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Introduction 

Let B,, y E r, be a family of Boolean algebras and let each B,, con
tain a subalgebra isomorphic to a Boolean algebra A. The generalized free 
product C of the family B,, y E r, with the amalgamated subalgebra A can 
be loosely described as follows. C is the largest Boolean algebra containing 
every B, as a subalgebra and C is generated by this family. Moreover 
every two B, intersect in a subalgebra which is isomorphic to A. However 
it should be emphasized that there is a special monomorphism between 
A and every B,, and the amalgamation should be in accordance with 
these monomorphisms. The case of generalized free products of groups 
with an amalgamated subgroup has been investigated by ScHREIER and 
H. NEUMANN [5]. (Also cf. [4].) JoNSSON has defined the concept of 
generalized free products for universal algebras ([2], [3]). The generalized 
free product of a family of groups with an amalgamated subgroup 
always exists, and in the present paper we will show that this result 
also holds for Boolean algebras. 

There are two approaches possible to this problem. The first one is the 
algebraic one, analogous to the case of groups. We consider the free 
product of the family B,, y E r, and we obtain C by identifying any two 
elements in the free product which are images of the same element of A 
under the given monomorphisms. Then, one has to show that this identi
fication leads to a factor algebra which contains every B, as a subalgebra, 
and moreover that every two B, intersect precisely in A, in other words 
that the identification does not identify too much. 

The second approach is based on the well-known duality that exists 
between Boolean algebras and Boolean spaces. This topological treatment 
seems to be of some interest in itself and is rather brief and we feel there
fore justified to pre3ent this as well. 

In section l we will give the precise formulation of the problem. In 
section 2 we will treat the problem algebraically whereas in section 3 we 
will consider the topological aspect of the amalagamation problem. 

l. The definition of the generalized free product of a family of Boolean 
algebras with an amalgamated subalgebra will be given in a way which 
is analogous to the definition of free products (cf. [6]). 
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Let By, y E r be a family of Boolean algebras and let A be a Boolean 
algebra such that for every y E r there exists a monomorphism hy : A-+ By. 

The generalized free product of the family By, y E r with the amalgamated 
subalgebra A is a Boolean algebra 0 satisfying the following conditions: 

(1) For every y E r there exists a monomorphism fY : By-+ 0 such that 
for every pair y', y" E F, fy,hy,=fy,hy,• 

(2) U fy(By) generates 0. 
yEF 

(3) If D is a Boolean algebra and if gy, y E r is a family of homo
morphismsgy: By-+Dsuch thatforeverypairy', y" EF,gy,hy,=gY,hY"' 
then there exists a homomorphism g: 0-+ D such that gfy=gy for 
every y E F. 

We observe that condition (3) formulates the requirement that 0 is as 
"large" as possible. On the other hand we have not required that every 
two /y(B .. ) intersect precisely in A (in accordance with the monomor
phisms hy) but we will show that this property is a consequence of the 
conditions (1) and (3). Finally it remains to show that 0 is unique, and 
also that the map g of condition (3) is unique. The remaining part of 
this section is devoted to the proof of these facts. The existence of 0 
will be proved in the next section. 

Lemma 1. Let A be a Boolean algebra and let B be a proper sub
algebra of A. Then there exist two distinct prime ideals I1 and I2 of A 
such that Ir n B=I2 n B. 

Proof. The map I-+ In B, where I is a prime ideal of A, maps the 
family of all prime ideals of A onto the family of all prime ideals of B. It 
is well-known that this map is one-one if and only if A= B [1]. 

We are now able to prove that the conditions (1) and (3) imply that 
every two fy(By) intersect precisely in A. 

Lemma 2. Suppose that the family of Boolean algebras By, y E r 
and the Boolean algebras A and 0 satisfy the conditions (1) and (3). 
Let y' and y" be any pair of elements of F, y' =I= y", then 

f,,(B,,) n f,,(B,,) = f,,h,,(A) = f,,h,,(A). 

Proof. Suppose that there would be a pair y', y", y' =l=y" for which 
the lemma would not hold. Then f,,h,,(A) would be a proper subalgebra 
of f,,(B,,) n f,,(B,,). Then according to Lemma 1 there would exist an 
element a E f,,(B,,) n fy,(By,), a f/=. f,,h,,(A) and two prime ideals 1r and I2 
of f,,(B,,) n f,,(B,,) such that I1 n f,,h,,(A) =I2 n f,,h,,(A). (We observe 
that by condition (1) f,,h,,(A) = f,,h,,(A)) and such that a E I1 and a f/=. I2. 
Now we can extend I1 to a prime ideal I1* of fy,(B,,). Thus 

Ir * n (f,,(B,,) n f,,(B,,)) =fr. 
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Similarly, we extend Iz to a prime ideal I 2* of /yu(Byu) and again 

Iz* n (fy,(By,) n /yu(Byu))=Iz. 

