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A graph is connected-homogeneous if any isomorphism between
finite connected induced subgraphs extends to an automorphism
of the graph. In this paper we classify the countably infinite
connected-homogeneous graphs. We prove that if Γ is connected
countably infinite and connected-homogeneous then Γ is isomor-
phic to one of: Lachlan and Woodrow’s ultrahomogeneous graphs;
the generic bipartite graph; the bipartite ‘complement of a com-
plete matching’; the line graph of the complete bipartite graph
Kℵ0,ℵ0 ; or one of the ‘treelike’ distance-transitive graphs Xκ1,κ2

where κ1, κ2 ∈ N ∪ {ℵ0}. It then follows that an arbitrary count-
ably infinite connected-homogeneous graph is a disjoint union of
a finite or countable number of disjoint copies of one of these
graphs, or to the disjoint union of countably many copies of a fi-
nite connected-homogeneous graph. The latter were classified by
Gardiner (1976). We also classify the countably infinite connected-
homogeneous posets.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

According to one usage, a mathematical structure M is homogeneous if any isomorphism between
finite induced substructures of M extends to an automorphism of M . So in particular a homogeneous
graph is a graph with the property that any isomorphism between finite induced subgraphs extends
to an automorphism of the graph. This notion dates back to the fundamental work of Fraïssé; see [10],
or originally, [9]. Homogeneous structures have interest for a variety of reasons. Their automorphism
groups have rich and surprising group-theoretic properties; the sequences arising by counting orbits
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on k-sets often arise in combinatorial enumeration (see [1]); there are close connections, for example,
to structural Ramsey theory (see [16]); and to extreme amenability of topological groups (see [18]).

For certain families of relational structure the study of homogeneity has led to classification results.
The finite homogeneous graphs were determined by Gardiner in [11], and the countable homogeneous
graphs were classified by Lachlan and Woodrow in [21]. The countable homogeneous posets were de-
termined by Schmerl in [26], and the corresponding classification for tournaments was achieved by
Lachlan [19]. Generalising the results for posets and tournaments, Cherlin [3] classified the homoge-
neous digraphs in a major piece of work.

There are various natural ways in which the condition of homogeneity can be relaxed. For graphs a
vast array of symmetry conditions, weaker than homogeneity, have been considered; see [2] for a sur-
vey. For example, a graph is said to be k-homogeneous if we insist only that isomorphisms between
subgraphs of size k extend to automorphisms. For any particular value of k, this gives a much larger
class of graphs than the homogeneous ones. In fact, in [4] it was shown that for each k there are un-
countably many countable graphs that are l-homogeneous for all l � k but not (k + 1)-homogeneous.
An alternative direction is to weaken homogeneity to set-homogeneity, a condition saying that for
any two finite isomorphic induced subgraphs, at least one isomorphism between them extends to
an automorphism. The problem of classifying the countable set-homogeneous graphs is open, but
in [5] the countable set-homogeneous graphs that are not 3-homogeneous are described (in fact, up
to complementation there is only one such graph).

In this paper we consider a variant of homogeneity where we only require that isomorphisms
between connected subgraphs extend to automorphisms. We say that a graph Γ is connected-homo-
geneous (or simply C-homogeneous) if any isomorphism between connected finite induced subgraphs
extends to an automorphism. The (finite and infinite) locally-finite C-homogeneous graphs were clas-
sified in [13] and [6]; here a graph is locally-finite if every vertex has finite degree. Combined with
those results, the main result of this paper completes the classification of the C-homogeneous graphs,
in the countable case. It might be regarded as a little surprising that a classification result is possible
here, especially when compared to other weakenings of homogeneity, like those mentioned above,
where the resulting classes of graph are too unwieldy for full descriptions to be possible.

There is a connection between C-homogeneity and another well-studied property for graphs
called distance-transitivity. A graph is distance-transitive if for any two pairs (u, v) and (u′, v ′) with
d(u, v) = d(u′, v ′), there is an automorphism taking u to u′ and v to v ′ . It follows directly from the
definition that any C-homogeneous graph is also distance-transitive. The infinite connected locally-
finite distance-transitive graphs were classified by Macpherson [22] (a result strengthened to distance
regular graphs by A. Ivanov [17], in independent work). They turn out to be precisely the graphs Xk,l

defined below (with k, l ∈ N). However, in general the countably infinite distance-transitive graphs
remain quite a mysterious family; see [2] for more on this. As we shall see below, the graphs Xk,l

also happen to be C-homogeneous (even when k or l is equal to ℵ0) and hence they arise as part
of our classification. Thus for infinite locally-finite graphs C-homogeneity and distance-transitivity are
equivalent properties. Of course, this is not true for arbitrary countable graphs, and there are many
examples of distance-transitive graphs that are not C-homogeneous; a concrete example being the
graph whose vertex set is the collection of 2-element subsets of a countably infinite set, two vertices
adjacent if intersecting in a singleton. In fact for countable graphs, there are uncountably many that
are distance-transitive (see [2]) while, as a consequence of our main theorem below, only countably
many of them are C-homogeneous. This demonstrates that the C-homogeneous graphs really are a
very special subfamily of the distance-transitive graphs.

In this article we shall classify the countable C-homogeneous graphs. Before stating the main result
we need a few definitions.

First note that in a C-homogeneous graph every connected component must be C-homogeneous,
and since the graph is vertex transitive these components must be isomorphic to one another. Thus
any countable C-homogeneous graph is a disjoint union of a countable (possibly finite) number of
isomorphic copies of some fixed connected C-homogeneous graph. Therefore when investigating C-
homogeneous graphs nothing is lost by restricting attention to those C-homogeneous graphs that are
connected.
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Given κ1, κ2 ∈ (N\{0})∪{ℵ0}, with κ1 � 2, we construct a graph Xκ1,κ2 . First consider the semireg-
ular tree Tκ1,κ2+1, where all vertices in one bipartite block have valency κ1 and all those in the other
have valency κ2 + 1. Now define Xκ1,κ2 to be the graph with vertex set the bipartite block of Tκ1,κ2+1
of vertices with valency κ1 and two vertices adjacent in Xκ1,κ2 if their distance in the tree Tκ1,κ2+1
is 2. The graphs Xκ1,κ2 are distance transitive, and all infinite locally-finite distance-transitive graphs
are of this form, with κ1, κ2 finite (see [22]). In Xκ1,κ2 , the neighbourhood of a vertex consists of κ1
copies of the complete graph Kκ2 , with the complete graphs joined in a treelike way.

Let Γ = X ∪ Y be a countable bipartite graph with parts X , Y , and with the following property,
where ∼ denotes adjacency:

(∗) For every distinct a0, . . . ,ak , b0, . . . ,bl in X (respectively in Y ) there exists a vertex u in Γ

such that u ∼ ai but u � b j for all i � k, j � l.

By a routine back-and-forth argument (see for example [7, p. 98]) there is up to isomorphism
a unique countable bipartite graph satisfying property (∗). We call this graph the countable generic
bipartite graph.

By ‘the complement of a complete matching’, we mean a bipartite graph with parts X, Y , such
that, for some bijection f : X → Y , each x ∈ X is joined to y ∈ Y if and only if y 	= f (x). We denote
by Ks,t the complete bipartite graph with parts of sizes s and t . Let M(s, t) denote the graph with
vertex set a disjoint union of sets X1, X2, . . . , Xs each of size t , and with two vertices adjacent if and
only if they belong to distinct sets Xi and X j . We call M(s, t) the complete multipartite graph with s
parts each of size t . If Γ is a graph, the line graph L(Γ ) has as vertex set the edge set of Γ , and two
edges of Γ are adjacent in L(Γ ) if they meet in a Γ -vertex.

In [13] the finite C-homogeneous graphs were classified.

Theorem 1. (See [13].) A connected finite graph is C-homogeneous if and only if it is isomorphic to one of
the following: complement of a complete matching, complete graph Kr (r � 1), complete multipartite M(s, t)
(s, t � 2), cycle Cn (n � 5), the line graph L(Ks,s) of a complete bipartite graph Ks,s (where s � 3), Petersen’s
graph O 3 , or �5 (the graph obtained by identifying antipodal vertices of the 5-dimensional cube Q 5).

We may now state our main theorem.

Theorem 2. A countable graph is C-homogeneous if and only if it is isomorphic to the disjoint union of a finite
or countable number of copies of one of the following:

(i) a finite C-homogeneous graph;
(ii) a homogeneous graph;

(iii) the generic bipartite graph;
(iv) the complement of a complete matching;
(v) the line graph of a complete bipartite graph Kℵ0,ℵ0 ;

(vi) a graph Xκ1,κ2 with κ1, κ2 ∈ (N \ {0}) ∪ {ℵ0}.

Lachlan and Woodrow’s classification of countable homogeneous graphs is stated below in Theo-
rem 3. It is easy to see that each of the graphs in the statement of Theorem 2 is C-homogeneous. The
rest of this article will be devoted to proving that these are, in fact, the only examples.

