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Abstract

Reasoning from the minimal models of a theory, as fostered by circumscription, is in the area of Artificial Intelligence an important
method to formalize common sense reasoning. However, as it appears, minimal models may not always be suitable to capture the
intuitive semantics of a knowledge base, aiming intuitively at an exclusive interpretation of disjunctions of atoms, i.e., if possible
then assign at most one of the disjuncts the value true in a model. In this paper, we consider an approach which is more lenient and
also admits non-minimal models, such that inclusive interpretation of disjunction also may be possible in cases where minimal model
reasoning adopts an exclusive interpretation. Nonetheless, in the spirit of minimization, the approach aims at including only positive
information that is necessary. This is achieved by closing the set of admissible models of a theory under minimal upper bounds in
the set of models of the theory, which we refer to as curbing. We demonstrate this method on some examples, and investigate its
semantical and computational properties. We establish that curbing is an expressive reasoning method, since the main reasoning
tasks are shown to be PSPACE-complete. On the other hand, we also present cases of lower complexity, and in particular cases in
which the complexity is located, just as for ordinary minimal model reasoning, at the second level of the Polynomial Hierarchy, or
even below.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Artificial intelligence; Circumscription; Computational complexity; Curbing; Knowledge representation; Minimal models;
Non-monotonic reasoning; Propositional logic

1. Introduction

In Artificial Intelligence, Occam’s Razor (“entia non sunt multiplicanda praeter necessitatem”) is widely used to
model human problem solving. In particular, in the area of knowledge representation and reasoning, this principle is
underlying circumscription [29,34,35], which is one of the most well-known approaches to non-monotonic reason-
ing. Circumscription aims at minimizing the positive information contained in the models of a logical theory T that
constitutes a knowledge base. To this end, it selects the minimal models of T under a preference relation � on the set of
all models of T, according to which a model M is better than (or as good as) a model M ′ if each elementary fact which

� Some results in this paper appeared in preliminary form in the Proceedings of LPAR 2000 [18] and the Proceedings of IJCAI-93 [19].
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Fig. 1. Possible outcome of throwing coins on a chessboard, circumscribing the coin locations.

is true in M is also true in M ′. For example, if T consists of the three formulas p → q, r → q, and p, then there are two
models, of T on the atoms p, q, and r: one in which all three atoms are true, and another one in which p and q are true
and r is false; circumscription selects from these two models the second (in which r is false), since it is better than the
first. The theory of circumscription is far developed, and several variants exist; we refer to [21,30] for an introduction.

As noted by various authors [11,13,40–43], reasoning under minimal models runs into problems in connection with
disjunctive information. The minimality principle of circumscription often enforces the exclusive interpretation of a
disjunction a∨b by adopting the models in which either a or b is true but not both. There are many situations in which
an inclusive interpretation is desired and seems more natural. For example, consider the following scenario due to
Raymond Reiter. 1

Example 1.1. Suppose a coin is thrown into an area which is divided into a black and a white field. Circumscription
applied to the propositional theory

T0 = { lies_on_black ∨ lies_on_white }
excludes the model in which lies_on_black and lies_on_white1 hold, i.e., that the coin falls into both fields, and yields
that the coin is either in the black or in the white field, according to the two minimal models in which lies_on_black
is true and lies_on_white is false, respectively lies_on_black is false and lies_on_white is true. This is certainly not
satisfactory. An extension of this example is even more impressive. Imagine a handful of coins thrown onto a chessboard;
given that the propositions cij represent for coin c that it lies on field f, where f ∈ {a1, a2, . . . , a8, b1, . . . , h8}, the
location of c is described by the disjunction

loc_c = c_lies_on_a1 ∨ c_lies_on_a2 ∨ · · · ∨ c_lies_on_h8.

Applying circumscription to the conjunction T0 = loc_c1 ∧· · ·∧ loc_ck of the coin locations, we obtain that each coin
ci lies on exactly one field, and thus does not touch both a black and a white field (cf. Fig. 1).

None of the well-known variants of circumscription [21,30] seems to handle inclusive disjunction of positive infor-
mation suitably in general. In order to redress this problem and to provide a way for handling inclusive disjunctions of
positive information properly, we proposed the curbing method in [19], which is a generalization of circumscription for
handling inclusive disjunctions of positive information at the semantic level. This method fosters the notion of a curb
model of a theory, which is roughly speaking either a minimal model of the theory T, or recursively defined as a model
of T which is a minimal upper bound (mub) of a set of smaller curb models in the partially ordered set of models of T
under the ordering � . The use of mubs is guided by the minimization principle; note that least upper bounds (LUB),
which would be more natural, do not always exist. In the example from above, curbing selects besides the two minimal
models also the model where both lies_on_black and lies_on_white are true. While in this and the chessboard example,
curbing selects all models of the theory, this is not the case in general (see e.g. the further examples in Section 2.1). 2

The contributions of this paper are briefly summarized as follows.

1 Personal communication.
2 Note that in the chessboard example, no information about the size of the coins resp. the board is given, and axioms for contiguous occupation

of fields are missing. However, it is arguably reasonable that such domain-specific knowledge must be provided for a domain-independent method
to work well.
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(1) We formalize curbing for (possibly infinite) propositional theories on a given set of atoms A. Note that the propo-
sitional setting plays an important role in many knowledge representation applications, since knowledge base
formalizations used in practice are often propositional in nature; indeed, in AI applications, frequently first-order
predicate logic is used for knowledge representation which considers a fixed, finite domain of discourse. To this
end, domain closure axioms are used, often in combination with unique name axioms for individuals. This is es-
sentially a propositional setting, to which the predicate formalization can be easily reduced. This also holds for
certain first-order settings with infinite domains, e.g., in logic programming (under customary Herbrand semantics)
cf. [1,32,14,36], which by definition are reduced to the propositional case. Thus, the propositional setting is important
for applications.

(2) We provide purely semantic and constructive characterizations of curb models, in a customary minimization setting
where only a part P of the atoms A is minimized and a further part Z is floating (i.e., projected from the ordering
�), while all other atoms are considered to be fixed. Furthermore, we analyze the relationship to circumscription
and provide for finite theories a syntactic characterization of the theories for which curbing and circumscription
coincide.

(3) We consider restricted notions of curbing, by limiting the iterations for taking mubs and/or the number of models
for which a mub is formed. These restrictions can be viewed as semantic and computational approximations of an
idealized reasoner, who closes her set of accepted models under mubs. As we show, under these restrictions for
certain classes of theories still the full set of curb models is obtained, which proves useful for reasoning algorithms.

(4) We study the class of theories for which collections of curb models always have a least (unique minimal) upper
bound, which we call LUB theories, as well as the more general class of Weak LUB theories, in which each curb
model is the LUB of some set of curb models. Both classes have interesting properties; for example, they require
only a bounded number of steps to obtain all curb models by iteratively taking mubs.

(5) Finally, we investigate computational aspects of curbing. We first give a simple algorithm for computing the curb
models of a given finite theory. This algorithm uses polynomial space in the size of the output, which might
have exponential size. By using this algorithm, curb inference (i.e., truth in all curb models) can be decided in
exponential space and time. However, we give an algorithm for curb model checking which runs in quadratic
space, which implies that also logical inference is decidable in quadratic space. On the other hand, we show that
both problems are PSPACE-complete, and that they are PSPACE-hard even in case of global curbing, i.e., when
curbing is applied to all atoms. Furthermore, we single out cases of lower complexity (under common hypotheses
in complexity theory), in particular cases where curbing is feasible with complexity in �P

2 , which is the complexity
of circumscription [16], or even with lower complexity. We also discuss how curbing can be polynomially reduced
to circumscription in these cases.

The PSPACE-completeness results, whose proofs are non-trivial, strongly indicate that curbing is from the point of
computational expressiveness a much more powerful reasoning method than circumscription in general. In particular,
they imply that curb model checking and curb inference are not solvable in polynomial time using a circumscriptive the-
orem prover in general (which, however, by our results is feasible under restrictions). On the other hand, a curb reasoning
engine may be based on a quantified Boolean formula (QBF) solver (see http://www.qbflib.org/solvers.
html and [25] for a recent evaluation report), to which model checking and inference can be reduced in polynomial
time.

Since its introduction in [19], the curbing method has been used and studied by other authors. For instance, Scarcello
et al. [45] provide a fixpoint semantics for propositional (Boolean) curbing and derive complexity results for curbing
the class of dual Horn-quadratic theories, i.e., clausal theories where each clause contains at most two literals and at
least one positive literal. In the present paper, we sharpen some of these results. Liberatore [27,28] considers belief
update operators from [49,50], which are related to a restricted version of curbing.

The rest of this paper is organized as follows. In the next section, we give some preliminaries and consider
further examples that motivate reasoning under mubs. After that, we give in Section 3 a formal definition of curb-
ing and consider some properties, viz. different characterizations, behavior with respect to disjunctions, and rela-
tionship to circumscription. The subsequent Section 4 is devoted to restricted notions of curbing. After that, we
consider classes of theories in Section 5 for which the set of curb models has a particular structure. Section 6 then
considers computation and complexity of curbing. Related work is discussed in Sections 7, and 8 presents some
conclusions.

http://www.qbflib.org/solvers.html
http://www.qbflib.org/solvers.html
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2. Preliminaries and examples

We assume a (possibly infinite) set of propositional atoms A. In this paper, A will often be denumerable, i.e., finite
or countably infinite (A = {pi |i = 0, 1, . . .}); in general, we assume that A is indexed by some ordinal � such that
A = {p�|� ∈ �} (i.e., A is enumerated by some well-ordering). A theory is any finite or infinite set of propositional
formulas on A, which are built using the usual Boolean connectives, including constants � (truth) and ⊥ (falsity).

An interpretation (or model) M is an assignment M : A → {0, 1} of truth values 0 (false) or 1 (true) to all atoms,
which extends to formulas as usual. We identify M also with the set of atoms p ∈ A such that M(p) = 1. The restriction
of a model M to a set of atoms A′ ⊆ A is denoted by M[A′]. Furthermore, for any propositional formula � and model
M, we denote by �[M] resp. �[M[A′]] the result of replacing in � every p ∈ A resp. p ∈ A′ by � if M(p) = 1 and
by ⊥ if M(p) = 0.

An interpretation M satisfies a formula � (is a model of �), denoted M � �, if M(�) = 1, and M satisfies a theory T
(is a model of T), denoted M � T , if M � � for each � ∈ T ; we denote by mod(�) (resp., mod(T )) the set of all models
of � (resp. T).

Definition 2.1. We call a pair (P ; Z) of subsets P, Z ⊆ A such that P ∩ Z = ∅ a minimization setting; informally,
the atoms in P are to be minimized in parallel while those Z in may vary and all other atoms are fixed. Furthermore, we
denote by �P ;Z the respective preference relation on the set models for A. That is, M �P ;ZM ′ (M is more or equally
preferable to M ′) iff M[P ] ⊆ M ′[P ] and M[Q] = M ′[Q], where Q = A \ P ∪ Z. As usual, M <P ;Z M ′ stands for
M �P ;ZM ′ ∧ M�

P ;ZM , and we write M =P ;Z M ′ for M �P ;ZM ′ ∧ M �P ;ZM ′. We refer to the special case where
P = A and Z = ∅ as global minimization and omit P ; Z in subscripts, etc.

We use maxP ;Z(M) to denote the maximal elements of M under �P ;Z , that is, maxP ;Z(M) = {M ∈ M|�M ′ ∈
M : M <P ;Z M ′}; for global minimization, P ; Z is omitted.

The circumscription of a theory T with respect to a minimization setting (P ; Z) is semantically given by the set of
its P ; Z-minimal models, denoted mmodP ;Z(T ), where a model M in any set of models M ⊆ 2A is P ; Z-minimal, if
there is no model M ′ ∈ M such that M ′ <P ;Z M . We remind that (P ; Z) minimization has been introduced in order
to facilitate the conclusion of new positive evidence, which cannot be drawn under global minimization, as shown in
the following example.

Example 2.1. The theory T = {bird, bird ∧ ¬ab → flies} on A = {b, ab, flies} has in the minimization setting
P = {ab} and Z = {flies} the single P ; Z-minimal model M1 = {bird, flies}. Therefore, we can conclude flies from
the circumscription of T w.r.t. (P ; Z). On the other hand, the global minimal models of T are M1 and M2 = {bird, ab},
and this conclusion is not possible; note that M1 <P ;Z M2.

For any finite T, its circumscription under (P ; Z) is expressed by the set of formulas

{¬p|p ∈ P \ PT } ∪ {Circ(�; PT ; ZT )},
where PT and ZT are the atoms from P, respectively, Z occurring in T, and QT are all other atoms in T; � =
�(PT ; QT ; ZT ) is the conjunction of all formulas in T; and Circ(�; PT ; ZT ) is the QBF

Circ(�; PT ; ZT ) = �(PT ; QT ; ZT ) ∧ ∀P ′
T Z′

T ((�[P ′
T ; Z′

T ] ∧ P ′
T �PT ) → PT �P ′

T ).

Here P ′
T and Z′

T are sets of fresh atoms (not occurring in �) in 1–1 correspondence to P and Z, respectively, and
PT �P ′

T (resp., P ′
T �PT ) denotes the formula

∧
p∈PT

(p → p′) resp.
∧

p∈PT
(p′ → p). By eliminating quanti-

fiers ∃, ∀ as usual, Circ(�; PT ; ZT ) can be rewritten to an equivalent propositional formula. That is, replace sub-
formulas ∀x�(x, y1, . . . , yk) with �(⊥, y1, . . . , yk) ∧ �(�, y1, . . . , yk) and subformulas ∃x�(x, y1, . . . , yk) with
�(⊥, y1, . . . , yk) ∨ �(�, y1, . . . , yk), respectively.

2.1. Curb models

Let us first describe two further scenarios in which non-minimal models are desirable.
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Fig. 2. The hammer–nail-painting example.

Fig. 3. The party example.

Example 2.2. Suppose Alice is in a room with a painting, which she hangs on the wall if she has a hammer and a nail.
It is known that Alice has a hammer or a nail, and possibly both. This scenario is represented by the theory T1 in Fig. 2.
The desired models are {h}, {n}, and {h, n, p}, which are encircled. Circumscribing T1 under global minimization
yields the two minimal models {h} and {n} (see Fig. 2). Since p is false in all minimal models, circumscription tells us
that Alice does not hang the painting up. Furthermore, it tells us that Alice has either a hammer or a nail, but not both.
On the other hand, the model {h, n, p}, which intuitively corresponds to the inclusive interpretation of the disjunction
h ∨ n, seems plausible. Therefore, one may expect that the conclusion of Alice not hanging the paper up is not drawn,
and similarly not that Alice holds only one item.

Example 2.3. Suppose you have invited some friends to a party. You know for certain that one of Alice, Bob, and
Chris will come, but you do not know whether Doug will come. You know in addition the following habits of your
friends. If Alice and Bob go to a party, then Chris or Doug will also come; if Bob and Chris go, then Alice or Doug
will go. Furthermore, if Alice and Chris go, then Bob will also go. This is represented by the theory T2 in Fig. 3. Now
what can you say about who will come to the party? Consider the models of T2 in Fig. 3. Circumscription under global
minimization yields the minimal models {a}, {b}, and {c}, which interpret the clause a ∨ b ∨ c exclusively in the sense
that it is minimally satisfied. However, there are other plausible models. For example, {a, b, c}. This model embodies
an inclusive interpretation of a and b within a ∨ b ∨ c; it is also minimal in this respect. The model {a, b, d} is another
model with this property. Similarly, {b, c, d} is a minimal model for an inclusive interpretation of b and c. The models
{a, d}, {b, d}, and {c, d} seem not plausible, however, since a scenario in which Doug and only one of Alice, Bob or
Chris are present does not seem well-supported.