Now h and Iz induce two maps of fy,(By,) and fyo(By") respectively, onto 
the two elements Boolean algebra 2 which clearly coincide of fy,hy,(A). 
But these two maps cannot be extended to all of 0, because afh * = 0 
and aji z* = 1. This completes the proof of Lemma 2. 

Lemma 3. Suppose that the family of Boolean algebras By, y E F 
and the Boolean algebras A and 0 satisfy the conditions (1), (2) and (3) 
then the map g is always unique. 

Proof. Suppose there would be two homomorphic extensions g and g'. 
Let V = {a : g( a)= g' (a), a E 0}. Clearly, V is a sub algebra of 0 containing 
U /y(By) but U /y(By) generates 0 thus V = 0 and thus g=g'. 
yer yer 

Lemma 4. There is at most (up to isomorphisms) one algebra 0 
satisfying the conditions (1), (2) and (3). 

Proof. Suppose that 0 and 0' both satisfy the conditions (1), (2) 
and (3). We denote the monomorphic maps of the By to 0' by f'y· 
According to (3) there exists a homomorphic map g : 0 _,.. 0' such that 
gfY = fr' for all y E r, and a homomorphic map g' : 0' _,.. 0 such that 
g' fr' = fy· The map g' g has the property that g' gfy = /y for all y E r, and 
thus according to (3) and to Lemma 4 we have g'g= 1. Similarly gg' = 1. 
It follows that both g and g' are isomorphic maps and g' = g-1. 

2. In this section we will prove that 0 exists and is therefore, according 
to Lemma 4, uniquely determined. 

Theorem 1. The generalized free product of a family of Boolean 
algebras with an amalgamated subalgebra exists and is unique (up to 
jsomorphisms). 

Proof. We use the notation of section 1. Let 0' be the free product 
of the family BY, y E F. We shall from now on identify the Boolean 
algebras By with their isomorphic copies in 0'. We consider the elements 
u of 0' of the form U=hy,(x) + hyu(x) for all pairs y', y" E rand for all 
.x E A, where + denotes symmetric difference. Let I be the ideal of 0' 
generated by the elements u. We claim that By n I= (0) for all y E r. 
Let yo be some fixed y, then we will show that By. n I= (0). It is clear that 
I is also generated by elements u of the form u=hy.(x) + hy(x) for all 

" y E r and x EA. Now suppose that a E By. n I, a=/=0 thus a<; ~ Ui 
n i-1 

where each Ui is a generator of I. Thus a.;;; ~ (hy.(xi) + hY;(xi)) for some 
i-1 

/'1, yz, ... ' Yn E r, and Xt, Xz, ... ' Xn EA. Let p : By. _,.. 2 be a homo
morphic map such that p(a) = 1, and let for every i, qi : hyiA) _,.. 2 be 
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a homomorphic map defined by qth,..(x) = ph,.,(x) for all x EA. Observe 
that for every i, the kernel of qi is a prime ideal of h,.;,(A) and we extend 
this prime ideal to a prime ideal Qi of B,. •. Let qi* : B,.;,--+ B,.)Qi be the 
canonical map, then qi* is for each i an extension of qi. Since 0' is the 
free product of the B,., there exists a homomorphic map r : 0' --+ 2 which 
is an extension of p and of each qi*· Now, for every i we have rh,.,(xt) = 
=ph, (xi) =qth,.(xt) and rh,.(it) =qt*h,.(it) = qth,.(it). Thus it follows that 

ro 't '1. '1. ,.,. . 

[rh,.,(xt)] [rh,..(xt)] = 0. Similarly, [rh,.,(it)] [rh,..(xt)] = 0 for each i. Now 
" a.;;; .L (h,.,(xt) + h,..(xt)). Thus it follows that r(a) = 0 which contradicts 

i=l 

the fact that r(a) = p(a) = l. This proves that B,., n I= (0). 
Now let 0=0'/I and let I: 0'--+ 0=0'/I be the canonical map and 

let for every y E r, lr be the restriction of I to B,.. Since B,. n I= (0) 
for every y E r, it follows that each 1,. is a monomorphism. Moreover since 
for every pair y', y" E r and for each x E A h,.,(x) +h,.,(x) E I, we have 
that l,.,(h,.,(x)) = l,.,(h,.,(x)). We have therefore completed the proof that 
condition (1) holds. 

