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Abstract—Trichromatic visualization of hundreds of bands in get a quick overview of a scene. Although the requirements of
a hyperspectral image has been an active research topic. TheHS] visualization are task dependent, there are some common

visualized image shall convey as much information as possible 4,415 such as information preservation, consistent rendering,
from the original data and facilitate easy image interpretation. .
edge salience, and natural palette [1].

However, most existing methods display hyperspectral images ; ; . .
in false color, which contradicts with user experience and A Simple way to generate an RGB image for HSI visualiza-

expectation. In this paper, we propose a new framework for tion is selecting three of the original bands and mapping them
visualizing hyperspectral image with natural color by fusion of to the RGB space. Some softwares provide interactive tools for
a hyperspectral image and a high-resolution color image via sarg o manually pick three bands [2], [3]. More sophisticated

manifold alignment. Manifold alignment projects several data sets . -
to a shared embedding space where the matching points betweenband selection methods, such as one-bit transform [4] and nor-

them are pairwise aligned. The embedding space bridges the gap Malized information [5], aim to highlight expected features so
between the high dimensional spectral space of the hyperspectral that human perceptual channels are selected. In a more recent
image and the RGB space of the color image, making it possible work, minimum estimated abundance covariance (MEAC) and

to transfer naural color and spatial information in the color jinear prediction (LP) were used to select the most informative
image to the hyperspectral image. In this way, a visualized bands [6]

image with natural color distribution and fine spatial details . o o
can be generated. Another advantage of the proposed method Some HSI visualization approaches condense the original
is its flexible data setting for various scenarios. As our approach spectral bands into three new bands by feature transforma-
only needs to search a limited number of matching pixel pairs tion. Several classic dimensionality reduction methods such
that present the same object, the hyperspectral image and the as independent component analysis (ICA) [7] and principal

color image can be captured from the same or semantically . .
similar sites. Moreover, the learned projection function from the component analysis (PCA) [8], [9], [10] have been applied

hyperspectra| data space to the RGB space can be direct|y app“ed to HSI Visualization. HOWeVer, these Iinear transformation
to other hyperspectral images acquired by the same sensor to methods are based on the global distribution of data, which

achieve a quick overview. Our method is also able to visualize jgnore some intrinsic characteristics such as nonlinear and
user specified bands as natural color images, which is very helpful local structures of the HSI

for users to scan bands of interest. . . . .
In recent years, manifold learning methods such as isometric

_Index Terms—Hyperspectral image, visualization, manifold  feature mapping (ISOMAP) [11], [12], locality preserving pro-
alignment, image fusion jections (LPP) [13], and locally linear embedding (LLE) [14]
have been applied to explore the manifold geometry in HSI.
. INTRODUCTION Manifold is a topological space that is locally Euclidean, i.e.,

Hyperspectral imaging sensors can acquire images Wi{rfamphgsizgs the local neighbprhood information. Simil_arl_y,
tens or hundreds of light wavelength indexed bands. Thex¥ne visualization methods aimed to preserve the pairwise
images provide high spectral resolution information such th@Stances between pixels in its visualized color image. This
accurate target detection and classification can be achieV&gK IS usually posed as a constrained optimization problem,
Displaying a hyperspectral image (HSI) is a challenging tagwt its heavy computational load is a critical challenge for real
because it contains much more bands than the capabi lications. Wilson et al. decreased the scale of the input data
of a trichromatic display device. One common solution (&Y Seélécting representative pixels and used numerical interpo-
considering HSI visualization as a special dimension reductil#ion to generate the final optimization solution [15]. Mignotte

problem where the HSI is projected to the RGB color space #§€d @ non-stationary Markov random field (MRF) model to
solve the optimization problem of preserving pairwise spectral
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convey as much information as possible from the original dataroblem [32]. A shared space can be built to represent the
However, they do not enable easy image interpretation. Theanifolds of the HSI and the HRCI and their mutual relation.
visualized RGB images of HSIs are falsely colored, whictia this shared space, the natural color distribution as well
makes it difficult for human to link the color to the expecteds the fine spatial information of the HRCI can be easily
semantic meaning of land cover classes. For example, drensferred to the HSI.
may be confused when the grass is shown in red or theGenerally there are two levels of manifold alignment:
sea is shown in yellow. Moreover, the same objects/materigistance-level and feature-level [27]. Instance-level alignment
in different HSIs are often visualized in different colorspuilds connections between instances from different data sets,
which also hinders the understanding of the image contepiyt the alignment result is limited only to known instances
Therefore, “natural color” and “constant rendering” graduallsind is difficult to be generalized to new instances. Feature-
become two important criteria for evaluating the quality of HSkvel alignment transforms the features of different data sets
visualization. “natural color” refers to the visible color thato a common embedding space, which makes direct knowl-
human visual system is able to perceive from a scene. Whetige transfer possible. The alignment result provides direct
images are captured by imaging sensors with RGB channglénnections between features in different spaces, so it is easily
the formed colors are influenced by the sensor’s sensitivig¢neralized to new instances. In this paper, the feature-level
functions. In practice, visible imaging sensors only can captusganifold alignment is used, where a direct mapping between
approximate RGB images. The colors can be consideredts high dimensional spectral feature of the HSI and the RGB
natural so long as they are similar to human perception. In [Epectral feature of the HRCI is learned. The procedure of
[19], fixed linear spectral weighting envelope was introducade proposed HSI visualization method has three main steps.
to generate a natural-looking image that rendered the samigstly, a few matching pixel pairs are detected between the
materials in different data sets with the same colors consigs| and the HRCI. Secondly, the manifolds of two images are
tently. The spectral weighting envelope is a stretched versigligned in a shared embedding space by forcing the matching
of the CIE 1964 tristimulus color matching functions in thgixels to be close to each other in the new space. Two
visible range, which fits the cone responses of human visygbjection functions are learned in this step to accomplish the
system. However, the stretched color matching function (CMEpace transformation task. One maps the HSI from the spectral
is too simple to represent the complex physical mechanismgyace to the shared space, and the other maps the HRCI from
spectral imaging, so that it is only applicable to some specifige RGB space to the shared space. Finally, we inversely maps
hyperspectral imaging sensors. the manifold of the HSI in the shared space to the RGB space
In most cases, both HSI and high resolution color imagg that the HSI is displayed with natural color.
(HRCI) can be acquired on the same spot. These two types Ofrhe main contributions and advantages of the proposed