In the light of these examples, the question arises how minimization can be extended to work more satisfactorily.
Obviously, also non-minimal models must be allowed, even if such models may contain positive information that is
not contained in any minimal model, as shown by Example 2.2. On the other hand, the fruitful principle of minimality
should not be abandoned by adopting models that are intuitively not concise. Such a situation is given when the theory at
hand has a single minimal model. Adhering to minimality, there seems to be no reason for adopting non-minimal models
in this case, since there is no ambiguity in which values the atoms to be minimized should be assigned. The situation is
different if there is more than one minimal model. Each of these models represents a possible way to minimize positive
information coherently. Here, an inclusive account of opposite positive information in different minimal models M1
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and M2, which is given by their symmetric difference, is not considered, since any model M which includes both M1
and M2 is rejected under minimization.

Extending the circumscription approach, the Curbing method aims at giving an inclusive account of positive infor-
mation at the semantic level, based on well-understood mathematical concepts. The basic idea is to adopt for minimal
models M1, M2 any model M which includes both M1 and M2, but is a minimal such model; in other words, M is
a minimal upper bound (mub) for M1 and M2. Intuitively, adopting M semantically accounts for disjunction, which
must be present in the theory (otherwise, a single minimal model would exist); we defer a discussion of this issue to
Section 3.1.

For illustration, in Example 2.2 {h, n, p} is a mub for {h} and {n} in the models of T1 (notice that {h, n} is not a model
of T1), and in Example 2.3, {a, b, c} is a mub for {a} and {b} in the models of T2; the model {a, b, d} is another one,
so several mubs can exist. In order to capture general inclusive interpretations, mubs of arbitrary families of minimal
models of the theory T at hand are adopted.

It appears that in general not all “intuitive” models are obtainable as mubs of families of minimal models. The
intuitive model {a, b, c, d} in Example 2 shows this. It is, however, a mub of the “good” models {a} and {b, c, d}
(as well as of {a, b, c} and {a, b, d}). This suggests that not only mubs of families of minimal models, but also mubs
of any family of intuitive models should be selected.

The curbing approach to generalize model minimization is thus the following: adopt the least set of models of a theory
which contains all circumscriptive (i.e., minimal) models and which is closed under including mubs. This approach
yields in Examples 2.2 and 2.3 the sets of “intuitive” models, which are encircled in Figs. 2 and 3. The closedness
property is a natural idealization in lack of further information about which minimal upper bounds should be adopted
in a particular situation, and all adopted models are considered to be en par. In Example 2.3, the models {a, b, c} and
{a, b, d} are mubs of {a} and {b}, and they are considered to be en par with {c}; thus, mubs among {a, b, c}, {a, b, d},
and {c} should be adopted as well.

As for inferencing, closedness is sound in that no conclusions are accepted which would not be drawn in the
actual situation. Different rationales for discriminating between models when taking mubs can be imagined, and then
closedness under mubs might be abandoned (cf. Section 4). To consider the least closed set of models which is closed
under mubs is guided by the principle to discard any model of the theory which is not “foundedly” (in terms of mubs)
included, and thus to obtain at a smallest set of models and arrive in this way at a largest set of conclusions.

3. Formal definition of curbing

We formally define the concept of a curb model as follows. First we define the notion of a mub of a set of models,
and then property that a set of models is closed under mubs.

Definition 3.1. Let M0 ⊆ 2A be a set of models on atoms A and let (P ; Z) be a minimization setting. A model
M ∈ M0 is a P ; Z-upper bound of a set of models M ⊆ 2A with respect to M0, if N �P ;ZM for every N ∈ M.
Moreover, such an M is a P ; Z-mub of M w.r.t. M0, if there exists no P ; Z-upper bound N of M w.r.t. M0 such that
N <P ;Z M . The set of all P ; Z-upper bounds (resp., P ; Z-mubs) of M w.r.t. M0 is denoted by ubM0

P ;Z(M) (resp.,

mubM0
P ;Z(M)).

Definition 3.2. A set of models M is closed under P ; Z-mubs with respect to M0, if mubM0
P ;Z(N ) ⊆ M holds for

every N ⊆ M.

If M0 = mod(T ) for some theory T, we simply write T in place of mod(T ). Clearly, mod(T ) is closed under P ; Z-
mubs with respect to T for any (P ; Z). Furthermore, every set of models of T which is closed under P ; Z-mubs with
respect to T must contain mmodP ;Z(T ) (recall that mmodP ;Z(T ) denotes the set of all P ; Z-minimal models of T).
Indeed, the P ; Z-mubs of the empty set M = ∅ w.r.t. T are just the �P ;Z-minimal models of T.

We thus define the curb models of a theory T as follows.

Definition 3.3. For any theory T and minimization setting (P ; Z), the set of P ; Z-curb models of T, denoted by
cmodP ;Z(T ), is the least set of models of T which is closed under P ; Z-mubs w.r.t. T.
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Fig. 4. Set of curb models whose ranks are not strictly decreasing along chains.

Notice that curb models are well-defined only if a unique smallest closed set exists. The latter is immediate from the
fact that the family of all sets M ⊆ mod(T ) which are closed under P ; Z-mubs w.r.t. T is intersection-closed (i.e., if
M and N belong to it, then also M ∩ N belongs to it).

Revisiting Example 1.1, the set cmod(T0) coincides with mod(T0). (In the case of global minimization (P = A,
Z = ∅), we omit subscripts P ; Z as usual.) In Examples 2.2 and 2.3, the sets cmod(T1) and cmod(T2) for T1,
respectively, T2 are given by the models encircled in Figs. 2 and 3, respectively.

Curb models may be alternatively described as follows.

Proposition 3.1. A model M is a P ; Z-curb model of T iff M belongs to every set M ⊆ mod(T ) which is closed
under P ; Z-mubs w.r.t. T.

Proof. Immediate from the fact that the family of all sets M ⊆ mod(T ) as in the statement is closed under intersection
(which implies the existence of the least such M w.r.t. set inclusion). �

An easy recursive characterization of curb models is the following. For any T and model M, let us denote by
cmod<M

P ;Z(T ) = {M ′ ∈ cmodP ;Z(T )|M ′ <P ;Z M} the set of all curb models of T which are smaller than M.

Proposition 3.2. A model M is a P ; Z-curb model of T iff M is a member of mubT
P ;Z(cmod<M

P ;Z(T )).

Proof. The if direction obviously holds since cmod<M
P ;Z(T ) ⊆ cmodP ;Z(T ). For the only if direction, if M ∈

cmodP ;Z(T ) then by the minimality of cmodP ;Z(T ) we have that M ∈ mubT
P ;Z(M) for some M ⊆ cmodP ;Z(T )

such that M ′ <P :Z M , for all M ′ ∈ M; otherwise, the set {M ′ ∈ cmodP ;Z(T )|M ′ �=P ;Z M} is closed under
P ; Z-mubs w.r.t. T, which contradicts the minimality of cmodP ;Z(T ). Since M ⊆ cmod<M

P ;Z(T ), it follows that

M ∈ mubT
P ;Z(cmod<M

P ;Z(T )). �

Alternatively, we can characterize curb models in terms of inductive definability. For this purpose, we define the
notion of �-curb model for ordinals ��0.

Definition 3.4. Let T be a theory and let (P ; Z) be a minimization setting. Then, for every M ∈ mod(T ) and ordinal
��0, M is an �-curb model of T w.r.t. P ; Z (for short, an �-curbP ;Z model of T), if

• M ∈ mmodP ;Z(T ), if � = 0,
• M ∈ mubT

P ;Z(M) for some M ⊆ mod(T ), such that each M ∈ M is a �-curbP ;Z model of T for some � < �.

The rank of M w.r.t. (P ; Z), denoted rankT
P ;Z(M), is the least such �.

As shown in [19], the concept of �-curb model provides a constructive means to obtain the set of curb models,
since each curb model is constructible from curb models of lower rank. Notice that an inductive construction based
on Proposition 3.2 does not work, since M ′ <P ;Z M does not imply rankT

P ;Z(M ′) < rankT
P ;Z(M), as shown by the

following example.

Example 3.1. Consider the theory T = {a ∨ b ∨ c} whose models are shown in Fig. 4.
Here, all models are global curb models, and the model {a, b, c} has rank 1 (as it is the mub of the minimal models

{a}, {b}, and {c}) as well as any of the smaller models {a, b}, {a, c}, and {b, c}.
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Therefore, the equation rankT
P ;Z(M) = sup{rankT

P ;Z(M ′)+1|M ′ ∈ cmod<M
P ;Z(T )} does not hold in general. However,

we obtain M also as a mub of all smaller models M ′ <P ;Z such that rankT
P ;Z(M ′) < rankT

P ;Z(M), which gives the
following result.

Theorem 3.3. Let T be a theory on A and let (P ; Z) be a minimization setting. Then, M ∈ cmodP ;Z(T ) if and only
if M is an �-curbP ;Z model of T for some ordinal �. Furthermore,

rankT
P ;Z(M) = sup{rankT

P ;Z(M ′) + 1| M ′ ∈ cmod<M
P ;Z(T ), rankT

P ;Z(M ′) < rankT
P ;Z(M)}, (1)

and |rankT
P ;Z(M)|� |A| (in particular, |rankT

P ;Z(M)|�ℵ0 if A is denumerable).

Proof. We show this result, differently as in [19], exploiting well-known results in fixpoint theory.
Define the operator �T : 22A → 22A

on the domain 22A
of sets of interpretations for A by

�T (M) = ⋃
N⊆M

mubT
P ;Z(N ).

Clearly, �T is a monotone operator, and thus by the well-known Knaster–Tarski Lemma, �T has a least fixpoint,
lfp(�T ). It is given by the first element S� in the sequence S�, ��0, defined by S0 = ∅, S�+1 = �T (S�) for successor
ordinals � + 1 and S� = ⋃

�<�S� for limit ordinals � > 0, such that S� is a fixpoint of �T . Since the fixpoints of �T

are those sets of models of T closed under P ; Z-mubs w.r.t. T, it follows that S� = cmodP ;Z(T ). By construction, each
model M ∈ S� is a �-curbP ;Z model of T, and if � is the smallest ordinal with this property, then rankT

P ;Z(M) = � − 1

if � is a successor ordinal and rankT
P ;Z(M) = � otherwise. Therefore, rankT

P ;Z(M) must satisfy Eq. (1). Finally, an

easy induction yields that |rankT
P ;Z(M)|� |M|. �

3.1. Inclusive interpretation of disjunctive clauses

Curbing as introduced above aims at selecting more models than circumscription in case of multiple minimal models.
Syntactically, this means that the theory T at hand must entail some disjunctive clause � of the form a ∨ b ∨ 	, where
a and b are distinct atoms and 	 is a (possibly empty) clause, such that none of a and b can be removed from it.
Furthermore, there exist minimal models Ma and Mb of T in which � is satisfied only by virtue of a, respectively, b.
Unless enforced by other formulas in T, no minimal model M of T will satisfy both a and b, that is, give an inclusive
account of the disjunction of a and b, and ¬a ∨ ¬b holds in all minimal models. This is the case in Examples 1.1,
2.2, and 2.3, for instance. While circumscription fosters there exclusive interpretations of the clauses loc_c, h ∨ n, and
a ∨ b ∨ c, respectively, curbing lends itself also for an inclusive interpretation.

On the other hand, an important note is that neither circumscription will effect always an exclusive interpretation of
positive disjunctions, nor that curbing always supports also an inclusive interpretation, even if this would be possible.
This is shown by the following two examples.

Example 3.2. Consider the theory T = {p ∨ q, p ∨ r, q ∨ r} on A = {p, q, r}. Then T has the three minimal
models {p, q}, {p, r}, and {q, r}, and none of the three clauses in T is interpreted exclusively in all of them. Notice,
however, that inclusive interpretation is made in each minimal model as little as needed, and two out of three clauses are
interpreted exclusively. Curbing also selects the non-minimal model {p, q, r} which reflects the simultaneous inclusive
interpretation of all clauses in T.

Example 3.3. Consider the theory T = {p ∨ q, q ∨ r, ¬(p ∧ q ∧ r)} on A = {p, q, r}. Its minimal models are
M1 = {q} and M2 = {p, r}, which are also its curb models. Thus like circumscription, curbing interprets the positive
clauses in T exclusively. However, since T has also the models {p, q} and {q, r}, both clauses might be interpreted
inclusively. Informally, the behavior of curbing is explained by the fact that a joint account of the positive information
opposite in M1 and M2 is not possible, and that, by the principle of minimality, models {p, q} and {q, r} are arguably
not concise.



90 T. Eiter, G. Gottlob / Theoretical Computer Science 369 (2006) 82–115

The above examples, to which further ones might be added, show that at the syntactic level, the behavior of cir-
cumscription and curbing with respect to exclusive and inclusive interpretation of clauses has to be considered with
care. To this end, the notions of “exclusive” and “inclusive” interpretation would have to be made formally precise.
In order to deal with representation matters, a canonical form of syntactic representation, such as in terms of prime
implicates of a theory, may be in order here to surpass syntax matters. Note that in all examples given above, the
clauses in the theories are prime implicates. We do not pursue this issue in further depth here, however, as we do
not attempt to give a formal definition of inclusive interpretation of disjunction. Rather, the intent is to present a
method which deals with disjunctive information on a model-theoretic basis, based on well-established mathemati-
cal principles, and as a feature admits intuitively inclusive interpretations of disjunctive clauses sometimes (but does
not strictly enforce them). We defer further discussion of the interpretation of disjunction and the role of syntax to
Section 7.

3.2. Reasoning under curbing

Like under circumscription, inference under curbing may be defined by truth in all curb models. That is, a formula
F is a consequence of a theory T under curbing with respect to a minimization setting (P ; Z), if cmodP ;Z(T ) � F , i.e.,
M � F for each M ∈ cmodP ;Z(T ).

Since all minimal models are curb models, the following proposition is immediate.

Proposition 3.4. For every (P ; Z), T � F only if cmodP ;Z(T ) � F only if mmodP ;Z(T ) � F .

That is, curbing is complete with respect to inference in classical logic, but does not yield more consequences than
circumscription. This, however, is coherent with the view that circumscription should desirably be “softened” in some
cases, and drawing conclusions that rule out inclusive alternatives is prevented. Looking back at our examples, in
Example 2.2, this would be the conclusion that Alice does not hang the painting up, since mmodP ;Z(T1) � ¬p while
cmodP ;Z(T1) /� ¬p; in Example 2.3, circumscription infers that Doug stays at home, since mmodP ;Z(T2) � ¬d while
cmodP ;Z(T2) /� ¬d.

Drawing these conclusions under circumscription can also be prevented by choosing appropriate minimization
settings. Indeed, we obtain the set of “intuitive” models in Example 2.2 for P = {p} and Z = ∅ (i.e., fix h and n),
and in Example 2.3 for P = {d} and Z = ∅ (i.e., fix a, b, and c). While in these cases, one might argue that such a
minimization setting is intuitive for circumscription, this seems not to be the case for preventing the circumscriptive
conclusion in Example 2.3 that exactly one person is going to the party, for instance; all persons being equal, any
minimization setting which treats the persons differently seems to be questionable. Therefore, either all propositions
should be minimized in parallel (i.e., global minimization is applied), or all fixed, or all floating. This means that
applying circumscription is only effective for global minimization, since in the other settings it (knowingly) coincides
with classical logic. Similar considerations apply in Example 1.1 to the circumscriptive conclusion that each coin is
located in exactly one field.

