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Abstract

Consider the execution of a parallel application that dynamically generates parallel jobs with
speci/ed resource requirements during its execution. We assume that there is not su1cient
knowledge about the running times and the number of jobs generated in order to precompute a
schedule for such applications. Rather, the scheduling decisions have to be made on-line during
runtime based on incomplete information. We present several on-line scheduling algorithms for
various interconnection topologies that use some a priori information about the job running times
or guarantee a good competitive ratio that depends on the runtime ratio of all generated jobs.
All algorithms presented have optimal competitive ratio up to small additive constants, and are
easy to implement. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The e1cient operation of parallel computing systems requires the best-possible use
of the resources that a system provides. In order to achieve an e9ective utilization
of a parallel machine a smart coordination of the resource demands of all currently
operating applications is necessary. Consequently, the task of a scheduler is to cleverly
assign the resources, most prominently the processors, to the jobs being processed. For
the case of sequential jobs, i.e., jobs that require exactly one processor for execution,
the involved scheduling problems have been studied intensively for decades [4]. But
in many situations the problem arises to /nd a schedule for a set of parallel jobs
[10–12, 4]. Such a set could, for example, be a parallel query execution plan generated
by the query optimizer of a parallel database management system [23, 18].

The model studied in this paper assumes that each parallel job demands a /xed num-
ber of processors or a speci/ed sub-system of a certain size and topology (depending
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on the underlying structure of the parallel machine considered) for its execution. It is
not possible to run a parallel job on fewer processors than requested, and additional
processors will not decrease the running time. This reDects the common practice that
the decision on the number of processors is made before a job is passed to the sched-
uler based on other resource requirements like memory, disk-space, or communication
intensity. The processors must be allocated exclusively to a job throughout its execu-
tion, and a job cannot be preempted or restarted later. This is a reasonable assumption
because of the large overhead for these activities on parallel machines. Furthermore,
there may be precedence constraints between the jobs. A job can only be executed if
all of its predecessors have already completed execution. Most frequently, precedence
constraints arise from data dependencies such that a job needs the complete input
produced by other jobs before it can start computation.

We are concerned with on-line scheduling throughout this paper to capture the fact
that complete a priori information about a job system is rarely available. However, it has
been shown [13, 25] that the worst-case performance of any deterministic or randomized
on-line algorithm for scheduling parallel job systems with precedence constraints and
arbitrary running times of the jobs is rather dismal, even if the precedence constraints
between the jobs are known in advance. Therefore, we study the case that there is
some a priori knowledge about the execution times of the individual jobs but the
dependencies are unknown to the scheduler.

Three di9erent gradations for this additional knowledge are studied in this paper. The
/rst model of runtime restrictions requires that all job running times are equal and that
this fact is known to the on-line scheduler. We give a level-oriented on-line algorithm
for this problem that repeatedly schedules a set of available jobs using BIN PACKING

and collects all jobs that arrive during a phase for execution in the next phase. We
show that this algorithm is 2.7-competitive if the FIRST FIT heuristic is used. Due to a
lower bound of 2.691 for every deterministic on-line scheduler, our algorithm is almost
optimal. Our algorithm can be used for parallel systems that support arbitrary allocation
of processors to jobs and one-dimensional arrays. For hypercube connected machines,
we present a very similar, optimal on-line scheduling algorithm with competitive ratio 2.

We then explore the entire bandwidth between unit and arbitrary execution times and
capture the variation of the individual job running times by a characteristic parameter
that we call runtime ratio (the quotient of the longest and shortest running time). The
results for the proposed on-line schedulers demonstrate a smooth, linear transition of
the competitive ratio from the case of unit execution times to unrelated execution times
that is governed by the runtime ratio. Our second model postulates that the runtime ratio
of a job system is reasonably small and that the on-line scheduler knows the shortest
execution time (but not the runtime ratio itself). A family of job systems with runtime
ratio TR ¿ 2 is given that bounds the competitive ratio of any deterministic on-line
scheduler by (TR+1)=2 from below. We note that the structure of the dependency graph
is an out-forest in all of our lower bound proofs. This bound remains valid even if the
scheduler knows the actual runtime ratio in advance. An on-line scheduler designated
restricted runtime ratio (RRR) for parallel systems supporting arbitrary allocations is
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described, and we demonstrate a competitive ratio of TR=2+4 for this algorithm for any
job system with runtime ratio 6TR. Therefore, the RRR algorithm is nearly optimal up
to a small additive constant. The assumption that the shortest execution time is known
to the on-line scheduler can be dropped without much loss of competitive performance.
We present a modi/ed algorithm called RRR ADAPTIVE for this third model, and show
it to be TR=2 + 5:5 competitive.