images have strong complementary properties for informatigiproach can be summarized as follows:
fusion. An HSI contains precise and detailed spectral infor-

mation, but its spatial resolution is usually lower than the
corresponding HRCI. On the other side, the appearance of an
HRCI is consistent with the human visual perception, but an
HSI is beyond our visual perception capability. It implies that
the color information in an HRCI may be helpful in displaying
the corresponding HSI with natural palette. This requires®
fusion of different presentations of the same object [20].
HSI and panchromatic image (PAN) fusion methods [21],
[22] take advantage of the high spatial resolution of PAN in
sharpening the HSI, which enhances the local spatial sharpnes’s
and contrast of the band images of the HSI. Pan-sharpening
algorithms are also used in other applications such as object
detection and classification [23], [24]. Recently, fusion of HSI
and Light Detection And Ranging (LIDAR) images has also X o .
been studied [25], [26]. To the best of our knowledge, no selected by users with natural color, which is very im-

research has been performed so far to visualize an HSI data portqnt n |nterac.t|ve visualization. )
by fusion it with an HRCI. « To align two manifolds, only a small number of matching

pixel pairs between the HRCI and the HSI are needed
rather than a precise registration between two images.
Therefore, it is only required that the HSI and its corre-
sponding HRCI have similar ground features, so they can
be captured from different spots, which greatly decreases
the cost of image acquisition and increases the usability
of the approach.

« Manifold alignment explores the manifolds of the HSI
and the HRCI in a shared space simultaneously, so it
not only preserves the local geometry of the HSI in the
visualized image, but also renders the visualized image
with natural color of the HRCI.

The HSI is directly transformed to the RGB space, so
that no additional color adjustment is required to fit the
dynamic range of the trichromatic display and human
visual expectation.

The learned projection function from the spectral space
to the RGB space can be reusable to visualize those
HSIs that are acquired by the same hyperspectral imaging
Sensor.

o The proposed method can display any subset of bands

In this paper, we propose a novel HSI and HRCI fusion
method based on manifold alignment to display the HSI with
natural color. Manifold alignment is one of the important
approaches for transfer learning [27], [28], which has been
applied to multi-modal HSI processing and classification [29],
[30], [31]. It builds connections between two or more dis-
parate data sets by aligning their underlying manifolds and
enables knowledge transfer across the data sets. We treat HSlhe rest of the paper is organized as follows. Section Il
and HRCI fusion based visualization as a transfer learnibgiefly introduces the manifold alignment technique. Sec-



tion Il presents the manifold alignment based HSI visuabf data. The weight of an edge between e and thejth

ization approach and the details of its implementation. Soraertices is

appllc.atlon scenarios are also dllscus.sed in FhIS section. The _siiiny if x; andx; are among the

experimental results are described in Section V. Fmal% o e o }

conclusions are drawn in Section V. (4,5) = k-nearest neighbors of each other,
0 otherwise.

)
where dist(x;,X;) can be any application oriented distance
metric betweerx; andx;.

LPP aims at finding a linear projection matfxwith the

_ It has been recognized that many high dimensional datge o, . 1o map the data set frop-dimensional space
lie on a low dimensional manifold embedded in the ambie ¢-dimensional space. The objective function of LPP is

space. Manifold learning is an effective dimension reductiqq. . -i-oq as:

method to extract nonlinear structures from high dimensional

data. It maps a-dimensional data seX to a g-dimensional E(F) = IF"%; — F'x;|°W(i, 5) 2)
data setY’, preserving the intrinsic geometry on the original ij

manifold as much as possible. Manifold alignment considers . ) , . .
the mutual relationships of several data sets at the same tif{gereFx; are the coordinates of; in the low dimensional

It generates a shared embedding space to represent the [RECe: The sum is taken over all pairs of samples in the data
dimensional manifolds for all data sets simultaneously. In thi€l- Minimizing the objective function guarantees that the local

section, manifold based dimension reduction is introduce$fOmetry of the data set is preserved in the low dimensional

followed by the description of a manifold alignment algorithnPace, 1-€., two neighboring samples in the original space are
still close to each other in the embedding space.

