specialist completes its tasks and returns the
agent names to the top specialist, the parameterization of
the simplified fuel cell vehicle design example is complete.
At this point, our augmentation of RD with simulation (Sec-
tion 5.2) comes into play. RD-MDM uses the Join technique
(Section 3.2) to assemble the fuel cell vehicle and analyze the
assembly by means of simulations. The assembled fuel cell
vehicle model is in the form

VFC

eext

text

Fext

2
664

3
775 ¼ K̂

VFC

QFC

uEM

x

2
664

3
775, (10)

where K̂ is the 4�4 FRM of the fuel cell vehicle; VFC is the
voltage request from the fuel cell stack; QFC is the charge gen-
erated by the fuel cell stack; uEM is the angular displacement
of the electric motor shaft; x is the displacement of the vehi-
cle; and eext, text, and Fext are the external disturbances on the
voltage (assumed zero), torque (brake on tire), and force (air
drag on vehicle), respectively. Because of space considera-
tions, we are unable to include the assembly of the fuel cell
vehicle in this paper; refer to Eskil (2004) for a full formula-
tion.

M.T. Eskil et al.12

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

F
ig

.8
.

R
ou

tin
e

de
si

gn
er

fo
r

fu
el

ce
ll

ve
hi

cl
es

.

RD-MDM for distributed design and simulation 13

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

The third item in the top specialist’s plans, acceleration
simulation, runs a simulation on the assembled component
FRMs to determine the time to reach from 50 to 70 mph.
Item 4 in the top specialist’s plan, fuel consumption
simulation, is very similar to acceleration simulation, the
only difference being the simulation input for required speed.
Acceleration simulation simulates the vehicle by a speed re-
quirement of constant 160 mph, whereas fuel consumption
simulation applies varying speed requests in compliance
with hypothetical city driving conditions. Note that the
GT-RD architecture also enables putting constraints on the
outcomes of these simulations as well as other parameters
of interest, which would initiate redesign with an automatic,
rule-based evaluation of the failure, and selection of alterna-
tive design plans in case a constraint is not met.

The MATLAB Simulink model used for the acceleration
and fuel consumption simulations is presented in Figure 9.
The simulation model Kfcemdt for the fuel cell vehicle (fuel
cell–electric motor–drive train assembly) is represented in
a linear time invariant (LTI) block. As demonstrated in
Section 3.2, the simulation model is the inverse of the assem-
bled FRM K̂ [Eq. 10] of the fuel cell vehicle.

The first input to the LTI block is the voltage request from
the fuel cell. This input is supplied by the speed controller,
which compares the speed request with the vehicle speed
and produces a feedback by use of a PI controller. The third
input is the torque disturbance on the transmission and tire
connection, and is utilized as the port for the brake torque.
The fourth input is the external disturbance on the vehicle,
that is, air drag. As demonstrated, the LTI block not only

represents the overall system but also hides the details on
the implementation and the components of the assembly.

When the RD-MDM fuel cell vehicle designer is run with
design requirements (the vehicle accelerates from 50 to 70
mph in less than 10 s, and the vehicle’s top speed is greater
than 100 mph) a fuel cell vehicle is parameterized in accor-
dance, assembled, and simulated with varying inputs. The
plots of vehicle speed versus time for the automatically gen-
erated parameterization of the fuel cell vehicle are depicted in
Figure 10. Acceleration simulation returned the time from 50
to 70 mph as 7.9 s and the result of the Max Speed simulation
was 118.9 mph.

When the simulations are over, the Fuel Cell Routine
Designer returns the selected components as well as the sim-
ulation results. As shown in Figure 11, although it was not
guaranteed for all inputs, the routine designer had met the
design requirements.

7. CONTRIBUTIONS AND CONCLUSIONS

This paper introduced RD-MDM, a conceptual framework
and implementation that supports task directed, distributed
RD including simulation-based design testing. In this re-
search we leveraged the MDM methodology to simulate the
interaction of design components in an assembly. The de-
liverable of our research is a distributed RD architecture
that is capable of

1. automated multiattribute search for remote off-the-shelf
design components represented as MDM agents,

Fig. 9. The MATLAB Simulink model for fuel cell vehicle simulation.