2. Preliminaries

A graph Γ is a pair (V Γ, EΓ ) where V Γ is a non-empty set that we call the vertex set and EΓ

is a set of 2-element subsets of V Γ called the edge set. We often just write x ∈ Γ for x ∈ V Γ . If
{v, u} ∈ EΓ we say that the vertices u and v are adjacent, and write u ∼ v . If A ⊂ V Γ we write
〈A〉 for the induced subgraph of Γ with vertex set A, and edge set the collection of 2-subsets of
A which lie in EΓ . This is the only notion of subgraph in this paper, and we frequently identify A
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with 〈A〉, and often write A ⊆ Γ to mean that A is a subgraph of Γ . The neighbourhood of a vertex
v , denoted Γ (v), is the set of all vertices adjacent to v . The valency (or degree) of a vertex v is the
cardinality of the set Γ (v). A graph is called regular if all vertices have the same degree. A graph
in which every pair of distinct vertices is adjacent is called a complete graph, and we call a graph
with no edges an independent set. We use Kn and In to denote the complete graph, and independent
set, on n vertices, respectively. For k1,k2 ∈ N ∪ {ℵ0} we use k1 · Kk2 to denote k1 disjoint copies of
the complete graph Kk2 . A walk in a graph is a sequence of vertices such that adjacent terms in the
sequence are adjacent in the graph. A path is a walk all of whose vertices are distinct. We use Ln to
denote the graph with n vertices {1,2, . . . ,n} and i ∼ j if and only if |i − j| = 1. We call Ln the line
with n vertices. Note that this terminology is slightly nonstandard, since the word line is usually used
to denote a two-way infinite path in a graph. The length of a walk is defined to be one less than the
length of the sequence of vertices defining that walk. In particular, the length of a path is simply the
number of edges in the path. A graph is called connected if between any two vertices there exists at
least one path. A graph is called bipartite if the vertex set may be partitioned into two disjoint sets X
and Y such that no two vertices in X are adjacent, and no two vertices of Y are adjacent. In this case
we say that Γ is bipartite with bipartition X ∪ Y . A bipartite graph Γ = X ∪ Y is called a complete
matching if there is a bijection π : X → Y such that EΓ = {{x,π(x)}: x ∈ X}, and Γ is called complete
bipartite if every vertex in X is adjacent to every vertex of Y . A bipartite graph is called semiregular if
any two vertices in X have the same degree as one another, and any two vertices of Y have the same
degree as one another.

A cycle is a finite path with at least three vertices but where the first and last vertices are equal,
and the only edges are those between adjacent vertices of the defining sequence; so a cycle with n
vertices has n edges. A connected graph without any cycles is called a tree. We use Cn to denote the
cycle with n vertices. Also we use ��, which we call the two-squares configuration, to denote the
graph

In connected graphs there is a natural notion of distance where the distance d(x, y) between x and y
is defined to be the minimum length of a path with end-vertices x and y. For i ∈ N define Γi(v) =
{w ∈ V Γ : d(w, v) = i}, so that in particular we have Γ (v) = Γ1(v). The diameter of a connected
graph is the supremum (possibly infinite) of the set of distances between all pairs of distinct vertices.

A partial automorphism of a graph is an isomorphism between induced subgraphs of that graph.
We denote by Aut(Γ ) the group of all automorphisms of Γ . Given a subgroup G of Aut(Γ ) and a
vertex x ∈ V Γ we write Gx for the stabilizer of x in G (that is the set of all elements of G that fix the
vertex x). More generally, if x1, . . . , xn are vertices then Gx1...xn := Gx1 ∩ · · · ∩ Gxn . We use lower case
Greek letters for automorphisms, and write the action on the right, so xα denotes the image of the
vertex x under the automorphism α.

Let Γ and Γ ′ be bipartite graphs with given bipartitions X ∪ Y and X ′ ∪ Y ′ , respectively. A partial
isomorphism between the bipartite graphs Γ and Γ ′ is a one-one partial map φ from X ∪Y into X ′ ∪Y ′
which preserves the bipartition (i.e. φ(X) ⊆ X ′ and φ(Y ) ⊆ Y ′) and preserves edges and non-edges
(i.e. {x, y} ∈ EΓ if and only if {φ(x),φ(y)} ∈ EΓ ′ , for all x ∈ X and y ∈ Y ). A partial automorphism of Γ

is a partial isomorphism from Γ to itself. A homogeneous bipartite graph is one that has the property
that all partial automorphisms between finite subgraphs, which preserve the bipartition, extend to
full automorphisms. Note that for a connected bipartite graph the bipartition is unique, so any graph-
automorphism will respect the bipartition. More generally any graph-isomorphism between connected
subgraphs (with at least two vertices) of a connected bipartite graph will respect the bipartition.

In our proof we will make use of the classification of the countable homogeneous graphs, and
also the classification of homogeneous bipartite graphs. The classification of countable homogeneous
graphs is a highly non-trivial result.
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Theorem 3. (See [21, Theorem 1].) Let Γ be a countable homogeneous graph. Then Γ is isomorphic to one of :
the random graph, a disjoint union of complete graphs (or its complement), the generic Kn-free graph (or its
complement, the generic co-Kn-free graph).

For the definitions of the graphs appearing in the above theorem, and for details on how they
are constructed, we refer the reader to [21] or [8]. Each countably infinite homogeneous graph is
determined up to isomorphism by its collection of isomorphism types of finite induced subgraphs.
For example, for the random graph this consists (up to isomorphism) of all finite graphs, and for
the generic Kn-free graph, of all finite graphs which do not have Kn as an induced subgraph. The
examples are built by ‘Fraïssé amalgamation’, and the proof of Lachlan and Woodrow is basically a
classification of possible amalgamation classes.

We now summarise the properties of the graphs appearing in Theorem 3 that we will use later on.
The random graph embeds every finite or countable graph as an induced subgraph i.e. the random
graph is universal. Also, the random graph satisfies the following extension property:

For any two finite disjoint sets U and V of vertices, there exists a vertex z joined to every vertex
in U and to no vertex in V .

Similarly, the generic Kn-free graph embeds every finite or countable Kn-free graph, and satisfies the
following extension property:

For any two finite disjoint sets U and V of vertices, such that U does not embed Kn−1 as an
induced subgraph, there exists a vertex z joined to every vertex in U and to no vertex in V .

This tells us that given any finite induced subgraph X of the generic Kn-free graph, every possible
one-vertex extension of X that is Kn-free, is realised inside the graph. The obvious dual statements to
these hold in the generic co-Kn-free graph.

The classification of homogeneous bipartite graphs is straightforward and a one-page proof may
be found in [14, Section 1].

Theorem 4. (See [14, Section 1].) If Γ is a countable homogeneous bipartite graph then Γ is isomorphic to
one of the: complete bipartite, empty bipartite (i.e. an independent set), complete matching, complement of
complete matching, or the countable generic bipartite graph.

For the rest of the paper, unless otherwise stated, Γ will denote a countably infinite connected
C-homogeneous graph which is not locally finite. This last assumption is justified by the work of
Gardiner [13] and Enomoto [6], which asserts that countable locally finite C-homogeneous graphs
belong to the list of Theorem 2. The next lemma tells us that homogeneous graphs may be found
inside C-homogeneous graphs.

Lemma 5. The graph 〈Γ (v)〉 induced on the neighbourhood Γ (v) of any vertex v of Γ is homogeneous.

Proof. Let φ : A → B be a partial isomorphism between finite induced subgraphs of Γ (v). Then φ

extends to an isomorphism φ̂ : A ∪ {v} → B ∪ {v} between connected substructures of Γ by defining
φ̂(v) = v . By C-homogeneity the isomorphism φ̂ extends to an automorphism α of Γ fixing v . Now
α restricted to Γ (v) is an automorphism of Γ (v) extending φ. �

Sometimes homogeneous bipartite graphs also arise naturally inside C-homogeneous graphs as the
following lemma demonstrates.

Lemma 6. Suppose that Γ (v) is an independent set. Let {x, y} ∈ EΓ and define X = Γ (x) \ {y} and Y =
Γ (y) \ {x}. Then the graph induced by X ∪ Y , as a bipartite graph with bipartition X ∪ Y , is a homogeneous
bipartite graph.



102 R. Gray, D. Macpherson / Journal of Combinatorial Theory, Series B 100 (2010) 97–118
Proof. Let Δ denote the graph induced by X ∪ Y . Let φ : A → B be an isomorphism between fi-
nite induced subgraphs of Δ preserving the bipartition X ∪ Y . Then φ extends to an isomorphism
φ̂ : A ∪ {x, y} → B ∪ {x, y} between connected substructures of Γ by defining φ̂(x) = x and φ̂(y) = y.
By C-homogeneity the isomorphism φ̂ extends to an automorphism α of Γ fixing both x and y. Now
α restricted to X ∪ Y is an automorphism of the bipartite graph X ∪ Y extending φ. �

The next few lemmas will be used to find bounds on the diameter of Γ in certain circumstances.

Lemma 7. Assume that Γ is not a tree. Then the following hold.

(i) If Cn � Γ for some n � 5 then diam(Γ ) � �n/2�.
(ii) If Cn is the smallest cycle embedding in Γ then n � 6.

Proof. For part (i) suppose, for the sake of a contradiction, that diam(Γ ) > �n/2�. Let x, y ∈ Γ satisfy
d(x, y) = �n/2� + 1. Fix some copy C of Cn in Γ and partition this cycle into two edge disjoint paths
C = C ′ ∪ C ′′ where C ′ has �n/2� + 1 edges and C ′′ has the remaining n − (�n/2� + 1) edges. By C-
homogeneity there is an automorphism mapping C ′ to a path of length �n/2� + 1 with end-vertices
x and y. But now the image of C ′′ under the same automorphism is a path from x to y but it has
length n − (�n/2� + 1) � �n/2� (since n � 5) which contradicts d(x, y) = �n/2� + 1.