To find a solution to minimize Equation (2), the objective
function can be reduced to

1 1 .
SE(F) = 5 37 IF % — F;PW(i, )

i

II. BACKGROUND ONMANIFOLD ALIGNMENT

A. Manifold based dimension reduction

Manifold based dimension reduction algorithms normally
follow a similar procedure. The first step is building a sparse

graph withk-nearest neighbors to represent the local geometry - Z(X'L'TFD”FTX’L') h Z(X'L'TFW” F'x;) (3)
of a data set. This might include computing the shortest path ! . .’ Y

between all points or figuring out how to linearly interpolate = tr(F" X(D - W)X F)

the point from its neighbors. Then a set of points in a low = tr(FTXLX TF)

dimensional space are found, which preserve the propertiesLof_ D— W is the laplacian matrix of whereD is a diagonal

the original graph. - L o . :
. . . matrix withD(4,4) = >_ . W(¢, 7). tr() is the trace of a matrix.
Here we bn_efly review the LPI.D algorithm [1_3]’ as t_hPSo the minimization prJobIem can be rewritten as:
proposed manifold alignment algorithm for HSI visualization

is extended from this model. LPP is a linear approximation of arg min tr(FTXLX T'F) (4)
the nonlinear Laplacian Eigenmaps. Although LPP sacrifices F

the ability to represent arbitrarily warped manifolds, it is mucivhich can be solved as the generalized eigenvalue problem
faster than nonlinear manifold learning algorithms. This makes

LPP based manifold alignment more suitable to process large XLXTF = AXDX'F ®)

am?“”t of HSI data. ] o F is constructed by the; smallest eigenvectors because
Given a data set represented by a makix R where he matricesxLX 7 and XDX” are symmetric and positive
n is the number of samples, apds the dimension of feature. gemidefinite.

Let x; represent theth sample inX. LPP aims to find a linear
transformation functiork : R? — RY to map eachx; from
a p dimensional space to @ dimensional embedding spaceB- Feature-level manifold alignment
whereg < p. Manifold alignment is based on the assumption that seem-
Firstly, an adjacency grapf is constructed to represent thangly disparate data sets produced by similar generating pro-
local geometry oiX. Each vertex in7 represents a sample incesses will share a similar underlying manifold structure. By
the data set and each edge indicates the relationship betwemjecting each data set from their original space to the shared
a pair of vertices. The relationship can be defined in terms wianifold, connections can be built between disparate data sets
k-nearest neighbors, i.e., a pair of verticemd; is connected by aligning their underlying manifolds [28]. The manifold
by an edge ifi is among thek nearest neighbors gfor j is alignment algorithm in this paper is based on LPP, which
among thek nearest neighbors af Let W with the size of extends LPP from addressing single data set to several data
n x n be the weighted adjacency matrix 6 The weight of sets. Here, we only introduce manifold alignment between two
an edge is calculated by heat kernel, a measurement wideta sets. Generalizing the algorithm to more than two data
used in graph construction to represent the geometric structaegs is simple and straightforward.



Given two data sets represented by matri€es RPs*"s whervet is the transpose &l ;. It can be seen thav
andT € RP+*™ wheren, andn; are the numbers of samples, is an(ns+mn¢) X (ns+n.) symmetric matrix. Specifically,
andp, andp, are the dimensions of features. bétrepresents the entries oW are defined as
the ith sample inS, andx] denotes thgth sample inT. LPP

f ! ; . . . if X; ande
based manifold alignment uses two linear projection functions

are neighbors

Fs : RP+ — R? andF; : RPt — RY to transform two data a1 W, (7, 5) or ay W, (i, §)

sets from the original spaces to a shared embedding space from the same
R1 respectively. These two manifolds in the shared space are data set,
aligned by making the matching samples close to each otherin  w(;, j) = if x; andx; are
this new space. The algorithm can be summarized as following the matching
steps: oW (4, 7)

) i pixels from two
1) Like the first step of LPP, construct two grapfs and

G, with the adjacency matrice®¥/, and W, for two data S_EIS'

data sets respectivelW, andW, can be calculated by 0 otherwise.

Equation (1). ) i ©)
2) Construct the correspondence matvik; by a set of Now Equation (7) can be rewritten as

matching pairs between two data sets to represent the E(F) = Z IFTx; — FTXjH2W(Z-7j) (10)

corresponding relationship across two manifolds. The
set of the matching pairs can be obtained by the prior ] _
or domain knowledge, or found by various matching ~ WhereF = [F,;F] containsF, andF; in row blocks,

ij

algorithms [33], [34]. We will discuss the details of and the summation is taken over all pair; of samples
finding the matching pixels between the HSI and the  from the united data seX = SUT. Obviously E-
HRCI in Section 1lI-B.W,; is in the size ofng x n., quation (10) is very similar to Equation (2), so the

the row of which indicates the indices of samplesSin that minimizes the objective function is given by the
and the column indicates the indices of sampledin eigenvectors corresponding to thesmallest nonzero
The entries oW.; can be defined as eigenvalues of the generalized eigenvalue decomposi-

tion:
Wi, ) = {1 if xi andx] form a matching pair XLXTF = AXDXTF (11)
st\ls - .
0 otherwise. ©6) wherelL is the Laplacian form of/V.

