
doi: 10.1016/j.procs.2015.05.353 

  

Graphs, Matrices, and the GraphBLAS:                  
Seven Good Reasons 

Jeremy Kepner1*, David Bader2, Aydın Buluç3†, John Gilbert4,          
Timothy Mattson5 and Henning Meyerhenke6 

1Massachusetts Institute of Technology, Cambridge, U.S.A.;  2Georgia Institute of Technology, 
Atlanta, U.S.A.; 3Lawrence Berkeley National Laboratory, Berkeley, U.S.A.; 4University of California 
Santa Barbara, Santa Barbara, U.S.A.; 5Intel Corporation, Portland, U.S.A.; 6Karlsruhe Institute of 

Technology, Karlsruhe, Germany;  kepner@ll.mit.edu, bader@cc.gatech.edu, abuluc@lbl.gov, 
gilbert@cs.ucsb.edu, timothy.g.mattson@intel.com, henning.meyerhenke@kit.edu 

 

 
Abstract 
The analysis of graphs has become increasingly important to a wide range of applications.  Graph 
analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data 
complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, 
and (7) parallel performance.  Implementing graph algorithms using matrix-based approaches provides 
a number of promising solutions to these challenges.  The GraphBLAS standard (istc-
bigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph 
algorithms to the broadest possible audience.  The GraphBLAS mathematically defines a core set of 
matrix-based graph operations that can be used to implement a wide class of graph algorithms in a 
wide range of programming environments.  This paper provides an introduction to the GraphBLAS 
and describes how the GraphBLAS can be used to address many of the challenges associated with 
analysis of graphs.  
 
Keywords: graphs, algorithms, matrices, linear algebra, software standards 

1 Introduction 
Graphs are among the most important abstract data structures in computer science, and the 

algorithms that operate on them are critical to applications in bioinformatics, computer networks, and 
social media (Ediger et al, 2010; Ediger et al, 2011; Reidy et al, 2012; Reidy & Bader, 2013).  Graphs 
have been shown to be powerful tools for modeling complex problems because of their simplicity and 
generality (Staudt et al, 2014a; Bergamini et al, 2015).  For this reason, the field of graph algorithms 
has become one of the pillars of theoretical computer science, informing research in such diverse areas 

                                                             
* Supported by the National Science Foundation under Grant No. DMS-1312831 
† Supported by DOE Office of Advance Scientific Computing Research under contract DE-AC02-05CH11231 

Procedia Computer Science

Volume 51, 2015, Pages 2453–2462

ICCS 2015 International Conference On Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

2453

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.353&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.353&domain=pdf


 

 

as combinatorial optimization, complexity theory, and topology.  Graph algorithms have been adapted 
and implemented by the military, commercial industry, and researchers in academia, and have become 
essential in controlling the power grid, telephone systems, and, of course, computer networks. 

Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) 
data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial 
performance, and (7) parallel performance.  Implementing graph algorithms using matrix-based 
approaches provides a number of promising solutions to these challenges. 

The duality between the canonical representation of graphs as abstract collections of vertices and 
edges and a matrix representation has been a part of graph theory since its inception (Konig, 1931; 
Konig, 1936).  Matrix algebra has been recognized as a useful tool in graph theory for nearly as long,  
see (Harary, 1969) and references therein.  However, matrices have not traditionally been used for 
practical computing with graphs, in part because a dense two-dimensional matrix is not an efficient 
representation of a sparse graph.  With the growth of efficient data structures and algorithms for 
sparse matrices, it has become possible to develop a practical matrix-based approach to computation 
on large, sparse graphs.  

The GraphBLAS standard (istc-bigdata.org/GraphBlas) is being developed to bring the 
potential of matrix based graph algorithms to the broadest possible audience.  The GraphBLAS 
mathematically defines a core set of matrix-based graph operations that can be used to implement a 
wide class of graph algorithms in a wide range of programming environments.  This paper provides an 
introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of 
the challenges associated with the analysis of graphs. 