As concerns the inference of positive information, curbing behaves like circumscription, which as well-known in
the folklore does not infer new positive information on minimized atoms. More precisely,

Proposition 3.5. Let T be a theory and let (P ; Z) be a minimization setting. Then for any formula F built with
connectives ∨, ∧, and ¬ such that each atom from P occurs only under an even number of negations and no atom from
Z occurs in F, it holds that T � F iff cmodP ;Z(T ) � F iff mmodP ;Z(T ) � F .

Proof. The formula F can be rewritten to a disjunctive normal form DNF D1 ∨ · · · Dn in which each disjunct Di has
only positive literals over P. Thus, M � F and M �P ;ZM ′ implies M ′ � F . Since for every M ′ ∈ mod(T ) there exists
some M ∈ mmodP ;Z(T ) such that M �P ;ZM ′, we have that mmodP ;Z(T ) � F implies T � F . The result thus follows
by Proposition 3.4. �

As the above examples show, capturing the (global) curb models under a suitable minimization setting in circum-
scription is more a technical engineering task than an intuitive process. Furthermore, we point here to Theorem 6.7 in
Section 6, which shows that the set of curb models of a theory T cannot be represented by polynomial-size formulas
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under arbitrary circumscription in general (and thus in particular, not by just picking the right minimization setting
for T) under standard complexity hypotheses.

On the other hand, a projection setting such as (P ; Z) minimization for curbing is needed for capturing the set of
models under circumscription. This is shown by Example 2.1, for instance, where the theory T has the two (global)
minimal models M1 = {b, f } and M2 = {b, ab} of which only M1 should be selected.

Selecting a minimization setting (P ; Z) for curbing is an issue similar as for circumscription, which has been studied
in the literature (see [30] and references therein). We do not aim at providing here an engineering method by which,
more syntactically, a set of models can be captured by the clever choice of a minimization setting. Rather, we take here
the view that curbing should be applied as a complementary method to circumscription, if a (natural) minimization
setting is chosen, to account for possible disjunction at the semantic level. As argued above, this can be fruitfully applied
to the party example, where curbing was used under global minimization. For an example with non-empty fixed and
floating variables, let us consider a variant of the bird-flies example.

Example 3.4. Consider the theory from Example 2.1 augmented with the knowledge that the bird is a duck, that ducks
normally can swim, and that the bird is abnormal. That is, we have

T = {bird ∧ ¬ab → flies,

duck ∧ ¬ab′ → swims,

bird, duck, ab ∨ ab′ },

where ab′ represents abnormality with respect to the ability to swim. Then, in the suggestive minimization setting
where P = {ab, ab′} and Z = {flies, swims}, we can conclude flies∨ swims from the circumscription of T w.r.t. (P ; Z).
Indeed, in each P ; Z-minimal model of T, either ab is false or ab′ is false (but not both), and thus either flies or swims
is true in it. This is because circumscription enforces that exactly one of the two abnormalities holds.

Under curbing of T w.r.t. P ; Z, which reflects the view that both abnormalities might occur simultaneously, we
cannot conclude flies ∨ swims, since {bird, duck, ab, ab′} is a P ; Z-curb model of T. Of course, under circumscription
the same effect is obtained by moving ab and ab′ to the fixed variables. However, this conceptually means to abandon
the minimization of abnormality. In more complex scenarios, with several notions of abnormality relating to different
properties and constraints among them, the result may be different, since certain combinations of abnormalities are
accounted by mubs.

For example, suppose that T contains additional axioms bird ∧¬ab′′ → animal and ab′′ → (ab∧ab′), stating that a
bird is normally an animal and that abnormality with respect to this property implies abnormality with respect to flying
and swimming. Under the policy to minimize the abnormalities, while bird and duck are fixed and the other variables
float, we can conclude under circumscription both animal and flies ∨ swims. Under curbing with this setting, we can
conclude the former but not the latter (since there is a P ; Z-curb model {bird, duck, animal, ab, ab′}). If as previously,
we would move the abnormalities to the fixed variables, then neither animal nor flies ∨ swims can be concluded.
However, concluding animal seems reasonable. Note that the result of curbing can also be obtained by circumscription
when ab and ab′ are moved to the fixed variables (and only ab is minimized); however, similar as in the party example,
the abnormality properties are then not treated uniformly by the policy. This is less intuitive, in particular if T would
be rewritten such that the disjunction ab ∨ ab′ is no longer explicitly apparent.

3.3. Coincidence of curbing and circumscription

A natural question is when circumscription and curbing coincide. Clearly, this is the case when taking mubs is
infeasible. This might be due to the following basic reasons: (1) the theory might have a single minimal model (if
it has any model); (2) taking upper bounds is infeasible. For example, T = {p ∨ q, ¬(p ∧ q)} has the minimal
models M1 = {p} and M2 = {q}, for which no upper bound exists. By standard arguments, (2) is tantamount to the
non-existence of mubs, which follows from an easy proposition.

Proposition 3.6. Let T be a theory and let (P ; Z) be a minimization setting. For every M ⊆ mod(T ), ubT
P ;Z(M) �= ∅

implies mubT
P ;Z(M) �= ∅.
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Proof. Indeed, if ubT
P ;Z(M) is non-empty, construct a (global) minimal model of the theory

T ′ = T ∪ ⋃
M∈M

M[P ] ∪ QM ∪ {¬q|q ∈ A \ (P ∪ Z ∪ QM)},

where QM = ⋂
M∈M M[Q] and Q = A \ (P ∪Z), using a (well-ordered) enumeration � = x0, x1, . . . , x�, . . ., ��0,

of A in which all atoms of P occur before those of Z. Starting from � = 0, we assign each atom x� the value 0, if the
partial truth assignment to all x�, � < �, is extendible to some model of T ′ in which x� = 0, and the value 1 otherwise;
in this way, a minimal model N of T ′ is obtained, which satisfies N ∈ mubT

P ;Z(M), and thus mubT
P ;Z(M) �= ∅. �

Condition (1) yields the following easy result; recall that every Horn theory T, i.e., set of clauses L1 ∨ · · · ∨ Lk ,
k�1, such that at most one of the literals Li is a positive atom, has a least model.

Proposition 3.7. Suppose T is a Horn theory. Then, cmodP ;Z(T ) = mmodP ;Z(T ) for any minimization setting
(P ; Z).

In particular, this means that curbing of Horn logic programs is tantamount to circumscribing them.
Condition (2) is enforced, for instance, by the syntactic condition of blocking in a disjunctive normal form (DNF),

which is as follows. As usual, a term is any satisfiable conjunction of literals D = L1 ∧ · · · ∧ Lk , k�0, which we
also identify with the set {L1, . . . , Lk} of its literals. For any set of atoms A, we denote by PosA(D) (resp., NegA(D))
the set of atoms p ∈ A which occur positively (resp., negatively) in D. Two terms D and D′ are blocking with respect
to A, if both PosA(D) ∩ NegA(D′) �= ∅ and NegA(D) ∩ PosA(D′) �= ∅ holds. A DNF D1 ∨ D2 ∨ · · · ∨ Dn is
blocking with respect to A, if each pair of distinct terms Di and Dj in it is blocking w.r.t. A. For example, the DNF
F = (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ ¬d) is blocking with respect to P = {a, b}, but not with respect to P = {a, c}.

Proposition 3.8. For any theory T and minimization setting (P ; Z), cmodP ;Z(T ) = mmodP ;Z(T ) if T has some
blocking DNF representation w.r.t. P.

Proof. Towards a contradiction, assume that M /∈ mmodP ;Z(T ) is a P ; Z-mub of M ⊆ mmodP ;Z(T ) such that
|M|�2. Then M must satisfy some disjunct Dj in any DNF F = D1 ∨ · · · ∨ Dn for T. Consider any M ′ ∈ M.
We note the following easy lemma.

Lemma 3.9. Suppose F = D1 ∨ · · · ∨ Dn is a DNF for a theory T, and let (P ; Z) be any minimization setting. Then,
for every M ∈ mmodP ;Z(T ), there exists some Di in D such that M � Di and M[P ] = PosP (Di).

Let for M ′ be Di as in the lemma. Since |M|�2, we have M ′ <P ;Z M , and thus M[P ] \ M[P ′] �= ∅. More-
over, since M ′[P ] = PosP (Di), also M ′[P ] \ M[P ] �= ∅ holds if F is blocking w.r.t. P. However, this contradicts
M ′ <P ;Z M . �

Thus, for the DNF F from above, circumscription and curbing in any minimization setting (P ; Z) such that P = {a, b}
coincide. However, while sufficient, the condition of Proposition 3.8 is not necessary. This is shown by the following
example.

Example 3.5. Consider the theory T = {D1 ∨ D2 ∨ D3} where D1 = a ∧ b ∧ ¬d, D2 = b ∧ ¬c, and D3 =
¬a ∧ ¬b ∧ c ∧ d. Its global minimal models are M1 = {b} and M2 = {c, d}, for which no upper bound w.r.t. T exists;
hence, cmod(T ) = mmod(T ). On the other hand, there is no blocking DNF for T w.r.t. P = {a, b, c, d}.

A weakened form of blocking is suitable for a syntactical characterization of finitely representable theories for which
curbing and circumscription coincides. Denote for any term D and set of atoms A by D[A] its projection to A, i.e., the
maximal subterm of D with literals on A. We call terms D1, . . . , Dn A-satisfiable, if D1[A] ∪ · · · ∪ Dn[A] contains
no pair of opposite literals. Recall that a hitting set of a family S = {S1, . . . , Sm} of sets Si is any subset H ⊆ ⋃

iSi

which has non-empty intersection with each Si , i = 1, . . . , m.
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Theorem 3.10. Let T be any theory on A which is representable by some DNF F = D1 ∨ · · · ∨ Dn. Let (P ; Z) be
any minimization setting, and let Q = A \ (P ∪ Z). Then, cmodP ;Z(T ) = mmodP ;Z(T ) if and only if for every pair
Di1 , Di2 of Q-satisfiable terms in F such that PosP (Di1) � PosP (Di2) � PosP (Di1) (i.e., PosP (Di1) and PosP (Di2) are
incomparable), the following two conditions hold:

(i) Either Di1 and Di2 are blocking w.r.t. P, or the family Si1,i2 = {Di3 [Q] \ (Di1 ∪ Di2)|Di3 in F, Di1 , Di2 , Di3 are
Q-satisfiable and PosP (Di3) ⊆ PosP (Di1) ∩ PosP (Di2)} has no satisfiable hitting set.

(ii) For every term Di3 in F such that PosP (Di1) ∪ PosP (Di2) ⊆ PosP (Di3) and Di1 , Di2 , Di3 are Q-satisfiable,
the family Si1,i2,i3 = {Di4 [Q] \ (Di1 ∪ Di2 ∪ Di3)|Di4 in F, Di1 , . . . , Di4 are Q-satisfiable and PosP (Di4) ⊆
PosP (Di1) ∩ PosP (Di2)} has no satisfiable hitting set.

Informally, Condition (i) enforces blocking for terms Di1 and Di2 which represent minimal models, such that no upper
bound of them is a model of any of the two terms. Condition (ii) takes explicit upper bounds by taking other terms into
account.

Proof. For the only-if part, suppose towards a contradiction that cmodP ;Z(T ) = mmodP ;Z(T ) but either condition (i)
or (ii) fails for some terms Di1 and Di2 in F.

In case (i), this means that Di1 and Di2 are not blocking w.r.t. P and there is a satisfiable hitting set H of Si1,i2 . This
means that there is no term Di3 in F such that PosP (Di3) ⊆ PosP (Di1)∩PosP (Di2) and Di3 � Di1 [Q]∪Di2 [Q]∪¬.H ,
where ¬.H = {¬p|p ∈ H } ∪ {p|¬p ∈ H } denotes the set of literals opposite to those in H. This implies that there
exist incomparable M1, M2 ∈ mmodP ;Z(T ) such that M1[Q] = M2[Q], and for j ∈ {1, 2}, we have Mj�Di1 [Q] ∪
Di2 [Q]∪¬.H and Mj [P ] ⊆ PosP (Dij ). Without loss of generality, suppose that PosP (Di1)∩NegP (Di2) = ∅; this is
feasible since Di1 and Di2 are not blocking w.r.t. P. Then, the model M = PosP (D2) ∪ M1[P ] ∪ M2[Q ∪ Z] satisfies
Di2 , and thus M ∈ ubT

P ;Z({M1, M2}). By Proposition 3.6, it follows that mubT
P ;Z({M1, M2}) \ mmodP ;Z(T ) �= ∅, and

thus cmodP ;Z(T ) �= mmodP ;Z(T ). This is a contradiction, which proves case (i).
In case (ii), we have some term Di3 in F such that (a) PosP (Di1) ∪ PosP (Di2) ⊆ PosP (Di3) and Di1 , Di2 , Di3

are Q-satisfiable, and (b) Si1,i2,i3 has a satisfiable hitting set H (⊆ (Q ∪ ¬.Q) \ (Di1 ∪ Di2 ∪ Di3)). By condition
(a), there exist models M1, M2, and M3 of T, such that for j ∈ {1, 2, 3}, Mj � Dij and Mj [P ] = PosP (Dij ), and
M3 ∈ ubT

P ;Z({M1, M2}). Condition (b) implies that there is no term Di4 in F such that Di1 , . . . , Di4 are Q-satisfiable,
PosP (Di4) ⊆ PosP (Di1)∩PosP (Di2), and Di4 ∪Di1 [Q]∪Di2 [Q]∪Di3 [Q]∪¬.H is satisfiable. Thus we may assume
that Mj � Di1 [Q] ∪ Di2 [Q] ∪ Di3 [Q] ∪ ¬.H for j ∈ {1, 2, 3} and that no M ∈ mod(T ) satisfies M �P ;ZM1 and
M �P ;ZM2. Hence there exist incomparable N1, N2 ∈ mmodP ;Z(T ) such that N1 �P ;ZM1, and N2 �P ;ZM2. Since
M3 ∈ ubT

P ;Z({N1, N2}), similar as above by applying Proposition 3.6 we arrive at a contradiction.
For the if part, consider any DNF for T which verifies the above conditions, and suppose towards a contradiction

that cmodP ;Z(T ) �= mmodP ;Z(T ). Then, there exists some M /∈ mmodP ;Z(T ) and M ⊆ mmodP ;Z(T ) such that
M ∈ mubT

P ;Z(M). Hence, there are incomparable models M1, M2 ∈ M such that M ∈ ubT
P ;Z({M1, M2}) (and

thus M[Q] = M1[Q] = M2[Q]). By Lemma 3.9, for every j ∈ {1, 2} there is a term Dij in F such that Mj � Dij

and Mj [P ] = PosP (Dij ). Therefore, Di1 , Di2 are Q-satisfiable and PosP (Di1), PosP (Di2) are incomparable. Since
M ∈ mod(T ), there must exist some term Dk in F such that M � Dk . Condition (ii) for Di1 , Di2 implies that there
is no term Dk in F such that PosP (Dk) ⊇ PosP (Di1) ∪ PosP (Di2) and M � Dk . Indeed, suppose such a term Dk

would exist. By P ; Z-minimality of M1 and M2, there is no term Di4 in F such that M[Q] � Di4 [Q] and PosP (Di4) ⊆
PosP (Di1) ∩ PosP (Di2). Hence, Si1,i2,k would have the satisfiable hitting set H = (Q \ M) ∪ ¬.M[Q]; this would
contradict that Condition (ii) is satisfied by Di1 and Di2 .

