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Abstract—The deployment of small cell base stations (SCBSs)
overlaid on existing macro-cellular systems is seen as a key
solution for offloading traffic, optimizing coverage, and boosting
the capacity of future cellular wireless systems. The next-
generation of SCBSs is envisioned to be multi-mode, i.e., capable
of transmitting simultaneously on both licensed and unlicensed
bands. This constitutes a cost-effective integration of both WiFi
and cellular radio access technologies (RATs) that can efficiently
cope with peak wireless data traffic and heterogeneous quality-
of-service requirements. To leverage the advantage of such multi-
mode SCBSs, we discuss the novel proposed paradigm of cross-
system learning by means of which SCBSs self-organize and
autonomously steer their traffic flows across different RATs.
Cross-system learning allows the SCBSs to leverage the advantage
of both the WiFi and cellular worlds. For example, the SCBSs can
offload delay-tolerant data traffic to WiFi, while simultaneously
learning the probability distribution function of their transmis-
sion strategy over the licensed cellular band. This article will
first introduce the basic building blocks of cross-system learning
and then provide preliminary performance evaluation in a Long-
Term Evolution (LTE) simulator overlaid with WiFi hotspots.
Remarkably, it is shown that the proposed cross-system learning
approach significantly outperforms a number of benchmark
traffic steering policies.

I. INTRODUCTION

Owing to the proliferation of sophisticated mobile devices

(i.e., smartphones, tablets), a 20-fold increase in data traffic is

expected over the next few years, compelling mobile operators

to find new ways to significantly boost their network capacity,

provide better coverage, and reduce network congestion [1].

In this context, the idea of heterogeneous networks (HetNets),

consisting of a mix of short-range and low-cost small cell

base stations (SCBSs) underlaying the macrocell network, has

recently emerged as a key solution for solving this capacity

crunch problem [2]. However, reaping the potential benefits of

heterogeneous and small cell deployments is contingent upon:

a) developing innovative interference management, load bal-

ancing, and traffic offloading mechanisms, and b) integrating

different radio access technologies (RATs), tiers (femto-, pico-

, micro-, metro-, and macro- cells), and licensed/unlicensed

frequency bands.

An efficient, cost-effective integration of cellular (e.g.,

3G/LTE) and WiFi technologies, referred to as inter-RAT, has
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Fig. 1. An illustration of a macrocell deployment underlaid with multi-mode
small cell base stations. Gray areas refer to the cell range expansion bias per
SCBS.

recently attracted significant interest from academia, industry,

and standardization bodies alike [1], [4], [5]. It is envisioned

that WiFi and SCBS deployment will exhibit complementary

benefits that can be leveraged for an efficient integration. On

the one hand, due to the uncontrolled, unlicensed nature of

WiFi, the competition for resources among a large number

of hotspot users, notably when other devices (laptops, tablets

and dongles) transmit on the same unlicensed band, can yield

dramatically poor throughputs. In such scenario, offloading

some of this traffic to the well-managed small cell network,

operating over the licensed spectrum, can improve the perfor-

mance. On the other hand, the inherent constraints of small cell

networks, particularly due to cross-tier and co-tier interference,

motivate offloading some of the traffic to the WiFi band,

so as to alleviate the interference and ease congestion. With

the deployment of multi-mode SCBSs operating on both the

WiFi and licensed bands, smart traffic offloading strategies that

harness the benefits of both worlds must be developed [2].

To date, the majority of traffic offloading studies focused

on intra-RAT offloading, in which the macrocell traffic is

offloaded to smaller cells (e.g., femto-, picocells) using cell



range expansion (CRE) and almost blank sub-frame (ABS)

[3]. The concept of CRE has been recently proposed, in which

a positive range expansion bias is added to the picocell’s pilot

downlink received signal strength [2]. In contrast, the literature

on inter-RAT integration, particularly with multi-mode SCBSs

is still in its infancy. To date, WiFi offloading has been studied

in a number of works such as in [4-6]. In [4], a quantitative

study of the performance of 3G mobile data offloading through

WiFi networks is studied. The authors in [5] proposed a frame-

work for 3G traffic offloading based on the idea of motivating

mobile users with high delay tolerance to offload their traffic

to WiFi networks. In [6], the authors investigate the capacity

offload problem among service providers using standard game

theoretic tools leading to the inefficient Nash equilibria [8].

Recently, the work in [2] demonstrated that complementing

heterogeneous cellular networks with WiFi hotspots can be

an attractive solution for operators. A framework to offload

traffic between cellular and WiFi RATs was proposed in [7].