The remainder of this paper is organized as follows. In Section 2 we introduce
our scheduling model, some notation and de/nitions, as well as basic techniques for
analyzing on-line scheduling algorithms.We then discuss previous and related work
on on-line scheduling of parallel jobs in Section 3. Section 4 presents nearly optimal
on-line schedulers for jobs with unit execution time, whereas in Section 5 we study job
systems where the ratio of the running times of the longest and shortest job is bounded.
Again, we describe and analyze on-line scheduling algorithms that are optimal up to
small additive constants. Finally, we present our conclusions in Section 6.

2. Preliminaries

Let N denote the number of processors of the parallel computer system at hand. A
(parallel) job system is a non-empty set of jobs J= {J1; J2; : : : ; Jm} where each job
speci/es the type and size of the sub-system that is necessary for its execution together
with precedence constraints among the jobs in J given as a partial order ≺ on J. If
Ja ≺ Jb , Jb cannot be scheduled for execution before Ja is completed. A task is a job
that requires one processor for execution, and a job system that only contains tasks is
a sequential job system.

A schedule for a job system (J;≺) is an assignment of the jobs to processors and
start-times such that:

• each job is executed on a sub-system of appropriate type and size,
• all precedence constraints are obeyed,
• each processor executes at most one job at any time,
• jobs are executed non-preemptively and without restarts.

The interconnection topology of the parallel computer system may impose serious
restrictions on the job types that can be executed e1ciently on a particular machine.
On a hypercube, for example, it is reasonable to execute jobs only on subcubes of a
certain dimension rather than on an arbitrary subset of the processors. On the other
hand, a number of interconnection networks do not restrict the allocation of processors
to parallel jobs. For example, the CLOS-network of the very popular IBM RS=6000SP
system, which uses an oblivious bu9ered wormhole routing strategy, justi/es the
assumption that the running time of a job only weakly depends on a speci/c pro-
cessor allocation pattern (see [1, p. 512] for a short description of this system and [28]
for in-depth information on its interconnection network). Therefore, the various types
of interconnection networks have to be treated separately.
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Fig. 1. Four-dimensional hypercube.

The complete model assumes that a job Ja requests na processors (16 na6N ) for
execution and any subset of processors of size na may be allocated. The terminology
has been chosen in analogy to a complete graph on N nodes. The r-dimensional hy-
percube (see Fig. 1) consists of N = 2r processors, labeled from 0 to N − 1, and
has r2r−1 point-to-point communication links. Two processors are connected i9 the
binary representations of their labels (an r-bit string) di9er in exactly one bit. As a
consequence, each processor is directly connected to r = log2 N other processors (see
[22] for properties of hypercubes). A job Ja can only request a da-dimensional subcube
(06da6 r) for its execution.

Another topology frequently used for parallel computing is the r-dimensional array
with side-lengths (N1; N2; : : : ; Nr); Ni¿ 2 for i = 1; 2; : : : ; r (also called r-dimensional
grid or mesh). The label of a processor is an r-dimensional vector x = (x1; x2; : : : ; xr)
with 06 xi¡Ni for i = 1; 2; : : : ; r. Two processors x and y are connected i9

∑r
i = 1 |xi−

yi|= 1. Note that hypercubes form the subclass of arrays with side-length 2 in every di-
mension. Eligible job types are sub-arrays with side-lengths (N ′

1; N
′
2; : : : ; N

′
r ); 16N ′

i 6
Ni. The dimension of a job can be less than r if one or more of the N ′

i are equal to 1.
It is always possible to transform a job system (J;≺) into a directed acyclic graph

D = (J; E) with (Ja; Jb)∈E ⇔ Ja ≺ Jb . Removing all transitive edges from D we obtain
the dependency graph induced by (J;≺) (see Fig. 4 for an example). We call two
jobs Ja and Jb dependent if Ja ≺ Jb or Jb ≺ Ja , and independent otherwise. We shall
use the terms dependency and precedence-constraint interchangeably in this paper. The
length of a path in the dependency graph induced by (J;≺) is de/ned as the sum of
the running times of the jobs along this path. A path is called critical if its length is
maximum among all paths in the dependency graph induced by (J;≺).

