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Abstract—Trichromatic visualization of hundreds of bands in
a hyperspectral image has been an active research topic. The
visualized image shall convey as much information as possible
from the original data and facilitate easy image interpretation.
However, most existing methods display hyperspectral images
in false color, which contradicts with user experience and
expectation. In this paper, we propose a new framework for
visualizing hyperspectral image with natural color by fusion of
a hyperspectral image and a high-resolution color image via
manifold alignment. Manifold alignment projects several data sets
to a shared embedding space where the matching points between
them are pairwise aligned. The embedding space bridges the gap
between the high dimensional spectral space of the hyperspectral
image and the RGB space of the color image, making it possible
to transfer natural color and spatial information in the color
image to the hyperspectral image. In this way, a visualized
image with natural color distribution and fine spatial details
can be generated. Another advantage of the proposed method
is its flexible data setting for various scenarios. As our approach
only needs to search a limited number of matching pixel pairs
that present the same object, the hyperspectral image and the
color image can be captured from the same or semantically
similar sites. Moreover, the learned projection function from the
hyperspectral data space to the RGB space can be directly applied
to other hyperspectral images acquired by the same sensor to
achieve a quick overview. Our method is also able to visualize
user specified bands as natural color images, which is very helpful
for users to scan bands of interest.

Index Terms—Hyperspectral image, visualization, manifold
alignment, image fusion

I. I NTRODUCTION

Hyperspectral imaging sensors can acquire images with
tens or hundreds of light wavelength indexed bands. These
images provide high spectral resolution information such that
accurate target detection and classification can be achieved.
Displaying a hyperspectral image (HSI) is a challenging task
because it contains much more bands than the capability
of a trichromatic display device. One common solution is
considering HSI visualization as a special dimension reduction
problem where the HSI is projected to the RGB color space to
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get a quick overview of a scene. Although the requirements of
HSI visualization are task dependent, there are some common
goals such as information preservation, consistent rendering,
edge salience, and natural palette [1].

A simple way to generate an RGB image for HSI visualiza-
tion is selecting three of the original bands and mapping them
to the RGB space. Some softwares provide interactive tools for
users to manually pick three bands [2], [3]. More sophisticated
band selection methods, such as one-bit transform [4] and nor-
malized information [5], aim to highlight expected features so
that human perceptual channels are selected. In a more recent
work, minimum estimated abundance covariance (MEAC) and
linear prediction (LP) were used to select the most informative
bands [6].

Some HSI visualization approaches condense the original
spectral bands into three new bands by feature transforma-
tion. Several classic dimensionality reduction methods such
as independent component analysis (ICA) [7] and principal
component analysis (PCA) [8], [9], [10] have been applied
to HSI visualization. However, these linear transformation
methods are based on the global distribution of data, which
ignore some intrinsic characteristics such as nonlinear and
local structures of the HSI.

In recent years, manifold learning methods such as isometric
feature mapping (ISOMAP) [11], [12], locality preserving pro-
jections (LPP) [13], and locally linear embedding (LLE) [14]
have been applied to explore the manifold geometry in HSI.
Manifold is a topological space that is locally Euclidean, i.e.,
it emphasizes the local neighborhood information. Similarly,
some visualization methods aimed to preserve the pairwise
distances between pixels in its visualized color image. This
task is usually posed as a constrained optimization problem,
but its heavy computational load is a critical challenge for real
applications. Wilson et al. decreased the scale of the input data
by selecting representative pixels and used numerical interpo-
lation to generate the final optimization solution [15]. Mignotte
used a non-stationary Markov random field (MRF) model to
solve the optimization problem of preserving pairwise spectral
distance [16], and later extended this approach to address
the tradeoff between the preservation of spectral distances
and the separability of features [17]. Edge information is
also a significant local structure. Kotwal and Chaudhuria
proposed to use nonlinear bilateral filtering with the edge
preserving characteristic to calculate the band weights at each
pixel for band image fusion [18]. These local structure based
approaches demonstrate excellent performance in preserving
the intrinsic information of HSI.

Most existing methods try to get the visualized image
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convey as much information as possible from the original data.
However, they do not enable easy image interpretation. The
visualized RGB images of HSIs are falsely colored, which
makes it difficult for human to link the color to the expected
semantic meaning of land cover classes. For example, one
may be confused when the grass is shown in red or the
sea is shown in yellow. Moreover, the same objects/materials
in different HSIs are often visualized in different colors,
which also hinders the understanding of the image content.
Therefore, “natural color” and “constant rendering” gradually
become two important criteria for evaluating the quality of HSI
visualization. “natural color” refers to the visible color that
human visual system is able to perceive from a scene. When
images are captured by imaging sensors with RGB channels,
the formed colors are influenced by the sensor’s sensitivity
functions. In practice, visible imaging sensors only can capture
approximate RGB images. The colors can be considered as
natural so long as they are similar to human perception. In [1],
[19], fixed linear spectral weighting envelope was introduced
to generate a natural-looking image that rendered the same
materials in different data sets with the same colors consis-
tently. The spectral weighting envelope is a stretched version
of the CIE 1964 tristimulus color matching functions in the
visible range, which fits the cone responses of human visual
system. However, the stretched color matching function (CMF)
is too simple to represent the complex physical mechanism of
spectral imaging, so that it is only applicable to some specific
hyperspectral imaging sensors.