However, this work focused on a single WiFi carrier coexisting

with indoor femtocells. Although existing works established

the potential of 3G-WiFi coexistence, there is still a need for

considerable research to address pertinent challenges such as

self-organization and dynamic traffic steering between 3G/LTE

and WiFi.

In this article, we introduce a fully distributed and dynamic

traffic offloading framework, in which SCBSs seamlessly steer

their traffic between cellular and WiFi RATs, depending on

the traffic type, users’ quality-of-service (QoS) requirements,

network load, and interference levels. SCBSs are assumed to

have a wired backhaul connection to the core network, and

the impact of heterogeneous backhauls is out of the scope of

this article. This developed framework, hereafter coined cross-

system learning, endows SCBSs with self-organizing capabili-

ties allowing them to simultaneously transmit on both 3G and

WiFi bands. Here, SCBSs carry out a long-term optimization

procedure by learning their optimal transmission strategy over

licensed/unlicensed bands, without exchanging information.

In particular, delay-tolerant applications can be offloaded to

WiFi, when possible, while delay-stringent applications can be

steered towards 3G/LTE. In contrast to traditional scheduling

algorithms (such as proportional-fair (PF)) which overlook

users’ heterogeneous demands, incorporating a proactive and

traffic-aware scheduler is shown to exhibit significant gains,

outperforming a number of benchmark traffic steering policies.

The rest of this article is organized as follows. In Section

II, a discussion of the small cell and WiFi paradigms and their

potential integration is presented. In Section III, a basic small

cell system model is presented, followed by the cross-system

learning framework for self-organizing radios. A case study

along with some numerical results are presented in Section

IV, while conclusions are drawn in Section V.

II. SMALL CELLS AND WIFI: A BEST OF BOTH WORLD

APPROACH

Offloading cellular traffic to WiFi and small cells is seen by

operators as a key solution for handling the continuous growth

in mobile data traffic. Offloading traffic to WiFi will continue

to play a key role due to its low cost-per-bit and sufficient

spectrum to support high throughput (notably at 5 GHz). On

the other hand, operators are able to manage the spectrum

used by small cells, optimize their traffic, and decide where

to place them. Nonetheless, as small cells operate on the same

spectrum as the macrocell, coordination between the macro-

and small cells is crucial to mitigate the impact of interference.

Thus far, both cellular and WiFi radio access technologies

have been in constant competition, until recently in which a

tighter integration of both technologies has emerged as a nec-

essary paradigm. Indeed, when deployed along each other, op-

erators can not only perform classical offload (through WiFi),

but also a smart fine-grained offload, whereby operators can

decide which traffic flows over which RAT, while leveraging

user’s QoS requirements, latency, and backhaul conditions for

service differentiation [2], [11]. In addition, with the advent of

multi-mode SCBSs, operators can reduce their site acquisition

costs (site leasing, installation and backhaul) by combining

several RATs into a single device. This can further lead to a

reduction in their capital expenditures (power, memory, etc).

So as to reap the benefits of SCBSs’ multi-mode capabilities,

operators need to devise dynamic offloading strategies and

make intelligent decisions aiming at enriching users’s QoS and

avoiding user churn. For instance, when a UE discovers the

presence of WiFi in its vicinity, delay-tolerant traffic (e.g., web

browsing) should be offloaded to WiFi, whereas traffic with

more stringent data requirements (e.g., multimedia) would

remain on the cellular 3G/LTE RAT. Furthermore, while traffic

offloading at the access level is important, backhaul offload

is yet another important component of the cellular and WiFi

integration. Here, operators need to take into account the

backhaul conditions and congestion level in their offloading

policy before deciding to which RAT a user is offloaded

to ensure a better and seamless user experience. 3GPP has

proposed two solutions, namely Selected IP Traffic Offload

(SIPTO) and Local IP Access (LIPA) to deal with latency

and congestions of traffic flow problems, either through the

mobile core or IP network [12]. SIPTO supports an IP traffic

offload directly to the internet and away from the mobile core

network, to reduce the network load. Nonetheless, operators

must be careful in selecting which traffic to offload, as mobility

support for SIPTO traffic can be limited. Under LIPA, IP

traffic management is designed to optimize the traffic destined

to a local IP Network locally instead of through the mobile

core network. In what follows, we present the novel paradigm

of cross-system learning used by self-organizing SCBSs for

traffic offload between 3G/LTE and WiFi.

III. CROSS-SYSTEM LEARNING FRAMEWORK IN

SELF-ORGANIZING RADIOS

In this section, we first provide definitions and notions

of reinforcement learning, that will be useful in the sequel.