Assume that all jobs have running time 1 and let P be a longest path in D ending
at job J . Then depth(J ) is de/ned as the number of nodes in P. If we partition a
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Table 1
Frequently used notations

Topt Length of an optimal o9-line schedule for (J;≺)
TALG Length of a schedule for (J;≺) generated by Algorithm ALG

Tmax Maximal length of any path in the dependency graph induced by (J;≺)
tmin Minimal running time of any job in J

tmax Maximal running time of any job in J

|S| Length of a schedule S
T¡� Total time of a schedule for (J;≺) when the e1ciency is less then �, 06 �6 1

schedule for such a unit execution time (UET) job system into timesteps of length 1,
the depth of a job indicates the earliest possible timestep (EPT) J can be scheduled.
The ith level of D is the set of (independent) jobs {J ∈J | depth(J ) = i}. Motivated
by the above observation, a level of D is often referred to as an EPT level of the
corresponding job system (J;≺).

A job is available if all predecessors of this job have completed execution. An on-
line scheduling algorithm is only aware of available jobs and has no knowledge about
their successors. We assume that the on-line scheduler receives knowledge about a job
as soon as the job becomes available. This event, however, may depend on earlier
scheduling decisions.

The work of a job is de/ned as the number of requested processors, multiplied by
its running time. A schedule preserves the work of a job if the processor-time product
for this job is equal to its work. The e;ciency of a schedule at any time t is the
number of busy processors at time t divided by N . In general, the running time of a
job is also unknown to the on-line scheduler and can only be determined by executing
a job and measuring the time until its completion. In Section 4, though, we study the
case of unit execution times and therefore restrict the on-line model there to the case
of unknown precedence-constraints.

Throughout the paper we use the notations shown in Table 1 (cf. [25, 13]) for a
given job system (J;≺). To simplify our presentation, we do not attach the job system
or schedule as arguments to the notations in Table 1. The relationships should always
be clear from the context. Further notation is introduced when needed.

Our goal is to generate schedules with minimum makespan, i.e. to minimize the
completion time of the job /nishing last. We evaluate the performance of our on-line
scheduling algorithms by means of competitive analysis [27, 5, 15]. A deterministic
on-line algorithm ALG is called c-competitive if TALG6 cTopt for all job systems and
arbitrary N . The in/mum of the values c∈ [1;∞] for which this inequality holds
is called the competitive ratio of ALG. The competitive ratio clearly is a worst-case
measure. It is intended to compare the performance of di9erent on-line algorithms that
solve the same problem, since it is in general impossible to compute an optimal solution
without complete knowledge of the problem instance. An optimal on-line algorithm is
one with a best-possible competitive ratio. See [5, 15] for a thorough treatment of the
fundamental concepts in on-line computation and competitive analysis.
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The following two lemmata provide useful tools for the competitive analysis of our
scheduling algorithms.

Lemma 1. Let S be a schedule for a job system (J;≺) such that the work of each
job is preserved. Let 06 �16 �26 1 and �¿ 0. Suppose that the e;ciency of S is
at least �1 at all times and T¡�2 6 �Topt. Then

|S|6
(
� +

1 − �1�
�2

)
Topt :

See [25] for a proof of this lemma.

Lemma 2. Consider a schedule for a job system (J;≺). Then there exists a path of
jobs in the dependency graph induced by (J;≺) such that whenever there is no job
available to be scheduled; some job of that path is running.

This lemma is due to Graham [19, 20]. The proof given there still holds for parallel
jobs since it uses only the structure of the dependency graph.

3. Previous and related work

Extensive work on non-preemptive on-line scheduling of parallel jobs with or without
precedence-constraints was done by Feldmann et al. [13, 25, 14]. However, these results
for general parallel job systems are bad news for users of parallel computers since they
show that no deterministic on-line scheduler for N processors can have competitive
ratio better than N . That is, the competitive ratio is asymptotically unbounded, and
even randomization cannot improve this unsatisfactory situation substantially.