5) Derive two aligned manifolds in a shared spacdb,

3) Model manifold alignment problem by an objective andF’T, respectively. As the estimatde has the size

finction f ot oo ) _ )
unction for computing the projection matric€s and of (pu + p) % q. F. is constructed by the firgt, rows
F.. These two projection matrices transform two data . . - S/ 0 e 2 0 B UR S 0 e

sets from their original spaces to a shared embedding ) L y Bl ' .
space. The objective function of manifold alignment can BY manifold alignment, the data sets are represented in a

be designed as shared feature space, so that the processing of several disparate
but related data sets becomes easy for various applications.

E(F,Fy) =Y IFIX, = FIXI|® x aa W (i, 5) This is because they can be directly and consistently addressed

i\ j in the shared space, i.e., they can be treated as a single data

+ D IFEX = FIXP? x Wy (m,n) @) set.

Tyi Toym (|2 . IIl. M ANIFOLD ALIGNMENT BASED HSI VISUALIZATION
+ Z [|Fs Xt — F X |1P < aaWg(i,m)

i,m This section covers the details of manifold alignment based

The first two terms on the right-hand side guarantee thg | visualization method. Firstly, the basic methodology is

the local geometry of each given data set is preservé roduced. Then the key implementation issue of how to

. .y . oftain the matching pairs is studied when both the HSI and

i.e., similar samples from the same data set are still C|Oﬁ§
!

to each other in the shared space. The last term ensu % HRCI are captured from the same site, Finally, other

that the matching samples from different data sets are ualization scenarios are discussed.
close to each other in the shared space. Parameters

a1 andas control the balance between local geometri. Methodology

preserving and manifold alignment. Given an HSI and an HRCI, Fig. 1 summarizes the workflow
4) Solve the problem of minimizing(Fs, F;). We gener- of the manifold alignment based visualization approach. First-
ate a joint grapl@? with G5 andG,. Its vertices represent |y, a set of matching pixel pairs are found between the HSI and
the union ofSandT. Its weighted adjacency matrW  the HRCI to build the relation between two images. Secondly,
is defined as LPP based manifold alignment is used to derive the manifolds
a W, OLQW“} of two images in a shared space. Two linear transformations

W = LQWZ; ar W, (8) denoted as the projection matrideés andF; are estimated to



High dimensional Step 3: Solve LPP based manifold alignment problem.
spectral space Miatching pairs RGB space G, of the HSI andG, of the HRCI are joined to generate
a new graphdG. Its weighted adjacency matriyv is the
combination ofW,, W,, andW, according to Equation (8).
Deriving two aligned manifolds of the HSI and the HRCI

Manifold alignment

Fel simultaneously in a shared embedding space is an optimization
problem with the objective function defined in Equation (10).

Manifold Likewise, the generalized eigenvalue decomposition is used
5o s ekl e to solve this optimization problem. Two linear transformation

matricesF; andF, are computed, and by which the manifolds

of the HSI and the HRCI in the shared space can be obtained
. o asS, = F'SandT. = F!' T respectively.

Fig. 1. The workflow of the proposed visualization method. As the feature dimension of the HRCI is 3, the dimension

%‘the shared space can hhe?2 or 3 theoretically. Here the

map the HSI and the HRCI from their original spaces to th X ¢ the shared is sesio order t i
shared embedding space respectively. Finally, the manifold fnension of the shared space 1S Seb ta order to guarantee
te9t an inverse projection of; can be directly computed

the HSI in the shared i d to the RGB . ot .
© In the shared space 15 mapped 1o the spaceb causd; is a square matrix with the size 8fx 3.

the inverse transformation &f;.
! Step 4: Transform the HSI to the RGB space.

Assume an HSI has, pixels andp, spectral bands, and _ ) .
: | : ) After manifold alignment, the manifolds of the HSI and the
h HRCI h | =3 RGB !
the corresponding HRCI hag pixels andy, =3 RGB bands, Cl are represented in the same space. The pixels of the

so the HSI data set and the HRCI data set can be denote Cl in the shared space can be seen as anchor points. If
the matricesS € R"=*Ps and T € R™*™* respectively. We ) . . ' ’
< < b y a pixel of the HSI is close to a pixel of the HRCI in the

uses; to denote theth pixel in the HSI and; to denote the . . .
jth pixel in the HRCI. The proposed visualization aIgorithn%hared space, obviously this HSI pixel .ShOUId be rendered
consists of the following steps. with the similar color of the corresponding HRCI pixel. In

Step 1: Construct graphsG, and G,. other words, a pixel in the HSI can find its corresponding

The vertex sets of/; and G, are the pixels of the HSI and R?B C%IOtr int the fsharet?] Spﬁ.cﬁ' ginlég qnd Flt havet bleen
the HRCI respectively, and their weighted adjacency matricgg ained to transtorm the high dimensional spectral space