Subsequently, we present the novel framework of cross-system

learning.



A. Basic Model

Consider a macrocell base station (MBS) operating over

a set S = {1, . . . , S} of S frequency bands. The macrocell

is underlaid with a set K = {1, . . . ,K} of K SCBSs. Each

SCBS is dual-mode and can transmit over the licensed and

unlicensed spectrum band. Let the downlink transmit power

of SCBS k at time t on subband (SB) s be p
(s)
k (t) and

pk,max be the maximum transmit power of SCBS k. Let the S-

dimensional vector pk(t) =
(

p
(1)
k (t), ..., p

(S)
k (t)

)

denote the

power allocation vector of SCBS k at time t. Let Lk ∈ N be

the number of discrete power levels of SCBS k and denote

by q
(ℓ,s,b)
k its ℓ-th transmit power level over SB s when

using cell range expansion bias b ∈ {1, ..., B}. Thus, the

cardinality of the strategy set Ak =
{

q
(ℓ,s,b)
k

}

of SCBS k

is Nk = Lk × S ×B.

Due to the mutual co-channel interference and coupling

among SCBSs’ strategies, the joint interference management

and traffic offloading problem can be modeled as a game

G =
(

K, {Ak}k∈K, {ūk}k∈K

)

. Here, K represents the set

of SCBSs, and the action set Ak of each SCBS k is the

joint set of subband, power levels and CRE bias. Finally, ūk

denotes the long-term performance metric optimized by each

SCBS k, in which, at each time t, each SCBS k chooses

its action from the finite set Ak following a probability

distribution πk(t) =
(

π
k,q

(1,1,1)
k

(t), ..., π
k,q

(Lk,S,B)

k

(t)
)

, and

π
k,q

(l,s,b)
k

= Pr
(

pk(t) = q
(l,s,b)
k

)

is the probability that SCBS

k selects action q
(l,s,b)
k at time t.

B. Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning,

in which a number of decision makers or players, having

often conflicting objectives, must be able to make autonomous

decisions given limited information, so as to optimize a

certain cumulative objective function or reward [8]. RL has

had an impact on a variety of disciplines inclusive of game

theory, control theory, operations research, information theory,

and genetic algorithms. A key design criterion in RL is to

develop strategies that allow players to strike a balance be-

tween exploring the network and exploiting their accumulated

knowledge. Recently, RL has received significant interest in

the context of self-organizing HetNets, as it allows operators

to automate their network in a plug-and-play manner and

reducing maintenance costs.

In the context of cellular and WiFi integration, the goal of

every SCBS is to devise an intelligent and online learning

mechanism to optimize its licensed spectrum transmission,

while at the same time leverage WiFi by offloading delay-

tolerant traffic. The developed procedure, dubbed cross-system

learning, is rooted in the fact that every small cell optimizes its

long-term performance metric, as a function of its traffic load,

interference levels, and users’ heterogeneous traffic require-

ments. In addition, unlike standard RL [8], the cross-system

learning procedure allows players to implicitly coordinate

their transmissions with no information exchange, as well as

to leverage the coupling between LTE and WiFi, which as

will be shown increases the overall network performance and

significantly speeds up the convergence.

The cross-system learning framework is composed of the

following interrelated components:

• Subband selection, power level allocation and cell

range expansion bias: every SCBS learns over time how

to select appropriate subbands with their corresponding

transmit power levels in both licensed and unlicensed

spectrum, in which delay-tolerant traffic is steered toward

the unlicensed spectrum. In addition, every SCBS learns

its optimal CRE bias to offload the macrocell traffic to

smaller cells.

• Proactive scheduling: Once the small cell acquires its

subband, the scheduling decision is traffic-aware tak-

ing into account users’ heterogeneous QoS requirements

(throughput, delay tolerance and latency).

C. Subband, Power Level and Cell Range Expansion Bias

Selection

During cross-system learning, every SCBS minimizes over

time its regret of selecting strategies yielding lower payoffs,

while experimenting other strategies to improve its long-

term utility estimation. The considered behavioral assumption

is that small cells are interested in choosing a probability

distribution over their transmission strategies which minimizes

the regret, where the regret of SCBS k for not having played

action q
(ℓk,s,b)
k from n = 1 up to time t is defined as:

r
k,q

(ℓ,s,b)
k

(t) =
1

t

t
∑

n=1

ûk

(

q
(ℓ,s,b)
k ,p−k(n)

)

− ũk(n) (1)

where ũk(n) is the instantaneous utility observation (i.e.,

feedback) of SCBS k at time n, obtained by constantly

changing its strategy. In addition, to calculate its regret, every

SCBS k estimates its utility function ûk(., .) when taking a

given action based on local information.