The proof that condition (2) holds is immediate and is left to the reader. 
It remains to show that condition (3) holds. Thus suppose that D is a 
Boolean algebra and that g,.: B,.--+ Dis a family of homomorphic maps 
such that for every pair y', y" E r, g,.,h,.,=g,.,h,.,. We must show that there 
exists a homomorphic map g : 0--+ D such that gl,.=g,. for every y E r. 
Now, 0' is the free product of the B,. and we can therefore extend the 
maps g,. to a homomorphic map g* : 0' -+D. Let J be the kernel of g*. We 
shall show that I C J. 

" Indeed, suppose that z E I, then z .;;; .L (h,..,(xt) + h,..,(xt)) for 
i=l 

XI, X2, .•. ' Xn E A andy/' yt'' E r fori= 1' 2, ... , n. Now g*(h,..,(xt)h,..,(xi)) = 
= g,..,(h,..,(xt) g,..,(h,..,(xt)) = 0 because g,..,hY;,' = g,..,h,..,. 

Similarly g*(h,..,(xt)h,.i',(xt) = 0 and it follows that g*(z) = 0 and thus I CJ. 
We now define a map g : 0--+ D by g(f(x)) =g*(x) for all x E 0'. This map 
is well defined and is a homomorphic map because I C J. Now we have 
for every yET, gl,.(x)=gl(x)=g*(x)=g,.(x) for all xEB,.. Thus gl,..=g,.. 
for all y E r. This completes the proof that condition (3) holds and the 
proof of the theorem is complete. 

3. In this section we will consider the topological aspects of the 
amalgamation problem. We recall that there exists a complete duality 
between Boolean algebras and their dual spaces (cf. [1] and [6]). The 
crucial element in this duality is, that homomorphic maps and continuous. 
maps are dual. Thus with a homomorphic map of a Boolean algebra B1 
to a Boolean algebra B2 there corresponds a continuous map of S(B2) 
to S(B1). (We will always denote the dual space of a Boolean algebra B 
by S(B); a space which is the dual space of a Boolean algebra is called 
a Boolean space). In particular, with an epimorphism there corresponds 
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a homeomorphic map "into", and with a monomorphism there corresponds 
a continuous map "onto". 

We illustrate this situation with an example that will be useful in the 
sequel. Let B be a Boolean algebra and let B1 and B 2 be subalgebras 
of B such that B1 is set-theoretically included in B 2• The topological 
situation is then as follows. There exists continuous maps, fr :S(B) --;..S(B1), 
/2 : S(B) --;.. S(B2) and /12 : S(B2) --;.. S(B1) (all maps are "onto") such 
that /I= /12/2. 

Now suppose that B is a Boolean algebra and that By, y E r is a family 
of subalgebras of B, and suppose that U By generates B. Then the 

yer 

topological situation can be described as follows. There exists a family 
of continuous maps /y : S(B)--;.. S(By) such that the following hold. If X 
is a Boolean space, and if there exists a continuous map g : S(B)--;.. X 
and a family of continuous maps fly : X--;.. S(By) such that /y={Jy{J for 
every yET, then fJ is a homeomorphism (all the aforementioned con
tinuous maps are "onto"). We also recall that (cf. [l]) a subalgebra C 
of a Boolean algebra B coincides with B if and only if the corresponding 
continuous map of S(B) onto S(C) is a homeomorphic map. Finally, the 
following well-known fact will also be used. If By, y E r is a family of 
Boolean algebras, then the dual space of the free product of the family 
By, y E r is the topological product of the dual spaces S(By) (cf. [6]). 

We will now formulate the definition of section l topologically. 
Let Yy, y E r be a family of Boolean spaces and let X be a Boolean 

space such that for every y f= r there exists a continuous map (which 
is "onto") hy : Yy--;.. X. The generalized topological product of the family 
Yy, y E r with the co-amalgamated Boolean quotientspace X is a Boolean 
space Z satisfying the following conditions : 

(l') For every y E r there exists a continuous map "onto", fY : Z--;.. Yy 
such that for every pair y', y" E F hy,fy,=hy,fy,· 

(2') If Vis a Boolean space such that there exists continuous maps "onto" 
f* : Z --;.. V and fy* : V --;.. Yy for every y E r such that /y = fy*f* 
for every y E T then f* is a homeomorphism. 