In most cases, both HSI and high resolution color image
(HRCI) can be acquired on the same spot. These two types of
images have strong complementary properties for information
fusion. An HSI contains precise and detailed spectral infor-
mation, but its spatial resolution is usually lower than the
corresponding HRCI. On the other side, the appearance of an
HRCI is consistent with the human visual perception, but an
HSI is beyond our visual perception capability. It implies that
the color information in an HRCI may be helpful in displaying
the corresponding HSI with natural palette. This requires
fusion of different presentations of the same object [20].
HSI and panchromatic image (PAN) fusion methods [21],
[22] take advantage of the high spatial resolution of PAN in
sharpening the HSI, which enhances the local spatial sharpness
and contrast of the band images of the HSI. Pan-sharpening
algorithms are also used in other applications such as object
detection and classification [23], [24]. Recently, fusion of HSI
and Light Detection And Ranging (LiDAR) images has also
been studied [25], [26]. To the best of our knowledge, no
research has been performed so far to visualize an HSI data
by fusion it with an HRCI.

In this paper, we propose a novel HSI and HRCI fusion
method based on manifold alignment to display the HSI with
natural color. Manifold alignment is one of the important
approaches for transfer learning [27], [28], which has been
applied to multi-modal HSI processing and classification [29],
[30], [31]. It builds connections between two or more dis-
parate data sets by aligning their underlying manifolds and
enables knowledge transfer across the data sets. We treat HSI
and HRCI fusion based visualization as a transfer learning

problem [32]. A shared space can be built to represent the
manifolds of the HSI and the HRCI and their mutual relation.
Via this shared space, the natural color distribution as well
as the fine spatial information of the HRCI can be easily
transferred to the HSI.

Generally there are two levels of manifold alignment:
instance-level and feature-level [27]. Instance-level alignment
builds connections between instances from different data sets,
but the alignment result is limited only to known instances
and is difficult to be generalized to new instances. Feature-
level alignment transforms the features of different data sets
to a common embedding space, which makes direct knowl-
edge transfer possible. The alignment result provides direct
connections between features in different spaces, so it is easily
generalized to new instances. In this paper, the feature-level
manifold alignment is used, where a direct mapping between
the high dimensional spectral feature of the HSI and the RGB
spectral feature of the HRCI is learned. The procedure of
the proposed HSI visualization method has three main steps.
Firstly, a few matching pixel pairs are detected between the
HSI and the HRCI. Secondly, the manifolds of two images are
aligned in a shared embedding space by forcing the matching
pixels to be close to each other in the new space. Two
projection functions are learned in this step to accomplish the
space transformation task. One maps the HSI from the spectral
space to the shared space, and the other maps the HRCI from
the RGB space to the shared space. Finally, we inversely maps
the manifold of the HSI in the shared space to the RGB space
so that the HSI is displayed with natural color.

The main contributions and advantages of the proposed
approach can be summarized as follows:

• Manifold alignment explores the manifolds of the HSI
and the HRCI in a shared space simultaneously, so it
not only preserves the local geometry of the HSI in the
visualized image, but also renders the visualized image
with natural color of the HRCI.

• The HSI is directly transformed to the RGB space, so
that no additional color adjustment is required to fit the
dynamic range of the trichromatic display and human
visual expectation.

• The learned projection function from the spectral space
to the RGB space can be reusable to visualize those
HSIs that are acquired by the same hyperspectral imaging
sensor.

• The proposed method can display any subset of bands
selected by users with natural color, which is very im-
portant in interactive visualization.

• To align two manifolds, only a small number of matching
pixel pairs between the HRCI and the HSI are needed
rather than a precise registration between two images.
Therefore, it is only required that the HSI and its corre-
sponding HRCI have similar ground features, so they can
be captured from different spots, which greatly decreases
the cost of image acquisition and increases the usability
of the approach.

The rest of the paper is organized as follows. Section II
briefly introduces the manifold alignment technique. Sec-
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tion III presents the manifold alignment based HSI visual-
ization approach and the details of its implementation. Some
application scenarios are also discussed in this section. The
experimental results are described in Section IV. Finally,
conclusions are drawn in Section V.

II. BACKGROUND ON MANIFOLD ALIGNMENT

It has been recognized that many high dimensional data
lie on a low dimensional manifold embedded in the ambient
space. Manifold learning is an effective dimension reduction
method to extract nonlinear structures from high dimensional
data. It maps ap-dimensional data setX to a q-dimensional
data setY , preserving the intrinsic geometry on the original
manifold as much as possible. Manifold alignment considers
the mutual relationships of several data sets at the same time.
It generates a shared embedding space to represent the low-
dimensional manifolds for all data sets simultaneously. In this
section, manifold based dimension reduction is introduced,
followed by the description of a manifold alignment algorithm.

A. Manifold based dimension reduction

Manifold based dimension reduction algorithms normally
follow a similar procedure. The first step is building a sparse
graph withk-nearest neighbors to represent the local geometry
of a data set. This might include computing the shortest path
between all points or figuring out how to linearly interpolate
the point from its neighbors. Then a set of points in a low
dimensional space are found, which preserve the properties of
the original graph.