One possibility to improve the performance is to restrict the maximum job size to
�N processors, 0¡�¡1. Given this restriction it has been shown that the GREEDY
algorithm is optimal for the complete model with competitive ratio 1+1=(1−�). Setting
� = 1=2, for example, yields a 3-competitive algorithm. Another alternative is the use
of virtualization. This means that a parallel job Ja which requests na processors is
executed on a smaller number of processors n′a by the use of simulation techniques
with a predetermined increase in running time. Under the assumption of proportional
slowdown (the running time of a job is enlarged by the factor na=n′a) it can be shown
that there is an optimal on-line scheduler for the complete model with competitive
ratio 1 + �, where � = (1 +

√
5)=2 is the golden ratio. This improves a previous o9-

line result of Wang and Cheng [29] with asymptotic performance guarantee 3. For the
hypercube, an O(log N= log log N )-competitive algorithm has been given, and similar
results [13, 25] hold for arrays. The two approaches just described can be combined to
yield an optimal on-line scheduler with competitive ratio 2 + (

√
4�2 + 1 − 1)=2� for

the complete model.
Both approaches, though, have a severe drawback that arises due to the memory

requirements of parallel jobs. Restricting the maximum size of a job to �N processors
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can thus severely restrict the problem size that can be solved on a particular machine.
This is often unacceptable in practice because solving large problems is the main reason
for the use of parallel computers besides solving problems fast. Virtualization may be
impossible or prohibitively expensive if such memory limitations exist.

The job systems used in the lower bound proofs in [13, 25] for the general case reveal
an unbounded ratio of the running times of the longest and shortest job. Therefore,
we think it necessary to study the inDuence of the individual running times on the
competitive ratio of on-line schedulers for our scheduling problem. To gain insight
into this relationship it is only natural to start with unit execution times as is done in
Section 4.

To /ll the gap between these two extremes – totally unrelated running times versus
unit execution times – we identify the runtime ratio (the ratio of the running time of the
longest and shortest job) as the distinctive parameter of a job system for the achievable
competitive ratio. The importance of this parameter has also been demonstrated recently
in [6] for o?-line scheduling of jobs with multiple resource demands, both malleable
(allow for virtualization with proportional slowdown) and non-malleable.

Although we are interested in on-line scheduling, it might be appropriate to brieDy
mention some complexity results for the corresponding o9-line problems. Not surpris-
ingly, almost any variant of these scheduling problems is NP-hard. B lażewicz et al.
[3] have proved that it is strongly NP-hard to compute optimal schedules for parallel
job systems with unit execution times and no dependencies if N is part of the problem
instance. For any /xed N they showed that the problem can be solved in polynomial
time. Furthermore, it is known [17] that the problem is NP-hard for sequential job
systems with precedence constraints that are the disjoint union of an in-forest and and
an out-forest. The scheduling problem for parallel job systems with arbitrary job run-
ning times and without dependencies is strongly NP-hard for every /xed N ¿ 5 [8].
If precedence constraints consisting of a set of chains are involved, the problem of
computing an optimal 2-processor schedule for a parallel job system is also strongly
NP-hard [8].

4. Jobs with unit execution time

In this section, we restrict our model to the case where all jobs have the same
execution time. When the dependency graph is known to the scheduler this problem
has been intensively studied by Garey et al. [16]. We show that similar results hold
in an on-line environment, where a job is available only if all its predecessors have
completed execution.

4.1. Complete model

The LEVEL algorithm (see Fig. 2) collects all jobs that are available from the
beginning. Since available jobs are independent we can easily transform the problem
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Algorithm LEVEL(PACK):
begin

while not all jobs are /nished do
begin
A := {J ∈J | J is available}; // next EPT level
schedule all jobs in A according to PACK;
wait until all scheduled jobs are /nished;
end;

end.

Fig. 2. The LEVEL(PACK) algorithm.

of scheduling these jobs to the BIN PACKING problem: the size of a job divided by N is
just the size of an item to be packed, and the time-steps of the schedule correspond to
the bins (see [7] for a survey on BIN PACKING). Let PACK be an arbitrary BIN PACKING

heuristic. We parameterize the LEVEL algorithm with PACK to express the fact that a
schedule for a set of independent jobs is generated according to PACK. Thereafter, the
available jobs are executed as given by this schedule. Any jobs that become available
during this execution phase are collected by the algorithm. After the termination of all
jobs of the /rst level a new schedule for all available jobs is computed and executed.
This process repeats until there are no more jobs to be scheduled.

First, we use the Next-Fit (NF) bin-packing heuristic for scheduling on each level.
NF packs the items in given order into a so-called active bin. If an item does not /t
into the active bin, the active bin is closed and never used again. A previously empty
bin is opened and becomes the next active bin.