W, andW, are defined by thé-nearest neighbor and the hea?nd the RGB space regpectively o the shared space, we can
Lgversely transform a pixel of HSI from the shared space to

kernel. Since the HSI and the HRCI have distinct imagin 4 ) :
mechanism, we use different distance measures in the h RGB space bﬁt_ . Therefore, the visualized HSI denoted
g Can be obtained by

kernel. As the spectral angle distance (SAD) is commonﬁf

used to measure the distance of a pair of pixels in HSI, the Segp = (Fgl)TsC = (F[I)TFZS (16)
entries of the weighted adjacency matrix of the HSI are defined
as W. (i) —SAD(s;s;) (12) B. Finding the matching pairs between HSI and HRCI
s\hJ)=e In many instances, an HSI and its corresponding HRCI have
where s .s to be matched by image registration. In general, an image
() ) . . . . . .
SAD(s;,s;) = arccos(m) (13) registration method firstly finds a few corresponding pixel
SillllS pairs, and then uses them to estimate a geometric transfor-
On the other hand, Euclidean distance is used for the HRG@lation model so that two images are matched in the same
so its weights are defined as coordinate system. Scale-invariant feature transform (SIFT)
o “ i —t;012 is widely used to detect the corresponding pixels between
Wq(i,j) =e = (14) images due to its robustness to changes in scale, orientation
Step 2: Calculate the correspondence matrix W. and illumination [35]. We extract the SIFT key-points from

manifolds of the HSI and the HRCI in a shared embeddiny!’ contains the key-points from all the bands of the HSI, and
space. If the HSI and its corresponding HRCI are acquiréother se'P has all the key-points from the HRCI. L&t

on the same site, we can search their matching relation #§notes theéth key-pointinSP, and7'p; denotes thgth key-
the image registration methods, which will be discussed RPint in7'P. The corresponding pairs are those most similar
Section 1lI-B. If the HSI and its corresponding HRCI aré®€y-point pairs betwees P and7'P, which shall satisfy the
captured from the different sites but have the similar contentgllowing criterion.
interactive tool can be used to find the matching pairs, which dis(SP;, TPy)
will be discussed in Section IlI-C. dis(SP;, TP;)

After a set of matching pairs is determined, the correspon- ) ] ] )
dence matrixW,; with the size ofn, x n, is defined as where dis(SP;, TP;) is the Euclidean distance between the

SIFT features ofSP; and T'P;. r is a matching threshold
Wi, j) = 1 if s; andt; form a matching pair. (15) value, which is set to be larger thdan This criterion can rule
st\hJ) = 0 otherwise. out ambiguous matches becaus®; and 7'P; are matched

>r forall k #j a7



only when their SIFT distance is significantly smaller thagenerated by the same imaging sensor, because the projection
the distance betweesiP; and all other key-points ifi’P. function learning only need to be undertaken for once.
We used projective transformation to estimate the geometricManifold alignment between an HSI and an HRCI
transformation models. from different sites: In the absence of a corresponding HRCI
L, - captured from the same site as an HSI to aid visualization,
(=9, 1) = H(z,y,1) (18) other HRCIs containing similar image content can be used
where{(z, y), («/,y')} stands for the coordinates of a matchi—”s_tead for manifold alignment_. Under su_ch sc_enario, matphing_
ing pair between the HSI and the HRCI, and pair ;earch m.ethod basgd on image reglstratlo_n as dgscrlbed in
Section 1lI-B is not applicable. However, manifold alignment

hi he hs based visualization only requires that a matching pair repre-
H=|hs hs hg (19) sents the same or similar class of objects/materials rather than
hy hg 1 from the same geo-spatial location. This is different from the

Haditional matching pair searching in image fusion. Therefore,
Interactive tools can be developed for users to manually select
the matching pixels.
Displaying user specified bandsinteractive visualization
- P - allows users to display selected bands of interests, which is
mﬁnZH(%yi’l) = H(zi, yi, 1) |I”. (20)  an important function in most HSI visualization tools. The
i=1 proposed algorithm is able to present user specified bands as a
Since there are eight parameters B at least four non- natural-looking image. This is achieved by manifold alignment
colinear matching pairs are required to solve Equation (2®etween the selected bands and the corresponding HRCI. In
Least squares technique is used to estimate these mdli case, the choice of bands is flexible so long as their
parameters. To cope with mismatched pairs, we used RANda®tal number is larger than or equal to 3. As most existing
SAmple Consensus (RANSAC) technique [36], [37] to give g@isualization options that have been integrated into commercial
more robust model estimation. softwares only allow selection of three bands for visualization,
After image registration, each pixel in the HSI can fingome range of spectrum will be missed when an HSI covers
its matching in the HRCI. We can randomly select a numbarwide range of spectrum. On the contrary, our method offers
of pixels in the HSI, and find their matching pixels in théhe capability of getting a wide range of spectrum covered
HRCI to construct a set of matching pixel pairs. Howevewhen more than 3 bands are selected.
precise image registration between the HSI and the HRCI is
very difficult to obtain. Here neighborhood searching is used V. EXPERIMENTS AND DISCUSSIONS

to improve the matching accuracy. Given a pigglin the  \ye eyaluate the performance of the proposed visualization
HSI, a pixel in the neighborhood window in the HRCI Withyeihog on HSIs captured by remote sensing and ground-
the minimal SIFT distance ts; is selected as the maichingyaseq hyperspectral sensing, and compare it against several
pixel. In our experiments, the size of window was se9t09.  ocently proposed visualization approaches. These include
It is an distinct advantage that an exact registration betwegng selection using linear prediction (LP) [6], stretched
the HSI and the HRCI is not necessary, which is very helpfglyie [1] bilateral filtering [18], bicriteria optimization [17]
in real applications. and LPP [13]. The impact of parameters on the performance,
e.g. the number of corresponding pairs and the weight of the
C. Other visualization scenarios alignment between the matching pixels, is discussed. We also
‘ve the experimental results on various application scenarios.