Here we briefly review the LPP algorithm [13], as the
proposed manifold alignment algorithm for HSI visualization
is extended from this model. LPP is a linear approximation of
the nonlinear Laplacian Eigenmaps. Although LPP sacrifices
the ability to represent arbitrarily warped manifolds, it is much
faster than nonlinear manifold learning algorithms. This makes
LPP based manifold alignment more suitable to process large
amount of HSI data.

Given a data set represented by a matrixX ∈ Rp×n where
n is the number of samples, andp is the dimension of feature.
Let xi represent theith sample inX. LPP aims to find a linear
transformation functionF : Rp → Rq to map eachxi from
a p dimensional space to aq dimensional embedding space,
whereq ≪ p.

Firstly, an adjacency graphG is constructed to represent the
local geometry ofX. Each vertex inG represents a sample in
the data set and each edge indicates the relationship between
a pair of vertices. The relationship can be defined in terms of
k-nearest neighbors, i.e., a pair of verticesi andj is connected
by an edge ifi is among thek nearest neighbors ofj or j is
among thek nearest neighbors ofi. Let W with the size of
n× n be the weighted adjacency matrix ofG. The weight of
an edge is calculated by heat kernel, a measurement widely
used in graph construction to represent the geometric structure

of data. The weight of an edge between theith and thejth
vertices is

W(i, j) =











e
−dist(xi,xj)

σ2
if xi andxj are among the

k-nearest neighbors of each other,
0 otherwise.

(1)
where dist(xi, xj) can be any application oriented distance
metric betweenxi andxj .

LPP aims at finding a linear projection matrixF with the
size of p × q to map the data set fromp-dimensional space
to q-dimensional space. The objective function of LPP is
formalized as:

E(F) =
∑

ij

‖FT xi − FT xj‖2W(i, j) (2)

whereFT xi are the coordinates ofxi in the low dimensional
space. The sum is taken over all pairs of samples in the data
set. Minimizing the objective function guarantees that the local
geometry of the data set is preserved in the low dimensional
space, i.e., two neighboring samples in the original space are
still close to each other in the embedding space.

To find a solution to minimize Equation (2), the objective
function can be reduced to

1

2
E(F) =

1

2

∑

ij

‖FT xi − FT xj‖2W(i, j)

=
∑

i

(xTi FDiiFT xi)−
∑

ij

(xTi FWijFT xj)

= tr(FTX(D − W)XT F)

= tr(FTXLX TF)

(3)

L = D−W is the laplacian matrix ofG whereD is a diagonal
matrix with D(i, i) =

∑

j W(i, j). tr() is the trace of a matrix.
So the minimization problem can be rewritten as:

argmin
F

tr(FT XLX TF) (4)

which can be solved as the generalized eigenvalue problem

XLX TF = λXDXTF (5)

F is constructed by theq smallest eigenvectors because
the matricesXLX T and XDXT are symmetric and positive
semidefinite.

B. Feature-level manifold alignment

Manifold alignment is based on the assumption that seem-
ingly disparate data sets produced by similar generating pro-
cesses will share a similar underlying manifold structure. By
projecting each data set from their original space to the shared
manifold, connections can be built between disparate data sets
by aligning their underlying manifolds [28]. The manifold
alignment algorithm in this paper is based on LPP, which
extends LPP from addressing single data set to several data
sets. Here, we only introduce manifold alignment between two
data sets. Generalizing the algorithm to more than two data
sets is simple and straightforward.
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Given two data sets represented by matricesS ∈ Rps×ns

andT ∈ Rpt×nt wherens andnt are the numbers of samples,
andps andpt are the dimensions of features. Letxis represents
the ith sample inS, andxjt denotes thejth sample inT. LPP
based manifold alignment uses two linear projection functions
Fs : Rps → Rq and Ft : Rpt → Rq to transform two data
sets from the original spaces to a shared embedding space
Rq respectively. These two manifolds in the shared space are
aligned by making the matching samples close to each other in
this new space. The algorithm can be summarized as following
steps:

1) Like the first step of LPP, construct two graphsGs and
Gt with the adjacency matricesWs and Wt for two
data sets respectively.Ws andWt can be calculated by
Equation (1).

2) Construct the correspondence matrixWst by a set of
matching pairs between two data sets to represent the
corresponding relationship across two manifolds. The
set of the matching pairs can be obtained by the prior
or domain knowledge, or found by various matching
algorithms [33], [34]. We will discuss the details of
finding the matching pixels between the HSI and the
HRCI in Section III-B. Wst is in the size ofns × nt,
the row of which indicates the indices of samples inS,
and the column indicates the indices of samples inT.
The entries ofWst can be defined as

Wst(i, j) =

{

1 if xis andxjt form a matching pair

0 otherwise.
(6)

3) Model manifold alignment problem by an objective
function for computing the projection matricesFs and
Ft. These two projection matrices transform two data
sets from their original spaces to a shared embedding
space. The objective function of manifold alignment can
be designed as

E(Fs,Ft) =
∑

i,j

‖FT
s xis − FT

s xjs‖
2 × α1Ws(i, j)

+
∑

m,n

‖FT
t xmt − FT

t xnt ‖
2 × α1Wt(m,n)

+
∑

i,m

‖FT
s xis − FT

t xmt ‖2 × α2Wst(i,m)

(7)

The first two terms on the right-hand side guarantee that
the local geometry of each given data set is preserved,
i.e., similar samples from the same data set are still close
to each other in the shared space. The last term ensures
that the matching samples from different data sets are
close to each other in the shared space. Parameters
α1 andα2 control the balance between local geometry
preserving and manifold alignment.