From P ; Z-minimality of M1 and M2, it thus follows that M � Dk for some term Dk in F such that, for some
j ∈ {1, 2}, PosP (Dk) and PosP (Dij ) are incomparable and Dk, Dij are not blocking w.r.t. P. By Condition (i) for
Di′1 = Dk and Di′2 = Dij , the family Si′1,i′2 has no satisfiable hitting set. Thus in particular, H = (Q \M)∪¬.M[Q] is

not a hitting set of Si′1,i′2 , i.e., there exists some set Sl ∈ Si′1,i′2 such that H ∩ Sl = ∅. This implies that there exists some
term Dl in F such that M[Q] � Dl[Q] and PosP (Dl) ⊂ PosP (Dij ). Hence, there exists some model N <P ;Z Mj such
that N � Dl and thus N � T . However, this means that Mj /∈ mmodP ;Z(T ), which is a contradiction. �

We remark that testing the satisfiable hitting set condition on Si1,i2 and Si1,i2,i3 in Theorem 3.10 is coNP-complete
in general; however, such a complex test is justified by the fact that, as easily seen, deciding whether cmodP ;Z(F ) =
mmodP ;Z(F ) for a given DNF F is coNP-complete in general.
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If Q = ∅ (no atoms are fixed), conditions (i) and (ii) amount to the following ones, which can be checked in
polynomial time:

(i′) Either Di1 and Di2 are blocking w.r.t. P, or there is some term Di3 in F such that Di1 , Di2 , Di3 are Q-satisfiable
and PosP (Di3) ⊆ PosP (Di1) ∩ PosP (Di2).

(ii′) For every term Di3 in F such that PosP (Di1) ∪ PosP (Di2) ⊆ PosP (Di3) and Di1 , Di2 , Di3 are Q-satisfiable, there
exists a term Di4 in F such that Di1 , . . . , Di4 are Q-satisfiable and PosP (Di4) ⊆ PosP (Di1) ∩ PosP (Di2).

Note that in Example 3.5 the (unordered) pairs D1, D3 and D2, D3 are those incomparable under global minimization.
In both cases, the terms are blocking, and thus condition (i) holds. Condition (ii) is vacuously satisfied since the remaining
term in the DNF does not match the hypothesis. Thus, global curbing and circumscription for T coincide.

The following example illustrates that restricting the test to terms Di1 , Di2 in F with minimal positive part on P
(as one might think) is not possible, and that the hitting set part of Condition (i) is needed.

Example 3.6. Consider the theory T = {D1 ∨D2 ∨D3 ∨D4} where D1 = a ∧¬b ∧ c ∧¬d, D2 = ¬a ∧ b ∧ c ∧¬d,
D3 = d ∧ e, and D4 = ¬c ∧ d under global minimization. Then, D1, D2, and D4 are the terms with minimal positive
part, and the pairs (D1, D2), (D1, D4), and (D2, D4) are blocking. Hence, Condition (i) is satisfied and Condition (ii)
is vacuously true. However, cmod(T ) �= mmod(T ), since the minimal models M1 = {a, c} and M2 = {b, c} have the
mub M = {a, b, c, d, e} in T. Note that D1 and D3 violate Condition (i), since they are not blocking and F has no
negative term.

4. Restricted curbing

In the previous section, we have defined the curb models as those models which an idealized reasoner should adopt
under the principle of closedness under mubs, without further discrimination among these models. In this section,
we consider two restricted notions of curbing. The first notion puts a bound on the number of iterations which can
be made on including, starting from the minimal models, mubs of models. This may be interpreted as reasoning
with limited resources. In another view, it may be seen as reasoning with a bounded horizon of plausibility, i.e.,
models which are obtained as mubs of other models are considered to be less plausible then these models. In iteration
of mubs, the plausibility thus decreases, and may be considered to be below a threshold after a certain number of
iterations.

The second restriction constrains taking mubs of sets which contain a bounded number of models. Intuitively, this
corresponds to limiting the basic reasoning capability of the agent itself (but not the resources).

As shown below, these two restrictions have different effects on the expressiveness of the formalism. Both can be seen
as sound approximations of the curb models, which in the limit (under a growing number of iterations resp. cardinality
of sets of models for taking mubs) coincide with the curb models.

4.1. Bounded iteration depth

The first restriction limits iterated inclusion of mubs. Informally, we choose only the models that are �-good for
some ordinal � such that |�|� |	|, where the ordinal 	 is a limit on the depth in building mubs.

Definition 4.1. For any theory T and minimization setting (P ; Z), the set of 	-depth curb models of T w.r.t. (P ; Z) is
given by 	-cmodP ;Z(T ) = {M ∈ cmodP ;Z(T )|rankT

P ;Z(M)�	}.

Example 4.1. For example, {h} and {n} in Example 2.2 are both 0-curb models of T1, while {h, n, p} is 1-curb but not
0-curb. Thus, the curb models of T1 coincide with its 1-curb models. In Example 2.3, {a, b, c, d} is a 2-curb model of
T2 but not a 1-curb-model; in fact, 1-cmod(T2) clips from the curb models of T2 just this model.

In certain cases, bounding the depth for building curb models does not lead to a loss of curb models. We shall
encounter this in Section 5.
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4.2. Bounded mub width

Another possibility is to limit the cardinality of model sets from which mubs are formed. Intuitively, this corresponds
to limiting the number of inclusively interpreted disjuncts.

Definition 4.2. Let T be any theory and (P ; Z) be any minimization setting. For any cardinal 
�0, a set of models
M ⊆ mod(T ) of a theory T is closed under 
-width P ; Z-mubs w.r.t. T, if mubT

P ;Z(N ) ⊆ M for every N ⊆ M such
that |N |�
. The set of 
-width P ; Z-curb models of T, denoted by cmod


P ;Z(T ), is the least set of models of T which
is closed under 
-width P ; Z-mubs w.r.t. T.

Clearly, cmod0
P ;Z(T ) and cmod1

P ;Z(T ) coincide with the circumscription of T w.r.t. (P ; Z). For 
�2, we obtain the
following result.

Theorem 4.1. Let T and (P ; Z) such that no infinite increasing chain M0 <P ;Z M1 <P ;Z . . . of models Mi ∈
cmodP ;Z(T ), i�0, exists. Then, for every 
�2, cmodP ;Z(T ) = cmod


P ;Z(T ).

Proof. We show this by induction on the level �(M)�0 of M ∈ cmodP ;Z(T ), which is defined by

�(M) =
{

0 if M ∈ mmodP ;Z(T ),

1 + min{�(M ′)|M ′ ∈ maxP ;Z(cmod<M
P ;Z(T ))} otherwise.

Notice that in absence of increasing infinite chains, �(M) is well-defined and finite.
The base case �(M) = 0 is trivial. Consider then the case �(M) > 0, and let M = cmod<M

P ;Z(T ). By Proposition 3.2,

M ∈ mubT
P ;Z(M). If M = ∅, the statement trivially holds. Otherwise, let M ′ ∈ M be maximal w.r.t. �P ;Z; since

all chains in cmodP ;Z(T ) are finite, such an M ′ must exist. Let M ′′ ∈ M such that M ′′�
P ;ZM ′. Also such an

M ′′ must exist; otherwise, we would have M /∈ mubT
P ;Z(M). By the maximality of M ′, M ∈ mubT

P ;Z({M ′, M ′′}).
Since �(M ′), �(M ′′) < �(M), by the induction hypothesis M ′, M ′′ ∈ cmod2

P ;Z(T ). Hence, M ∈ cmod2
P ;Z(T ) ⊆

cmod

P ;Z(T ). Conversely, M ∈ cmod


P ;Z(T ) clearly implies M ∈ cmodP ;Z(T ). This proves the result. �

Theorem 4.1 implies a dichotomy result on the expressivity of 
-bounded disjuncts: either we get only the minimal
models (for 
 = 0, 1) or all curb models. Note that the hypothesis of the theorem trivially holds if P is finite, and it
also holds if T is finite.

Note that even in the case where P is finite, Theorem 4.1 is not an immediate consequence of Theorem 3.3. A simple
inductive argument on the rank of curb models does not work, as can be seen from Example 3.1: for 
 = 2, the curb
model {a, b, c}, whose rank is 1, is obtained as a 2-mub only of curb models M and M ′ of which at least one has also
rank 1.

Theorem 4.1 fails if infinite chains of curb models occur, as shown by the following example.

Example 4.2. Let A = {xi |i = 0, 1, 2, . . .} and consider the following theory T:

T = {x0 ∨ x1,

(x2i ∧ x2i+1) → (x2i+2 ∨ x2i+3),

(x2i ↔ ¬x2i+1) → ¬xj , i�0, j > 2i + 1 }.
The models of T are A and all models {x0, x1, . . . , x2i} and {x0, x1, . . . , x2i−1, x2i+1}, for i�0, which under global
minimization are ordered as shown in Fig. 5. Each model of T is a curb model; however, the model A is not a mub of
any finite family of smaller (curb) models of T.

As for iterating mubs, the power of finite disjunctions of models is limited to what can be obtained in a finite (but
unbounded) number of steps. Let, for any ordinal 	 and cardinal 
, denote 	-cmod


P ;Z(T ) the set of all 	-curb models
of T w.r.t. (P ; Z), if P ; Z-mubs are replaced by 
-width P ; Z-mubs in the definition.
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Fig. 5. The infinite tower.

Proposition 4.2. Let 
 be finite. Then, cmod

P ;Z(T ) = �-cmod


P ;Z(T ).

Proof. To show this result, we consider the variant �T ,
 of the operator �T in the proof of Theorem 3.3 which results
by adding the condition “|N |�
” on N . Also �T ,
 is a monotone operator and, moreover, finitizable, i.e., �T ,
(M) =⋃

M′⊆M:|M′|<ℵ0
�T ,
(M′). Hence the least fixpoint of �T ,
 is given by an element S� of the sequence S�, ��0, for

�T ,
 analogous to the one for �T ,
 such that ���. Consequently, M ∈ cmod

P ;Z(T ) implies M ∈ �-cmod


P ;Z(T ).
The converse is trivial. �

Thus, in case of a denumerable set of atoms A, each 
-width curb model of T can be finitely constructed by taking
mubs of 
-width, and all curb models of T are obtainable in this way if there is no infinitely increasing chain of curb
models. In order to effectively prune the set of curb models, some further constraint is needed, for example, an additional
bound on the iteration depth. In Example 4, under the simultaneous bounds 
 = 2 and 	 = 1 on width and depth,
respectively, the model {a, b, c} is no longer obtainable.

5. Least upper bounds

In general, a set of curb models does not have a unique mub in the models of a theory. In this section, we first
investigate the case where this property holds. We then consider a generalization in which not all mubs are unique, but
all curb models can be reconstructed from lubs.

5.1. LUB property

We start with the following definitions.

Definition 5.1. Given a minimization setting (P ; Z), a model M is a P ; Z-least upper bound (lub) of a set of models
M w.r.t. a theory T, if M =P ;Z N holds for each N ∈ mubT

P ;Z(M).

Definition 5.2. A theory T has the P ; Z-LUB property, if every non-empty M ⊆ cmodP ;Z(T ) such that
mubT

P ;Z(M) �= ∅ has a P ; Z-lub w.r.t. T.

For example, the theory in the hammer–nail-painting scenario (Example 2.2) has the LUB property.
Our first aim is to provide a characterization of LUB theories. In fact, a simple criterion exists provided that only finite

disjunctions are needed to construct all curb models of a theory T, i.e., every P ; Z-curb model of T is a P ; Z-mub of
some finite set M ⊆ cmodP ;Z(T ) with respect to T. Let us call any such theory with this property P ; Z-mub-compact.
We note the following simple lemma.

Lemma 5.1. Let, for i ∈ {1, 2} be Mi ∈ mubT
P ;Z(Mi ), where ∅ ⊂ M1 ⊆ M2 ⊆ cmodP ;Z(T ). If M1 is a P ; Z-lub

of M1 w.r.t. T, then M1 �P ;ZM2.
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Theorem 5.2. Let T be a P ; Z-mub-compact theory. Then T has the P ; Z-LUB property iff every {M1, M2} ⊆
cmodP ;Z(T ) such that mubT

P ;Z({M1, M2}) �= ∅ has a P ; Z-lub w.r.t. T.

Proof. For the if direction, we show by induction on finite cardinality 
�0 that every set M ⊆ cmodP ;Z(T ) such that
|M|�
 and mubT

P ;Z(M) �= ∅ has a P ; Z-lub w.r.t. T. For 
�2, this holds by the hypothesis. For 
 > 2, let M ∈ M
be maximal under �P ;Z . By the induction hypothesis, M \ {M} has a P ; Z-lub M ′ w.r.t. T. Let N ∈ mubT

P ;Z(M)

be arbitrary. By Lemma 5.1 M ′ �P ;ZN . Again by the hypothesis, the set {M, M ′} has a P ; Z-lub M ′′ w.r.t. T. Since
M, M ′ �P ;ZN , it follows M ′′ �P ;ZN . Since M ′′ ∈ ubT

P ;Z(M), minimality of N implies M ′′ =P ;Z N . This means that
N is a P ; Z-lub of M w.r.t. T, which concludes the induction. From the P ; Z-mub-compactness of T and Lemma 5.1,
we now easily obtain that T has the P ; Z-LUB-property. The only if direction is trivial. �

The theory T in Example 3.1 illustrates this theorem (recall that all models are global curb models): Each pair of
models has a lub, and indeed each nonempty set of models has a lub, thus P satisfies the LUB property. This remains
true if fresh atoms were added both to the top model and arbitrarily to the models in the middle layer in Fig. 4.

An important consequence of this theorem is that in case of finite theories, the LUB property is tantamount to the
property that each pair of different curb models has a lub. This means that the LUB property is invariant to bounding
the width of mubs.

The following result is an easy corollary of Theorems 4.1 and 5.2.

Corollary 5.3. Let T be a theory. Suppose that mod(T ) forms an upper semi-lattice with respect to �P ;Z and that no
infinite chain M0 <P ;Z M1 <P ;Z . . . of models Mi ∈ cmodP ;Z(T ), i�0, exists. Then T has the P ; Z-LUB property,
and cmodP ;Z(T ) = 1-cmodP ;Z(T ).

We now consider the number of steps which are needed to construct all curb models of a theory which satisfies the
LUB property. Surprisingly, no iteration is needed in this case.

Theorem 5.4. Suppose the theory T has the P ;Z-LUB property. Then, cmodP ;Z(T ) = 1 − cmodP ;Z(T ).

Proof. We show by induction on rankT
P ;Z(M)�0 that every M ∈ cmodP ;Z(T ) is a 1-curb model of T. For

rankT
P ;Z(M)�1, this is obvious. Consider thus rankT

P ;Z(M) > 1. Then, by Theorem 3.3 M ∈ mubT
P ;Z(M) for

M = {M ′ ∈ cmod<M
P ;Z(T )|rankT

P ;Z(M ′) < rankT
P ;Z(M)}. Let Mm = M ∩ mmodP ;Z(T ) be the set of all P ;

Z-minimal models of T in M.
If Mm = ∅, then M ∈ mmodP ;Z(T ) and the statement holds. Otherwise, Mm has the P ; Z-lub Mm w.r.t. T. By the

induction hypothesis, for each M ′ ∈ M we have M ′ ∈ mubT
P ;Z(MM ′) for some MM ′ ⊆ mmodP ;Z(T ) (MM ′ = ∅ if

M ′ ∈ mmodP ;Z(T )). Since T has the LUB property and clearly MM ′ ⊆ Mm, we have by Lemma 5.1 M ′ �P ;ZMm

for each M ′ ∈ M. Thus Mm ∈ ubT
P ;Z(M); since M is a P ; Z-lub of M w.r.t. T, we have M �P ;ZMm. On the other

hand, since Mm ⊆ M and Mm is a lug of Mm w.r.t. T, Lemma 5.1 implies that Mm �P ;ZM . It follows Mm =P ;Z M .
Thus, M ∈ 1-cmodP ;Z(T ) and the statement holds. �

An immediate consequence is that LUB theories do not require iteration on taking mubs. Therefore, reasoning does
not become more difficult than under circumscription in the worst case (see Section 6).