2 GraphBLAS Standard 
Data analytics and the closely related field of “big data” have emerged as leading research topics in 

both applied and theoretical computer science. While it has been shown that many problems can be 
addressed with a “map-reduce” style framework, as we move to the next level of sophistication in data 
analytics applications, graph algorithms that demand more than “map-reduce” will play an 
increasingly vital role. There are many ways to organize a collection of graph algorithms into a high 
level library to support data analytics (Staudt et al, 2014b). It is probably premature to standardize 
these graph APIs. The low level building blocks of graph algorithms, however, are well understood 
and we believe a suitable target for standardization. In particular, the representation of graphs as 
sparse matrices allows many graph algorithms to be composed from a modest set of linear algebra 
operations. 

Our concern, however, is that as new researchers enter this expanding field of research, the linear 
algebraic foundation of this class of graph algorithms will fragment. Diversity at the level of the 
primitive building blocks of graph algorithms will not help advance the field of graph algorithms. It 
will hinder progress as groups create different overlapping variants of what should be common low 
level building blocks. Furthermore, diverse sets of primitives will complicate the ability of the vendor 
community to support this research with math tuned to the needs of these algorithms. 

It is our view that the state of the art in constructing a large collection of graph algorithms in terms 
of linear algebraic operations is mature enough to support the emergence of a standard set of primitive 
building blocks. We believe it is critical that we move quickly so as new research groups enter this 
field we can prevent needless and ultimately damaging diversity at the level of the basic primitives 
supporting this research, thereby freeing up researchers to innovate and diversify at the level of higher 
level algorithms and graph analytics applications. 

The deep connection between graphs and sparse matrices (Kepner & Gilbert, 2011) has been 
recognized to such an extent that it has led to the development of the GraphBLAS standard for 
bringing these fields together (Mattson et al, 2013; Mattson, 2014; Gilbert, 2014; Kepner & 

GraphBLAS Kepner, Bader, Buluç, Gilbert, Mattson & Meyerhenke

2454



 

 

Gadepally, 2014; Buluc et al, 2014).  The core of this connection is the duality between the 
fundamental operation on graphs---Breadth First Search (BFS)---and the fundamental operation of 
matrices---matrix multiply (see Figure 1). 

 

 
Figure 1: Graph/Matrix Duality. The fundamental operation of a graph is breadth first search 
(BFS) and is depicted on the left by the operation of starting at the node alice and 
traversing its edges to bob and carl.  The identical operation is depicted on the right via 
multiplying the adjacency matrix representation of the graph by the vector with a single entry 
corresponding to the starting vertex alice. 

 
The GraphBLAS define a narrow set of mathematical operations that have been found to be useful 

for implementing a wide range of graph operations.  At the heart of the GraphBLAS are matrices.  The 
matrices are usually sparse, which implies that the majority of the elements in the matrix are zero and 
are often not stored to make their implementation more efficient.  Sparsity is independent of the 
GraphBLAS mathematics.  All the mathematics defined in the GraphBLAS will work regardless of 
whether the underlying matrix is sparse or dense. 

Graphs represent connections between vertices with edges.  Matrices can represent a wide range of 
graphs using adjacency matrices or incidence matrices (defined below).  Adjacency matrices are often 
easier to analyze while incidence matrices are often better for representing data.  Fortunately, the two 
are easily connected by the fundamental mathematical operation of the GraphBLAS: matrix-matrix 
multiply.  One of the great features of the GraphBLAS mathematics is that no matter what kind of 
graph or matrix is being used, the core operations remain the same.  In other words, a very small 
number of matrix operations can be used to manipulate a very wide range of graphs. 