4) Solve the problem of minimizingE(Fs,Ft). We gener-
ate a joint graphG with Gs andGt. Its vertices represent
the union ofS andT. Its weighted adjacency matrixW
is defined as

W =

[

α1Ws α2Wst

α2WT
st α1Wt

]

(8)

whereWT
st is the transpose ofWst. It can be seen thatW

is an(ns+nt)×(ns+nt) symmetric matrix. Specifically,
the entries ofW are defined as

W(i, j) =



































































α1Ws(i, j) or α1Wt(i, j)

if xi andxj
are neighbors

from the same

data set,

α2Wst(i, j)

if xi andxj are

the matching

pixels from two

data sets,
0 otherwise.

(9)
Now Equation (7) can be rewritten as

E(F) =
∑

ij

‖FT xi − FT xj‖2W(i, j) (10)

whereF = [Fs;Ft] containsFs and Ft in row blocks,
and the summation is taken over all pairs of samples
from the united data setX = S ∪ T. Obviously E-
quation (10) is very similar to Equation (2), so theF
that minimizes the objective function is given by the
eigenvectors corresponding to theq smallest nonzero
eigenvalues of the generalized eigenvalue decomposi-
tion:

XLX TF = λXDXTF (11)

whereL is the Laplacian form ofW.
5) Derive two aligned manifolds in a shared space byFTSs

andFTTt respectively. As the estimatedF has the size
of (ps + pt)× q, Fs is constructed by the firstps rows
of F andFt is constructed by the lastpt rows of F.

By manifold alignment, the data sets are represented in a
shared feature space, so that the processing of several disparate
but related data sets becomes easy for various applications.
This is because they can be directly and consistently addressed
in the shared space, i.e., they can be treated as a single data
set.

III. M ANIFOLD ALIGNMENT BASED HSI VISUALIZATION

This section covers the details of manifold alignment based
HSI visualization method. Firstly, the basic methodology is
introduced. Then the key implementation issue of how to
obtain the matching pairs is studied when both the HSI and
the HRCI are captured from the same site, Finally, other
visualization scenarios are discussed.

A. Methodology

Given an HSI and an HRCI, Fig. 1 summarizes the workflow
of the manifold alignment based visualization approach. First-
ly, a set of matching pixel pairs are found between the HSI and
the HRCI to build the relation between two images. Secondly,
LPP based manifold alignment is used to derive the manifolds
of two images in a shared space. Two linear transformations
denoted as the projection matricesFs andFt are estimated to
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High dimensional 

spectral space

HRCI

RGB space
Matching pairs

Manifold

of  HSI 

Manifold

of HRCI

3D shared embedding space

Fs Ft Ft
-1

Manifold alignment

Fig. 1. The workflow of the proposed visualization method.

map the HSI and the HRCI from their original spaces to the
shared embedding space respectively. Finally, the manifold of
the HSI in the shared space is mapped to the RGB space by
the inverse transformation ofFt.

Assume an HSI hasns pixels andps spectral bands, and
the corresponding HRCI hasnt pixels andpt = 3 RGB bands,
so the HSI data set and the HRCI data set can be denoted by
the matricesS ∈ Rns×ps and T ∈ Rnt×Pt respectively. We
usesi to denote theith pixel in the HSI andtj to denote the
jth pixel in the HRCI. The proposed visualization algorithm
consists of the following steps.

Step 1: Construct graphsGs and Gt.
The vertex sets ofGs andGt are the pixels of the HSI and

the HRCI respectively, and their weighted adjacency matrices
Ws andWt are defined by thek-nearest neighbor and the heat
kernel. Since the HSI and the HRCI have distinct imaging
mechanism, we use different distance measures in the heat
kernel. As the spectral angle distance (SAD) is commonly
used to measure the distance of a pair of pixels in HSI, the
entries of the weighted adjacency matrix of the HSI are defined
as

Ws(i, j) = e
−SAD(si,sj)

σ (12)

where
SAD(si, sj) = arccos(

si · sj
‖si‖‖sj‖

) (13)

On the other hand, Euclidean distance is used for the HRCI,
so its weights are defined as

Wt(i, j) = e
−‖ti−tj‖

2

σ (14)

Step 2: Calculate the correspondence matrix Wst.
The matching pairs play a crucial role in aligning the

manifolds of the HSI and the HRCI in a shared embedding
space. If the HSI and its corresponding HRCI are acquired
on the same site, we can search their matching relation by
the image registration methods, which will be discussed in
Section III-B. If the HSI and its corresponding HRCI are
captured from the different sites but have the similar contents,
interactive tool can be used to find the matching pairs, which
will be discussed in Section III-C.

After a set of matching pairs is determined, the correspon-
dence matrixWst with the size ofns × nt is defined as

Wst(i, j) =

{

1 if si and tj form a matching pair.