5.1.1. Examples of LUB theories
Examples of theories which enjoy the LUB property are all dual-Horn theories, which are clausal theories in which

each clause contains at most one negative literal, or positive theories (which contain only positive formulas, i.e.,
formulas built with connectives ∨, ∧, and ¬ such that each atom occurs only under an even number of negations). In
both cases, the set of models of a theory T is closed under union, and hence, trivially T satisfies the LUB property in
any minimization setting (P ; Z).

Notice that closedness of mod(T ) under unions was shown in [45] for quadratic dual-Horn theories, where a theory
is quadratic (or Krom), if it contains only clauses of size at most 2. The authors used this lemma to establish that Curb
Model Checking for quadratic dual-Horn theories is in �P

2 .
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The LUB property holds in fact for more general classes of theories, even in presence of fixed and floating atoms.
One such class are P ; Z-NegOrDual-Horn theories, which are defined as follows.

Definition 5.3. Let T by a clausal theory and let (P ; Z) be a minimization setting. Then T is P ; Z-NegOrDual-Horn,
if for every clause � ∈ T it holds that, if � contains some positive literal on P, then � contains at most one negative
literal on P and no literal on Z.

For example, T = {p1 ∨ p2 ∨ ¬p3 ∨ q, ¬p1 ∨ ¬p2 ∨ z, ¬p3 ∨ ¬q ∨ ¬z} is P ; Z-NegOrDual-Horn for P = {p1,
p2, p3} and Z = {z}. Then, we have the following result.

Theorem 5.5. Let T be a P ; Z-NegOrDual-Horn theory. Then T has the P ; Z-LUB property.

Proof. We show the following: for every N ∈ ubT
P ;Z(M) such that M ⊆ mod(T ) and |M|�2,

M :=
( ⋃

M ′∈M
M ′[A \ Z]

)
∪ N [Z]

is a model of T. Consider any clause � ∈ T . If N � L for some literal L ∈ � such that either L is from A \P or L is from
P and negative, then by definition of M clearly M � L and hence M � �. Suppose that none of the two cases applies
and, hence, N � L holds for some positive literal L from P such that L ∈ �. The P ; Z-NegOrDual-Horn condition in
Definition 5.3 then implies that � must not contain a literal on Z. Consider any model M ′ ∈ M. If M ′ � L′, L′ ∈ � for
some positive literal L′ from P, then M � L′ and thus M � �. If no such model M ′ exists, then � must contain a negative
literal L′′ from P such that M ′ � L′′ for every M ′ ∈ M. It follows M � L′′ and hence M � �. Since � was arbitrary, this
shows that M � T , which proves the result. �

We observe that the P ; Z-NegOrDual-Horn property applies e.g., under global minimization to clausal theories in
which each clause is either positive or negative, and thus describes a class of formulas for which the satisfiability
problem is NP-complete.

An easy corollary of Theorem 5.5 is the following:

Corollary 5.6. Any quadratic theory T in which no clause contains a positive literal on P and a literal on Z fulfills the
P ; Z-LUB property.

The above condition trivially holds if Z = ∅. We remark that it can be similarly be shown that each quadratic theory
fulfills the LUB property w.r.t. (P ; Z) if all clauses containing literals on Z are Horn.

5.2. Weak LUB property

The LUB property defined above requires that every non-empty family of curb models of a theory has a lub if some
mub exists. This property is quite strong. One possibility to relax it is to abandon the requirement that each set of curb
models has a lub, but to retain that each curb model can be obtained as a lub of some family of smaller curb models.
This motivates the following definition.

Definition 5.4. A theory T has the weak P ; Z-least upper bound (Weak P ; Z-LUB) property, if every model M ∈
cmodP ;Z(T ) \ mmodP ;Z(T ) is the P ; Z-lub of some set M ⊆ cmodP ;Z(T ) w.r.t. T.

Notice that the LUB property implies the Weak LUB property, but not vice versa. This is shown by the following
example.

Example 5.1. Suppose a theory T on A = {a, b, c, d} has the models shown in Fig. 6. All models are curb models
under global minimization, and M1 = {a, b, c}, M2 = {b, c, d} are the lubs of the sets {{a}, {b}, {c}} and {{b}, {c},
{d}}, respectively. However, the curb models {b} and {c} do not have a lub; thus, the theory satisfies the Weak LUB
property but not the LUB property.
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Fig. 6. The Weak LUB property does not imply the LUB property.

Fig. 7. A family of curb models which is not well-founded (A = {pi, ni |i = 1, 2, . . .}).

Intuitively, if a theory satisfies the Weak LUB property, then any model M in a set of curb models M can be replaced
by a set of curb models M′ whose lub is M , without affecting the mubs of the family, i.e., M has the same mubs as
M \ {M}∪M′. By repeating this replacement, M can be turned into a set M∗ of minimal models which has the same
mubs as M. This is actually the case, provided that the set of curb models has the following property.

Definition 5.5. The set cmodP ;Z(T ) is well-founded, if every decreasing chain M0 �P ;ZM1 �P ;Z · · · �P ;Z
M� �P ;Z · · · of P ; Z-curb models has a smallest element, i.e., there exists some index � such that M� =P,Z M�
for each ���.

Notice that in the context of minimal model reasoning, theories were sometimes called well-founded if every model
M of a theory T includes a minimal model of T [30], which is different.

As shown by the following example, the set of curb models of a theory is not necessarily well-founded,

Example 5.2. Consider the following theory T on A = {pi, ni |i = 1, 2, . . .}:
T = {n1 ∨ p1,

pi → pi+1, ¬ni → ¬ni+1,

(ni ∧ ¬ni+1) → (¬pi ∧ pi+1), i�1}.
Informally, A contains an atom for each non-zero integer, where pi stands for the positive integer i and ni for the negative
integer −i. Every model of T describes a set of integers, where an integer belongs to the set if its corresponding atom has
value 1 in the model. The sets captured by T are as follows (see Fig. 7): the integers except 0 (given by model M0); all
negative integers (model N); all integers except some interval [0, 1, 2, . . . , i], i�1 (model Mi); and all positive integers
but where the interval [1, k], k�0, is replaced by the interval [−k, −1] (model Nk; in particular, N0 = {p1, p2, p3, . . .}).

As easily checked, the minimal models of T under global minimization are N and all Nk , k�0. Furthermore, all
models of T are curb models: indeed, every other model Mi , i�0, is a mub of the models N and Ni (in fact, their union;
see Fig. 7). Clearly, M0 > M1 > · · · forms an infinite decreasing chain of curb models. This chain has no smallest
element, and hence cmodP ;Z(T ) is not well-founded.

Theorem 5.7. Let T be a theory which fulfills the Weak P ; Z-LUB property. If cmodP ;Z(T ) is well-founded, then every
M ∈ cmodP ;Z(T ) \ mmodP ;Z(T ) is the P ; Z-lub of some M ⊆ mmodP ;Z(T ).

Proof. Let B ⊆ cmodP ;Z(T ) \ mmodP ;Z(T ) be the set of non-minimal P ; Z-curb models of T which are not the P ;
Z-lub of some M ⊆ mmodP ;Z(T ). Towards a contradiction, assume that B �= ∅. Since cmodP ;Z(T ) is well-founded,



100 T. Eiter, G. Gottlob / Theoretical Computer Science 369 (2006) 82–115

B must have a minimal element M. (To obtain such an M, construct in B a maximal decreasing chain M0 >P ;Z M1 >P ;Z
· · · and take the smallest element from this chain, which must exist.) Since T has the Weak P ; Z-LUB property,
M is the P ; Z-lub of some set M ⊆ cmodP ;Z(T ). The minimality of M and the Weak P ; Z-LUB property of T
imply that every N ∈ M is the P ; Z-lub of some set MN ⊆ mmodP ;Z(T ). We show that M is the P ; Z-lub of
M′ = ⋃

N∈MMN w.r.t. T. Clearly, M ∈ ubT
P ;Z(M′). Assume then that M is not minimal, i.e., there exists some

M ′ ∈ ubT
P ;Z(M′) such that M ′ <P,Z M . Since each N ∈ M is a P ; Z-lub of MN w.r.t. T, M ′ ∈ ubT

P ;Z(M). However,

this contradicts M ∈ mubT
P ;Z(M). It follows that M is minimal, i.e., M ∈ mubT

P ;Z(M′).
On the other hand, every M ′ ∈ ubT

P ;Z(M′) must satisfy M �P ;ZM ′. Therefore, M is a P ; Z-lub of M′ w.r.t. T.
Since M′ ⊆ mmodP ;Z(T ), by definition M /∈ B. This is a (global) contradiction, which proves the result. �

Like LUB theories, also Weak LUB theories do not require iteration on taking mub’s.

Corollary 5.8. Suppose that a theory T satisfies the Weak P ; Z-LUB property. Then cmodP ;Z(T ) = 1−cmodP ;Z(T ).

The converse of Theorem 5.7 (if a theory has the Weak LUB property and every non-minimal curb model is the
lub of some set of minimal models, then the set of curb models of T is well-founded) is not true. This is shown by
Example 5.2, in which T has even the LUB property. Furthermore, Theorem 5.7 fails in general if the set of curb models
is not well-founded. This is shown by the following example.

Example 5.3. Reconsider Example 5.2, and add to A two fresh atoms a and b. Define the theory T ′ by

T ′ = T ∪ {¬(a ∧ b), a ∨ b ∨ (pi ↔ ¬ni), ¬ni → (¬a ∧ ¬b)|i�0}.

Then T ′ has the models N, N ∪ {a}, N ∪ {b}, Ni , Mi ∪ {a}, and Mi ∪ {b}, for all i�0, where N, Ni and Mi are as in
Example 5.2. All models of T ′ except N ∪ {a} and N ∪ {b} are curb models under global minimization, and each of
them is the lub of some set of curb models. Indeed, N and all Ni , i�0 are minimal models; each Mi ∪ {a}, i�0, is the
lub of {Ni, Mi+1 ∪ {a}}, while Mi ∪ {b} is the lub of {Ni, Mi+1 ∪ {b}}. Thus, each model of T is a 1-curb model, even
under 2-bounded mubs. However, none of the models Mi ∪ {a} and Mi ∪ {b} is the lub of a set of minimal models.

A suggestive attempt to strengthen the Weak LUB property is to use ordinals. We say that the curb models of a theory
T have the inductive Weak LUB property, if every non-minimal model M of T is the P ; Z-lub of a family of models
M ⊆ cmodP ;Z(T ) such that rankT

P ;Z(N) < rankT
P ;Z(M), for every N ∈ M. Notice that the set of curb models

in Example 5.2 has the inductive Weak LUB property (which, as a consequence, does not imply well-foundedness).
However, the following result is an easy consequence of our results from above.

Corollary 5.9. Let T be theory such that cmodP ;Z(T ) is well-founded. Then, T has the inductive Weak LUB property
if and only if T has the Weak LUB property.

Thus, inductive constructibility is implicit in presence of a well-founded set of curb models.

6. Computation and complexity

In this section, we consider computational issues for curbing applied to finite theories. We first present a simple
algorithm for computing the curb models and then address the computational complexity of curbing.

Algorithm CURB_MODELS in Table 1 computes the set of all curb models of a given theory T with respect to a
minimization setting (P ; Z). They are computed bottom up, exploiting Proposition 3.2. In a naive implementation,
the models M ∈ mod(T ) that have cardinality i on P can be enumerated on line (3) by cycling through all models
M of this cardinality and testing M � T ; more efficient generation is possible using an algorithm which generates
all models of T of size i relative to P; note that arbitrary models may be constrained to this size by using auxiliary
atoms and clauses “counting” the model size on P, and thus a general algorithm for generating all models of a theory
may be employed. For an efficient implementation of the test on line (4), on line (5) links from M to the models in



T. Eiter, G. Gottlob / Theoretical Computer Science 369 (2006) 82–115 101

Table 1
Algorithm for computing the curb models of a theory

Algorithm. CURB_MODELS(T , P, Z) : set_of_models;
Input: Finite propositional theory T on a finite set of atoms A,

sets P, Z ⊆ A such that P ∩ Z = ∅.
Output: Set cmodP ;Z(T ) of all P ; Z-curb models of T.
(1) M := ∅;
(2) for i := 0 to |P | do
(3) for each M ∈ mod(T ) such that |M ∩ P | = i do
(4) if | maxP ;Z{M ′ ∈ M|M ′ <P ;Z M}| �= 1 then
(5) M := M ∪ {M}
(6) return M;

maxP ;Z{M ′ ∈ M|M ′ <P ;Z M} (which coincides with maxP ;Z(cmod<M
P ;Z(T ))) may be installed; then, proceeding

downwards from i = |M ∩ P | − 1, these links may be employed to recursively eliminate with any model N <P ;Z M

also all models N ′ �P ;ZN from the search space.
It is easy to see that even a naive implementation of the algorithm in Table 1 is feasible to run within space polynomial

in the size of T and M. Therefore, we note the following result.

Proposition 6.1. Algorithm CURB_MODELS(T ; P ; Z) correctly computes the set of models cmodP ;Z(T ) in space
polynomial in the size of T, A, and |cmodP ;Z(T )|.

Proof. The proof by induction on j �0 that for each M ∈ mod(T ) such that |M ∩ P | = j , it holds that M ∈
cmodP ;Z(T ) iff M ∈ M after executing the loop for i = j , is straightforward from Proposition 3.2 and the facts that,
in the finite case, for each M ′ ∈ cmod<M

P ;Z(T ) it holds that |M ′ ∩P | < |M ∩P |, and that for every M and M′ such that

M �=P ;Z M ′ for every M ′ ∈ M′, it holds that M ∈ mubT
P ;Z(M′) iff M ∈ mubT

P ;Z(maxP ;Z{M ′ ∈ M′|M ′ <P ;Z M}).
�

We now turn to the complexity of curbing. We consider the following decision problems, which are major issues for
reasoning procedures:

• Curb Model Checking: Given a finite theory T on a finite set A of atoms, a model M ⊆ A, and disjoint sets P, Z ⊆ A,
decide whether M ∈ cmodP ;Z(T ), i.e., whether M is a P ; Z-curb model of T.

• Curb Inference: Given a finite theory T on a finite set A of atoms, disjoint sets P, Z ⊆ A, and a Boolean formula F,
decide whether cmodP,Z(T ) � F , i.e., M � F for each M ∈ cmodP ;Z(T ).

We recall that model checking for circumscription is coNP complete [7] and inferencing under circumscription is
�P

2 -complete [16]. The class �P
2 is the class co-�P

2 , where �P
2 = NPNP contains all decision problems solvable in

polynomial time by a non-deterministic Turing machine with an NP oracle. It holds that NP ∪ coNP ⊆ �P
2 ⊆ PH ⊆

PSPACE, where PH = ⋃
k �0�

P
k is the Polynomial Hierarchy, and each of the inclusions is widely believed to be strict.