Theorem 3. LEVEL(NF) is 3-competitive.

Proof. The number of iterations of the while-loop is exactly the length of a critical
path in the dependency graph. There are two possibilities for each level:

1. The partial schedule for this level has length 1. Let T1 denote the number of levels
of this type.

2. The partial schedule for this level has length ¿ 2. By the packing rule of NF it
is clear that the average e1ciency of 2 consecutive time-steps in such a partial
schedule is ¿1=2. From this we conclude that the average e1ciency of all time-
steps but maybe the last one is ¿1=2. Let T2 denote the number of /nal time-steps
with e1ciency ¡1=2 in partial schedules for levels of this type.

Since T1 + T26Tmax6Topt we can apply Lemma 1 with �1 = 1=N , �2 = 1=2, � = 1,
yielding:

TLEVEL(NF)6
(

3 − 2
N

)
Topt :
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Fig. 3. Weighting function for the analysis of BIN PACKING.

Since NF can be implemented to run in linear time (in the number of items to
be packed) the scheduling overhead is very low when NF is used to compute partial
schedules. Now, we use the /rst-/t (FF) bin-packing heuristic instead of NF to achieve
a better competitive ratio with only a modest increase of the scheduling overhead. FF
in contrast to NF considers all partially /lled bins as possible destinations for the item
to be packed. An item is placed into the /rst (lowest indexed) bin into which it will
/t. If no such bin exists, a previously empty bin is opened and the item is placed into
this bin. It has been shown [21] that FF has time-complexity P(n log n) for a list of
n items.

Theorem 4. LEVEL(FF) is 2:7-competitive.

The proof of this theorem uses the weighting function from [16]. Let W : [0; 1]→
[0; 8=5] be de/ned as follows (cf. Fig. 3):

W (�) =




6
5� for 06 �6 1

6 ;

9
5� − 1

10 for 1
6¡�6 1

3 ;

6
5� + 1

10 for 1
3¡�6 1

2 ;

6
5� + 4

10 for 1
2¡�6 1:
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We also need the following results from [16]:

Lemma 5. Let B denote a set of items with total size 6 1. Then
∑
b∈B

W (size(b))6
17
10

:

If all sizes are 6 1=2;

∑
b∈B

W (size(b))6
3
2
:

Theorem 6. If L is a list of items with sizes 6 1;

FF(L)¡
∑
x∈L

W (size(x)) + 1:

Together with the above lemma this theorem provides the best-known upper bound
for the number of bins used by /rst-/t. If L∗ is the number of bins used in an optimal
packing of L, /rst-/t uses at most (17=10)L∗� bins. Now we are ready to prove
Theorem 4:

Proof. Let J be a job system with unit execution time and arbitrary precedence-
constraints. We de/ne

QW (J) =
∑
j∈J

W (size(j)):

Thus QW (J) is the total weight of all job sizes. Let l be the number of levels of the
job system. For 16 i6 l let Ui be the set of jobs of each level. By Theorem 6 we can
upper bound the length of the partial schedule for each level i, 16 i6 l, generated
by LEVEL(FF):

TLEVEL(FF)(Ui)¡ QW (Ui) + 1:

We can think of an optimal packing of J with the dependencies removed as a
partition of J into J∗ sets each of which has total size 6 1. Applying Lemma 5
yields QW (J)6 17

10J
∗. Together with the fact that the length of the optimal schedule

for J without dependencies cannot be longer than the length of the optimal schedule
for J we conclude:

TLEVEL(FF) =
l∑

i=1

TLEVEL(FF)(Ui)¡
l∑

i=1

( QW (Ui) + 1) = QW (J) + l6 1:7 Topt + l:

Since l = Tmax6Topt, the result follows.

The competitive ratio 2:7 of LEVEL(FF) is nearly optimal. To show this, we give an
asymptotic lower bound of 2:691 for the competitive ratio of each deterministic on-line
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Fig. 4. Job system used in lower bound proof.

scheduling algorithm. For the sake of clarity, we /rst prove a slightly weaker lower
bound of 2:69Topt − 4 for the length of a schedule generated by a deterministic on-line
scheduler. Using Salzer numbers we re/ne this construction to derive the asymptotic
lower bound.