0 otherwise.
(15)

Step 3: Solve LPP based manifold alignment problem.
Gs of the HSI andGt of the HRCI are joined to generate

a new graphG. Its weighted adjacency matrixW is the
combination ofWs, Wt, andWst according to Equation (8).
Deriving two aligned manifolds of the HSI and the HRCI
simultaneously in a shared embedding space is an optimization
problem with the objective function defined in Equation (10).
Likewise, the generalized eigenvalue decomposition is used
to solve this optimization problem. Two linear transformation
matricesFs andFt are computed, and by which the manifolds
of the HSI and the HRCI in the shared space can be obtained
asSc = FT

s S andTc = FT
t T respectively.

As the feature dimension of the HRCI is 3, the dimension
of the shared space can be1, 2 or 3 theoretically. Here the
dimension of the shared space is set to3 in order to guarantee
that an inverse projection ofFt can be directly computed
becauseFt is a square matrix with the size of3× 3.

Step 4: Transform the HSI to the RGB space.
After manifold alignment, the manifolds of the HSI and the

HRCI are represented in the same space. The pixels of the
HRCI in the shared space can be seen as anchor points. If
a pixel of the HSI is close to a pixel of the HRCI in the
shared space, obviously this HSI pixel should be rendered
with the similar color of the corresponding HRCI pixel. In
other words, a pixel in the HSI can find its corresponding
RGB color in the shared space. SinceFs and Ft have been
obtained to transform the high dimensional spectral space
and the RGB space respectively to the shared space, we can
inversely transform a pixel of HSI from the shared space to
the RGB space byF−1

t . Therefore, the visualized HSI denoted
asSrgb can be obtained by

Srgb = (F−1

t )T Sc = (F−1

t )T FT
s S (16)

B. Finding the matching pairs between HSI and HRCI

In many instances, an HSI and its corresponding HRCI have
to be matched by image registration. In general, an image
registration method firstly finds a few corresponding pixel
pairs, and then uses them to estimate a geometric transfor-
mation model so that two images are matched in the same
coordinate system. Scale-invariant feature transform (SIFT)
is widely used to detect the corresponding pixels between
images due to its robustness to changes in scale, orientation
and illumination [35]. We extract the SIFT key-points from
each band image of the HSI and the HRCI. Assume that a set
SP contains the key-points from all the bands of the HSI, and
another setTP has all the key-points from the HRCI. LetSPi

denotes theith key-point inSP , andTPj denotes thejth key-
point in TP . The corresponding pairs are those most similar
key-point pairs betweenSP andTP , which shall satisfy the
following criterion.

dis(SPi, TPk)

dis(SPi, TPj)
> r for all k 6= j (17)

wheredis(SPi, TPj) is the Euclidean distance between the
SIFT features ofSPi and TPj. r is a matching threshold
value, which is set to be larger than1. This criterion can rule
out ambiguous matches becauseSPi and TPj are matched
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only when their SIFT distance is significantly smaller than
the distance betweenSPi and all other key-points inTP .

We used projective transformation to estimate the geometric
transformation models.

(x′, y′, 1)T = H(x, y, 1)T (18)

where{(x, y), (x′, y′)} stands for the coordinates of a match-
ing pair between the HSI and the HRCI, and

H =





h1 h2 h3

h4 h5 h6

h7 h8 1



 (19)

is the transformation matrix, or called homography matrix. If
we find n matching pairs{(xi, yi), (x

′
i, y

′
i)}, i = 1, . . . , n by

SIFT matching,H can be estimated by

min
H

n
∑

i=1

‖(x′
i, y

′
i, 1)

T −H(xi, yi, 1)
T‖2. (20)

Since there are eight parameters inH, at least four non-
colinear matching pairs are required to solve Equation (20).
Least squares technique is used to estimate these model
parameters. To cope with mismatched pairs, we used RANdom
SAmple Consensus (RANSAC) technique [36], [37] to give a
more robust model estimation.

After image registration, each pixel in the HSI can find
its matching in the HRCI. We can randomly select a number
of pixels in the HSI, and find their matching pixels in the
HRCI to construct a set of matching pixel pairs. However,
precise image registration between the HSI and the HRCI is
very difficult to obtain. Here neighborhood searching is used
to improve the matching accuracy. Given a pixelsi in the
HSI, a pixel in the neighborhood window in the HRCI with
the minimal SIFT distance tosi is selected as the matching
pixel. In our experiments, the size of window was set to9×9.
It is an distinct advantage that an exact registration between
the HSI and the HRCI is not necessary, which is very helpful
in real applications.

C. Other visualization scenarios

Besides displaying an HSI aided by a corresponding HRCI
acquired on the same site, the proposed HSI visualization
algorithm can be easily extended to other scenarios.

Generalizing projection functions to visualize other sim-
ilar HSIs: Feature-level manifold alignment builds the rela-
tions between features from different spaces so that it can be
easily generalized to new instances and provides a “dictionary”
representing direct mapping functions between features [27].
For HSI visualization task, the projection function from high
dimensional spectral space to the RGB space is defined as
F = FsF

−1

t , whereFs and Ft are acquired by the manifold
alignment discussed in section III-A. This projection function
can be directly applied to visualize other similar HSIs captured
by the same hyperspectral imaging sensor, which is based
on the fact that the same types of objects shall have similar
spectral responses with the same sensor. This scenario is very
helpful when users require a quick overview of a batch of HSIs

generated by the same imaging sensor, because the projection
function learning only need to be undertaken for once.