For a background on complexity theory, we refer to [39].
The two problems Curb Model Checking and Curb Inference can be easily solved using Algorithm CURB_MODELS, by

first generating the curb models and then deciding the problem at hand. However, even with some obvious optimizations
(compute not all models but stop as soon as the problem can be decided) this method is not efficient, since it uses
exponential space in the size of the problem input in general. Also algorithms based on minimal model reasoning,
such as in terms of reduction to circumscription as discussed in Section 6.3, require exponential space under standard
complexity hypotheses (cf. Theorem 6.7 and the subsequent discussion). A more careful analysis of the problems in
Section 6.1 reveals that they are actually solving in polynomial space.

In this section, we shall prove that Curb Model Checking and Curb Inference are PSPACE-complete. Note that it
was conjectured in [45,27] that curbing has higher complexity than circumscription. This is intuitively supported by a
result of Bodenstorfer [5] stating that in an explicitly given set of models, witnessing that some particular model is a
curb model may involve an exponential number of smaller curb models. That is, any “proof” that a model has the curb
property, given by a proper family of curb models, may have non-polynomial size in general. On the other hand, this
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Fig. 8. Cloning a family F with unique maximal model S.

“proof” can be recursively generated in polynomial space, and thus Curb Model Checking is feasible in polynomial
space.

Despite the comparatively high complexity of curbing in the general case, we shall single out several cases in which
the complexity is lower, including cases in which the complexity is in NP, respectively, coNP, or even tractable. In the
course of this, we improve previous complexity results in [45].

6.1. PSPACE membership

In order to make the intuition more precise that the curb property of a model might refer to a large number of smaller
curb models, let us introduce the following concept.

Definition 6.1. Given a set of models M ⊆ 2A and a minimization setting (P ; Z), a P ; Z-support of a model M ∈ M
with respect to M is any subset S ⊆ M such that (i) M ∈ S and (ii) for every N ∈ S, N ∈ mubM

P ;Z(S ′) for some
S ′ ⊆ S \ {N}.

Note that every global minimal model M of a theory T (M = mod(T )) has the support {M} w.r.t. M, and that all
models in any support are curb models of T. Furthermore, every curb model of T has some support w.r.t. T.

Bodenstorfer [5] has defined a family Fn, n�0, of sets of models on an set of O(n) atoms, such that Fn contains
exponentially many models (in n), and Fn itself is the only support of the unique maximal model Mn of Fn. Informally,
F0 = {{a0}}, and the family Fn is constructed inductively by cloning Fn−1 and adding some sets which ensure that
the maximal model needs all models for a proof of being a curb model (see Fig. 8). It may thus seem that Curb Model
Checking and Curb Inference require exponential space. A straightforward algorithm for Curb Model Checking is a
variant of Algorithm CURB_MODELS which tries to generate a support for the model M bottom up starting from the
smallest models. This is clearly exponential in both time and space.

However, Algorithm CURB_CHECK in Table 2 shows that Curb Model Checking is feasible in polynomial space.

Theorem 6.2. Curb Model Checking can be solved in quadratic space, more precisely, in space O(|A|(|M|+|T |)).

Proof. The correctness of Algorithm CURB_CHECK follows from Theorem 4.1, which implies that we need only
to consider mubs of pairs of P ; Z-curb models. Concerning the running time, CURB_CHECK is straightforward to
implement such that its body uses only space O(|M|+|A|), which is linear in the size of the input. Furthermore, it is
easily shown by induction that the recursion depth is bounded by |P |. Hence, the algorithm runs in space O(|P |(|M|
+ |A|)). �

Algorithm INFER in Table 3 then solves Curb Inference, and we obtain the following corollary to Theorem 6.2.

Corollary 6.3. Curb Inference is in PSPACE(in particular, it is feasible in space O(|P |(|M|+|A|)+|F |)).

6.2. PSPACE hardness

It turns out that the PSPACE upper bound for Curb Model Checking and Curb Inference is in fact tight, since as we
show in this section the problem is also PSPACE-hard. Since the proof is technically involved, we give here a sketch
of the main idea.
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Table 2
Algorithm for testing the curb model property

Algorithm. CURB_CHECK(M, T , P, Z) : Boolean;
Input: Truth assignment M, finite propositional theory T on a finite set

of atoms A, sets P, Z ⊆ A such that P ∩ Z = ∅.
Output: “true” iff M ∈ cmodP ;Z(T ).
(1) if M /� T then return false;
(2) minimal := true;
(3) for each M1 <P ;Z M do
(4) if M1 � T then minimal := false;
(5) if minimal then return true;
(6) for each models M1, M2 such that M1, M2 <P ;Z M ,
(7) M1 �

P ;Z M2, and M2 �
P ;Z M1 do

(8) if CURB_CHECK(M1, T , P, Z)∧ CURB_CHECK(M2, T , P, Z) then
(9) begin mub := true;
(10) for each M3 such that M1, M2 <P ;Z M3 <P ;Z M do
(11) if CURB_CHECK(M3, T , P, Z) then mub := false;
(12) if mub then return true;
(13) end;
(14) return false;

Table 3
Algorithm for curb Inference

Algorithm. INFER(T , F, P, Z) : Boolean;
Input: Finite propositional theory T and propositional formula F on finite set

of atoms A, sets P, Z ⊆ A such that P ∩ Z = ∅.
Output: “true” iff cmodP,Z(T )�F .
(1) for each M ⊆ A do
(2) if CURB_CHECK(M, T , P, Z) ∧ (M /� F) then return false;
(3) return true;

We take Bodenstorfer’s construction as a starting point, since it gives us a method to construct instances where curb
models provably have supports of non-polynomial size—any PSPACE-hard instances of Curbing Model Checking must
have this property, since otherwise the instance can be solved by a guess and check algorithm with complexity in �P

2 .
Extending this construction, we show then how the canonical PSPACE-complete problem of evaluating a given QBF
F = QnanQn−1an−1 · · · Q1a1E can be reduced to Curb Model Checking in polynomial time. Roughly, Bodenstorfer’s
construction is extended in a way such that the possible value assignments to an atom ai are modeled by cloning, and
the evaluation of the quantifier Qi is encoded by further auxiliary atoms. The unique largest model of the theory
constructed will then be a curb model precisely if F evaluates to true. A slight extension of the construction shows
PSPACE-hardness of Curb Inference.

6.2.1. Describing the exponential support family Fn

We describe Bodenstorfer’s family Fn by a Boolean formula �n, such that Fn = mod(�n). The letters we use are
An = {ai, a

′
i , bi, b

′
i |1� i�n}∪{a0}. We define the formula �n inductively, where we set �0 = a0, M0 = {a0}, 
0 = a0

and for n > 0:

�n = (
n−1 ∧ �n) ∨ (¬
n−1 ∧ �n−1 ∧ (an ↔ ¬a′
n) ∧ ¬bn ∧ ¬b′

n),

where

�n = (an ∧ bn ∧ ¬a′
n ∧ ¬b′

n) ∨ (an ∧ a′
n ∧ ¬bn ∧ ¬b′

n) ∨ (a′
n ∧ b′

n ∧ ¬an ∧ ¬bn) ∨ (an ∧ bn ∧ a′
n ∧ ¬b′

n)

∨ (a′
n ∧ b′

n ∧ an ∧ ¬bn) ∨ (an ∧ bn ∧ a′
n ∧ b′

n),
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Fig. 9. The set of models mod(�2).

Mn = Mn−1 ∪ {an, a
′
n, bn, b

′
n};


n = ∧
p∈Mn

p.

Note that the left disjunct of �n gives rise to six models, which extend Mn−1 by the following sets of atoms:
An,1 = {an, bn},An,0 = {a′

n, b
′
n},Bn = {an, a

′
n},Cn,1 = {an, a

′
n, bn},Cn,0 = {an, a

′
n, b

′
n} andDn = {an, a

′
n, bn, b

′
n}.

Informally, An,1 (resp., An,0) represents the assignment of 1 (resp., 0) to an. The right disjunct of �n generates recur-
sively assignments to the other atoms an−1, . . . , a1, such that certain minimal models of �n under global minimization
represent assignments to the atoms a1, . . . , an (see Fig. 9). Note that Mn = Mn−1 ∪ Dn (i.e., all atoms are 1) is, as
easily seen, the unique maximal model of the formula �n. The set mod(�n) of models of �n over An, defines the family
Fn as described in [5]. Thus, each model M ∈ mod(�n) is a curb model under global minimization, and each support
of Mn must have exponential size.

6.2.2. Evaluating a QBF on mod(�n)

We now show that a QBF

F = QnanQn−1an−1 · · · Q1a1E,

where each Qi ∈ {∀, ∃} and E is a Boolean formula on atoms a1, . . . , an, can be “evaluated” on the family mod(�n)

of curb models under global minimization.
Roughly, the idea is as follows: mod(�n) can be layered into n overlapping layers of models, where each layer i

contains the models recursively generated by the left disjunct of the formula �i . In each layer we have three levels of
models. Neighbored layers i and i − 1 overlap such that the bottom level of i is the top level of i − 1 (see Fig. 10). The
minimal models in mod(�n) are the bottom models of layer 1, and can be considered as the top model of an artificial
layer 0. Similarly, the maximal model Mn in mod(�n) can be viewed as a bottom model of an artificial layer n + 1.

In order to “evaluate” the QBF F, we will obtain a formula �(F ) from F by adding conjunctively a set of formulas
�(F ) to �n. Thus, �(F ) = �n ∧ �(F ). The formulas in � will be chosen such that the overall structure of the set of
curb models of �(F ) does not differ from the one of the set of models of �n. In particular, each model M of �n will
correspond to some curb model f (M) of �(F ) which augments M by certain atoms that describe the truth status of
subformulas of F.

By adjoining �(F ) to �n, we “adorn” the models in mod(�n) with additional atoms which help us in evaluating
the formula F along the layers. At a layer i in mod(�n), we have fixed an assignment to the atoms ai+1, . . . , an

already, where aj is 1 if aj occurs in the model, and aj is 0 if a′
j occurs in the model, for all j � i + 1 (there

are some ill-defined assignments in top elements of layer i, in which both ai+1 and a′
i+1 occur; these assignments

will be ignored). Then, at two sets at the bottom of the layer i which correspond to the possible extensions of the
assignment to ai+1, . . . , an by setting ai either 1 (effected by the set Ai,1) or to 0 (by Ai,0), we “evaluate” the formula
Qi−1ai−1 · · · Q1a1E(ai, ai+1, . . . , an) where the atoms ai, . . . , an are fixed to the assignment. If that formula evaluates
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Fig. 10. Layers in mod(�n).

to 1, then if ai is 1, an atom vi is included (resp., if ai is 0 an atom v′
i) at this bottom element. The quantifier Qi is

then evaluated by including in the top element “above” the two bottom sets an atom ti if, in case of Qi = ∃, either vi

or v′
i occurs in one of the two bottom elements, and in case of Qi = ∀, vi and v′

i occur in the bottom elements. The
top element is itself a bottom element at the next layer i + 1, and the atom ti is used there to see whether the formula
Qiai · · · Q1a1E(ai+1, . . . , an) evaluates to 1.

In what follows, we formalize this intuition. We introduce a set of new atoms A′
n = {vi, v

′
i , ti |1� i�n} ∪ {t0}.

The following formulas are convenient for our purpose:

assi = ai ↔ ¬a′
i ,

�i = (¬bi+1 ∨ ¬b′
i+1) ∧ (ai+1 ∧ a′

i+1 → ¬bi+1 ∧ ¬b′
i+1), 1� i�n;

�1 = �1,

�j = �j ∧ ¬�j−1, 2�j �n.

Informally, assi tells whether the model considered assigns ai legally a truth value. The formula �i says that the model
is at layer i or below. The formula �i says that the model is at layer i. The models at the bottom of layer i which are of
interest to us are those in which assi is 1; all other models of the entire layer violate assi .

At layer i�1, we evaluate the formula using the following formulas:

�i ∧ assi ∧ ti−1 ∧ ai → vi, �i ∧ assi ∧ ti−1 ∧ a′
i → v′

i .

For i = 1, we add

E → t0,

which under curbing evaluates the quantifier-free part after assigning all atoms. Depending on the quantifier Qi ,
we add a clause as follows:

• If Qi = ∃, then we add

�i ∧ (vi ∨ v′
i ) → ti ,

• if Qi = ∀, then we add

�i ∧ vi ∧ v′
i → ti .

For “garbage collection” of the new atoms used at lower layers, we use a formula trapi which adds all vj , v
′
j , t

′
j of

lower layers to all elements of layer i which correspond to an illegal assignment to ai :

trapi = �i ∧ ¬assi → t0 ∧
i−1∧
j=1

(vj ∧ v′
j ∧ tj ).
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Fig. 11. Evaluating F = ∀a2∃a1(a2 → a1): extending M to f (M) = M ∪ X (X shown).

Informally, models corresponding to different extensions of an assignment will always have a mub which is upper
bounded by the bottom model at layer i which is an illegal assignment.

Let �i be the conjunction of all formulas introduced for layer i, where 1� i�n, and let �(F ) = ∧n
i=1 �i . Then we

define

�(F ) = �n ∧ �(F ).

Note that �(F ) has a single maximal model MF , given by MF = Mn ∪ {vi, v
′
i , ti |1� i�n} (i.e., all atoms have

value 1).
Let us call a model M ∈ mod(�(F )) an assignment model, if either M[An] = Mn, or (b) M � �i ∧ assi , i.e., either

M extends the maximal model of �n or M is at the bottom of layer i and assigns ai a unique truth value. In case (a),
we view M at the bottom of an artificial layer n + 1. M represents a (partial) assignment �M to ai, . . . , an defined by
�M(aj ) = 1 if aj ∈ M and �M(aj ) = 0 if a′

j ∈ M , for all j = i, . . . , n.
We establish the following lemma.

Lemma 6.4. For each model M ∈ mod(�n), there exists a curb model f (M) of �(F ), such that:

(1) f (M)[An] = M (i.e., f (M) coincides with M on the atoms of �n),
(2) If M is an assignment model at layer i ∈ {1, . . . , n + 1}, then f (M) contains ti−1 iff the formula

Fi = Qi−1ai−1Qi−2a2 · · · Q1a1E(a1, . . . , ai−1, �M(ai), . . . , �M(an))

is true,
(3) If M is at layer i ∈ {1, . . . , n} but not an assignment model, then

f (M) =
{

M ∪ A′
i−1 if M = Mn−1 ∪ Bn,

f (Mn−1 ∪ An,k) ∪ f (Mn−1 ∪ Bn) if M = Mn−1 ∪ Cn,k, k∈{0, 1}.
(4) f (Mn) is the single maximal curb model of �(F ), and if Qn = ∀, then tn ∈ f (Mn) iff f (Mn) = An ∪ A′

n.

An example of the construction of f (·) for the formula F = ∀a2∃a1(a2 → a1) is shown in Fig. 11.

Proof. We first note that each model M ′ of �(F ) is of the form M ∪ S, where M ∈ mod(�n) and S ⊆ A′
n, and each

M ∈ mod(�n) gives rise to at least one such M ′ (just add A′
n to M).