For part (ii) suppose, seeking a contradiction, that the smallest cycle that embeds is Cn where
n � 7. Fix a vertex v ∈ V Γ and let a,b, c be distinct elements of Γ (v); they will be non-adjacent as
Γ is triangle-free. By C-homogeneity the path (b, v, c) extends to a copy (v,b,b1, . . . ,bk, c) of Cn .
Since n � 7 it follows that k � 4 and therefore a is not adjacent to bi for all 1 � i � k (since any
such edge would create a cycle in Γ shorter than Cn itself). Now by C-homogeneity there is an
automorphism α satisfying

〈c, v,b,b1,b2, . . . ,bk−1〉α = 〈a, v,b,b1,b2, . . . ,bk−1〉.
Note that the vertex bα

k does not belong to B = {v,a,b, c,b1,b2, . . . ,bk} since bα
k is adjacent both

to a and to bk−1, and none of the vertices in B have this property. Let D = 〈a, v, c,bk,bk−1,bα
k 〉.

If bα
k is adjacent to c then 〈a, v, c,bα

k 〉 ∼= C4 which is a contradiction. If bα
k � c but bα

k ∼ bk then
〈a, v, c,bk,bα

k 〉 ∼= C5 a contradiction. Finally if bα
k � c and bα

k � bk then 〈a, v, c,bk,bk−1,bα
k 〉 ∼= C6,

which is again a contradiction. �
Lemma 8. If Γ embeds the graph:

a b c

d e f

then diam(Γ ) � 3.

Proof. If diam(Γ ) � 4 then we could find x and y in Γ with d(x, y) = 4. A path of length 4 between
these vertices would induce a line with 5 vertices whose end vertices are at distance 4 in the graph.
On the other hand in the above configuration 〈d,a,b, c, f 〉 is an induced line with 5 vertices whose
end-vertices are at distance 2 in the graph. This contradicts C-homogeneity. �

Given an induced subgraph E of Γ , by an extension E of E we mean an induced subgraph E of Γ

such that E is a subset of E . The following straightforward observation gives a sufficient condition for
a C-homogeneous graph to be homogeneous. It will be used frequently in what follows.

Lemma 9. If for any isomorphism φ : E1 → E2 between finite induced subgraphs of Γ there exist connected
extensions E1 , E2 such that φ extends to an isomorphism φ : E1 → E2 , then Γ is a homogeneous graph.
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Proof. Any isomorphism φ : E1 → E2 between finite induced subgraphs extends to φ : E1 → E2, an
isomorphism between finite connected induced subgraphs, which then extends to an automorphism
by C-homogeneity. Thus φ extends to an automorphism and Γ is homogeneous. �

We will now work through the proof of the main theorem. Our strategy is to use Lemma 5, in
conjunction with Theorem 3 applied to the neighbourhood. For each possibility of Γ (v) we want to
determine all possibilities for Γ . We begin with the easiest cases and move on to those that are more
difficult towards the end.

3. Proof of the main theorem I: neighbourhood isomorphic to random, generic Kn-free
(or its complement), or complete multipartite graph

In this section we shall prove the following result.

Theorem 10. Let Γ be a countable connected C-homogeneous graph. If the neighbourhood of a vertex of Γ is
isomorphic to the random, co-Kn-free, Kn-free, or complete multipartite graph, then Γ is homogeneous.

We deal with each possibility for the neighbourhood in turn.

Γ (v) is the random graph

Let R denote the countable random graph.

Lemma 11. If Γ (v) ∼= R then Γ is homogeneous (and therefore Γ ∼= R).

Proof. By Lemma 9, in order to prove that Γ is homogeneous it is sufficient to prove that for any
finite induced subgraph E of Γ there exists v ∈ V Γ such that E ⊆ Γ (v). Let E be a finite induced
subgraph of Γ . Since Γ is connected, there is a finite connected induced subgraph F of Γ with E ⊆ F .
Let u ∈ V Γ be arbitrary. Since Γ (u) ∼= R there is F ′ ⊆ Γ (u) with F ′ ∼= F . Now by C-homogeneity there
is an automorphism α with F ′α = F and so E ⊆ F ⊆ Γ (uα). Hence Γ is homogeneous and so Γ ∼= R
by inspection of the list of homogeneous graphs in Theorem 3. �
Γ (v) isomorphic to a complete multipartite graph

Suppose that Γ (v) ∼= M(s, t) the complete multipartite graph with t parts each of size s where
s, t ∈ (N \ {0}) ∪ {ℵ0}. If a graph is connected and the neighbourhood of every vertex is isomorphic to
Kr for some r � 2 then the entire graph must, clearly, be a complete graph, and so we may suppose
that s > 1. Also, when t = 1, M(s,1) is an independent set and this comes under a different case (see
Section 4), so suppose that s, t � 2. In this case the following lemma ensures that Γ ∼= M(s, t + 1).
Versions of it are well known (see [12, Lemma 6 and 8] for example), but for completeness we give a
proof.

Lemma 12. Let Γ be a connected graph, and suppose that for each v ∈ V Γ , Γ (v) ∼= M(s, t) with s, t > 1.
Then Γ ∼= M(s, t + 1).

Proof. Suppose v ∈ V Γ , and the parts in the multipartite partition of Γ (v) are {Ai: i ∈ I}. For distinct
i, j ∈ I , pick a1 ∈ Ai and a2 ∈ A j . Then let {v}∪ B be the part containing v in the complete multipartite
partition of Γ (a1). Thus {v} ∪ B is an independent set, whose vertices are joined to all members of⋃{Ak: k ∈ I} \ Ai . It follows that Γ (a2)\Γ (v) ⊇ Γ (a1)\Γ (v). Reversing a1,a2, we see Γ (a2)\Γ (v) =
Γ (a1) \ Γ (v). Likewise, if y ∈ B then Γ (y) \ Γ (a2) = Γ (a1) \ Γ (a2). Hence as B is an independent
set, Γ (y) is contained in (and in fact equals) Γ (v). It follows by connectedness that Γ is complete
multipartite with parts {B ∪ {v}, Ai: i ∈ I}. �
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Γ (v) is the complement of the generic Kn-free graph (n � 3)

Since the complement of a pentagon is a pentagon, in this case we know that Γ embeds a pen-
tagon and therefore by Lemma 7(i), Γ has diameter 2 in this case.

Lemma 13. If Im ⊆ Γ with m < n then there exists u ∈ V Γ such that Im ⊆ Γ (u).

Proof. The result holds for m = 2 since Γ has diameter 2. Let m be the smallest integer for which the
result fails. Let Im = {x1, . . . , xm}. By minimality there exist u1, u2 such that u1 is adjacent to every
vertex in Im \ {xm}, and u2 is adjacent to every vertex in Im \ {x1}. Now Y = 〈Im ∪ {u1, u2}〉 does not
embed Im+1 and, since m < n, does not embed In . Therefore Y is co-Kn-free, connected (as m > 2),
and embeds in a neighbourhood, and thus Im has a common neighbour by C-homogeneity. �
Lemma 14. If E ⊆ Γ is co-Kn-free there exists u ∈ Γ such that E ⊆ Γ (u).

Proof. Let F ⊆ Γ be a minimal counterexample. By Lemma 13 we may assume that F is not an
independent set. Therefore we may choose f ∈ F so that f is adjacent to at least one other vertex
of F . Now by minimality there is a vertex u′ ∈ Γ adjacent to every vertex in F \ { f }, and by the
choice of f we know that 〈F ∪ {u′}〉 is a connected graph. Now 〈F ∪ {u′}〉 is also co-Kn-free because
any copy of In would need to contain u′ . Therefore by C-homogeneity there exists u ∈ V Γ such that
〈F ∪ {u′}〉 ⊆ Γ (u). �

Now we use the lemmas above to prove the main proposition for this subsection.

Proposition 15. Let Γ be a countable connected C-homogeneous graph such that Γ (v) is co-Kn-free for some
n � 3. Then Γ is homogeneous.

Proof. Suppose, for the sake of a contradiction, that Γ is not homogeneous, and choose E not sat-
isfying the conditions of Lemma 9 and with the minimum number of connected components with
respect to this; here ‘not satisfying the conditions of Lemma 9’ means that there is some isomor-
phism φ : E → F with no extension to an isomorphism between finite connected subgraphs of Γ . Let
E1, . . . , Ek be the connected components of E .

Case 1. k < n.

Choose E ′ ⊆ E with the following properties:

(i) E ′ ∩ Ei 	= ∅ for 1 � i � k;
(ii) E ′ is maximal co-Kn-free.

Now by Lemma 14 there exists u such that E ′ ⊆ Γ (u) and by maximality Γ (u) ∩ E = E ′ . But now
〈E ∪ {u}〉 is connected, and any other induced subgraph isomorphic to E may be connected together
in this same way, which is a contradiction to the original choice of E .

Case 2. k � n.

In this case let E ′ ⊆ E with the following properties:

(i) E ′ ∩ Ei 	= ∅ for 1 � i � n − 1;
(ii) E ′ is maximal co-Kn-free.

Then by Lemma 14 there exists u such that E ′ ⊆ Γ (u) and Γ (u) ∩ (E1 ∪ · · · ∪ En−1) = E ′ . In addition
to this, we know that Γ (u) does not intersect any of {En, En+1, . . . , Ek} by (i) and the fact that Γ (u)
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is co-Kn-free. Now define F0 = 〈{u} ∪ E1 ∪ · · · ∪ En−1〉. Then 〈F0 ∪ En ∪ · · · ∪ Ek〉 has strictly fewer
connected components than E and therefore by minimality satisfies the conditions of Lemma 9. It
follows that any induced subgraph of Γ isomorphic to E may be connected together in this same
way, which is a contradiction to the original choice of E . �

We remark that there is no countable homogeneous graph satisfying Proposition 15; so, by the
proposition, this case does not arise.