Manifold alignment between an HSI and an HRCI
from different sites: In the absence of a corresponding HRCI
captured from the same site as an HSI to aid visualization,
other HRCIs containing similar image content can be used
instead for manifold alignment. Under such scenario, matching
pair search method based on image registration as described in
Section III-B is not applicable. However, manifold alignment
based visualization only requires that a matching pair repre-
sents the same or similar class of objects/materials rather than
from the same geo-spatial location. This is different from the
traditional matching pair searching in image fusion. Therefore,
interactive tools can be developed for users to manually select
the matching pixels.

Displaying user specified bands:Interactive visualization
allows users to display selected bands of interests, which is
an important function in most HSI visualization tools. The
proposed algorithm is able to present user specified bands as a
natural-looking image. This is achieved by manifold alignment
between the selected bands and the corresponding HRCI. In
this case, the choice of bands is flexible so long as their
total number is larger than or equal to 3. As most existing
visualization options that have been integrated into commercial
softwares only allow selection of three bands for visualization,
some range of spectrum will be missed when an HSI covers
a wide range of spectrum. On the contrary, our method offers
the capability of getting a wide range of spectrum covered
when more than 3 bands are selected.

IV. EXPERIMENTS AND DISCUSSIONS

We evaluate the performance of the proposed visualization
method on HSIs captured by remote sensing and ground-
based hyperspectral sensing, and compare it against several
recently proposed visualization approaches. These include
band selection using linear prediction (LP) [6], stretched
CMF [1], bilateral filtering [18], bicriteria optimization [17]
and LPP [13]. The impact of parameters on the performance,
e.g. the number of corresponding pairs and the weight of the
alignment between the matching pixels, is discussed. We also
give the experimental results on various application scenarios.

A. Hyperspectral imaging data

Four HSI data sets were used to evaluate the performance
of different visualization methods. Their corresponding HRCIs
were captured from the same sites. One remote sensing HSI
data set was taken over Washington D.C. mall by the Hy-
perspectral Digital Imagery Collection Experiment (HYDICE)
sensor. The data consists of 191 bands after noisy bands
removed, in which the size of each band image is1208×307.
Fig. 2(a) shows its 50th band image. The corresponding HRCI
of Washington D.C. mall was obtained from Google Earth and
is shown in Fig. 2(b). The size of the image is5160× 1640.
Another remote sensing HSI data set was captured by the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) over
Moffett Field, California at the southern end of San Francisco
Bay. The data consists of 224 bands, and each band is in the
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size of501× 651. Its 50th band image is shown in Fig. 3(a).
The corresponding HRCI shown in Fig. 3(b) was also obtained
from Google Earth. The size of the image is1560× 1830.

Other two HSI data sets are named as “G03” and “D04”,
which were acquired by a ground-based OKSI hyperspectral
imaging system mounted with a tunable LCTF filter. Each
data set has 18 bands ranging from460nm to 630nm at
10nm interval. The size of each band is960 × 1280. Their
corresponding HRCIs were acquired by a Nikon D60 SLR
digital camera, and are in the size of2592 × 3872. Fig. 4
shows the first band images of these two ground-based HSIs
and their corresponding HRCIs.

B. Visual comparison of visualization methods

To evaluate the visualization results, both subjective visual
judgment and objective metrics are used. In this subsection,
we show the visual effect of the HSI visualization results.
Fig. 5 shows the visual comparison of different visualization
approaches on the Washington D.C. mall data. The visual-
ized image generated by manifold alignment is presented in
Fig. 5(f). It was achieved by selecting20 matching pairs and
setting the parametersα1 andα2 to be1 and500 respectively.
It can be seen that the result of manifold alignment not only
has a very natural tone but also preserves fine details.

The comparative results on Moffett field, G03 and D04 data
sets are provided in Figs. 6, 7 and 8 respectively. Likewise,
in these experiments our approach not only shows great
performance on displaying these images with natural color
but also preserves finer details with accuracy.

C. Quantitative comparison of visualization methods

Quantitative assessment of HSI visualization does not have
a universally accepted standard. In this paper, we adopt four
quantitative metrics: entropy [18], average gradient [18], sep-
arability of features [38], and root mean square error (RMSE)
between the resultant image and the true color image [7].

• Entropy

Entropy is a statistical measure of randomness that can be
used to characterize the texture of an image. An image with
higher entropy contains richer information than ones with low
entropy. The entropy of a single channel image is given by:

h = −
∑

x

p(x) ln p(x) (21)

wherep(x) is the probability density of the intensity levelx
in the image. For an RGB image, its entropy is the average
entropy of R, G and B channels.

Table I shows the comparative results in terms of entropy. It
can be found that in most cases the manifold alignment method
has larger entropy than other approaches, which suggests that
the proposed method can preserve more information of HSI
in its RGB form.

• Average gradient

Average gradient is the measure of image sharpness in terms
of gradient values [38]. For a single channel image withN

pixels, letIx denote the difference in the x-axis direction and

TABLE I
PERFORMANCE COMPARISON BASED ON ENTROPY.

Visualization methods Washington Moffett G03 D04
LP Band Selection 6.59 6.36 4.73 5.58

LPP 6.53 5.99 5.11 6.15
Stretched CMF 3.89 5.28 6.31 7.13

Bilateral Filtering 3.31 5.87 6.05 7.27
Bicriteria Optimization 5.75 6.00 5.73 6.06
Manifold Alignment 7.40 6.89 6.64 7.02

Iy denote the difference in the y-axis direction, the average
gradient of image is given by

g =
1

N

∑

x

∑

y

(
√

I2x + I2y ) (22)

Table II gives the comparative results in terms of the average
gradients on R, G and B channels. It is found that in two data
sets the proposed approach yields the higher average gradient
than other methods.