The rationale of (1) is as follows: if the regret is strictly

positive, then SCBS k would have obtained a higher average

utility by playing action q
(ℓ,s,b)
k during all previous time

instants, and thus, the SCBS k “regrets” not having done so.

In contrast, if (1) is negative, then SCBS k does not regret

its strategy selection. Therefore, each SCBS needs to strike

a balance between choosing actions that yield lower regrets

(more often than those with higher regrets), and playing any

of the other actions with a non-zero probability.

The behavioral rule of every SCBS can be modeled by

the probability distribution βk(r
+
k (t)) subject to the maximum

transmit power constraints pk,max, where:

βk(r
+
k (t)) ∈

argmin
πk

[

∑

pk∈Ak

πk,pk
rk,pk

(t) +
1

κk

H(πk)
]

, (2)

where r
+
k (t) = max (0, rk(t)) denotes the vector of positive

regrets, and H(.) represents the Shannon entropy function of

the mixed strategy πk. The temperature parameter κk > 0
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Fig. 2. Flow-chart of the proposed cross-system learning procedure per-
formed by each small cell base station.

represents the interest of SCBS k to choose other actions. The

unique solution to the right-hand-side of the continuous and

strictly convex optimization problem in (2) is:

β
k,q

(l,s,b)
k

(r+k (t)) =
exp

(

κkr
+

k,q
(l,s,b)
k

(t)
)

∑

pk∈Ak

exp
(

κkr
+
k,pk

(t)
) , (3)

where β
k,q

(l,s,b)
k

(r+k (t)) > 0 holds with strict inequality

regardless of the regret vector rk(t).
Furthermore, given users’ different QoS requirements, the

cross-system learning framework leverages WiFi, in which

the learning process carried out over WiFi is faster (from a

time-scale perspective) than that on the cellular band. More

concretely, inspired from the well-known turbo-principle, the

output (i.e., feedback) from the WiFi learning process is used

for the update of the cellular learning process. As will be

shown later on, this notion of time-scale significantly reduces

the convergence time of the traffic steering algorithm, as com-

pared to standard RL, and improves the overall performance.

Figure 2 shows a flow-chart of the cross-system learning

framework executed by each SCBS.

D. Proactive Scheduling

Once the SCBSs select their subbands using cross-system

learning, they engage in a proactive and traffic aware schedul-

ing procedure on the selected subband’s resource blocks. The

scheduling algorithm is proactive and traffic-aware in nature

as it incorporates users’ traffic requirements. Notably, the

scheduling decision is not only based on the instantaneous

channel condition but also on the completion time (delay) and

service class of each transmission. For that, within every small

cell, all users are sorted in an ascending order as a ratio of

TABLE I
UE TRAFFIC MIX.

Traffic model Traffic category Percentage of UEs

FTP Best effort 10%

HTTP Interactive 20%

Video streaming Streaming 20%

VoIP Real-time 30%

Gaming Interactive real-time 20%

their remaining file size and estimated average data rate. Then,

the SCBS k computes a metric Dki
(t), which is a function

of the position of UE ki and the number of UEs served by

SCBS k at time t. Finally, UE k∗i is scheduled such that:

k∗i = argmin
ki

Dki
(t).

IV. CELLULAR AND WIFI OFFLOAD: A CASE STUDY

The developed cross-system learning framework is vali-

dated in an integrated LTE-A/ WiFi simulator. The considered

scenario comprises one macrocell consisting of three sectors

underlaid with K open access small cells operating on both

3G and WiFi. The SCBSs are uniformly distributed within

each macro sector, while considering a minimum MBS-SCBS

distance of 75 m. The path-loss models and other set-up

parameters were selected according to the 3rd Generation

Partnership Project (3GPP) recommendations for outdoor pic-

ocells (model 1) [9]. NUE = 30 mobile UEs were dropped

within each macro sector from which Nhotspot = 2
3NUE/K

are randomly and uniformly dropped within a 40 m radius of

each SCBS, while the remaining UEs are uniformly dropped

within each macro sector. Each UE is assumed to be active,

with a fixed traffic model from the beginning of the simulations

while moving at a speed of 3 km/h. The traffic mix consists of

different traffic models as shown in Table I, following the re-

quirements of the Next Generation Mobile Networks (NGMN)

[10]. The bandwidth in the licensed (resp. unlicensed) band is

5 MHz (resp. 20 MHz). The simulations are averaged over 500
transmission time intervals (TTIs). For sake of comparison, we

consider the following benchmark algorithms:

• Macro-only: The macrocell is the only serving cell of

all UEs using proportional fair scheduling, by uniformly

distributing its maximum transmission power over the

whole licensed bandwidth.