M.T. Eskil et al.14

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

2. design parameterization by choosing suitable compo-
nents for the design,

3. integrating selected components in a distributed assem-
bly and running simulations for design testing, and

4. making the final design available to prospective buyers
without disclosing neither the internal connection of the
utilized components nor the internal functional imple-
mentation.

We have achieved our goals on a prototype implementation
by integrating the MDM methodology into the RD frame-
work and extending both methodologies as necessary. The
incorporation of simulation-based design testing in RD
extends the RD methodology in two major dimensions:

1. simulation-based testing of distributed subassemblies at
chosen abstraction levels of a design and

2. simulation-based testing of the overall design.

The first dimension enables determination of subassemblies
that do not conform to the design requirements at an early
stage in design. It also efficiently handles the incompatibility
problem between subassemblies. In this scheme a subassem-
bly that does not conform to the rest of the design or applic-
able design requirements will be discarded to generate a new
and viable subassembly before the design progresses to
higher levels of abstraction. The second dimension enables
performance and failure tests on the complete design before
publishing it as an MDM agent on the Internet, or before
the manufacturing stage commences.

With RD-MDM, integrators can design and virtually as-
semble their end products by taking advantage of a global
network of suppliers and evaluate design alternatives without
the necessity of nondisclosure agreements. An integrator can
also serve as a supplier to other integrators by making its RD-

MDM-generated product model publicly available in the
MDM community for evaluation as a part of higher level
design.

An integrated RD-MDM framework creates a platform that
realizes the potential of automated design that has been miti-
gated by lack of global access to design knowledge. It will be
especially beneficial in decreasing the engineering design
cycle time, increasing the commercial agility of the manufac-
turer, enabling custom-made designs while securing the pro-
prietary design data, and keeping the network traffic within
manageable levels. These benefits can be assessed in three
major dimensions: cost, quality, and modularity.

7.1. Cost

Experience has shown that standardization approaches to
model representation require massive conversions from report
archives, CAD drawings, product catalogs, and so forth, to
the standardized format, which is a significant burden on
manufacturers. RD-MDM provides an alternative to the cur-
rent standardization approaches and keeps the communica-
tion grammar to the bare essentials, that is, query–response
pairs, while protecting the proprietary design models. With
our approach, manufacturers are only required to gather the
information they would like to provide and publish it on
the global agent registry. The simplicity of the RD-MDM
approach keeps the implementation and maintenance costs
of RD-MDM distributed design framework at a minimum.

In addition to elimination of the costs associated with the
standardization efforts, the RD-MDM framework promises
significant savings in the product development stages. First,
RD-MDM enables system integrators to rapidly generate de-
sign alternatives by use of distributed computational models
provided by the suppliers. This black-box modeling tech-
nique eliminates the need for nondisclosure agreements that

Fig. 10. Requested and achieved speeds in high-acceleration and city driving scenarios.

RD-MDM for distributed design and simulation 15

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

can take in the order of months to put in place, decreasing the
engineering cycle time. Second, the RD-MDM approach
simultaneously deals with the engineering design and project
procurement practices such as procurement planning, supply
market analysis, and solicitation (supplier selection). Pro-
vided that a reasonable number of manufacturers choose to
promote their products by publishing them as MDM agents,
such integration of engineering design and project procure-
ment practices could produce significant savings in procure-
ment-related transactions. Third, the capability to rapidly
generate design alternatives and testing them by simulations
eases the implementation of engineering changes during the
manufacturing stage, lowering the associated costs.

7.2. Quality

For assemblers, sourcing higher quality components is a
requisite for ensuring the quality of the assembled products.
RD-MDM facilitates a multiattribute search over a global net-
work of design parts to automatically locate the most suitable
components.

The interaction between design components also plays a
crucial role in the overall quality of the assembly. RD-
MDM addresses this concern by automatically integrating
the selected components in an assembly and running simula-
tions. These simulations can also be run beyond the intended
operation range of the product for design failure testing pro-
vided that component device models are developed to imple-
ment failure.

7.3. Modularity

In this research, we are asserting that how a specific product
achieves its functional properties internally does not have any
relevance to its structural and functional integration in a larger
design. Therefore, we propose strict encapsulation of design
models as component agents, allowing communication only
on a predetermined ontology that specifies the query and

response formats while hiding the internal and proprietary
structure of models. As a result, we can envision a large
pool of freely available distributed model agents, each of
which represents a solution to an engineering design problem
and can be utilized as a plug-in solution to a subproblem of a
more complex problem. Integration of the encapsulated de-
sign models in larger assemblies is recursive in the hierarchy
of low- to high-complexity design solutions.