We prove the lemma showing by induction on n�0 how to construct such a correspondence f (M).
The base case n = 0 (in which F contains no atoms and is either ⊥ or �) is easy: mod(�0) = {{a0}} and, if

F = � , then mod(�(F )) = {{a0, t0}} and f ({a0}) = {a0, t0}, and if F = ⊥, then mod(�(F )) = {{a0}, {a0, t0}} and
f ({a0}) = {a0}.
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Consider the case n > 1 and suppose the statement holds for n − 1. Let M ∈ mod(�n). We consider two cases.
(1) M � �n−1 and M /� an ∧ a′

n. Then, M � an ↔ ¬a′
n, and either M is an assignment model at the bottom of layer n

(in this case, M satisfies the left disjunct of �n) or some model not at layer n (in this case, M satisfies the right disjunct of
M). In any case, N = M \{an, a

′
n, bn, b

′
n} is a model of �n−1. By the induction hypothesis, it follows that for N we have

a curb model f̂ (N) of �(F ′), where F ′ = Qn−1an−1 · · · Q1a1E
′ and E′ = E[an/�] if an ∈ M and E′ = E[an/⊥]

if a′
n ∈ M (i.e., an /∈ M), such that f̂ (N) fulfills the items in the lemma. We define f (M) as follows. If N ⊂ Mn−1,

then f (M) := M ∪ f̂ (N); otherwise, if N = Mn−1, then f (M) = M ∪ f (N) ∪ SM , where

SM =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∅ if ti−1 /∈ f̂ (N),

{vn, tn} if ti−1 ∈ f̂ (N), Qn = ∃ and ai ∈ M,

{v′
n, tn} if ti−1 ∈ f̂ (N), Qn = ∃ and a′

i ∈ M,

{vn} if ti−1 ∈ f̂ (N), Qn = ∀ and ai ∈ M,

{v′
n} if ti−1 ∈ f̂ (N), Qn = ∀ and a′

i ∈ M.

As easily checked, f (M) is a model of �(F ). Furthermore, f (M) is either a minimal model of �(F ) (if n = 1), or the
mub of curb models f (M1) and f (M2) such that M1, M2 ∈ mod(�n−1), M1, M2 ⊂ M , and M is a mub of M1, M2

w.r.t. �n−1. (If not, then f̂ (N) were not a mub of f̂ (N1), f̂ (N2) w.r.t. �(F ′), which is a contradiction.) We can see
that f (M) fulfills items 1–3 in the lemma.

(2) M /� �n−1 or M � ana
′
n, i.e., M is at layer n but not an assignment model at its bottom. We consider the following

possible cases for M:
(2.1) M = Mn−1∪Bn: If n = 1, then M is a minimal model of �n, and f (M) = M∪{t0} is a minimal model of �(F ),

thus f (M) is a curb model of �(F ); otherwise (i.e., n > 2), M is a mub of any arbitrary models M1, M2 ∈ mod(�n)

such that M1 contains an and M2 contains a′
n, respectively, and Mi \ {an, a

′
n, bn, b

′
n} ⊂ Mn−1, for i ∈ {1, 2}. Since,

by construction, f̂ (Mi) ⊆ Mn−1 ∪ A′
n−1 =: f (M), this set is an upper bound of f (M1) and f (M2) w.r.t. �(F ); from

formula trapn−1 it follows that f (M) is a mub of f (M1),f (M2). Thus, f (M) is a curb model of �(F ).
(2.2) M = Mn−1 ∪Cn,k , k ∈ {0, 1}: As easily checked, f (M) = f (Mn−1 ∪ An,k)∪f (Mn−1 ∪ Bn) (=Mn−1 ∪Bn ∪

SMn−1∪An,k
) is a model of �(F ). Since, as already shown, both f (Mn−1 ∪ An,k) and f (Mn−1 ∪ Bn) are curb models

of �(F ), clearly f (M) is a mub of them and thus a curb model of �(F ).
(2.3) M = Mn: We define

f (M) = f (Mn−1 ∪ Cn,0) ∪ f (Mn−1 ∪ Cn,1) ∪
{ {tn} if Qn = ∀ and vn, v

′
n ∈ X;

∅ otherwise.

Observe that f (M) = Mn ∪ A′
n−1 ∪ X, where X ⊆ {vn, v

′
n, tn}. Then, as easily checked, f (M) is a model of �(F ).

Clearly, f (M) is a mub of f (Mn−1 ∪ Cn,0) and f (Mn−1 ∪ Cn,1), and thus, f (M) is a curb model of �(F ).
We now show that f (M) in (2.1)–(2.3) satisfies items 1–3 in the lemma. Obviously, this is true for (2.1) and

(2.2). For the case (2.3), from the definitions of f (·) in (1) and (2.1)–(2.2) it follows that tn ∈ f (M) if and only if
tn−1 ∈ f (Mn−1 ∪ An,k) holds for some k ∈ {0, 1} if Qn = ∃ and for both k ∈ {0, 1} if Qn = ∀. By the induction
hypothesis, tn−1 ∈ f (Mn−1 ∪ An,k) is true iff the QBF Qn−1an−1 . . . Q1a1E

′, where E′ = E[an/�] if k = 1 and
E′ = E[an/⊥] if k = 0, evaluates to 1. Thus, tn ∈ f (M) iff the QBF F evaluates to 1. Hence, f (M) satisfies items
1–3 of the lemma.

As for item 4, furthermore, in the case where Qn = ∀, we have by definition of f (M) that tn ∈ f (M) iff f (M) =
Mn ∪ A′

n−1 ∪ {vn, v
′
n, tn} = An ∪ A′

n.
Finally, it remains to show that f (Mn) is the unique maximal curb model of �(F ). As easily seen, every finite

Boolean theory which has a single maximal model has a single maximal curb model; thus �(F ) has a single maximal
curb model M ′. From the induction hypothesis, it follows that Mk = f (Mn−1 ∪ An,k) is the unique maximal curb
model M ′

k of �(F ) such that M ′[An] ⊆ Mn−1 ∪ An,k , for k ∈ {0, 1}. Since M2 = f (Mn−1Bn) is the unique maximal
curb model N of �(F ) such that N [An] ⊆ Mn−1 ∪ Bn, we conclude from the structure of layer n (where mubs are in
fact lubs), that M ′ is a mub of M0, M1, M2. Since, by construction, f (M) is an upper bound of M1, M2, M3, it follows
M ′ = f (M).

This proves that the claimed statement holds for n, and completes the induction. �

We thus obtain the following result.
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Theorem 6.5. (1) Given a finite theory T and a model M of T, deciding whether M ∈ cmod(T ) is PSPACE-hard.
(2) Given a finite theory T and an atom p, deciding whether cmod(T ) � ¬p is PSPACE-hard.

Proof. By items 2 and 4 in Lemma 6.4, M = An∪A′
n is a curb model of �(F ) for a QBF F = ∀anQn−1an−1 · · · Q1a1E

iff F evaluates to 1. Furthermore, F evaluates to 0 iff no curb model of�(F ) contains tn, i.e., cmod(�(F )) � ¬tn. Deciding
whether a given QBF of this form evaluates to 1 (resp. 0) is a well-known PSPACE-complete problem, and �(F ) is
easily constructed in polynomial time from F. This proves the result. �

Combined with the PSPACE-membership results of Theorem 6.2 and Corollary 6.3, we arrive at the main result of
this section.

Theorem 6.6. (1) Curb Model Checking is PSPACE-complete, and the problem remains PSPACE-hard even under
global minimization.

(2) Curb Inference is PSPACE-complete, and remains PSPACE-hard even for single literal inference under global
minimization.

This result contrasts with the already mentioned complexity of circumscription, for which model checking is coNP
complete [7] and inference is �P

2 complete [16]. There similarly �P
2 -hardness holds for inference of a single negative

literal under global minimization. We remark that in this setting, for both curb and circumscription inference of a positive
literal L from a theory T is equivalent to classical consequence of L from T, and thus is a coNP-complete problem. This
is an immediate consequence of Proposition 3.5. From Theorem 6.6, we can further conclude that we cannot represent
the curb models of a theory T by the classical models or the minimal models of any other theory T ′, possibly under a
different minimization setting, which is not exponentially larger. In fact, this holds for any representation of the curb
models which has polynomial overhead. More precisely,

Theorem 6.7. There exists no representation R(cmodP ;Z(T )) of cmodP ;Z(T ) of size polynomial in the size of T
and |A| in any formalism which permits model checking within PH, i.e., given R(cmodP ;Z(T )) and an interpretation
M, decide whether M ∈ cmodP ;Z(T ), unless PSPACE = PH.

Proof. Indeed, if such a representation R(cmodP ;Z(T )) would exist, then Curb Model Checking would be in PH, since
we could guess R(cmodP ;Z(T )) in polynomial time and verify the guess and that M is represented by R(cmodP ;Z(T ))

using an oracle in PH as follows. By hypothesis, deciding whether M is represented by the guess R′ is feasible with a
�P

k oracle, for some k�2. To verify the guess R′ for R(cmodP ;Z(T )), it is sufficient to check that the set of models
represented by R′ (i) includes only models of T, (ii) includes all P ; Z-minimal models of T, (iii) is closed under 2-mubs
w.r.t. T, and (iv) violates (ii), or (iii) if any model represented by R′ is discarded. Each of (i), (ii), and (iii) is decidable
with a �P

k+1 oracle, and hence condition (iv) is decidable with a �P
k+2 oracle. Therefore, deciding M ∈ cmodP ;Z(T )

is feasible in �P
k+3 ⊆ PH. From Theorem 6.6, PSPACE = PH follows. �

Particular examples of knowledge representation formalisms which permit model checking in PH are classical logic,
circumscription, and nested circumscriptive theories with nesting depth bounded by a constant [31,9]. A similar result
can be shown for representing the curb inferences of a theory T in terms of the inferences from a “theory” T ′ in
another formalism. Indeed, Curb Model Checking under global minimization can be easily expressed in terms of Curb
Inference. Therefore, any theory T ′ whose theorems on A represent precisely the curb inferences of T under global
minimization must in essence represent the curb models of T. Thus, informally curbing can be exponentially more
concise than these formalisms, and in particular any reduction to circumscription as the one described in the next
subsection, is expected to be exponential. For further issues concerning succinct representation, we refer the reader to
[8,12] and references therein.

6.3. Bounded depth

We now consider the complexity of the variant of curbing in which mubs are only taken up to bounded depth.
The following lemma about recognizing mubs is useful.
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Lemma 6.8. Given a theory T, models M and M1, . . . , Mn, n�0, and a minimization setting (P ; Z), deciding whether
M ∈ mubT

P ;Z({M1, . . . , Mn}) is in coNP.

Proof. Indeed, just test whether M ∈ mod(T ) and no M ′ ∈ mod(T ) exists such that M ′[Q] = M[Q], where
Q = A \ (P ∪ Z), and (M[P ] \⋃n

i=1Mi[P ]) ⊆ M ′[P ] ⊂ M[P ] holds. �

Theorem 6.9. The 	-bounded version of Curb Model Checking (resp., Curb Inference), i.e., deciding whether M ∈
	-cmodP ;Z(T ) (resp., 	-cmodP ;Z(T ) � F ), where 	 is a finite constant, is �P

2 -complete (resp., �P
2 -complete).

Hardness holds even for global minimization and 	 = 1 (resp., 	 = 0).

Proof. IfM ∈ 	-cmodP ;Z(T )holds, then M has a polynomial sizeP ; Z-supportSM w.r.t.T. Indeed,M∈	-cmodP ;Z(T )

implies that M ∈ mubT
P ;Z(M) for some M = {M1, . . . , Mk} ⊆ (	−1)-cmodP ;Z(T ) such that k� |M[P ]|. By a

recursive argument and the fact that 	 is constant, it follows that M has some P ; Z-support SM w.r.t. T containing
O(|M[P ]|	) models.

To show M ∈ 	-cmodP ;Z(T ), we can exploit Lemma 6.8 and guess a polynomial size P ; Z-support SM for M w.r.t.
T such that chains under �P ;Z in SM have length bounded by 	+ 1, and verify its correctness in polynomial time with
an NP oracle (check for every M ′ ∈ SM that M ′ � T and that M ′ is a P ; Z-mub of {M ′′ ∈ SM |M ′′ <P ;Z M ′} w.r.t. T;
testing boundedness of chains is easy). Therefore, Curb Model Checking is in �P

2 .
The hardness under the claimed restriction is immediately obtained from the proof of Theorem 5 in [17]: there, in

essence a Boolean formula � on atoms A = X ∪ X′ ∪ Y ∪ {w} is constructed, where X′ = {x′
i |xi ∈ X} is a copy of X,

for which it is �P
2 -complete to decide whether � has some global minimal model M such that M � w. This � has the

properties that (1) for each S ⊆ X, � has some global minimal model M such that M[X] = S, (2) each global minimal
model M satisfies M[X′] = {x′

i |xi ∈ X \ M}, (3) for each model M ∈ mod(�), M � w implies M � Y , and (4) the
maximal interpretation M = A is a model of T.

Therefore, M = A is a 1-curb model for T = {�} iff � has some (globally) minimal model containing w; this proves
�P

2 -hardness of Curb Model Checking, even if 	 = 1. Note that for 	 = 0, the problem amounts to model checking for
propositional circumscription, which is coNP complete [7].

From the result on Curb Model Checking, it follows that deciding whether some M ∈ 	-cmodP ;Z(T ) exists such
that M /� F is in NPNP = �P

2 . Hence, Curb Inference is in �P
2 . The �P

2 -hardness for 	 = 0, which coincides with
circumscription, was shown in [16, Lemma 3.1], (cf. also [17, Theorem 5]). We remark that the construction used in
the proof of [16, Lemma 3.1] can be easily generalized to show �P

2 -hardness for arbitrary finite constant 	�0, e.g.,
by incorporating the structure of a finite version of the theory in Example 4.2. �

Thus, the inference problem for curbing under a number of iterations bounded by a constant has the same degree of
complexity as circumscription in general. In fact, from the proof of Theorem 6.9, we can extract an easy reduction of
computing the 	-curbk

P ;Z models of a finite theory T to minimal model computation. Let, for i = 1, . . . , k, be P (i) and

Z(i) a copy of P, respectively, Z, and let

T ′
k = T ∪

k⋃
i=1

{�(P (i); Q; Z(i))|�(P ; Q; Z) ∈ T } ∪ {p(i) → p|p ∈ P }.

Then, for the minimization setting (P ′; Z′) where P ′ = P ∪ P (1) ∪ · · · ∪ P (k) and Z′ = Z ∪ Z(1) ∪ · · · ∪ Z(k), the
following is easy to see.

Proposition 6.10. For any theory T and minimization setting (P ; Z), {M[A]|M ∈ mmodP ′;Z′(T ′
k) } = 1-curbk

P ;Z(T ),
i.e., the 1-depth k-width P ; Z-curb models of T are the projection of the P ′; Z′-minimal models of T ′

k to A.

In particular, for k = |P |, this yields the set of all 1-depth curb models of T.

Example 6.1. Consider Example 2.2 again, and take T = {h ∨ n, (h ∧ n) → p} and global minimization (i.e.,
P = {h, n, p}). Then, |P | = 3, and for k = 3, we have P ′ = {h, n, p} ∪ {h(i), n(i), p(i)|1� i�3}, Z′ = ∅, and

T ′
3 = T ∪ {h(i) ∨ n(i), (h(i) ∧ n(i)) → p(i)|1� i�3} ∪ {h(i) → h, n(i) → n, p(i) → p|1� i�3}.
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The P ′; Z′-minimal models of T ′
1 (i.e., its global minimal models) are M1 = {h, h(1), h(2), h(3)}, M2 = {n, n(1),

n(2), n(3)}, and all models MS = {h, n, p} ∪ {h(i)|i ∈ S} ∪ {n(i)|i ∈ {1, 2, 3} \ S}, where ∅ ⊂ S ⊂ {1, 2, 3}. Projected
to A = {h, n, p}, we obtain the three models {h}, {n}, and {h, n, p}. These are the 1-curb models of T.