is the transformation matrix, or called homography matrix.
we find n matching pairs{(z;,y:), (¢}, /) },i = 1,...,n by
SIFT matchingH can be estimated by

Besides displaying an HSI aided by a corresponding HR8
acquired on the same site, the proposed HSI visualization
algorithm can be easily extended to other scenarios. A. Hyperspectral imaging data

Generalizing projection functions to visualize other sim- Four HSI data sets were used to evaluate the performance
ilar HSIs: Feature-level manifold alignment builds the relaef different visualization methods. Their corresponding HRCls
tions between features from different spaces so that it canwere captured from the same sites. One remote sensing HSI
easily generalized to new instances and provides a “dictionaddta set was taken over Washington D.C. mall by the Hy-
representing direct mapping functions between features [2@krspectral Digital Imagery Collection Experiment (HYDICE)
For HSI visualization task, the projection function from higtsensor. The data consists of 191 bands after noisy bands
dimensional spectral space to the RGB space is definedrasioved, in which the size of each band imag&288 x 307.
F = F.F, ', whereF, andF; are acquired by the manifold Fig. 2(a) shows its 50th band image. The corresponding HRCI
alignment discussed in section IlI-A. This projection functionf Washington D.C. mall was obtained from Google Earth and
can be directly applied to visualize other similar HSIs capturesl shown in Fig. 2(b). The size of the image5is60 x 1640.
by the same hyperspectral imaging sensor, which is bas&dother remote sensing HSI data set was captured by the Air-
on the fact that the same types of objects shall have similaorne Visible/Infrared Imaging Spectrometer (AVIRIS) over
spectral responses with the same sensor. This scenario is \Moffett Field, California at the southern end of San Francisco
helpful when users require a quick overview of a batch of HSBay. The data consists of 224 bands, and each band is in the



size of 501 x 651. Its 50th band image is shown in Fig. 3(a). TABLE |

The corresponding HRCI shown in Fig. 3(b) was also obtained PERFORMANCE COMPARISON BASED ON ENTRORY
from Google Earth. The size of the imagelis60 x 1830. Visualization methods _ Washington _ Moffett  GO3 D04
Other two HSI data sets are named as “G03” and “D04", LP Band Selection 6.59 6.36 473 558
which were acquired by a ground-based OKSI hyperspectral LPP 6.53 599 511 6.15
. . t ted with t ble LCTF filt Each Stretched CMF 3.89 5.28 6.31 7.13
Imaging system mounted with a tunable er. =ac Bilateral Filtering 331 587 605 7.27
data set has 18 bands ranging frot®0nm to 630nm at Bicriteria Optimization 5.75 600 573 606
10nm interval. The size of each band 90 x 1280. Their Manifold Alignment 7.40 689 6.64 7.02

corresponding HRCls were acquired by a Nikon D60 SLR

digital camera, and are in the size 2§92 x 3872. Fig. 4 [, denote the difference in the y-axis direction, the average
shows the first band images of these two ground-based Hgtadient of image is given by

and their corresponding HRCls. .
g= N;%:(\“%”?) (22)

_ To evaluate the visualization results, both subjective visualtyp 6 | gives the comparative results in terms of the average
judgment and objective metrics are used. In this SUbseCt'ﬂ?adientS on R, G and B channels. It is found that in two data

vv_e show the V‘S“"?" effect of the HSI v_isualizatipn rgsu!tssets the proposed approach yields the higher average gradient
Fig. 5 shows the visual comparison of different V|suaI|zat|0{|1Ian other methods.

approaches on the Washington D.C. mall data. The visual- -
ized image generated by manifold alignment is presented in® Separability of features
Fig. 5(f). It was achieved by selectirtf matching pairs and  When many pixels in an image fall within a small range
setting the parameters anda, to bel and500 respectively. of the color space, the image will be too dark or too bright.
It can be seen that the result of manifold alignment not onf§eparability of features measures how well distinct pixels are
has a very natural tone but also preserves fine details. mapped to distinguishable colors. The basic idea is that the
The comparative results on Moffett field, GO3 and D04 datverage distance between two pixels in the color space should
sets are provided in Figs. 6, 7 and 8 respectively. Likewiseg as large as possible [38]. Separability of features is defined
in these experiments our approach not only shows gresaf:
performance on displaying these images with natural color

B. Visual comparison of visualization methods

1
but also preserves finer details with accuracy. 0= (N —1)2 g d(z,y) (23)
TFY
C. Quantitative comparison of visualization methods whered(z,y) is the Euclidean distance between the pair of