8. LIMITATIONS AND FUTURE WORK

As discussed above and in Section 5.1, RD-MDM searches
and selects design parts within prespecified categories of
parts. Our test bed consisted of only three such categories
of agents and their legal queries. As the population of partici-
pating MDM agents grows, there will be a need for systematic
growth for the specifications of agent and query types and re-
lations among them. Ontology research is an active field that
deals with this taxonomy of knowledge and formal descrip-
tion and relationship of concepts in the domain of knowledge
(Gruber, 1992; McGuiness et al., 2000; Gennari et al., 2002).
The focus of ontology design, generating hierarchically cor-
rect ontologies, introducing new classes, avoiding cycles
among classes, and handling inheritance, will prove to be
important in a real-world application of RD-MDM and will
need to be considered in the continuation of our research.

MDM methodology has so far been applied only on mod-
eling of linear systems. For this reason, when a subcomponent
with nonlinear characteristics is present in an assembly, a sin-
gle FRM cannot be derived to represent the overall system.
Although we can still design and simulate a nonlinear system
by treating all nonlinear subcomponents as separate but
coupled entities, there are important drawbacks of not inte-
grating the assembly in a single FRM, such as reduced pro-
tection of proprietary data and cross-platform compatibility.
This point underlines the synergistic relationship between RD
problem solving and the MDM methodology; the integrated
approach developed in the current research will benefit as

Fig. 11. Fuel cell vehicle design and simulation results.

M.T. Eskil et al.16

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

improvements are made in either of these methodologies. The
best way to deal with this problem is a future research direction
of ours, that is, extending the MDM methodology to nonlinear
systems.

Trust is also another issue to be dealt with in the current
platform. Among the five types of trust defined by McKnight
et al. (2002) we feel that the most crucial in the current state of
the industry is the institution-based trust, that is, the truster
puts more confidence in some institutions than others. The
concept of trust must be implemented in the RD-MDM plat-
form before it can be an effective design and analysis tool.

Last but not the least, our integration methodology must be
extended to convey the assembler’s requirements to suppliers
so that new and innovative designs may evolve. In the past,
suppliers and assemblers often interacted solely by exchange
of geometric CAD data. However, as companies outsource
more and more parts of their product, they gain leverage to
dictate the requirements and specifications of the components
they are seeking (Szykman et al., 2001). This reality can be
exploited in RD-MDM by providing autonomy to the
MDM agents that goes beyond choosing the right computa-
tional resource to effectively respond to queries or automa-
tically replacing outdated or obsolete components. In this
scheme, the client provides its requirements to an MDM agent
of a particular type. The agent being queried on the other
hand, goes through an automatic (and sometimes distributed)
RD process to produce a design that is to the satisfaction of
the client. It may also send such a redesign request to its re-
mote components. This can be visualized as a process that in-
itiates a dynamic evolution on some part of the MDM commu-
nity. This scheme will furnish the RD-MDM structure with the
currently lacking cooperative problem solving capability.

ACKNOWLEDGMENTS

This work was carried out in the Intelligent Systems Laboratory,
Michigan State University. Parts of this work were completed in
the Artificial Intelligence Laboratory, Işık University, and the
Vision and Pattern Analysis Laboratory, Sabanci University, with
the support of EU SPICE Project FP6-2004-ACC-SSA-2016684.

REFERENCES

Abrahamson, S., Wallace, D., Senin, N., & Sferro, P. (2000). Integrated
design in a service marketplace. Computer-Aided Design 2(2), 97–107.

Alexander, C. (1964). Notes on the Synthesis of Form. Cambridge, MA: Har-
vard University Press.

Ames, B.B. (2000). Digital design grows up. Design News, 19, 92–94.
Augenbroe, G. (1995). An overview of the COMBINE project. Proc. 1st

European Conf. Product and Process Modelling in the Building
Industry, pp. 547–554, Dresden, Germany.