By applying the construction T ′
k iteratively to T, i.e., setting T1,k = T ′

k and Ti+1,k = Ti,k
′
k , we obtain the 	-curbk

P ;Z
models of T as the projection of the (P	,k; Z	,k)-minimal models of the theory T	,k to A. In particular, for 	 = |P |
and k = 2, we obtain all P ; Z-curb models of T. The construction of T	,k is exponential in general (as implied by
Theorem 6.7), but it is polynomial if 	 is bounded by a constant. Thus, computing all curb models of a theory
within bounded depth can be polynomially mapped to computing the minimal models of a propositional theory. For
computing minimal models, algorithms such as [33,37,6,38,2–4] or recent tools based on mappings to disjunctive
logic programming [20,24,44,26,47] might be exploited. Similarly, Curb Inference can be polynomially reduced to a
circumscriptive theorem prover, like [22,23,15]. However, for larger depth and width this approach may lack efficiency
in practice, since the number of auxiliary atoms increases quickly, and alternative algorithms might be more efficient.
This remains for further investigation.

6.4. LUB and Weak LUB theories

From Theorems 5.7 and 6.9, we immediately get the following complexity results.

Theorem 6.11. For theories T which have the Weak P ; Z-LUB property, Curb Model Checking is in �P
2 and Curb

Inference is in �P
2 .

Since the LUB Property implies the Weak LUB Property, we thus obtain:

Corollary 6.12. For theories T which satisfy the P ; Z-LUB property, Curb Model Checking is in �P
2 and Curb Inference

is in �P
2 .

For P ; Z-NegOrDual-Horn theories, we obtain by exploiting Theorems 5.5 and 5.4 the following result.

Theorem 6.13. Curb Model Checking is NP-complete and Curb Inference is coNP-complete if the input theory T is
P ; Z-NegOrDual-Horn. The NP-hardness resp. coNP-hardness holds even under global minimization.

Proof. The proof of Theorem 5.5 implies that M is a P ; Z-curb model of T iff (1) M � T and (2) for each atom
p ∈ M[P ], there exists some Mp ∈ mmodP ;Z(T ) such that Mp �P ;ZM and Mp � p. Since no clause in T which
contains a positive literal on P contains a literal on Z, this is equivalent to (1′) M � T and, assuming this holds, (2′) for
each atom p ∈ M[P ], there exists some Mp ∈ mmod(T ′) such that Mp � p, where T ′ on atoms P is obtained from T as
follows: (i) remove all negative clauses and all clauses which contain some literal on Z or some literal L on Q such that
M � L, (ii) remove all literals on Q from the remaining clauses, and (iii) add ¬p for each p ∈ P \ M[P ]. Informally,
these formulas effect that every atom p ∈ P such that M(p) = 0 is fixed to ⊥. As easily seen, mod(T ′) corresponds
1-1 with the models {M ′[P ]|M ′ ∈ mod(T ), M ′ �P ;ZM}.

The theory T ′ is dual Horn, i.e., each clause contains at most one negative literal. Hence, the satisfiability problem for
T ′ and minimal model checking, i.e., testing M ∈ mmod(T ′), is possible in polynomial time, cf. [7]. Consequently, for
every p ∈ M[p] some Mp ∈ mmod(T ′) such that Mp � p can be guessed and verified in polynomial time. It follows
that deciding M ∈ cmodP ;Z(T ) is in NP.

The NP-hardness follows from the construction in the proof of coNP-hardness of circumscriptive literal inference
from a dual Horn theory in [10, Theorem 11]. There, for any CNF � on atoms X = {x1, . . . , xn} a dual Horn theory
T on atoms A = {xi, yi, zi |1� i�n} is constructed such that T has some (globally) minimal model containing xn iff
� is satisfiable. These minimal models correspond 1-1 to the models of �, such that M ∈ mod(�) corresponds to the
minimal model M ∪{yi |1� i�n, M /� xi}∪{z1, . . . , zn} of T. Without loss of generality, � has the property that M � �
implies that X \ M � �. Since T has by Theorems 5.5 and 5.4 the LUB property, A ∈ cmod(T ) iff A ∈ 1-cmod(T ),
i.e., the mub of some set M ⊆ mmod(T ). Since by the proof of Theorem 5.5, mod(T ) is closed under unions, by the
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property of � equivalently some M ∈ mmod(T ) exists such that M � xn. This proves NP-hardness, even under global
minimization.

The NP membership of Curb Model Checking implies that Curb Inference is in coNP. The coNP-hardness, even
under global minimization, follows from Theorem 6.14. �

In particular, we can apply this result to quadratic theories T such that no clause in T contains a positive literal on P
and a literal on Z; this improves the respective result in [45]. In fact, for these theories, we have the following result.

Theorem 6.14. For quadratic theories T in which no clause has a positive literal on P and a literal on Z, Curb
Model Checking is polynomial and Curb Inference is coNP-complete. Hardness for coNP holds even under global
minimization.

Proof. For quadratic T of this form, the theory T ′ in the proof of Theorem 6.13 is quadratic. The guess for Mp ∈
mmod(T ′) such that Mp � p can be eliminated, since as a consequence of [10, Theorem 20], deciding whether such an
Mp exists is feasible in polynomial time. Hence, Curb Model Checking is polynomial.

The coNP-membership of Curb Inference for quadratic T of this form follows from Theorem 6.13. The coNP-hardness
is shown by a reduction from the unsatisfiability problem. Given a CNF � = ∧m

i=1 �i on atoms X = {x1, . . . , xn},
construct a theory T = {xi ∨ x′

i , ¬xi ∨ ¬x′
i , |1� i�n} ∪ {¬.L ∨ yj |L ∈ �j , 1�j �m}, where x′

1, . . . , x
′
n and

y1, . . . , ym are fresh atoms and ¬.L is the opposite of literal L (viewing �j as set of literals). The minimal models of
T naturally correspond 1-1 to the assignments for X, where for M ∈ mmod(T ) we have M(yj ) = 0 iff M[X] � ¬�j .

Thus, mmod(T ) � F for F = ¬y1 ∨ · · · ∨ ¬ym iff � is unsatisfiable. Since ubT (M) = ∅ for each M ⊆ mmod(T )

such that |M|�2, it follows that cmod(T ) � F iff � is unsatisfiable. This proves the result. �

Notice that by the virtue of Theorem 5.4 and Corollary 5.8, by Proposition 6.10 we have a polynomial time trans-
formation of computing the P ; Z-curb models of a LUB or Weak LUB theory T into computing the projection of
the P ′; Z′-minimal models of a theory T ′, and furthermore a polynomial time transformation of Curb Inference into
circumscriptive inference. For example, since the hammer–nail-painting theory in Example 2.2 has the LUB-property,
in Example 6.1 all its curb models are obtained from the P ′; Z′-minimal models of T ′

3. In particular, since the theory T ′
k

is quadratic whenever T has this property, circumscriptive inference algorithms for quadratic theories (cf. [10]) might
be employed for quadratic theories as in Theorem 6.14.

7. Related work

We have considered an approach to relax the minimal model approach of circumscription [29,30], by adding mub’s
of models in the set of models of a theory. At the syntactic level, this amounts to admitting, but not enforcing, inclusive
interpretation of positive disjunctions in certain situations. In this way, conclusions about negative information as drawn
under circumscription may be prevented.

The issue of inclusive interpretation of disjunction has been investigated in the areas of deductive databases and
logic programming by a number of different authors, cf. [11,13,40–43,49,50]. There, formulas are often restricted to
clauses of particular form which are interpreted as rules. The semantics of theories (“programs”), which are collections
of rules over a first-order predicate language, is commonly defined in terms of Herbrand models and reduces to the
propositional case studied in this paper.

A general observation on the works quoted above, and on many others in the fields, is that the semantics of theories
depends (as well-known), on the syntactical form of representation. Two theories T and T ′ that are equivalent in classical
logic might have different semantics, even for theories as simple as a single clause. We emphasize that this is not an flaw,
but a desired feature: the form of clauses is associated with a particular intuitive meaning which the semantics aim to
capture. Therefore, also the notion of inclusive interpretation of disjunction (at the syntax level) should somehow depend
on this meaning. Curbing, instead, adopts like circumscription a purely model-theoretic view (in terms of classical logic)
and is thus independent of syntactical representation. Any two logically equivalent theories have the same curb models.
Therefore, unsurprisingly curbing and the semantics for inclusive disjunction in [11,13,40–43] behave differently.
Thus, if a particular meaning is associated with the syntax of statements, then the curbing approach presented here
may like circumscription be inappropriate for respective knowledge bases. Both curbing and circumscription are
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geared towards reducing the set of models of a classical theory under some reasoning rationale, rather than capturing
the semantics of a particular language. In the sequel, we briefly discuss the above formalisms and their relation
to curbing.

The Disjunctive Database Rule (DDR) [41] has been proposed to allow cautious derivation of negative literals from
a disjunctive deductive database, which is given by a set of formulas similar to the theories T1 and T2 in Examples 2.2
and 2.3. In spirit, DDR strives for a maximally inclusive interpretation of disjunction that is founded by rule application,
by replacing disjunctive rules a → b ∨ c by a → b and a → c, and considering the unique minimal model of the
resulting theory. Accordingly, in T1 and T2 DDR does not infer negative literals, and thus coincides with curbing in
this case. However, DDR is basically different from curbing. It is not aimed at models in between the minimal models
and the maximal model. Furthermore, DDR is syntax dependent. E.g., for T = {a ∨ b, a}, DDR infers no negative
information, while for the theory T ′ = {a, b → b} which is classically equivalent to T, it infers ¬b.

A more sophisticated approach that allows also to deal with negative clauses was introduced in [42,11] by the concepts
of “Possible Models Semantics” (PMS) and “Possible Worlds Semantics” (PWS), which turned out to be equivalent.
Like DDR, it replaces disjunctive rules a → b∨c by non-disjunctive rules, but considers, in separate cases, the addition
of any non-empty subset of the split rules {a → b, a → c} and selects the minimal models. The emerging “possible
models” coincide with the sustained models of a theory defined in [13], which uses a level mapping on the atoms to
foster derivability from facts. The PMS has also been generalized to cover Negation by Failure [43]. As opposed to
DDR, PMS, PWS, and sustained models are interested in possible positive information, and thus select also models in
between minimal and maximal inclusive interpretation of disjunction. In Example 2.2, PMS coincides with curbing,
i.e., the possible models (equivalently, sustained models) and the curb models are the same. However, if the clause
h ∨ n ∨ p is added to T1, which is subsumed by the clause h ∨ n and thus has no effect on the models, PMS selects
all models of T1, while curbing selects the same models as before. For Example 2.3, we have a similar picture. Hence,
PWS, PMS, and sustained models are all syntax-dependent and basically semantically different from our method. Also
computationally, PMS and PWS are different from curbing since they reduce computational complexity, while curbing
increases it (for more information on the complexity of PMS and PWS, see [17]).

Another approach to treat disjunction inclusively is the extension of the well-founded semantics [46] to the weak
well-founded semantics (WWF) for disjunctive logic programs in [40]. In case of negation-free programs, this semantics
coincides with the DDR [40], which implies syntax-dependency of WWF. Hence, also WWF is quite different from
curbing. For many further semantics of deductive databases, similar observations can be made.

In [49,50], the authors considered the issue of updates with disjunctive information, based in Winslett’s Possible
Model Approach (PMA) [48]. They argued that updates should, despite minimal change, also allow inclusive interpre-
tation of disjunction, and developed two update operators to this aim, called Minimal Change with Exception (MCE)
and Minimal Change with Maximal Inclusive Disjunctive (MCD), respectively. Although the formulation is different,
they are related to curbing with iteration depth bounded by 	 = 1; we refer to [27,28,50] for more details.

In the circumscription literature, several variants of circumscription have been introduced. A form of nested circum-
scription has been introduced in [31,9], which informally allows to build hierarchical theories whose minimal models
are defined in an inductive manner. In the propositional case, the formalism has like curbing PSPACE-complexity [9],
but its expressiveness appears to be different; we refer to [9] for a more detailed comparison.

8. Conclusion

In this paper, we have considered an approach to reasoning from propositional theories which is more lenient
to inclusive interpretation of disjunctive information than minimal model reasoning as fostered by circumscription
[29,34,35,30], which has important applications in Artificial Intelligence. The curbing approach “softens” circumscrip-
tion by adding minimal upper bounds of models to the accepted models, and thus inhibits (sometimes) unintuitive
conclusions while keeping the minimization principle. Different from related approaches in deductive databases and
non-monotonic logic programming, where syntax of theories plays a prominent role, curbing operates like circum-
scription at the semantical level of classical logic. It is thus a mathematical tool for reasoning under minimal models
together with minimal upper bounds of models, which may be exploited to reduce the set of models of classical theories
under some reasoning rationale.

Furthermore, we have presented restricted notions of curbing, by bounding the number of iterative disjunction steps
and the number of models participating in a disjunction, respectively, and we studied structural properties of the set of
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models which effect bounded iteration. Finally, we studied the computational complexity of curbing, showing that the
main reasoning tasks are PSPACE-complete in general but have lower complexity in restricted cases.

In the present paper, we have focused on reasoning under minimal upper bounds in propositional logic. In the
seminal paper [19], curbing has been considered in the setting of predicate logic, where a theory consists of a finite
set of first-order sentences (tantamount, a single first-order sentence �). In this setting, curbing is naturally formalized
by a sentence of third-order predicate logic, given that the definition of the set of curb models of a first-order sentence
� involves sets of sets of models. However, in [19] it was also shown that curbing can be formalized in second-order
logic (assuming the standard ZFC framework, i.e., Zermelo-Fraenkel Set Theory with the Axiom of Choice). More
precisely, Eiter et al. [19] show how to construct, given a first-order sentence �(P ; Z) and lists P and Z of predicate
constants, where the predicates in P are minimized while those in Z are floating and all other predicates are fixed, a
sentence Curb(�(P, Z); P, Z) of second-order predicate logic, such that its models are precisely the P ; Z-curb models
of �(P, Z). Most of the semantic results discussed in the present paper can be reformulated for the first-order case,
while the treatment gets more complicated; we refer to [19] for more details.

Several issues remain for future work. On the semantical side, one issue is studying the structure of the set of curb
models more in detail, and to single out interesting conditions under which curbing can be simplified. The results on
the collapse of curbing and circumscription, as well as the LUB and Weak LUB properties are steps in this direction.
Another issue is a generalization of curbing which allows to combine minimization of certain predicates while taking
minimal upper bounds on others.

Another issue is to investigate the relationship of curbing to other non-monotonic reasoning formalisms in more detail.
Here, extending the results on the relationship between curbing and variants of circumscription such as nested circum-
scription [9,31], which are also independent of syntax, would be interesting. Furthermore, exploring the relationship
between curbing and syntax-based approaches which foster inclusive interpretation of disjunction, e.g. [11,13,40–43]
more deeply remains for further work. Here, it would be interesting to determine meaningful classes of theories on
which curbing and such approaches behave equivalently, or to provide embeddings with possibly extended alphabets.

On the computational side, a natural issue is a comprehensive study of the computational properties of curbing, in
which similar as for circumscription [7,10] the computational complexity of important syntactic classes of Boolean
theories is determined. Closely related to this are efficient algorithms and implementation. In particular, an efficient
implementation of curbing on top of QBF solvers would be interesting, as well as the efficient usage of circumscription
algorithms.
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