2.1 Adjacency Matrix 
A graph with N vertices and M edges can be represented by an N×N adjacency matrix A, with 

rows and columns labeled by vertices.  If A(v1,v2) = 1, then there exists an edge going from vertex v1 
to vertex v2.  Likewise, if A(v1,v2) = 0, then there is no edge from v1 to v2.  The number of non-zero 
entries in A corresponds to the number of edges in the graph.  Adjacency matrices have direction, 
which means that A(v1,v2) is not the same as A(v2,v1).  Adjacency matrices can also have edge 
weights.  If A(v1,v2) = w12, and w12 ≠ 0, then the edge going from v1 to v2 is said to have weight w12.  
Adjacency matrices provide a simple way to represent the connections between vertices in a graph 
between one set of vertices and another.  Adjacency matrices are typically square and both out-vertices 
(rows) and the in-vertices (columns) are the same set of vertices.  Adjacency matrices can be 
rectangular in which case the out-vertices (rows) and the in-vertices (columns) are different sets of 
vertices.  This would occur, for example, in bipartite graphs.  In summary, adjacency matrices can 
represent a wide range of graphs, which include any graph with any set of the following properties: 
directed, weighted, and/or bipartite. 

x ATxAT

 

alice

bob

alice

carl

bob

carl
cited

cited

GraphBLAS Kepner, Bader, Buluç, Gilbert, Mattson & Meyerhenke

2455



 

 

2.2 Incidence Matrix 
An M×N incidence, or edge matrix E, uses the rows to represent every edge in the graph and the 

columns represent every vertex.  There are a number of conventions for denoting an edge in an 
incidence matrix.  One such convention is to set E(i,v1) = -1 and E(i,v2) = 1 to indicate that edge i is a 
connection from v1 to v2.  Incidence matrices are useful because they can easily represent multi-
graphs, hyper-graphs, and multi-partite graphs.  These complex graphs are difficult to capture with an 
adjacency matrix.  A multi-graph has multiple edges between the same vertices.  If there was another 
edge, j, from v1 to v2, this can be captured in an incidence matrix by setting E(j,v1) = -1 and E(j,v2) = 
1.  In a hyper-graph, one edge can go between more than two vertices.  For example, to denote edge i 
has a connection from v1 to v2 and v3 can be accomplished by also setting E(i,v3) = 1.  Furthermore, 
v1, v2, and v3 can be drawn from different classes of vertices and so E can be used to represent multi-
partite graphs.  Thus, an incidence matrix can be used to represent a graph with any set of the 
following graph properties: directed, weighted, multi-partite, multi-edge, and/or hyper-edge. 

Using the conventions defined above for E, the adjacency matrix A and the incidence matrix E  are 
linked by the formula A = |ET < 0| |E > 0|.  In other words, A is the cross-correlation of E.  Any 
algorithm that can be written using A can also be written using E via the above formula.  However, 
because A is a projection of E, information is always lost in constructing A, and there are algorithms 
that can be written using E that cannot be constructed using A.   

2.3 Operations 
The GraphBLAS consists of four core operations: matrix construction from triples (Sparse), 

extracting triples from a matrix (Find), element-wise addition (SpEWiseX), element-wise 
multiplication (SpEWiseX), and matrix products (SpGEMM) 

 
A = M×N(i,j,v)            (i,j,v) = A         C = A ⊕ B        C = A ⊗ C         C = A B = A ⊕.⊗ B 

 
where: 

is a set of scalars (e.g., real numbers, complex numbers, integers, …); 
A, B, C : M×N are  matrices of scalars; 
i, j, and v are vectors corresponding to the row index, column index and value of the non-zero 

entries of a matrix; 
⊕ and ⊗ are user definable elment-wise “addition” and elment-wise “multiplication” operations; 
⊕.⊗ denotes the matrix product using user defined ⊕ and ⊗ [Note: matrix products require that 

the number of rows of A are to equal the number of columns B]. 
Using these four operations, six additional operations can be constructed that form the GraphBLAS 
standard: Sparse, Find, Transpose, SpGEMM, SpRef, SpAsgn, SpEWiseX, Apply, and Reduce.    
These ten operations can then be used to build various utility functions and more complex graph 
operations and algorithms.  The goal is to define a handful of matrix operations that can be 
implemented well and can enable a large class of graph algorithms. One possible implementation of 
these primitives can be found in the Combinatorial BLAS (Buluc and Gilbert 2011), which has been 
used to build higher level graph algorithms in the Knowledge Discovery Toolbox (Lugowski et al. 
2012).   