• HetNet: the macrocell is augmented with K small cells.

Here, both MBS and SCBSs serve their UEs in the li-

censed band only, and small cells optimize their subband,

power levels and cell range expansion bias.

• HetNet + WiFi (Load-Based): each SCBS transmits on

both licensed and unlicensed bands by randomly selecting

one subband on both licensed and unlicensed bands.

Access to the unlicensed band is performed based on the

load as described in Section III.C and Proportional-fair

scheduling is performed on the licensed band.

• HetNet + WiFi (Coverage-Based): Same as HetNet +

WiFi (load-Based) except that the access method is based

on the reference signal received power (RSRP) criterion.
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A. Convergence

Figure 3 plots the convergence behavior of the cross-system

learning procedure in terms of the ergodic transmission rate

(i.e., average cell throughput). Here, we consider 10 UEs

per macro sector, and 1.4 MHz bandwidth in the licensed

band. In addition, we plot the standard RL algorithm [8],

in which learning is carried out independently over both

licensed and unlicensed bands, without any sort of coordi-

nation. Quite remarkably, it is shown that the cross-system

learning approach converges within less than 50 iterations,

while the standard approach needs several hundreds iterations

to converge. Furthermore, the standard RL procedure exhibits

an undesirable oscillating behavior (i.e., ping-pong effects

between the licensed and unlicensed band, which can be

detrimental in mobility scenarios).

B. Average UE throughput under different offloading strate-

gies

Figure 4 plots the cumulative distribution function (CDF) of

the average UE throughput for NUE = 30 UEs, and different

offloading strategies. Here, random refers to an SCBS which

selects randomly one subband and performs PF scheduling,

whereas proposed refers to the regret-based learning procedure

with traffic-aware (TA) scheduling. While, in the macro-

only case, 25% of UEs obtain no rate, deploying small

cells on the licensed band increases the overall performance

through suitable cell range expansion bias; especially for cell-

edge UEs. The overall performance is further boosted when

deploying multi-mode SCBSs transmitting on both licensed

and unlicensed bands (i.e., HetNet+WiFi), particularly for

the HetNet+WiFi load-based scenario as compared to the

HetNet+WiFi coverage-based scenario.

C. Impact of scheduling

Figure 5 shows the total cell throughput as a function of

the number of UEs in the network, for the earliest deadline

first (EDF), proportional fair (PF), and proactive scheduling

(PS) strategies, respectively. While the standard PF scheduler

cannot cope with the increasing number of UEs, the traffic-

aware scheduling approach judiciously steers users’ traffic in

an intelligent and dynamic manner over both licensed and

unlicensed spectrum, with a 160-fold increase for 300 UEs.

These significant gains are rooted in the fact that unlike the

proactive scheduler, both EDF and PF schedulers fall short of

accounting for the heterogeneous traffic and delay-tolerance

nature of their users.

D. Impact of small cell densification

Figure 6 plots the total cell-throughput and cell-edge UE

throughput for the macro-only, HetNet, and HetNet+WiFi

offloading strategies. Some key observations are worth men-

tioning. While in the macro-only case, cell edge UEs get rather

low throughput gains, adding K = 2 small cells is shown to

boost users’ cell-edge throughput in the HetNet offload case.

In addition, a 50% increase in cell-edge UE throughput is

obtained with K = 2 multi-mode small cells (HetNet+WiFi).

Furthermore, small cell users (SCUEs) benefit from the small

cells’ multi-mode capability when deploying K = 2 SCBSs,

and this gap further increases when adding more small cells

(K = 6 SCBSs). As a byproduct of this, offloading is shown to

improve not only the performance of SCUEs, but also MUEs,

for K = {2, 4, 6} small cell base stations.

V. CONCLUSION

In this article, we studied the strategic coexistence between

3G/LTE and WiFi networks in a heterogeneous network, in

which multi-mode SCBSs transmit simultaneously on both

licensed and unlicensed bands. The tight integration of both

technologies is seen as crucial for supporting the unrelenting

growth in data traffic. In view of this, we developed a cross-

system learning framework aiming at optimizing the long-

term performance of SCBSs, in which delay-tolerant traffic is
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steered towards WiFi. Our approach is totally distributed with

low signalling overhead, and shows significant improvements

in terms of cell-edge UE throughput, especially in high load

conditions. In our future investigations, we will extend the

current formulation to the case of backhaul sharing, which is

also gaining significant importance.
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