• Separability of features

When many pixels in an image fall within a small range
of the color space, the image will be too dark or too bright.
Separability of features measures how well distinct pixels are
mapped to distinguishable colors. The basic idea is that the
average distance between two pixels in the color space should
be as large as possible [38]. Separability of features is defined
as:

δ =
1

(N − 1)2

∑

x 6=y

d(x, y) (23)

whered(x, y) is the Euclidean distance between the pair of
pixelsx andy in the RGB space,N is the number of pixels.
δ denotes the average pairwise Euclidean distance in terms of
all pixel pairs. The largerδ, the better separability of features.

Table III shows the comparative results in terms of feature
separability. The good performance of manifold alignment is
achieved by the high dynamic color range of the corresponding
HRCI.

• RMSE

RMSE between the true color image and the visualized
image is a straightforward way to evaluate the visualization
performance [7]. We approximated a true color image by
resizing the HRCI to the same size/resolution of the HSI after
image registration. Lets(x) denote the RGB vector of pixelx
in the visualized image, and lets′(x) represent the vector of
the corresponding pixel in the true color image. The RMSE
betweens ands′ over the whole image is defined by:

r =

√

1

N

∑

x

(s(x) − s′(x))2 (24)

The comparative results of RMSE are given in Table IV. The
proposed method is significantly better than the other ones on
all four data sets, which shows clearly that manifold alignment
is an excellent approach for visualizing the HSI with natural
color.
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TABLE II
PERFORMANCE COMPARISON BASED ON AVERAGE GRADIENT.

Visualization methods Washington Moffett G03 D04
LP Band Selection 0.0470 0.0109 0.0137 0.0151

LPP 0.0527 0.0078 0.0176 0.0125
Stretched CMF 0.0192 0.0049 0.0116 0.0106

Bilateral Filtering 0.0448 0.0088 0.0203 0.0210
Bicriteria Optimization 0.0387 0.0122 0.0217 0.0283
Manifold Alignment 0.0889 0.0103 0.0270 0.0219

TABLE III
PERFORMANCE COMPARISON BASED ON SEPARABILITY OF FEATURES.

Visualization methods Washington Moffett G03 D04
LP Band Selection 55.68 51.33 63.25 135.37

LPP 78.99 42.12 39.82 50.87
Stretched CMF 30.08 30.44 106.14 73.30

Bilateral Filtering 47.54 51.80 82.16 143.19
Bicriteria Optimization 52.43 62.51 122.78 168.65
Manifold Alignment 107.11 65.23 139.58 107.81

TABLE IV
PERFORMANCE COMPARISON BASED ONRMSE

Visualization methods Washington Moffett G03 D04
LP Band Selection 68.35 49.93 95.19 83.35

LPP 90.96 63.97 108.44 108.02
Stretched CMF 92.46 58.50 44.09 28.70

Bilateral Filtering 102.43 56.70 78.54 61.14
Bicriteria Optimization 98.47 57.94 69.60 75.70
Manifold Alignment 58.41 27.30 32.88 23.08

TABLE V
QUANTITATIVE COMPARISON OF VISUALIZATION RESULTS OFD04.

Visualization methods Entropy Gradient Separability RMSE
LP Band Selection 5.59 0.0151 135.37 83.35

LPP 6.15 0.0125 50.87 108.02
Stretched CMF 7.13 0.0106 73.30 28.70

Bilateral Filtering 7.26 0.0210 143.19 61.14
Bicriteria Optimization 6.06 0.0283 168.65 75.70
Manifold Alignment 7.50 0.0350 147.54 58.47

D. Parameter setting

Now we turn to discuss how the parameters affect the
performance of manifold alignment and how to set suitable
parameters to achieve a reasonable visualization result. In the
proposed algorithm, if we fixα1 = 1, there are two free
parameters. One is the number of matching pairs denoted as
Ncp, and the other is the weight factorα2 which controls
how much two data sets would be aligned. To analyze the
impact of α2, we did experiments on the Washington D.C.
mall HSI with differentα2 while fixing α1 = 1 andNcp = 20.
Fig. 9 displays the visualized results withα2 = 100, 500
respectively. We observed that asα2 becomes larger, the color
distribution of the visualized image is more similar to that of
the HRCI. It should be noted that whenα2 is set to a very large
value, the accuracy of matching pairs becomes very critical,
because even a small number of mismatching pairs will lead
to an undesirable result. Based on the experiments, reasonable
results can be achieved in most cases by settingα2 to be
200− 500.

Next we analyze the impact of the number of matching
pairs. In this experiment, we fixα1 = 1 and α2 = 500.
Fig. 10(a) is the visualization result by randomly selecting
5 matching pixel pairs. It can be observed that only using

(a) The 50th band of the HSI

(b) The corresponding HRCI

Fig. 2. An HSI and its corresponding HRCI on Washington D.C. mall

(a) The 50th band of the HSI (b) The corresponding HRCI

Fig. 3. An HSI and its corresponding HRCI on Moffett Field

5 matching pairs is still able to make the visualized image
appear very natural. When the number of matching pairs is set
to 30, the image not only has more natural colors but also has
more detailed spatial information as shown in Fig. 10(b). This
experiment supports the fact that only a few matching pairs
between the HSI and the HRCI are sufficient for manifold
alignment.