Quantitative assessment of HSI visualization does not ha¥&€!S = andy in the RGB spacelN is the number of pixels.
a universally accepted standard. In this paper, we adopt fé fi€notes the average pairwise Euclidean distance in terms of
quantitative metrics: entropy [18], average gradient [18], seﬁl-l pixel pairs. The large#, the bgtter separgblhty of features.
arability of features [38], and root mean square error (RMSE) Table 11l shows the comparative results in terms of feature

between the resultant image and the true color image [7]. SeParability. The good performance of manifold alignment is
. Entropy achieved by the high dynamic color range of the corresponding

Entropy is a statistical measure of randomness that can I—élgc
used to characterize the texture of an image. An image with® RMSE
higher entropy contains richer information than ones with low RMSE between the true color image and the visualized
entropy. The entropy of a single channel image is given byimage is a straightforward way to evaluate the visualization
performance [7]. We approximated a true color image by
h=- ZP(IC) In p(z) (21)  tesizing the HRCI to the same size/resolution of the HSI after
* image registration. Let(z) denote the RGB vector of pixel
wherep(z) is the probability density of the intensity level in the visualized image, and let(x) represent the vector of
in the image. For an RGB image, its entropy is the averagfe corresponding pixel in the true color image. The RMSE

entropy of R, G and B channels. betweens ands’ over the whole image is defined by:
Table | shows the comparative results in terms of entropy. It

can be found that in most cases the manifold alignment method 1

has larger entropy than other approaches, which suggests that "= \/ﬁ Z(S(x) = s'(2))? (24)

the proposed method can preserve more information of HSI

in its RGB form. The comparative results of RMSE are given in Table IV. The
« Average gradient proposed method is significantly better than the other ones on
Average gradient is the measure of image sharpness in teatigour data sets, which shows clearly that manifold alignment
of gradient values [38]. For a single channel image with is an excellent approach for visualizing the HSI with natural
pixels, letl, denote the difference in the x-axis direction andolor.



TABLE Il
PERFORMANCE COMPARISON BASED ON AVERAGE GRADIENT

Visualization methods ~ Washington ~ Moffett G03 D04
LP Band Selection 0.0470 0.0109 0.0137 0.0151
LPP 0.0527 0.0078 0.0176 0.0125
Stretched CMF 0.0192 0.0049 0.0116 0.0106
Bilateral Filtering 0.0448 0.0088 0.0203 0.0210

Bicriteria Optimization 0.0387 0.0122 0.0217 0.0283
Manifold Alignment 0.0889 0.0103  0.0270 0.0219

TABLE IlI
PERFORMANCE COMPARISON BASED ON SEPARABILITY OF FEATURES
Visualization methods =~ Washington ~ Moffett GO03 D04
LP Band Selection 55.68 51.33 63.25  135.37
LPP 78.99 42.12 39.82 50.87
Stretched CMF 30.08 3044  106.14  73.30 Fig. 2. An HSI and its corresponding HRCI on Washington D.C. mall
Bilateral Filtering 47.54 51.80 82.16 143.19
Bicriteria Optimization 52.43 62.51 122.78 168.65
Manifold Alignment 107.11 65.23 139.58 107.81
TABLE IV

PERFORMANCE COMPARISON BASED ONRMSE

Visualization methods  Washington ~ Moffett GO03 D04

LP Band Selection 68.35 4993 9519 8335
LPP 90.96 63.97 108.44 108.02 5
Streiched CMF 92.46 5850  44.09 28.70 , » : & s
Bilateral Filtering 102.43 56.70 78.54 61.14 ding HRCI
Bicriteria Optimization  98.47 5794  69.60 7570 (&) The 50th band of the HSI (b) The corresponding
Manifold Alignment 58.41 27.30 3288 23.08 g 3. An HSI and its corresponding HRCI on Moffett Field
TABLE V
QUANTITATIVE COMPARISON OF VISUALIZATION RESULTS OFD04. 5 matching pairs is still able to make the visualized image
Visualization methods  Entropy ~ Gradient  Separability ~RMSE appear Ve.ry natural. When the number of matching pairs is set
P Band Selection £ 59 0.0151 13537 8335 10 30, the image not only has more natural colors but also has
LPP 6.15 0.0125 50.87 108.02 more detailed spatial information as shown in Fig. 10(b). This
Bﬁtffmhlegltc'\/”: 77-2163 00-00211006 112-?8 28671014 experiment supports the fact that only a few matching pairs
llateral Flltering . . . . T .
Bicriteria Optimization 506 00283 16865 =575 bgtween the HSI and the HRCI are sufficient for manifold
Manifold Alignment 7.50 0.0350 147.54 58.47 alignment.
In addition, two parameters discussed above have some
D. Parameter setting relations. It has been found that when the number of matching

Now we turn to discuss how the parameters affect tHR&Irs becomes largen; should be tuned down to achieve a
performance of manifold alignment and how to set suitapi§@sonable visualization result. This is because of the tradeoff
parameters to achieve a reasonable visualization result. In B&dWeen preserving each manifold structure and aligning two
proposed algorithm, if we fixx, = 1, there are two free manifolds, which is controlled by, andN., when estimating
parameters. One is the number of matching pairs denoted!3@ manifolds in the shared space.