Ball, N.R., Matthews, P.C., & Wallace, K.M. (1998). Managing conceptual
design objects: an alternative to geometry. Artificial Intelligence in
Design ‘98: Proc. 5th Int. Conf. Artificial Intelligence in Design, AID 98
(Gero, J.S., & Sudweeks, F., Eds.), pp. 67–86. New York: Kluwer Aca-
demic.

Brown, D.C., & Chandrasekaran, B. (1989). Design Problem Solving: Knowl-
edge Structures and Control Strategies. San Mateo CA: Morgan Kaufmann.

Byam, B.P., & Radcliffe, C.J. (1999). Modular modeling of engineering sys-
tems using fixed input–output structure. Symp. Systematic Modeling,
Orlando, FL.

Byam, B.P., & Radcliffe, C.J. (2000). Direct insertion realization of linear
modular models of engineering systems using fixed input–output struc-
ture. 26th Design Automation Conf., Baltimore, MD.

Cave, P.R., & Noble, C.E.I. (1986). Engineering design data management.
Engineering Management: Theory and Applications (EMTA ‘86), pp.
301–307, Swansea.

Cera, C.D., Kim, T., Han, J., & Regli, W.C. (2004). Role-based viewing en-
velopes for information protection in collaborative modeling. Computer-
Aided Design 36(9), 873–886.

Chan, F.L., Spiller, M.D., & Newton, A.R. (1998). WELD—an environment
for Web-based electronic design. Design Automation Conf., San
Francisco, CA, 146–151.

Chandrasekaran, B. (1988). Generic tasks as building blocks for knowledge-
based systems: the diagnosis and routine design examples. Knowledge
Engineering Review 3(3), 183–210.

Chandrasekaran, B., & Johnson, T.R. (1993). Generic task and task struc-
tures: history, critique and new directions. In Second Generation Expert
Systems (David, J.-M., Krivine, J.-P., & Simmons, R., Eds.). Berlin:
Springer–Verlag.

Court, A.W., Culley, S.J., & McMahon, C.A. (1997). The influence of infor-
mation technology in new product development: observations of an em-
pirical study of the access of engineering design information. Interna-
tional Journal of Information Management 17(5), 359–375.

Cutkosky, M.R., Engelmore, R.S., Fikes, R.E., Genesereth, M.R., Gruber,
T.R., Mark, W.S., Tenenbaum, J.M., & Weber, J.C. (1993). PACT: an ex-
periment in integrating concurrent engineering systems. IEEE Computer
26(1), 28–37.

Dalpasso, M., Bogliolo, A., & Benini, L. (1999). Specification and validation
of distributed IP-based designs with JavaCAD. Proc. IEEE Design, Au-
tomation and Test in Europe, pp. 684–688.

Dalpasso, M., Bogliolo, A., & Benini, L. (2002). Virtual simulation of distrib-
uted IP-based designs. IEEE Design & Test of Computers 19(5), 92–104.

Dong, A., & Agogino, A.M. (1996). Text analysis for constructing design
representations. Artificial Intelligence in Design ‘96: Proc. 3rd Int.
Conf. Artificial Intelligence in Design, AID 96 (Gero, J.S., & Sudweeks,
F., Eds.), pp. 21–38. New York: Kluwer Academic.

Eskil, M.T. (2004). Distributed routine design over the Internet with co-
operating MDM agents. PhD Thesis. Michigan State University, Com-
puter Science and Engineering Department.

Eskil, M.T., Sticklen, J., & Radcliffe, C.J. (2003). Modular distributed mod-
eling. 4th Int. Collaborative Technology Symp. pp. D3–202, Orlando, FL.

Fin, A., & Fummi, F. (2000). A Web-CAD methodology for IP-core analysis
and simulation, IEEE and ACM Proc. Design Automation Conf.,
pp. 597–600, Los Angeles.

Fruchter, R., Clayton, M.J., Krawinkler, H., Kunz, J., & Teicholz, P. (1995).
Interdisciplinary communication medium for collaborative conceptual
building design. Advances in Engineering Software 25(2–3), 89–101.

Fruchter, R., Reiner, K., Lifer, L., & Toye, G. (1996). Visionmanager: a com-
puter environment for design evolution capture. Artificial Intelligence in
Design ‘96: Proc. 3rd Int. Conf. Artificial Intelligence in Design, AID 96
(Gero, J.S., & Sudweeks, F., Eds.), pp. 505–524. New York: Kluwer
Academic.