Γ (v) is the generic Kr -free graph (r � 3)

In this case we prove that Γ must be homogeneous, and hence, by inspection of the list of count-
able homogeneous graphs, must be the generic Kr+1-free graph.

First observe that Γ (v) embeds the pentagon, so by Lemma 7(i), diam(Γ ) = 2. The proof follows
rapidly from Lemma 17, and for that we first need the following.

Lemma 16. Let X = Kl ∪ Km ⊆ Γ , a disjoint union of complete graphs where l,m � r − 1. Then there exists a
finite subset Y of Γ such that 〈X ∪ Y 〉 is connected and Kr -free.

Proof. The problem splits into two cases depending on the value of r.

Case 1. r > 3. Choose l and m so that Kl ∪ Km is minimal with respect to not extending. Since
diam(Γ ) = 2 we may suppose, without loss of generality, that m � 2. Let M = Kl ∪ Km \ {y} where
y ∈ Km . Let x ∈ Kl and z ∈ Km \ {y}. By minimality, M can be connected in a Kr -free way, so by
C-homogeneity M lies in a neighbourhood. Indeed, M has an extension M that is connected and Kr -
free. Also, for any vertex w of Γ the neighbourhood Γ (w) is isomorphic to the generic Kr -free graph
which embeds all countable Kr -free graphs, and so in particular has an induced subgraph isomorphic
to M . Now applying C-homogeneity we conclude that here exists a vertex w ′ with M ⊆ M ⊆ Γ (w ′).
Now since Γ (w ′) is isomorphic to the generic Kr -free graph, it follows by the extension property
that there exists u ∈ Γ (w ′) such that Γ (u)∩ M = {x, z}. Now since r > 3, regardless of whether or not
u ∼ y, 〈Kl ∪ Km ∪ {u}〉 is Kr -free and connected, which is a contradiction.

Case 2. r = 3 (so Γ (v) is generic triangle-free). Again, we may assume l + m > 2. If Kl = {x1} and Km =
{y1, y2} then {x1, y1} has a common neighbour u since diam(Γ ) = 2. If u � y2 then 〈x1, u, y1, y2〉
is connected and triangle-free. On the other hand, if u ∼ y2 then {x1, y1, y2} ⊂ Γ (u), so can be con-
nected in a triangle-free way within Γ (u). Dually we can deal with the case that l = 2 and m = 1.
Therefore we may assume that l = m = 2.

Suppose that the lemma is false. Write ab|cd if 〈{a,b, c,d}〉 is the disjoint union of two edges {a,b}
and {c,d}. By assumption there exist such quadruples which do not lie in any neighbourhood, since
otherwise they can be connected in a triangle-free way within a neighbourhood. Call such quadruples
bad, and good if they do lie in a neighbourhood. By the last paragraph, if ab|cd is a bad quadruple
then there is v /∈ {a,b, c,d} joined to b, c,d but not a (and likewise for any other choice of one of the
four points); and this does not hold for good quadruples, as otherwise we could connect up good and
bad quadruples in the same way, contrary to C-homogeneity.

Claim 1. If ab|cd is bad then there is e /∈ {a,b, c,d} joined to a and b and not to c or d.

Proof of claim. As ab|cd is bad there is u joined to b, c,d but not a. Then, as Γ (u) is generic triangle-
free, by the extension property there is f ∈ Γ (u) joined to d but not b, c. Then f � a, as otherwise
〈a,b, f ,d, c〉 is connected triangle-free.

Now ab|df is a bad quadruple. Indeed, if not, then (working in a neighbourhood containing
a,b,d, f ) there is v joined to b, f and not to a,d. Whether or not v ∼ c, the graph on {a,b, v, c,d, f }
is connected triangle-free, a contradiction.
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It follows that there is v joined to b,d, f and not a. Then v ∼ c, as otherwise {a,b, c,d, v} is
connected triangle-free. Inside Γ (v), pick e joined to b, f but not to c,d. Then e is joined to a, as
otherwise {a,b, c,d, e, f } is connected triangle-free. This e satisfies the claim. �

Given the claim, suppose first that be|cd is bad. Then there is w joined to b, e,d but not c. As
ab|cd is bad, it follows that w is joined to a (since otherwise 〈a,b, w, c,d〉 would be triangle-free and
so would map into a neighbourhood), so {a,b, e, w} is complete, which is a contradiction.

Thus, be|cd is good, and likewise ae|cd is good. Choose w joined to b, c,d. Then w ∼ e, as be|cd is
good, and hence w ∼ a, as ae|cd is good. Thus, again, {a,b, e, w} carries a complete graph, a contra-
diction. �
Lemma 17. If A ⊆ Γ and 〈A〉 is Kr -free, then there exists a finite subset X of Γ such that 〈A ∪ X〉 is connected
and Kr -free.

Proof. If 〈A〉 is connected, then X = ∅ is a solution. Thus, we may suppose that A has at least two
components, and we first show by induction on the number of vertices that if A has exactly two
components then the result holds. So suppose A has exactly two components, E1 and E2. If E1 and
E2 are each complete graphs then the result follows by Lemma 16, so we may suppose without loss
of generality that E2 is not a complete graph. Let e, f ∈ E2 be non-adjacent vertices. We may suppose
that E2 \ { f } is connected; to see this, for example, it is an easy exercise to find a spanning tree for
E2 such that some vertex f of E2 which is not joined in Γ to all of E2 is a leaf, and then deletion
of this vertex leaves E2 \ { f } connected. Let A′ = 〈A〉 \ { f }. By inductive hypothesis there is a finite
set Z such that 〈A′ ∪ Z〉 is connected and Kr -free. It follows by C-homogeneity that 〈A′ ∪ Z〉 embeds
in a neighbourhood. Indeed, for any vertex w of Γ the neighbourhood Γ (w) of w is isomorphic to
the generic Kr -free graph. Since the generic Kr -free graph embeds all countable Kr -free graphs it
follows that Γ (w) embeds a subgraph isomorphic to 〈A′ ∪ Z〉. Since 〈A′ ∪ Z〉 is connected we may
apply C-homogeneity to deduce that there is a vertex w ′ in Γ with A′ ⊆ A′ ∪ Z ⊆ Γ (w ′). Let g ∈ E1
be arbitrary. Since Γ (w ′) is isomorphic to the generic Kr -free graph it follows from the extension
property that there is a vertex u ∈ Γ (w ′) such that Γ (u) ∩ A′ = {g, e}. Since e is not adjacent to f it
follows that 〈A ∪ {u}〉 is connected and Kr -free, completing the inductive step.

We now assume the result when A has two components, and prove it for the case when A has
components E1, . . . , Es , with s > 2. We may assume inductively that the lemma holds for proper
subgraphs of A. Pick b ∈ Es . Let A′ = A \ {b}. By induction there is a finite set Y such that 〈A′ ∪ Y 〉
is connected and Kr -free. Arguing as in the previous paragraph, by C-homogeneity this implies there
exists a vertex y′ of Γ such that A′ ⊆ A′ ∪ Y ⊆ Γ (y′). Since Γ (y′) is isomorphic to the generic Kr -free
graph it follows by the extension property that there exists a vertex c in Γ (y′) that is adjacent to
exactly one vertex of Ei for each i < s, and adjacent to no vertices of Es \ {b}. If c ∼ b then A ∪ {c}
is connected and Kr -free, and so we are done. On the other hand, if c � b then 〈A ∪ {c}〉 has two
components, namely E1 ∪ · · · ∪ Es−1 ∪ {c} and Es , and is Kr -free, and so A satisfies the lemma by the
previous paragraph (the two-component case). �
Proposition 18. Let Γ be a countable connected C-homogeneous graph. If Γ (u) is isomorphic to the generic
Kn-free graph with n � 3 then Γ is homogeneous (and so is isomorphic to the generic Kn+1-free graph).

Proof. Let E1, E2 ⊆ Γ and let φ : E1 → E2 be an isomorphism. If E1 is connected then φ extends
to an automorphism by C-homogeneity, so suppose that E1 is not connected. Let E ′

1 be a maximal
Kr -free induced subgraph of E1, noting that E ′

1 must intersect every connected component of E1.
Let E ′

2 be the image of E ′
1 under φ. By Lemma 17, and C-homogeneity, the set E ′

1 has a common
neighbour u in Γ . Also, by maximality of E ′

1 it follows that u � w for all w ∈ E1 \ E ′
1. Similarly

the set E ′
2 has a common neighbour v and v is not adjacent to any vertex in E2 \ E ′

2. Therefore

φ̂ : 〈u, E1〉 → 〈v, E2〉 extending φ by φ̂u = v is an isomorphism of connected substructures and so
extends to an automorphism. Therefore the map φ also extends.

The final assertion follows by inspection of the list of countable homogeneous graphs. �
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4. Proof of the main theorem II: neighbourhood isomorphic to disjoint union of complete graphs

In contrast to the previous section, in the cases dealt with in this section we shall see that the
graph Γ need not be homogeneous.