Ny, and the other is the weight facter, which controls
how much two data sets would be aligned. To analyze the

impact of a;, we did experiments on the Washington D.Cg Generalizing projection function to other HSIs
mall HSI with differenta, while fixing a; = 1 andN,, = 20.

Fig. 9 displays the visualized results with, = 100,500 Once we have obtained a projection function by manifold
respectively. We observed that as becomes larger, the coloralignment based on an HSI and its corresponding HRCI
distribution of the visualized image is more similar to that ofaptured from the same site, this projection function can
the HRCI. It should be noted that whea is set to a very large be directly used to visualize HSIs captured by the same
value, the accuracy of matching pairs becomes very criticalyperspectral imaging sensor when their corresponding HRCls
because even a small number of mismatching pairs will leade not available. In this experiment, the projection function
to an undesirable result. Based on the experiments, reasonaleléved from G03 data set and its corresponding HRCI, was
results can be achieved in most cases by settingo be applied to other HSI data sets FO2, G0O4 and G02 captured
200 — 500. by the same HSI camera. Fig. 11 shows the visualized im-

Next we analyze the impact of the number of matchingges of these four HSI data sets, which were generated by
pairs. In this experiment, we fixy = 1 and ap = 500. directly multiplying the data matrix with the projection matrix
Fig. 10(a) is the visualization result by randomly selecting = F,F, '. It can be seen that these images are rendered with
5 matching pixel pairs. It can be observed that only usingatural color.
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(a) LP band selection

(a) The first band of D04 (b) The HRCI of D04

(b) LPP

(c) The first band of GO3 (d) The HRCI of G0O3

Fig. 4. Two ground-based HSIs and their corresponding HRCls

(c) Stretched CMF

F. Manifold alignment between the HSI and the HRCI cap
tured from different sites

We used the D04 HSI data set (Fig. 12(a)) and the HRCI
GO03 (Fig. 4(d)) for manifold alignment. These images wer
captured from the different sites. Fourteen matching pixel pai
between two images were manually selected. Fig. 12(b) shows
the visualized image of D04. Although the details in thi
image are not as fine as the result of manifold alignment wit
the HRCI from the same site (Fig. 8(f)), the image is als
mostly rendered with natural color. We can easily recogniz
the objects in it such as the sky, trees and grass. Table V gi
the quantitative comparison of visualization results of HSI DO
generated by different methods. We can see that the proposed (e) Bicriteria Optimization
method has the highest entropy and average gradient, aEEEsisEs ] o e |
ranks second in terms of separability of features and RMS

(d) Bilateral Filtering

G. Displaying user specified channels by manifold alignme

\ !
Fig. 13(a) shows a false color image of band 58, 8l < E‘,
and 120 of the Washington D.C. mall data set by simply (f) Manifold Alignment
integrating them to RGB channels. The colors of the visualized _ _ _ o _
. . .Fig. 5. Visual comparison of various visualization approaches on Washington
image cannot reflect the natural tones of the objects, Whigft "\ a1 data set.
affects object recognition and interpretation. For example,

the roads in the image are difficult to recognize becausgectral space to the RGB space. The matching pixel pairs
their colors are similar to the surrounding areas. Fig. 13(Bgtween the HSI and the HRCI act as a bond to transfer the
shows the visualized image generated by manifold alignmef#flor information as well as local geometric information from
between a new HSI constructed by the selected bands and HRCI to the HSI. The main advantage of the proposed
the corresponding HRCI. It can be found that the ViSU&"Z%‘gorithm is that 0n|y a few matching pairs are required to
image is rendered with natural color. In particular, the roagdghieve a satisfactory result. This suggests that exact image
are more distinguishable from the neighborhood, which alsggistration is not a necessary condition to extract the matching
demonstrates that our approach can make use of a wiggirs. Therefore, even in the case that the HSI and the HRCI
range of color space in the HRCI to produce higher col@fre not captured over the same site, our method still works
separability. well. Furthermore, by projecting the HSI directly to the RGB
space, our algorithm avoids spectral distances distortion that
V. CONCLUSIONS other methods have suffered from while adjusting data to
We have presented a new approach to visualize HSIs witte dynamic range of RGB. The projection function learned
natural color. Based on manifold alignment between an H8bm the HSI and its corresponding HRCI can be directly
and an HRCI, the proposed algorithm is able to find a projeapplied to visualization of other HSIs captured by the same
tion function that maps the HSI directly from high-dimensionainaging sensor. In addition to these advantages, manifold
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(a) LP Band selection (b) LPP (a) LP Band selection (b) LPP

(c) Stretched CMF

o L . ) (e) Bicriteria Optimization (f) Manifold Alignment
(e) Bicriteria Optimization (f) Manifold Alignment.
) ) . . ) L Fig. 8. Visual comparison of various visualization approaches on D04 data
Fig. 6. Visual comparison of various visualization approaches on Moffegt.
field data set.

(a) LP Band selection (b) LPP

(b) a1 =1, a2 = 500

Fig. 9. The visualization results with different values @ in manifold
alignment.

alignment can be used to display user specified bands, which
is very important to develop an interactive visualization tool.
In the future, constrained manifold alignment algorithms will
be studied to visualize HSIs by adding more transformation
constraints such as pairwise distance preservation and joint
spectral-spatial structure.

(d) Bilateral Filtering
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