2.4 Composable Operations on Entire Graphs 
Closure, associativity, distributivity, and commutativity are very powerful properties of the 

GraphBLAS and separate the GraphBLAS from standard graph libraries because these properties 
allow the GraphBLAS to be composable (i.e., you can re-order operations and know that you will get 

GraphBLAS Kepner, Bader, Buluç, Gilbert, Mattson & Meyerhenke

2456



 

 

the same answer).  Composability is what allows the GraphBLAS to implement a wide range of graph 
algorithms with just a few functions. 

Let A, B, C : N×M, be matrices with scalar elements a = A(i,j), b = B(i,j), and c = C(i,j) all drawn 
from the set of scalars . Associativity, distributivity, and commutativity of scalar operations 
translates into similar properties on matrix operations in the following manner. 

Closure ensures that the result of combining two matrix representations of graphs using addition, 
elementwise multiplication, and/or matrix products will be another matrix representation of a graph.  
A unique aspect of the GraphBLAS is that the scalar addition ⊕ and scalar element-wise 
multiplication operations ⊗  are user definable.   If these scalar operations have certain useful 
properties, then the corresponding matrix operations will also have those properties. 

Additive Commutativity allows graphs to be swapped and combined via matrix element-wise 
addition without changing the result 

 
a ⊕ b = b ⊕ a     ⇒     A ⊕ B = B ⊕ A 

 
where matrix element-wise addition is given by C(i, j) = A(i, j) ⊕ B(i, j). 

Multiplicative Commutativity allows graphs to be swapped, intersected, and scaled via matrix 
element-wise multiplication without changing the result 

 
a ⊗  b = b ⊗  a     ⇒     A ⊗  B = B ⊗  A 

 
where matrix element-wise (Hadamard) multiplication is given by C(i, j) = A(i, j) ⊕ B(i, j). 

Additive Associativity allows graphs to be combined via matrix element-wise addition in any 
grouping without changing the result 

 
(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)     ⇒     (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) 

 
Multiplicative Associativity allows graphs to be intersected and scaled via matrix element-wise 

multiplication in any grouping without changing the result 
 

(a ⊗  b) ⊗  c = a ⊗  (b ⊗  c)     ⇒     (A ⊗  B) ⊗  C = A ⊗  (B ⊗  C) 
 

Element-Wise Distributivity allows graphs to be intersected and/or scaled and then combined or 
vice-versa without changing the result 

 
a ⊗  (b ⊕ c) = (a ⊗  b) ⊕ (a ⊗  c)     ⇒     A ⊗  (B ⊕ C) = (A ⊗  B) ⊕ (A ⊗  C) 

 
Matrix Multiply Distributivity allows graphs to be transformed via matrix multiply and then 

combined or vice-versa without changing the result 
 

a ⊗  (b ⊕ c) = (a ⊗  b) ⊕ (a ⊗  c)     ⇒     A(B ⊕ C) = (AB) ⊕ (AC) 
 

where matrix multiply C = AB is given by 
 

C(i, j) = ⊕k A(i, k) ⊗  B(k, j) 
 

for matrices A : N×M, B : M×L, and C : N×L. 

GraphBLAS Kepner, Bader, Buluç, Gilbert, Mattson & Meyerhenke

2457



 

 

Matrix Multiply Associativity is another implication of scalar distributivity and allows graphs to be 
transformed via matrix multiply in any grouping without changing the result 

 
a ⊗⊗  (b ⊕ c) = (a ⊗  b) ⊕ (a ⊗  c)     ⇒     (AB)C = B(AC) 

3 Seven Good Reasons 
Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) 

data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial 
performance, and (7) parallel performance.  Implementing graph algorithms using matrix-based 
approaches provides a number of promising solutions to these challenges. 