Γ (v) isomorphic to a disjoint union of at least two non-trivial complete graphs

Let Γ (v) ∼= k1 · Kk2 , that is, k1 disjoint copies of Kk2 where k1,k2 ∈ N∪{ℵ0}. We will deal separately
with the special case that Γ (v) is an independent set (i.e. the case k2 = 1). Also when k1 = 1, Γ (v)

is complete and, as observed in the paragraph immediately before Lemma 12, this implies that Γ

itself is complete. Therefore we suppose that k1,k2 � 2. In this case we shall prove that either Γ is
isomorphic to Xk1,k2 where one of the parameters is infinite, or Γ is isomorphic to the line graph
L(Kℵ0,ℵ0) of the complete bipartite graph with countably infinite parts. This case divides into two
parts depending on whether or not a square embeds into Γ . The first task in this case is to prove
Corollary 26, that, except in the case when Γ ∼= L(Kℵ0,ℵ0), the square does not embed into Γ . Fix an
edge {x, y} in EΓ . Let X = Γ (x) \ ({y} ∪ Γ (y)) and Y = Γ (y) \ ({x} ∪ Γ (x)).

Lemma 19. Suppose Γ embeds a square. For any x′ ∈ X and y′ ∈ Y if x′ � y′ then there exists y′′ ∈ Γ (x′) ∩ Y
such that y′′ ∼ y′ .

Proof. Since a square embeds there exists y1 ∈ Γ (y) ∩ Γ (x′) such that 〈x′, x, y, y1〉 is a square. Since
k2 � 2 there exists y2 ∼ y1 with y2 ∈ Y . Now y2 � x′ since if y2 ∼ x′ then {x′, y1, y} would all belong
to the same connected component of Γ (y2) implying that x′ ∼ y, which is a contradiction. Now by
C-homogeneity there exists α ∈ Aut Γ such that (x′, x, y, y2)

α = (x′, x, y, y′). The element yα
1 belongs

to Y and is adjacent both to y′ and to x′ . Therefore the element yα
1 satisfies the requirements of the

lemma. �
Lemma 20. Suppose Γ embeds a square. Let X ′ and Y ′ be connected components of X and Y , respectively.
Then there is a bijection f : X ′ → Y ′ such that for all x′ ∈ X ′ , y′ ∈ Y ′ , x′ ∼ y′ if and only if y′ = f (x′).

Proof. Note that X ′, Y ′ are complete graphs. Let x′ ∈ X ′ . It follows from Lemma 19 that x′ is adjacent
to at least one vertex in Y ′ . By considering the neighbourhood of y′ we conclude that x′ is adjacent
to no more than one vertex of Y ′ . This gives an injection f from X ′ to Y ′ . By Lemma 19 it follows
that this map is onto, completing the proof of the lemma. �
Lemma 21. Suppose Γ embeds a square. Then diam(Γ ) � 2.

Proof. Suppose that diam(Γ ) � 3 and let a,b ∈ V Γ be at distance 3, as depicted.

a′

a x y b

It follows from Lemma 19 that there is a vertex a′ joined, as in the configuration, to a, x,b but not y,
and so d(a,b) = 2, which is a contradiction. �

Now we shall consider three cases depending on the values of k1 and k2.

Case 1. k1 > 2 and k2 > 2.

Lemma 22. If k1 > 2 and k2 > 2 then Γ does not embed a square.



108 R. Gray, D. Macpherson / Journal of Combinatorial Theory, Series B 100 (2010) 97–118
Proof. Suppose, for the sake of a contradiction, that Γ does embed a square. Let u ∈ V Γ and let
v, w, x ∈ Γ (u) each be in distinct copies of Kk2 of Γ (u) (i.e. 〈v, w, x〉 ∼= I3). Let y ∈ Γ (w) \ {u}, let
V be the connected component of Γ (u) containing v , let X be the connected component of Γ (u)

containing x, and let Y be the connected component of Γ (w) that contains y. Note that w is not
adjacent to any member of X ∪ V , so Y ∩ (X ∪ V ) = ∅.

Let f : V → Y and g : Y → X be the bijections given by Lemma 20 (with uw replacing xy). We
may suppose f (v) = y and g(y) = x. Pick v ′ ∈ V \ {v}, and put y′ = f (v ′) and x′ = g(y′). Let y′′ ∈
Y \ {y, y′}. The following diagram illustrates the situation.

v

v ′ y

u w
y′′

x y′

x′

Now by C-homogeneity there is an automorphism ψ ∈ Aut(Γ ) fixing the vertices in the set
{v, v ′, u, w, y′′} and interchanging x and x′ . Since x ∼ y ∼ v it follows that xψ ∼ yψ ∼ vψ which
implies that x′ ∼ yψ ∼ v . But since ψ fixes w and y′′ it follows that yψ ∈ Γ (w) ∩ Γ (y′′). Thus
x′ ∼ yψ implies that yψ = y′ while v ∼ yψ implies that yψ = y. Therefore y = y′ , which is a contra-
diction. �
Case 2. k2 = 2 and k1 = ℵ0.

Again, under the assumption that squares embed, we show this case cannot occur.

Lemma 23. Assume Γ embeds a square. Then C5 embeds into Γ as an induced subgraph.

Proof. Fix x, and neighbours u, u′ , v , v ′ , with u joined to u′ and v joined to v ′ . Let y be an-
other neighbour of x not adjacent to either u or to v (so {u, v, y} is an independent set in the
subgraph induced by Γ (x)). Consider an automorphism α fixing x,u,u′ and y, and swapping v
and v ′ . Consider a further joined pair a, a′ , with {a,a′} ⊆ Γ (y) \ Γ (x). By Lemma 20, we may
suppose that 〈u,a,a′, u′〉 and 〈v,a,a′, v ′〉 are squares. Now α can neither fix nor swap a, a′ . If
(a,a′)α = (b,b′) with {a,a′} ∩ {b,b′} = ∅, then we have squares 〈v,b′,b, v ′〉, 〈u,b,b′, u′〉, and so a
pentagon 〈a, v,b′,b, u〉. �

Now we shall use the fact that a pentagon exists, along with the other facts of this case, to arrive at
a contradiction. Fix v , and let {c,d} be an edge in its neighbourhood. Let h ∈ Γ (v) with h /∈ {c,d} and
let {a,b} be an edge in the neighbourhood of h, where a and b are at distance 2 from v . Moreover
let {e, f } be an edge in the neighbourhood of d, with e and f in Γ2(v), and {e, f } ∩ {a,b} = ∅.
Since a pentagon embeds we may choose a,b, c,d, e, f ,h so that a ∼ f . Now by considering the
structure of Γ (b), we see b � f . Likewise, a � e. Hence, by considering an automorphism taking
ahvde to bhvdf , we see that b ∼ e (compare the proof of Lemma 20). The diagram below illustrates
the situation.
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a c

h v
f

b d

e

Now b � d, as Γ (d) ∼= ℵ0 · K2. By Lemma 20 we must therefore have b ∼ c and a ∼ d. But now 〈a, f , e〉
violates the structure of Γ (d).

Case 3. k1 = 2 and k2 = ℵ0.

Let Γ be a connected C-homogeneous graph such that Γ (u) ∼= Kℵ0 ∪ Kℵ0 , and such that a square
embeds into Γ . By Lemma 21, Γ has diameter 2.

Lemma 24. Each induced line L3 of Γ extends uniquely to a square.

Proof. Suppose otherwise and let 〈a,b, e〉 be a line that extends to two distinct squares 〈a,b, e, c〉 and
〈a,b, e,d〉. Since the neighbourhood of a has only two connected components it follows that c ∼ d.
But then a,d and e all belong to the same connected component of 〈Γ (c)〉 which is a contradiction
since a � e. �

We now use this lemma to prove the following result.

Proposition 25. Let Γ be a connected C-homogeneous graph such that Γ (u) ∼= Kℵ0 ∪ Kℵ0 and a square
embeds into Γ . Then Γ is isomorphic to L(K∞,∞), the line graph of the countable complete bipartite graph
with infinite parts.

Proof. By Lemma 21, Γ has diameter 2. The graph L(Kℵ0,ℵ0) can be represented in the following way.
Take two countably infinite sets C and D . Define the vertex set to be C × D and two distinct vertices
are adjacent if their first or second coordinates coincide. It is easy to see that this graph is isomorphic
to L(Kℵ0,ℵ0).

Fix a vertex v ∈ V Γ . Let A and B denote the two connected components of Γ (v). By Lemma 24 for
every a ∈ A and b ∈ B the line 〈a, v,b〉 extends uniquely to a square 〈a, v,b, v(a,b)〉. Clearly v(a,b) /∈
A ∪ B ∪ {v}. Also, if w /∈ (A ∪ B ∪ {v}) is joined to a ∈ A then as wav lies in a square, w = v(a,b) for
some b ∈ B . Thus, since diam(Γ ) = 2 it follows that Γ = {v} ∪ A ∪ B ∪ {v(a,b): a ∈ A, b ∈ B}. Also
the elements v(a,b) are all distinct in the sense that

v(a,b) = v(a′,b′) ⇒ a = a′ and b = b′.

Indeed, if a 	= a′ then v,a′ and v(a,b) all belong to the same connected component of 〈Γ (a)〉 which
contradicts the fact that v � v(a,b). Similarly b 	= b′ leads to a contradiction.

Claim 1. For distinct ordered pairs (a,b), (c,d) ∈ A × B we have

v(a,b) ∼ v(c,d) ⇔ a = c or b = d.