(3') If U is a Boolean space and if gY, y E r, is a family of continuous maps 
{/y : u--;.. Yy such that for every pair y', y" E r, hy,{/yt=hy,gy,, then 
there exists a continuous map g : U --;.. Z such that fyg = {Jy for 
every y E F. 

We will now formulate Theorem l topologically and also give a topo
logical proof of this theorem. 

Theorem l '. The generalized topological product of a family of 
Boolean spaces with a co-amalgamated Boolean quotient space exists, 
and is unique (up to homeomorphisms). 

Proof. We use the notation of the definition given above. Let T 
be the topological product of the Boolean spaces Yy. Let for every y E r, 
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/y denote the projection map ofT onto Yy. We now define a subspace Z 
ofT by Z={p: hy,fy,(p)=hy"/y"(p) for every pair y', y" E F}. 

Let /y also denote the restriction of /y to Z. We will show that Z is 
the desired space. First we show that Z is a closed subspace of T and 
therefore a Boolean space. Indeed, suppose p ¢ Z, then there exists a 
pair y', y" E r such that hy,fy,(p) =l=hy"/y"(p). Call p' =hy,fy,(p) and 
p" =hy"/y"(p). X is a Hausdorff space, thus there exist open subsets K and£ 
of X such that p' E K and p" E L and K n L = ~· Let K* = /Y,1(h:y,l(K)) 
and L* = fy;,l(hy;,l(L)). Then K* and L* are open subsets ofT. Now K* n L* 
is open and p E K* n L* but K* n L* n Z = ~· Indeed, let q be an 
arbitrary point of K* n L* then hy,fy,(q) E K and hy"/y"(q) E L and thus 
hy,fy,(q)=l=hy"/y"(q) thus q fj:.Z. It follows that p is contained in an open 
subset ofT that does not intersect Z in a non void-subset, and this shows 
that Z is a closed subspace ofT. 

The next step is to show that condition (1') holds. We already know, 
because of the definition of Z, that hy,fy,=hy"'Y" for every pair y', y" E r. 
It remains to show that all the maps fY are "onto". Indeed, suppose 
p E Yy,. Let for every y E r, y =1= y0, qY be a point of Yy such that 
qy=h:; 1(hy,(p)) and let qy,=p. Then, clearly, the point q of Z whose 
yth coordinate is qy will be mapped by /y, on p. 

We now proceed to prove that condition (2') holds. It suffices to 
show that f* is one-one. Suppose f*(p) = f*(q) then by hypothesis 
/y(p) = /y *(f*(p)) = fy*(f*(q)) = /y(q) for all y E r. But the /y are projection 
maps and from this it follows that p=q. 

Finally, we must show that condition (3') holds. Let r be an arbitrary 
point of U and let py=gy(r) for every y E r. Let p be the point ofT whose 
yth coordinate is gy(r). It is easy to see that p E Z. Now define the map 
g: U -+Z by g(r)=p. It easily follows that fyg=gy for every y E r. 
It remains to show that g is continuous. For this, it suffices to show that 
the intersection of a sub basic set ofT with Z has a pre-image under g which 
is open. Let y0 be a fixed y, and let U be an open subset of Yy,. Let 
V=f;;,I(U) nZ. We claim that· g-1(V)=g;. 1(U). Indeed, suppose that 
r Eg-1(V) thus g(r) E V. But g(r) E V =*g(r) E/;.1(U) =*fy,(g(r))=gy,(r) E 
E U =* r E g;. 1( U). Conversely, suppose that r E g;.1 ( U) and thus gy,(r) = 
= /y,(g(r)) E U. This implies g(r) E f;. 1(U) but also g(r) E Z and thus 
g(r) E V and it follows that r E g-1( V). This completes the proof of (3') 
and we have shown that Z satisfies the conditions (1'), (2') and (3'). 
The proof of the uniqueness is a routine matter and is left to the reader. 

Remark. It is of course also possible to formulate Lemma 2 topo
logically. The topological proof of the dual of this lemma is easy and 
is therefore omitted. 
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Added in proof: The authors have been informed (in a letter from Prof. 
J. Mycielski) that an algebraic proof of the amalgamationproblem was also 
presented in a seminar in Berkeley in 1962 by Haim Gaifman. 
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