Gennari, J., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubezy, M.,
Eriksson, H., Noy, N.F., & Tu, S.W. (2002). The Evolution of Protege:
An Environment for Knowledge-Based Systems Development. Palo
Alto, CA: Stanford University.

Gruber, T.R. (1992). Ontolingua: A Mechanism to Support Portable Ontol-
ogies. Palo Alto, CA: Stanford University, Knowledge Systems Labora-
tory.

Gu, B., Asada, H.H., & He, X.D. (2002). Software development of co-
simulation of algebraically coupled dynamic subsystems without dis-
closure of proprietary subsystem models. ASME Int. Mechanical
Engineering Congr. Exhibition, Paper No. 39287.

Hauck, S., & Knoll, S. (1998). Data security for Web-based CAD. ACM/
IEEE Design Automation Conf., pp. 788–793, San Francisco, CA.

Helaihi, R., & Olukotun, K. (1997). Java as a specification language for hard-
ware–software systems. Proc. 1997 IEEE/ACM Int. Conf. Computer-
Aided Design, pp. 690–697, San Jose, CA.

Hubka, V., & Eder, W.E. (1996). Design Science. New York: Springer–Verlag.
Jennings, N.R., & Bussmann, S. (2003). Agent-based control systems. IEEE

Control Systems 23(3), 61–74.
Kamel, A., & Sticklen, J. (1994). Multiple design: an extension of routine

design for generating multiple design alternatives. Artificial Intelligence
in Design, ‘94, pp. 275–292, Dordrecht.

RD-MDM for distributed design and simulation 17

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

Keskinocak, P., Goodwin, R., Wu, F., Akkiraju, R., & Sesh, M. (2001).
Decision Support for Managing an Electronic Supply Chain, Vol. 1,
pp. 15–31. New York: Kluwer Academic.

Kopena, J.B., & Regli, W.C. (2003). Functional modeling of engineering de-
signs for the semantic Web. IEEE Data Engineering Bulletin 26(4), 55–62.

Lenz, T.J., McDowell, J.K., Hawley, M.C., Kamel, A., & Sticklen, J. (1996).
The evolution of a decision support architecture for polymer composites
design. IEEE Expert 11(5), 77–83.

MacGregor, S.P., & Thomson, A.I. (2001). A case study on distributed,
collaborative design: investigating communication and information flow.
6th Int. Conf. Computer Supported Cooperative Work in Design,
pp. 249–254, London, Ontario, Canada.

Marsh, J.R. (1997). The capture and utilisation of experience in engineering
design. PhD Thesis. University of Cambridge.

Maturana, F., & Norrie, D.H. (1996). Multi-agent mediator architecture for
distributed manufacturing. Journal of Intelligent Manufacturing 7,
257–270.

Maturana, F., Shen, W., & Norrie, D.H. (1999). MetaMorph: an adaptive
agent-based architecture for intelligent manufacturing. International
Journal of Production Research 37(10), 2159–2174.

McGuiness, D.L., Fikes, R., Rice, J., & Wilder, S. (2000). The chimaera
ontology environment. 17th National Conf. Artificial Intelligence (AAAI
2000), Austin, TX.

McKnight, D.H., Choudhury, V., & Kacmar, C. (2002). Developing and
validating trust measures for e-commerce: an integrative topology.
Information Systems Research 13(3), 334–361.

Nowack, M.L. (1997). Design guideline support for manufacturability. PhD
Thesis. University of Cambridge.

Pahng, F., Senin, N., & Wallace, D. (1998). Distribution modeling and evalu-
ation of product design problems. Computer-Aided Design 30(6), 411–
423.

Radcliffe, C.J., & Sticklen, J. (2003). Modular distributed models of
engineering structures. Int. Mechanical Engineering Congr. Exhibition,
Paper No. 41171, Washington, DC.

Regli, W.C. (1997). Internet-enabled computer-aided design. IEEE Internet
Computing 1(1), 39–51.

Reichenbach, D. (2003). Modeling of dynamic system using Internet
engineering design agents. Master’s Thesis. Michigan State University.

Rodgers, P.A. (1997). The Capture and Retrieval of Design Information: An
Investigation of the Information Needs of British Telecom Designers.
Cambridge: University of Cambridge, Engineering Design Centre.