Proof of claim. For the forward implication suppose, for the sake of a contradiction, that a 	= c and
b 	= d, but that v(a,b) ∼ v(c,d). By considering the neighbourhood Γ (v(a,b)) since a � b we must
have either a ∼ v(c,d) or b ∼ v(c,d). But if a ∼ v(c,d) then v(a,d) = v(c,d) implying a = c, a contra-
diction. Similarly b ∼ v(c,d) would imply v(c,b) = v(c,d), again a contradiction.
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For the converse implication, suppose without loss of generality that a = c and b 	= d. By consider-
ing the neighbourhood of a = c it is immediate that v(a,b) is adjacent to v(c,d). �

Returning to the proof of the proposition, the claim completely determines the structure of the
graph Γ , and we conclude that Γ ∼= L(Kℵ0,ℵ0). Indeed, let C, D as in the first paragraph of the proof,
with L(Kℵ0,ℵ0) having vertex set C × D , let c ∈ C and d ∈ D , and fix bijections f1 : A → C \ {c} and
f2 : B → D \ {d}. Identify v with (c,d), a ∈ A with ( f1(a),d) and b ∈ B with (c, f2(b)) and v(a,b) with
( f1(a), f2(b)). �
Corollary 26. If Γ is C-homogeneous and Γ (v) ∼= k1 · Kk2 where k1,k2 � 2 then either Γ ∼= L(Kℵ0,ℵ0), or Γ

does not embed a square.

Using this corollary we can now prove the second main result of this subsection.

Theorem 27. If Γ is connected, C-homogeneous, a square does not embed into Γ , and Γ (v) ∼= k1 · Kk2 where
k1,k2 � 2 then Γ ∼= Xk1,k2 .

Proof. Clearly it is sufficient to prove that the only cycles that Γ embeds are triangles. Suppose
otherwise and let Cn be the smallest non-triangle cycle that embeds into Γ . Since we are assuming a
square does not embed it follows that n � 5. Fix a copy 〈x, y, y′,b1,b2 . . . ,bn−4, x′〉 of Cn in Γ . Let X
be the connected component of Γ (x′) that contains x, and let Y be the connected component of Γ (y′)
containing y. Clearly X ∩ Y = ∅. Let x1 ∈ X \ {x} and y1 ∈ Y \ {y}. By considering the neighbourhoods
Γ (x) and Γ (y) we see that x1 � y and y1 � x. Therefore, since no square embeds into Γ , it follows
that x1 � y1. Since y1 was an arbitrary member of Y \ {y} it follows that x1 is not adjacent to any
member of Y .

Since no square embeds we also have y1 � x′ and x1 � y′ . In addition to this, for all j we have
y1 � b j , and x1 � b j (since any such edge would create a cycle Cm with m < n contradicting the
minimality of Cn). Therefore by C-homogeneity there is an automorphism α such that

(y1, y′,b1,b2, . . . ,bn−4, x′, x)α = (y1, y′,b1,b2, . . . ,bn−4, x′, x1).

But x ∼ y implies x1 = xα ∼ yα where, since α fixes y′ and y1, yα ∈ Y . This contradicts the fact that
x1 is not adjacent to any member of Y . �
Γ (v) an independent set

The case where Γ (v) is an independent set is special. It is the most difficult case, partly because
of the large family of examples, namely the following: the triangle-free graph, bipartite graphs (com-
plete, generic bipartite, or complement of a complete matching), and trees. It is in this case that we
make use of the classification of homogeneous bipartite graphs. The following lemma will be used
several times in this section.

Lemma 28. Suppose that Γ (v) is an independent set. If for all k ∈ N and for every Ik in Γ there is a vertex u
such that Ik ⊆ Γ (u) then Γ is a homogeneous graph.

By inspection of the list of homogeneous graphs, the only possibilities in this case are the triangle
free graph and the complete bipartite graph.

Proof. Let A be a finite induced subgraph of Γ . Let A′ be a maximal independent subset of A. By
assumption there exists u such that A′ ⊆ Γ (u). By maximality of A′ we conclude that Γ (u) ∩ A = A′ .
Also by maximality of A′ the graph 〈u ∪ A〉 is connected. Now any other induced subgraph isomorphic
to A may be connected together in this same way and by Lemma 9 it follows that Γ is a homoge-
neous graph. �
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For the rest of this section we shall suppose that Γ is not a tree, and that each Γ (v) is an
independent set. Let Cn be the smallest cycle that embeds into Γ . We know by Lemma 7 that n ∈
{4,5,6}. We also know that if n = 5 then diam(Γ ) � 2. Also, if n = 6 then diam(Γ ) � 3. We shall now
rule out n = 5,6 as possibilities.

Lemma 29. If Cn is the smallest cycle that embeds into Γ then n 	= 5.

Proof. For a contradiction suppose that C5 embeds in Γ but C3 and C4 do not. Fix v ∈ V Γ

and consider Γ2(v) = {w ∈ V Γ : d(v, w) = 2}. Let {xi: i ∈ I} be the neighbours of v , and de-
fine sets Xi = Γ (xi) \ {v}. We may suppose I = N. Since no square embeds it follows that
Γ2(v) is a disjoint union of the sets Xi (i ∈ I). By C-homogeneity for all i 	= j the graph
〈Xi ∪ X j〉 is a homogeneous bipartite graph; indeed, any isomorphism between finite bipartite
subgraphs that preserves the parts of the bipartition extends to an isomorphism of finite con-
nected subgraphs of Γ fixing v , xi , x j . Therefore by Theorem 4, 〈Xi ∪ X j〉 is one of: com-
plete bipartite, generic bipartite, empty, complete matching, complement of complete match-
ing. Since we are in the case n = 5, 〈Xi ∪ X j〉 must be isomorphic to a complete match-
ing.

Consider X1, X2 and X3. There is a bijection φ : X1 → X1 given by composing the bijection, arising
from the complete matching, from X1 to X2 with the bijection from X2 to X3 and then with the
bijection from X3 back to X1. Let a ∈ X1. Since Γ does not embed a triangle we must have φ(a) 	= a.
Now we claim that any automorphism of Γ fixing all of {v,a, x1, x2, x3} must also fix b := φ(a).
Indeed, let α ∈ AutΓ be such an automorphism. Clearly α preserves φ. Since φ(a) = b it follows that
φ(aα) = bα and therefore b = φ(a) = φ(aα) = bα as claimed. Now if we let b′ be another vertex in X1

then there is no automorphism fixing all of {v, x1, x2, x3,a} and interchanging b and b′ . The following
diagram illustrates the situation.

b a

b′ x1 v x2

x3

This contradicts C-homogeneity and completes the proof of the lemma. �

Lemma 30. If Cn is the smallest cycle that embeds into Γ then n 	= 6.

Proof. The argument is similar to that of Lemma 29 above. For a contradiction suppose that C6

is the smallest cycle which embeds in Γ . Fix an edge {x, y} in the graph Γ , let {xi: i ∈ I} =
Γ (x) \ {y} and let {yi: i ∈ I} = Γ (y) \ {x} where for simplicity we take I = N. Also define Xi =
Γ (xi) \ {x} and Yi = Γ (yi) \ {y} for each i ∈ I . Our assumptions on cycles ensure that distinct
sets Xi and X j are disjoint with no edges between them, and that for all i, j the sets Xi and
Y j are disjoint. By C-homogeneity for all i, j ∈ I the graph 〈Xi ∪ Y j〉 is a homogeneous bipar-
tite graph and, because we are in the case n = 6, it must be isomorphic to a complete matching.
There is a map φ : X1 → X2 given by composing the bijection from X1 to Y1, and that from Y1

to X2, given by the complete matchings. Fix a,b ∈ X1. The situation is illustrated in the diagram
below.
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a b

x1

x y y1

x2

φ(a) φ(b)

By C-homogeneity there is an automorphism α fixing {x, y, x1, x2, y1,a,b} and interchanging φ(a)

and φ(b). Let a′ ∈ Y1 be the unique neighbour of a in Y1. So by definition of φ we have a ∼ a′ ∼ φ(a).
Applying α to a ∼ a′ ∼ φ(a) gives aα ∼ (a′)α ∼ φ(a)α , so φ(a)α is the image of aα under the map
φ given by composing the matchings 〈X1 ∪ Y1〉 and 〈X2 ∪ Y1〉. This shows φ(a)α = φ(aα), and we
conclude φ(b) = φ(a)α = φ(aα) = φ(a) which is a contradiction since φ is a bijection. �

Thus we are left only with the possibility that n = 4, so let us suppose that n = 4. Let {x, y} be an
edge and define C = Γ (y) \ {x} and B = Γ (x) \ {y}. By Lemma 6, 〈C ∪ B〉 is a homogeneous bipartite
graph. Let Δ = Δ(Γ ) denote this graph noting that, since Γ embeds a square, Δ contains at least one
edge. Now by Theorem 4, Δ must be isomorphic to either the generic bipartite, complete matching,
complement of complete matching, or complete bipartite graph.

First we find a diameter bound for Γ .

Lemma 31. If n = 4 then diam(Γ ) � 3.

Proof. We go through the possibilities for Δ.

Case 1. Δ isomorphic to a complete matching.

x y

x1 y1

x2 y2

B C

As above, let {x, y} be an edge and let C = Γ (y) \ {x} and B = Γ (x) \ {y}. Let xi ∈ B and yi ∈ C with
i ∈ {1,2} and xi ∼ yi . It follows that the subgraph induced by {x, y, x1, x2, y1, y2} is isomorphic to ��
and so diam(Γ ) � 3 by Lemma 8.

Case 2. Δ isomorphic to generic bipartite graph.

Every bipartite graph embeds as a subgraph of 〈B ∪C〉, in particular �� embeds and again by applying
Lemma 8 we deduce diam(Γ ) � 3.