3.1 Software Complexity 
Nearly all negative attributes of software system (e.g., effort, schedule, testing, defects, security 

issues, documentation, …) increase with the size of the software.  A typical graph library has hundreds 
of functions consisting of many thousands of lines of code (Boost, Lemon, JGraphT, GraphStream, 
Jung, …).  This high level of software complexity means that graph libraries require a lot of effort to 
implement.  This effort increases when the functions are implemented to run in parallel.  Furthermore, 
the large number of functions means that there is very little opportunity for hardware optimization.  
The effort of implementing a graph function in hardware is significantly greater and requires that a 
small number of critical functions be identified than can enable a large class of applications. 

One approach to addressing software complexity is to use a set of composable functions that allow 
a large number of graph algorithms to be built with a small number of building blocks.  Sparse matrix 
operations are one composable approach to building graph algorithms.  Many graph algorithms can be 
represented with matrix algebra using just a handful of functions (Kepner & Gilbert, 2011). 

3.2 Data Complexity 
Most graph libraries or graph databases define specific data structures for holding different types 

of graphs.  These graph tools often begin their development with the simplest of graphs 
(undirected/unweighted) and create a vertex-oriented data structure that works well for this type of 
graph for the specific tool.  As the tool matures, more complex graphs are addressed by either 
evolving the initial graph data structure or adding new data structures.  This cumulative approach 
requires that each graph function be revisited each time the core data structure is changed.  
Furthermore, since the starting point is often a data structure designed for the simplest possible graphs, 
it can be difficult to evolve this to accommodate the most complex graphs that are often seen in the 
real world. 

The GraphBLAS provide one approach to addressing this challenge by defining a primary data 
structure in the GraphBLAS that isn’t a graph.  The primary GraphBLAS data structure is a sparse 
matrix.  Sparse matrices can be used to efficiently represent both simplest and complex graphs (see 
sections 2.1 and 2.2).  The GraphBLAS functions are defined on sparse matrices and thus work 
regardless of the complexity of the graph that is being represented.  Furthermore, sparse matrices have 
been demonstrated to work well in a wide range of programming environments and fit in naturally 
with modern key/value databases (Kepner et al, 2013). 

GraphBLAS Kepner, Bader, Buluç, Gilbert, Mattson & Meyerhenke

2458



 

 

3.3 Security 
Security is becoming increasingly important in wide range of applications, and security 

considerations are playing an increasing role in algorithm design.  Executing algorithms on encrypted 
data requires modifying existing algorithms to include various cryptographic techniques such 
homomorphic encryption, fully homomorphic encryption, multi-party computation, deterministic 
encryption, and order preserving encryption.  A focus of this work has been adapting scalar addition ⊕ 
and scalar ⊗⊗  multiplication to work with encrypted data, which naturally lead to matrix operations 
working on encrypted data (Erkin, 2010; Kepner et al, 2014). 

3.4 Mathematical Complexity 
Standard graph libraries provide hundreds of functions, but still often require the user to write long 

programs to take advantage of these functions.  This is often due to the wide variety of different data 
structures that exist in a standard graph library and the fact that graph library functions are strongly 
order dependent.  The GraphBLAS provides a single mathematically defined object that is 
mathematically closed (i.e., produces the same class of outputs as inputs) under the aforementioned 
operations.   This eliminates the requirement to write code to convert between different representations 
of a graph.  That said, the conversion between a sparse matrix and a triples representation is explicitly 
supported so that GraphBLAS users can work the data as they please.  In addition to being 
mathematically closed, the GraphBLAS operations are composable, which means that operations can 
be reordered without changing the results.  As a result, it is possible to implement complex analytics 
with ~50x less effort than other approaches (Kepner et al, 2011). 

3.5 Theoretical Analysis 
While matrix-based graph approaches have been around since the inception of graph theory, these 

approaches were less widely used for graph algorithm analysis.  Interest in this area was dramatically 
increased by the advent of the legendary Google PageRank algorithm (Brin & Page, 1998) that 
exploited the first eigenvector of the graph adjacency matrix.  Since the development of PageRank, 
graph algorithm theorists have found matrix based approaches to graph analysis are highly productive 
(Madry, 2011; Dodson et al, 2014).  