Rodgers, P.A., Huxor, A.P., & Caldwell, N.H.M. (1999). Design support
using distributed Web-based AI tools. Research in Engineering Design
11(1), 31–44.

Rosenman, M.A., & Gero, J.S. (1996). Modelling multiple views of design
objects in a collaborative CAD environment. Computer-Aided Design
28(3), 193–295.

Schlenoff, C., Denno, P., Ivester, R., Libes, D., & Szykman, S. (2000). An
analysis and approach to using existing ontological systems for applica-
tions in manufacturing. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 14, 257–270.

Schott, H., Buttnet, K., & Birkhofer, H. (1997). Information resource man-
agement for design—illustrated by Hypermedial Guidelines. Int. Conf.
Engineering Design, pp. 179–184, Tampere, Finland.

Shakeri, C., & Brown, D.C. (2004). Constructing design methodologies
using multiagent systems. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 18, 115–134.

Shen, W., & Barthes, J.P.A. (1996). An experimental environment for ex-
changing design knowledge by cognitive agents. In Knowledge Intensive
CAD (Mantyla, M., Finger, S., & Tomiyama, T., Eds.), Vol. 2, pp. 19–38.
London: Chapman & Hall.

Silva, M.J., & Katz, R.H. (1995). The case for design using the World Wide
Web. Proc. ACM/IEEE, pp. 579–585.

Sinz, C., Kaiser, A., & Küchlin, W. (2003). Formal methods for the
validation of automotive product configuration data. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing 17(1), 75–97.

Smith, L., & Reinertson, D.G. (1991). Developing Products in Half the Time.
New York: Van Nostrand Reinhold.

Spiller, M.D., & Newton, A.R. (1997). EDA and the network. IEEE Int.
Conf. Computer-Aided Design, pp. 470–476.

Sticklen, J., Kamel, A., Hawley, M., & Delong, J. (1992). An artificial intel-
ligence-based design tool for thin film composite materials. Applied
Artificial Intelligence 6(6), 303–313.

Szykman, S., Sriram, R.D., & Regli, W.C. (2001). The role of knowledge in
next-generation product development systems. Journal of Computing
and Information Science in Engineering 1(1), 3–11.

Wallace, D., Yang, E., & Senin, N. (2001). Integrated Simulation and Design
Synthesis. Cambridge, MA: Massachusetts Institute of Technology,
Center for Innovation in Product Development.

Wooldridge, M. (1997). Agent-based software engineering. IEE Proceedings
on Software Engineering 144, 26–37.

Zhang, L.J., Chao, T., Chang, H., & Chung, J.Y. (2003). XML-Based
Advanced UDDI Search Mechanism for B2B Integration, Vol. 3, pp.
25–42. New York: Kluwer Academic.

Taner Eskil is an Assistant Professor in the Department of
Computer Science and Engineering, Işık University, Tur-
key. Dr. Eskil obtained his BS in mechanical engineering
and holds an MS in systems and control engineering. He
received his PhD in 2005 from Michigan State University
for his work in routine design and distributed simulation
of dynamic systems. His research interests include knowl-
edge-based systems and Internet agent support for electronic
commerce.

Jon Sticklen is an Associate Professor in the Department of
Computer Science and Engineering, College of Engineering,
Michigan State University. His research in knowledge-based
systems has emphasized an articulation between applications
development and needs-driven theory advancement, particu-
larly in task-specific architectures and function-based reason-
ing. Applications areas have included troubleshooting for
high-performance aircraft, landscape level ecological model-
ing, and automated support for materials systems design and
manufacturing planning of integrated structures made from
polymer composites. More recently, Dr. Sticklen’s major
focus has been on pedagogical issues, and in particular, on
the pedagogy of first-year engineering.

Clark Radcliffe has been at Michigan State University
since 1980. He received his PhD from the University of
California in 1980 for his work in the dynamics and control
of circular saw vibration. He has served as Associate Tech-
nical Editor of two professional journals, Chair of the
ASME Dynamic Systems and Control Division, as well
as serving on the Systems and Control Operating Board
of ASME. Dr. Radcliffe’s research and teaching interests
are in the area of dynamic systems and control with specific
interests in the interfaces between mechanical, electrical,
and computer systems.

M.T. Eskil et al.18

https://doi.org/10.1017/S0890060408000012
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 05:07:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0890060408000012
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