Case 3. Δ isomorphic to a complete bipartite or complement of complete matching.
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Assume that diam(Γ ) � 4 and let a,b ∈ V Γ be at distance 4. Let a, z, x, y,b be a path of length 4
from a to b. Extend azx to a square azxt noting that t /∈ {y,b}. This configuration is illustrated below.

a z x y b

t

Since Δ = 〈B ∪C〉 is in this case assumed to be either complete bipartite or the complement of a com-
plete matching it follows that either z ∼ b or t ∼ b, contradicting the assumption that d(a,b) = 4. �

In conclusion, thus far in this subsection we have proved the following.

Corollary 32. Assume that Γ is C-homogeneous, that Γ (v) is an independent set, and that Γ is not a tree.
Then Γ embeds C4 , and diam(Γ ) � 3.

We now aim to prove the following result.

Proposition 33. Let Γ be a countable connected C-homogeneous graph. If Γ (v) is an independent set, and Γ

is not a tree (so Γ embeds C4 and diam(Γ ) � 3) then either Γ is homogeneous or Γ is the generic bipartite
graph or the (bipartite) complement of a complete matching.

The rest of this section will be devoted to proving this proposition, so we work under its assump-
tions. We break the argument up according to the possibilities for the homogeneous bipartite graph
Δ on B ∪ C .

Case 1. Δ is a complete matching.

We show that this case does not occur. Let f : B → C denote the matching (so each u ∈ B is joined
to f (u)). First observe that each path of length 2 lies on a unique square: this is clear for example for
the path yxu where u ∈ B , as the only such square is yxu f (u). Now let (pi: i ∈ N) list B . For distinct
i, j ∈ N, there is ri j such that pi xp jri j is a square. Clearly ri j /∈ Δ ∪ {x, y}. If i, j,k are distinct then the
following hold.

(a) ri j 	= rik . Otherwise; xpiri j lies on two squares, through p j and pk;
(b) ri j � rik . Otherwise there is a triangle ri j pirik;
(c) ri j ∼ f (pk). Indeed, if not, then by C-homogeneity there is an automorphism α such that

(x, pi, ri j, pk, r jk)
α = (x, pi, ri j, pk, f (pk)). This automorphism fixes p j (the unique element com-

pleting a square with xpiri j), but this is impossible as p j ∼ r jk and p j � f (pk).

Now the path f (p1)yf (p2) lies on two squares (in fact, infinitely many), namely squares through r34,
r35. This is a contradiction.

Case 2. Δ is the complement of a complete matching.

We claim in this case that Γ itself is homogeneous bipartite, and is the complement of a complete
matching. Let f : B → C be the bijection giving the matching; that is, each w ∈ B is joined to all
elements of C except f (w). Pick u ∈ B . Then Γ (u) contains all but one point (namely f (u)) of Γ (y).
It follows by transitivity on paths of length 2 that:

(∗) for any u, v ∈ V Γ with d(u, v) = 2, each of Γ (u) \ Γ (v), Γ (v) \ Γ (u) has size 1.

Pick u ∈ B and v ∈ C with u � v . Then by (∗) there is c ∈ Γ (u) \ Γ (y) and b ∈ Γ (v) \ Γ (x). Now
by (∗), for each u′ ∈ B , u′ ∼ c and for each v ′ ∈ C , v ′ ∼ b. By (∗) and connectedness, the vertex set
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of Γ is {x, y,b, c} ∪ B ∪ C . By (∗) applied to (b, y), b ∼ c. Thus, Γ is the complement of a complete
matching, with parts B ′ := B ∪{y,b} and C ′ := C ∪{x, c} and with a bijection f ′ : B ′ → C ′ extending f ,
with f ′(y) = c and f ′(b) = x.

Case 3. Δ is a complete bipartite graph.

We claim that Γ = Δ ∪ {x, y}. This implies Γ is complete bipartite with partition (B ∪ {y}) ∪
(C ∪ {x}).

To see this, suppose there is r /∈ Δ ∪ {x, y}, with say r ∼ a ∈ B . Let α be an automorphism with
(a, x)α = (x, y). Then rα ∈ B , yα ∈ C , so rα ∼ yα , contradicting that r � y.

Case 4. Δ is generic bipartite.

This case arises if Γ is the generic triangle-free graph or the generic bipartite graph. These are
separated according to diameter (diameter 2 and 3, respectively).

Lemma 34. Suppose that Δ is generic bipartite and diam(Γ ) = 2. Then Γ is the generic triangle-free graph.

Proof. It suffices, by inspection of the list of homogeneous graphs, to show that Γ is homogeneous,
and for this we apply Lemma 28. So we prove by induction on m that if {x1, . . . , xm} is an inde-
pendent set then there is u ∈ V Γ with x1, . . . , xm ∈ Γ (u). As diam(Γ ) = 2, we may assume m > 2.
By induction, there is y1 joined to x1, . . . , xm−1, and y2 joined to x2, . . . , xm . As Γ is triangle-free,
y1 � y2, so 〈x1, . . . , xm, y1, y2〉 is a connected bipartite graph so embeds via α ∈ Aut(Γ ) into Δ, by
C-homogeneity. The images xα

1 , . . . , xα
m of the xi lie in one part of Δ, so have a common neighbour v

in the other part of Δ. Then x1, . . . , xm ∈ Γ (vα−1
). �

Lemma 35. Suppose that Δ is generic bipartite and Γ has diameter 3. Let X = {v} ∪ Γ2(v), and Y = Γ1(v) ∪
Γ3(v). Then X ∪ Y is a bipartition for the graph Γ .

Proof. By definition v is not adjacent to any vertex from Γ2(v). Similarly, if a ∈ Γ (v) and b ∈ Γ3(v)

then a � b, since if a ∼ b then d(v,b) < 3, a contradiction. Also, if a,b ∈ Γ2(v) and a ∼ b then it would
follow that C5 embeds into Γ , which in turn would imply that diam(Γ ) � 2, a contradiction.

The only remaining possibility is that a,b ∈ Γ3(v) and a ∼ b. We shall now show that this also
leads to a contradiction.

Claim 1. There exist y1 ∈ Γ1(v) and x1 ∈ Γ2(v) such that y1 � x1.

Proof of claim. Suppose otherwise. Then 〈Γ1(v) ∪ Γ2(v)〉 would be a complete bipartite graph. Pick
a′ ∈ X with a′ ∼ a, and b′ ∈ X with b′ ∼ b. Since diam(Γ ) = 3 it follows that a′,b′ ∈ Γ2(v). Then if
z ∈ Γ (v) we have z ∼ a′ and z ∼ b′ . It follows that 〈a,a′, z,b′,b〉 is a pentagon, but by Lemma 7(i)
this is impossible since Γ has diameter 3. �

Now let y1, x1 be as in the claim. Pick y2 ∈ Γ (v) ∩ Γ (x1), and x2 ∈ Γ (y1) ∩ Γ (y2) \ {v} (which
exists since we are assuming a square embeds). Let α ∈ Aut(Γ ) with (x2, y2)

α = (x, y), so xα
1 , vα ∈ C

and yα
1 ∈ B . As Δ is generic bipartite there is y′ ∈ B joined to xα

2 , xα
1 but not to vα (or to yα

2 or yα
1 ),

and then y3 := y′α−1
is joined to x2, x1 but not to v, y1, y2. Thus, L := 〈v, y1, x2, y3, x1〉 is a line of

length 5 with d(v, x1) = 2.
Also, let v, s, t,a be a path of length three from v to a. Then L′ = 〈v, s, t,a,b〉 is a line with 5

vertices and such that the first and last vertices are at distance 3 in the graph. But this contradicts
C-homogeneity since no automorphism sends L to L′ . �

Thus, by Corollary 32, to complete the analysis when Δ is generic bipartite, and hence to complete
the proof of Theorem 2, it remains to prove the following.
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Lemma 36. Suppose that Δ is generic bipartite and diam(Γ ) = 3. Then Γ is generic bipartite.

Proof. By the last lemma, Γ is bipartite with bipartition V Γ = X ∪ Y .
Let X ′ ⊆ X and Y ′ ⊆ Y be finite subsets, and let X ′ = U ∪ V be a partition of X ′ . We shall show

there is w ∈ Y joined to all members of U and no members of V . The same argument applies with
X and Y reversed, and this ensures Γ is generic bipartite.

By considering how the sets X, Y were defined, we see that X ′, Y ′ can be extended to X ′′ and Y ′′
so that 〈X ′′ ∪ Y ′′〉 is connected. By C-homogeneity there is α ∈ Aut(Γ ) such that (X ′′ ∪ Y ′′)α ⊂ Δ. By
connectedness of 〈X ′′ ∪ Y ′′〉, X ′′α and Y ′′α lie in different parts of Δ. Thus, as Δ is generic bipartite,
there is w ′ ∈ Δ, not in the part of Δ containing (X ′′)α , joined to all members of Uα and no members
of V α . Then w := w ′α−1

lies in Y and is joined to all members of U and no members of V . �
5. Connected-homogeneous partial orders

One may consider the notion of C-homogeneity but for other kinds of relational structure, for
example, for partial orders or more generally for digraphs. The result for posets is not too hard, in
fact it is far easier than the result above for graphs, and we include a proof in this section. The
corresponding result for digraphs looks more difficult.

The countable homogeneous partially ordered sets were classified in [26] by Schmerl. We shall
now classify the countable C-homogeneous posets. In contrast to what happens for graphs above, for
posets when weakening homogeneous to C-homogeneous we obtain no new connected examples. The
proof is much shorter than the one above for graphs, and correspondingly, Schmerl’s classification of
countable homogeneous posets is much shorter than the corresponding result for graphs. The notion
of connectedness for posets is as in the next section: (P ,<) is connected if for any distinct x, y ∈ P
there are x = x0, x1, . . . , xk = y such that for each i = 0, . . . ,k − 1, xi < xi+1 or xi+1 < xi .