3.6 Serial Processing Performance 
On conventional processors, there is a large gap between the performance of traditional dense 

matrix computations and sparse/graph computations (see Figure 1).  This is partly because 
sparse/graph computations are typically memory bound, while dense matrix computations are compute 
bound. Memory performance improvements have been, and will most likely continue to be, slower 
than processor performance improvements. However, a part of the problem is that sparse/graph 
computations do rarely achieve their potential performance. While DGEMM can achieve >80% of 
peak flops, very few implementations of sparse/graph operations utilize 80% or more of the available 
system memory bandwidth (which is their corresponding upper bound). We know of only one existing 
effort where the “roofline” (Williams et al, 2009) of a graph computation has been analyzed, which 
was the case for breadth-first search using sparse matrix algebra (Lugowski et al, 2014).  The high 
actual to peak performance ratio of dense matrix computations is in large part due to the existence of 
the Basic Linear Algebra Subprograms (BLAS) standard (Lawson et al, 1979).  The BLAS provide a 
concise set of functions that allow software developers to write hardware independent code and 
hardware designers to target their efforts on a small number of functions that impact a wide range of 
programs.  It is the goal of the GraphBLAS to provide the same performance benefit to graph 
algorithms.  

GraphBLAS Kepner, Bader, Buluç, Gilbert, Mattson & Meyerhenke

2459



 

 

 

3.7 Parallel Processing Performance 
Parallel graph algorithms are notoriously difficult to implement and optimize (Ediger et al, 2012; 

Ediger & Bader, 2013; Meyerhenke, 2013; McLaughlin & Bader, 2014a; McLaughlin & Bader, 
2014b; McLaughlin et al, 2014; Staudt & Meyerhenke, 2015; Meyerhenke et al, 2015).  A matrix-
based approach to graph algorithms allows the graph algorithms community to leverage the decades of 
work in creating optimized parallel algorithms for matrix computations.  Even still, the inherently high 
communication to computation ratios found in graph algorithms mean that even the best algorithms 
will result in parallel efficiencies that decreases as the number of processors P is increased by a factor 
of P1/2 (see Figure 2) (Buluc & Gilbert, 2012). Recent work on communication-avoiding algorithms, 
and their applications to graph computations (Ballard et al, 2013; Solomonik et al, 2013), might defer  
but not completely eliminate the parallel scalability bottleneck. Consequently, novel hardware 
architectures will also be required. The GraphBLAS simplifies this hardware design challenge by 
providing a clear target for system designers.  In addition, because the GraphBLAS deals with graph 
computations in aggregate (instead of individually), it reduces the computational challenge to one of 
providing high bandwidth (instead of high bandwidth and low latency). 

. 

 
Figure 2: Graph Computation Efficiency (Buluc & Gilber, 2012). Performance of multi-
source-weighted-breadth-first-search (i.e., sparse matrix-matrix multiply) on power-law graph 
on a Cray supercomputer.  For the largest graph (Scale-24 ⇒ 16 million vertices and 268 
million edges) a speedup of 20 is achieved. 

4 Summary 
The analysis of graphs have become increasingly important to a wide range of applications.  Graph 

analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data 
complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, 
and (7) parallel performance.  Implementing graph algorithms using matrix-based approaches provides 
a number of promising solutions to these challenges.  The GraphBLAS standard (istc-
bigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph 
algorithms to the broadest possible audience.  The GraphBLAS mathematically defines a core set of 

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

Number of Cores

m
ul

tis
ou

rc
e−

w
ei

gt
ed
−

br
ea

dt
h−

fir
st
−

se
ar

ch
 e

ffi
ci

en
cy

GraphBLAS Kepner, Bader, Buluç, Gilbert, Mattson & Meyerhenke

2460



 

 

matrix-based graph operations that can be used to implement a wide class of graph algorithms in a 
wide range of programming environments.  This paper provides an introduction to the GraphBLAS 
and describes how the GraphBLAS can be used to address many of the challenges associated with 
analysis of graphs. 

References 
Ballard, G., Buluc, A., Demmel, J., Grigori, L., Lipshitz, B., Schwartz, O., & Toledo, S., (2013). 