In addition, two parameters discussed above have some
relations. It has been found that when the number of matching
pairs becomes larger,α2 should be tuned down to achieve a
reasonable visualization result. This is because of the tradeoff
between preserving each manifold structure and aligning two
manifolds, which is controlled byα2 andNcp when estimating
the manifolds in the shared space.

E. Generalizing projection function to other HSIs

Once we have obtained a projection function by manifold
alignment based on an HSI and its corresponding HRCI
captured from the same site, this projection function can
be directly used to visualize HSIs captured by the same
hyperspectral imaging sensor when their corresponding HRCIs
are not available. In this experiment, the projection function
derived from G03 data set and its corresponding HRCI, was
applied to other HSI data sets F02, G04 and G02 captured
by the same HSI camera. Fig. 11 shows the visualized im-
ages of these four HSI data sets, which were generated by
directly multiplying the data matrix with the projection matrix
F = FsF−1

t . It can be seen that these images are rendered with
natural color.



9

(a) The first band of D04 (b) The HRCI of D04

(c) The first band of G03 (d) The HRCI of G03

Fig. 4. Two ground-based HSIs and their corresponding HRCIs

F. Manifold alignment between the HSI and the HRCI cap-
tured from different sites

We used the D04 HSI data set (Fig. 12(a)) and the HRCI of
G03 (Fig. 4(d)) for manifold alignment. These images were
captured from the different sites. Fourteen matching pixel pairs
between two images were manually selected. Fig. 12(b) shows
the visualized image of D04. Although the details in this
image are not as fine as the result of manifold alignment with
the HRCI from the same site (Fig. 8(f)), the image is also
mostly rendered with natural color. We can easily recognize
the objects in it such as the sky, trees and grass. Table V gives
the quantitative comparison of visualization results of HSI D04
generated by different methods. We can see that the proposed
method has the highest entropy and average gradient, and
ranks second in terms of separability of features and RMSE.

G. Displaying user specified channels by manifold alignment

Fig. 13(a) shows a false color image of band 58, 80
and 120 of the Washington D.C. mall data set by simply
integrating them to RGB channels. The colors of the visualized
image cannot reflect the natural tones of the objects, which
affects object recognition and interpretation. For example,
the roads in the image are difficult to recognize because
their colors are similar to the surrounding areas. Fig. 13(b)
shows the visualized image generated by manifold alignment
between a new HSI constructed by the selected bands and
the corresponding HRCI. It can be found that the visualized
image is rendered with natural color. In particular, the roads
are more distinguishable from the neighborhood, which also
demonstrates that our approach can make use of a wider
range of color space in the HRCI to produce higher color
separability.

V. CONCLUSIONS

We have presented a new approach to visualize HSIs with
natural color. Based on manifold alignment between an HSI
and an HRCI, the proposed algorithm is able to find a projec-
tion function that maps the HSI directly from high-dimensional

(a) LP band selection

(b) LPP

(c) Stretched CMF

(d) Bilateral Filtering

(e) Bicriteria Optimization

(f) Manifold Alignment

Fig. 5. Visual comparison of various visualization approaches on Washington
D.C. mall data set.

spectral space to the RGB space. The matching pixel pairs
between the HSI and the HRCI act as a bond to transfer the
color information as well as local geometric information from
the HRCI to the HSI. The main advantage of the proposed
algorithm is that only a few matching pairs are required to
achieve a satisfactory result. This suggests that exact image
registration is not a necessary condition to extract the matching
pairs. Therefore, even in the case that the HSI and the HRCI
are not captured over the same site, our method still works
well. Furthermore, by projecting the HSI directly to the RGB
space, our algorithm avoids spectral distances distortion that
other methods have suffered from while adjusting data to
the dynamic range of RGB. The projection function learned
from the HSI and its corresponding HRCI can be directly
applied to visualization of other HSIs captured by the same
imaging sensor. In addition to these advantages, manifold
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(a) LP Band selection (b) LPP

(c) Stretched CMF (d) Bilateral Filtering

(e) Bicriteria Optimization (f) Manifold Alignment.

Fig. 6. Visual comparison of various visualization approaches on Moffett
field data set.

(a) LP Band selection (b) LPP

(c) Stretched CMF (d) Bilateral Filtering

(e) Bicriteria Optimization (f) Manifold Alignment

Fig. 7. Visual comparison of various visualization approaches on G03 data
set.

(a) LP Band selection (b) LPP

(c) Stretched CMF (d) Bilateral Filtering

(e) Bicriteria Optimization (f) Manifold Alignment

Fig. 8. Visual comparison of various visualization approaches on D04 data
set.

(a) α1 = 1, α2 = 100

(b) α1 = 1, α2 = 500

Fig. 9. The visualization results with different values ofα2 in manifold
alignment.

alignment can be used to display user specified bands, which
is very important to develop an interactive visualization tool.
In the future, constrained manifold alignment algorithms will
be studied to visualize HSIs by adding more transformation
constraints such as pairwise distance preservation and joint
spectral-spatial structure.
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