Theorem 37. A countable poset is connected-homogeneous if and only if it is isomorphic to a disjoint union of
a countable number of isomorphic copies of some homogeneous countable poset.

We begin by quoting Schmerl’s result. Let 1 � n � ℵ0. Let (An,<) denote the antichain with n
elements. Let Bn = An × Q, where Q denotes the set of rational numbers, with the ordering (a, p) <

(b,q) if and only if a = b and p < q. Let Cn = Bn but with a different ordering to Bn where (a, p) <

(b,q) if and only if p < q. Finally let D denote the universal countable homogeneous partially ordered
set; that is, the Fraïssé limit of the amalgamation class consisting of all finite partial orders.

Theorem 38. (See [26, Main Theorem].) Let (H,<) be a countable partially ordered set. Then (H,<) is homo-
geneous if and only if it is isomorphic to one of the following:

(i) (An,<), 1 � n � ℵ0 ,
(ii) (Bn,<), 1 � n � ℵ0 ,

(iii) (Cn,<), 2 � n � ℵ0 ,
(iv) (D,<).

Clearly in order to prove Theorem 37 it is sufficient to prove that any countable connected C-
homogeneous poset is in fact homogeneous. As in the case of graphs above we will use angled
brackets to denote induced substructures. If a < b we write (a,b) for the substructure induced by
the points in the interval {x: a < x < b}; there is no clash below with ordered-pairs notation.

Let H be a countable connected C-homogeneous poset. The following lemma is an immediate
consequence of the definitions.

Lemma 39. For all x ∈ H the posets x↑ = 〈z ∈ H: z > x〉 and x↓ = 〈z ∈ H: z < x〉 are both homogeneous.
Moreover for any x, y ∈ H with x < y the interval (x, y) = {z: x < z < y} is homogeneous.
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Also by C-homogeneity, given any x, y ∈ H we have x↑ ∼= y↑ . Let Hu denote this poset. Similarly
define Hd to be isomorphic to x↓ and Hi to be isomorphic to some interval (x, y) (noting that all
such intervals are isomorphic by C-homogeneity). We now consider the various possibilities for the
posets Hu , Hd and Hi , in each case determining the possibilities for H .

Lemma 40. If any of Hu, Hd, or Hi is isomorphic to D then H is homogeneous (in which case H ∼= D).

Proof. First suppose that Hu ∼= D . Let E ⊆ H be a finite subset. Then since H is connected there is a
finite subset E of H containing E such that 〈E〉 is connected. Let x ∈ H be arbitrary. Since x↑ ∼= D it
follows that 〈E〉 embeds into x↑ and by C-homogeneity it follows that there exists an element x′ such
that x′ < 〈E〉 and thus x′ < E . But now it follows that isomorphisms between induced substructures
isomorphic to E always extend to automorphisms, since they may all be connected together in the
same way. Since E was arbitrary it follows that H is a homogeneous poset.

The cases of Hd
∼= D or Hi ∼= D are dealt with using almost identical arguments to the one

above. �
From now on, assume none of Hu, Hi, Hd is isomorphic to D .

Lemma 41. Hi � Bn (Hu � Bn, Hd � Bn) for any n � 2.

Proof. Suppose that Hi ∼= Bn . Let a,b ∈ H with a < b. Then (a,b) ∼= Bn . Choose a′ < b′ in a copy of Q

in (a,b). Then by C-homogeneity (a,b) ∼= (a′,b′) which is a contradiction.
The proofs for Hu and Hd are essentially the same as the one above. �

Lemma 42. If Hi ∼= Cn for some n � 2 then Hu ∼= Hd
∼= Cn.

Proof. Let a,b ∈ H with a < b. Then a↑ contains (a,b) as an induced substructure. It follows that
a↑ ∼= Cm for some m � n. To see that m = n fix an antichain A of size n in (a,b). If m > n this
antichain would extend to an antichain of size n + 1 in H with the new element necessarily lying
below b (since a↑ ∼= Cm). But this would contradict the fact that (a,b) ∼= Cn . �

Using the same approach we may also prove the following.

Lemma 43. If Hi ∼= Q then Hu ∼= Hd
∼= Q.

Lemma 44. If Hi ∼= Q then H ∼= Q.

Proof. By Lemma 43 we know that Hu ∼= Hd
∼= Q. Let x, y ∈ H and suppose that x is incomparable

to y. Let π be a path of minimal length from x to y. So π = (z0, z1, . . . , zk−1, zk) with z0 = x, zk = y,
and zi comparable to z j if and only if |i − j| = 1. If z1 < z2 then since z1

↑ ∼= Q it follows that x is
comparable to z1, which is a contradiction. Dually, z1 > z2 leads to a contradiction. We conclude that
H is a countable 2-transitive chain and is therefore isomorphic to Q. �

Therefore, the only remaining possibility is that Hi, Hu and Hd are all isomorphic to Cn for some
n � 2.

Proposition 45. If Hi ∼= Cn for some n � 2 then H ∼= Cn.

Proof. From Lemma 42 it follows that Hi ∼= Hu ∼= Hd
∼= Cn . We now use this to prove that H is

homogeneous.

Claim 1. Any 2-element antichain in H has a common upper bound and a common lower bound.



R. Gray, D. Macpherson / Journal of Combinatorial Theory, Series B 100 (2010) 97–118 117
Proof of claim. First we note that the statement in the claim is equivalent to the claim that every 2-
element antichain has a common upper bound or common lower bound. This is because since n � 2,
if a two element antichain has a common upper bound then by C-homogeneity it embeds in a copy
of Cn so automatically has a common lower bound also (and vice-versa).

Suppose that the result fails, and let {x, y} be an antichain that has no upper bound (and hence
no lower bound) and chosen to be the minimal distance apart with respect to this property. Let π
be a minimal length path from x to y, and let y′ be the penultimate term in the sequence (so y′ is
comparable to y). Then x and y′ is an antichain that by minimality has a common upper bound m
and common lower bound l. It follows, since y′ is comparable with y, that m is a common upper
bound or l is a common lower bound for the antichain {x, y}, which is a contradiction. �
Claim 2. Any finite antichain A of H has a common upper bound.

Proof of claim. Suppose that the result is not true and let A be a minimal finite antichain for which
it fails. By the previous claim we know that |A| > 2. Let a,a′ ∈ A, let u be an upper bound for A \ {a},
and v be an upper bound for A \ {a′}. These exist by minimality. Now u and v cannot be comparable,
since if they were one of them would serve as an upper bound for the whole of A. Therefore u and
v have a common upper bound by Claim 1, and that upper bound serves as an upper bound for A,
a contradiction. �
Claim 3. Any finite subset F of H has a common upper bound.

Proof of claim. Suppose the result fails and let F be minimal with respect to not having an upper
bound. If F is an antichain we are done by the previous case so we may suppose that there exist
x, y ∈ F with x > y. But now by induction F \ {y} has a common upper bound which serves as an
upper bound for F also, a contradiction. �

Returning to the proof of the proposition, it is now clear that H is homogeneous because any two
isomorphic finite induced substructures may be connected together in the same way (by adjoining an
upper bound) and then by C-homogeneity any partial isomorphism extends. �
6. Concluding remarks

One obvious question is whether we really need the full power of C-homogeneity to prove the
main result for graphs above? For example, does there exist some k ∈ N such that if Aut Γ is homo-
geneous on induced subgraphs with diameter � k then Γ is C-homogeneous? For most (but not all)
arguments in this paper a small value of k suffices.

A related idea to that of C-homogeneity, perhaps originally due to Cameron, is that of distance
homogeneous graphs. These are countable graphs that are homogeneous in a language which encodes
the distance, in the graph, by binary relations; that is, for each positive integer t there is a binary
predicate Pt such that Pt(x, y) holds if and only if d(x, y) = t . All the graphs listed in Theorem 2,
apart from line graphs of complete bipartite graphs, are distance homogeneous. Thus, the notions of
C-homogeneity, and distance homogeneity, are related and lie somewhere in the spectrum of con-
ditions between homogeneity, and distance transitivity. As a starting point for investigating distance
homogeneous graphs, note that if Γ is distance-homogeneous, then Γ (v) is homogeneous, since non-
adjacent pairs in Γ (v) are at distance 2. There are results of Moss on distance-homogeneous graphs
in [23] and [24].

For arbitrary first order relational structures, over a relational language L, there are natural notions
of dimension and hence connectedness and diameter. We say d(x, y) = k if k is least such that there
are x0 = x,x1, . . . , xk = y such that each successive pair {xi, xi+1} lies in a tuple satisfying a relation
of L. If L is a finite relational language and M is a countable connected C-homogeneous L-structure
of finite diameter, in the natural sense, then there is a function f on the natural numbers such that
each substructure of size k lies in a connected substructure of size at most f (k). Hence, Aut(M) has
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finitely many orbits on Mk , so, by the Ryll-Nardzewski Theorem (see [25], or Theorem 7.3.1 of [15]),
M is ω-categorical; that is, any countable L-structure which satisfies the same first-order sentences
of L is isomorphic to M . On the other hand, if M is connected of infinite diameter, then Aut(M) has
infinitely many orbits on pairs, so M is not ω-categorical. A possible goal is to show that in the infinite
diameter case, M has a treelike structure. In the finite bounded diameter case, the theory of Lachlan
[20] will apply, and the finite examples should fall into finitely many infinite families, coordinatised
by dimensions, and finitely many sporadics.
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