Communication optimal parallel multiplication of sparse random matrices. In Proceedings of the 
twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures (pp. 222-231) 

Bergamini, E.,Meyerhenke, H., & Staudt, C.L. (2015). Approximating Betweenness Centrality in 
Large Evolving Networks.  SIAM Algorithm Engineering & Experiments 

A. Buluç, A. & J. Gilbert, J. (2011). The Combinatorial BLAS: Design, implementation, and 
applications. International Journal of High Performance Computing Applications 

A. Buluç, A. & J. Gilbert, J. (2012).  Parallel sparse matrix-matrix multiplication and indexing: 
Implementation and experiments. SIAM Journal on Scientific Computing 34.4: C170-C191 

Buluc, A., Ballard, G., Demmel, J., Gilbert, J., Grigori, L., Lipshitz, B., Lugowski, A., Schwartz, 
O., Solomonik, E. & Toledo, S. (2014). Communication-Avoiding Linear-Algebraic Primitives for 
Graph Analytics. IPDPS Graph Algorithms Building Blocks (GABB) 

S. Brin, S. & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. 
Computer Networks and ISDN Systems 

Chaidez, J. & Kepner, J. (2014), The Abstract Algebra of Big Data and Associative Arrays. SIAM 
Discrete Math 

Dodson, S., Ricke, D. & Kepner, J. (2014). Genetic Sequence Matching Using D4M Big Data 
Approaches. IEEE High Performance Extreme Computing conference 

Ediger, D., Jiang, K., Riedy, J. & Bader, D. (2010). Massive Streaming Data Analytics: A Case 
Study with Clustering Coefficients. 4th Workshop on Multithreaded Architectures and Applications 
(MTAAP) 

Ediger, D., Riedy, J., Meyerhenke, H., & Bader, D. (2011). Tracking Structure of Streaming 
Social Networks. 5th Workshop on Multithreaded Architectures and Applications 

Ediger, D., McColl. R., Riedy, J., & Bader, D. (2012). STINGER: High Performance Data 
Structure for Streaming Graphs. IEEE High Performance Extreme Computing Conference 

Ediger, D. & Bader, D. (2013). Investigating Graph Algorithms in the BSP Model on the Cray 
XMT. 7th Workshop on Multithreaded Architectures and Applications 

Erkin, Z. (2010), Secure signal processing: Privacy preserving cryptographic protocols for 
multimedia. Ph.D. Dissertation, TU Delft, Delft University of Technology 

Gilbert, J. (2014). Examples and Applications of Graph Algorithms in the Language of Linear 
Algebra. IPDPS Graph Algorithms Building Blocks 

Harary, F. (1969). Graph Theory. Reading:Addison-Wesley 
Kepner, J. & Gadepally, V. (2014). Adjacency Matrices, Incidence Matrices, Database Schemas, 

and Associative Arrays. IPDPS Graph Algorithms Building Blocks 
Kepner, J. et al (2012). Dynamic Distributed Dimensional Data Model (D4M) Database and 

Computation System.  International Conference on Acoustics, Speech, and Signal Processing  
Kepner, J. & Gilbert, J. (2011). Graph Algorithms in the Language of Linear Algebra, SIAM 

Press 
Kepner, J. et al (2013). D4M 2.0 Schema: A General Purpose High Performance Schema for the 

Accumulo Database. IEEE High Performance Extreme Computing conference 

GraphBLAS Kepner, Bader, Buluç, Gilbert, Mattson & Meyerhenke

2461



 

 

Kepner, J., Gadepally, V., Michaleas, P., Schear, N., Varia, M., Yerukhimovich, A., & 
Cunningham, R. (2014). Computing on Masked Data: a High Performance Method for Improving Big 
Data Veracity. IEEE High Performance Extreme Computing conference 

Konig, D. (1931). Graphen und Matrizen.  Matematikai Lapok, 38:116-119 
Konig, D. (1936). Theorie der endlichen und unendlichen graphen, Leipzig:Akademie Verlag 
Lawson, C., Hanson, R., Kincaid, D., & Krogh, F. (1979), Basic linear algebra subprograms for 

Fortran usage. ACM Transactions on Mathematical Software, 5(3), 308-323 
Lugowski, A., Alber, D. M., Buluç, A., Gilbert, J. R., Reinhardt, S. P., Teng, Y., & Waranis, A. 

(2012). A Flexible Open-Source Toolbox for Scalable Complex Graph Analysis. In SDM (Vol. 12, pp. 
930-941) 

Lugowski, A., Kamil, S., Buluç, A., Williams, S., Duriakova, E., Oliker, L.& Gilbert, J. R. 
(2014), Parallel processing of filtered queries in attributed semantic graphs, Journal of Parallel and 
Distributed Computing 

Madry, A. (2011). From Graphs to Matrices, and Back: New Techniques for Graph Algorithms. 
Ph.D. thesis, MIT, EECS Department 

Mattson, T., Bader, D., Berry, J., Buluc, A., Dongarra, J., Faloutsos, C., Feo, J., Gilbert, J., 
Gonzalez, J., Hendrickson, B., Kepner, J., Leiserson, C., Lumsdaine, A., Padua, D., Poole, S.,  
Reinhardt, S., Stonebraker, M., Wallach, S., & Yoo, A. (2013). Standards for Graph Algorithm 
Primitives. IEEE High Performance Extreme Computing conference 

Mattson, T. (2014). Motivation and Mathematical Foundations of the GraphBLAS. IPDPS Graph 
Algorithms Building Blocks 

McLaughlin, A. & Bader, D. (2014). Revisiting Edge and Node Parallelism for Dynamic GPU 
Graph Analytics. 8th Workshop on Multithreaded Architectures and Applications 

McLaughlin, A. & Bader, D. (2014). Scalable and High Performance Betweenness Centrality on 
the GPU. The 26th IEEE and ACM Supercomputing Conference 

Meyerhenke, H. (2013). Shape Optimizing Load Balancing for MPI-Parallel Adaptive Numerical 
Simulations. Graph Partitioning and Graph Clustering, Proc. 10th DIMACS Implementation 
Challenge, Contemporary Mathematics 588 

McLaughlin, A., Riedy, J., & Bader, D. (2014). Optimizing Energy Consumption and Parallel 
Performance for Betweenness Centrality using GPUs. IEEE High Performance Extreme Computing 
conference 

Meyerhenke, H., Sanders, P., Schulz, C. (2015). Parallel Graph Partitioning for Complex 
Networks. IEEE International Parallel & Distributed Processing Symposium 

Riedy, J., Meyerhenke, H. & Bader, D. (2011). Scalable Multi-threaded Community Detection in 
Social Networks, 6th Workshop on Multithreaded Architectures and Applications 

 Riedy, J. & Bader, D. (2014). Multithreaded Community Monitoring for Massive Streaming 
Graph Data. 7th Workshop on Multithreaded Architectures and Applications 

 Solomonik, E., Buluc, A., & Demmel, J. (2013). Minimizing communication in all-pairs shortest 
paths. In IEEE International Symposium on Parallel & Distributed Processing (IPDPS) (pp. 548-559) 

Staudt, C., Marrakchi, Y. & Meyerhenke, H. (2014). Detecting Communities Around Seed Nodes 
in Complex Networks. In Proc. First International Workshop on High Performance Big Graph Data 
Management, Analysis, and Mining, co-located with the IEEE BigData 2014 Conference 

Staudt, C., Sazonovs, A., & Meyerhenke, H. (2014), Networkit: An interactive tool suite for high-
performance network analysis. arXiv preprint arXiv:1403.3005 

Staudt, C. & Meyerhenke, H. (2015), Engineering Parallel Algorithms for Community Detection 
in Massive Networks, IEEE Transactions on Parallel and Distributed Systems 

Williams, S., Waterman, A., & Patterson, D. (2009). Roofline: an insightful visual performance 
model for multicore architectures. Communications of the ACM 52.4: 65-76 
 

GraphBLAS Kepner, Bader, Buluç, Gilbert, Mattson & Meyerhenke

2462