Fix N ∈N, N ¿ 7 · 1806, and let

A :=
⌊
N
2

⌋
+ 1; B :=

⌊
N
3

⌋
+ 1;

C :=
⌊
N
7

⌋
+ 1; D := N − A − B − C − 1:

The job system (see Fig. 4) consists of l¿ 4 levels with one chain of l − 4 tasks
(i.e., jobs that require one processor for execution) and l jobs of size A, l− 1 jobs of
size B, l − 2 jobs of size C, l − 3 jobs of size D.

Additional dependencies are assigned dynamically by an adversary depending on
which parallel job of each level is scheduled last by the on-line algorithm. This is
possible because the on-line scheduler cannot distinguish between the parallel jobs on
the same level. The optimal schedule has length l and is shown in Fig. 5. Here, the



78 S. Bischof, E.W. Mayr / Theoretical Computer Science 268 (2001) 67–90

Fig. 5. Optimal schedule.

Fig. 6. On-line schedule generated by LEVEL(FF).

parallel job with successors is scheduled /rst on each level. Contrary to the optimal
solution, the on-line scheduler is forced to schedule and execute all jobs on one level
to make the jobs on the next level available. The schedule generated by LEVEL(FF) is
thus the best possible on-line schedule (see Fig. 6) and has length

l +
⌈
l − 1

2

⌉
+
⌈
l − 2

6

⌉
+
⌈
l − 3

42

⌉
+ (l − 4)¿2:69 l − 4;

if 2 - (l − 1); 6 - (l − 2), and 42 - (l − 3). It is easy to see that any l∈N with 42 | l
ful/lls the above conditions.

The following sequence (ti)i∈N was investigated by Salzer [24]:

t1 = 2;
ti+1 = ti(ti − 1) + 1 for i¿ 1:
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The /rst /ve numbers of this sequence are 2; 3; 7; 43; 1807. Closely related is the
following series:

h∞ =
∞∑
i=1

1
ti − 1

¿1:69103: (1)

There are two basic relations for the Salzer numbers that can be derived inductively
from their de/nition:

k∑
i=1

1
ti

+
1

tk+1 − 1
= 1;

k∏
i=1

ti = tk+1 − 1:

Let Ai = �N=ti� + 1; 16 i6 k, be the sizes of the parallel jobs on the /rst k levels.
Setting Ak+1 = N −∑k

i=1 Ai − 1, we can conclude that

Ak+1¡
N

tk+1 − 1
− 1; Ak+1¿

N
tk+1 − 1

− (k + 1):

It is easy to see that tk+1 − 1 jobs of size Ak+1 can be scheduled in one time-step
on N − 1 processors. To ensure that no more than tk+1 − 1 jobs of size Ak+1 can be
co-scheduled on N processors we choose N¿(k + 1)(tk+2 − 1). The job system again
consists of l¿ k + 1 levels with one chain of l− (k + 1) tasks and l− (i− 1) jobs of
size Ai, 16 i6 k + 1. Dependencies are assigned dynamically as above. The length of
the optimal schedule is l, whereas every schedule generated by a deterministic on-line
scheduler has length at least

k+1∑
i=1

⌈
l − (i − 1)

ti − 1

⌉
+ l − (k + 1):

From this and (1) we see that the competitive ratio can be brought arbitrarily close to
1 + h∞ for k →∞; l = !(k).

The competitive ratio of LEVEL(FF) can be improved if the maximum size of a job
is restricted to �N=2�:

Theorem 7. LEVEL(FF) is 2:5-competitive; if no job requests more than half of the
total number of processors.

Proof. Analogous to the proof of Theorem 4 using the second inequality of Lemma 5.

The same bound holds if the next-/t-decreasing (NFD) bin-packing heuristic (presort
the items in non-increasing order, then use NF) is used instead of FF. This follows
easily form the fact that the average e1ciency of 2 consecutive time-steps in a partial
schedule for a level generated by NFD is ¿2=3 in this case.

Similarly to the unrestricted case, an asymptotic lower bound ¿2:4 for the com-
petitive ratio of any deterministic on-line scheduler for this problem can be derived.
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Further restrictions of the maximum job size might yield somewhat better competi-
tive ratios for the LEVEL algorithm, but this situation is already handled well by the
GENERIC algorithm in [13, 25] which achieves competitive ratio 1 + 1=(1 − �), if no
job requests more than �N , 0¡�¡1, processors. For example, � = 1=2 yields compet-
itive ratio 3 for the GENERIC algorithm that is valid for job systems with arbitrary
execution times.

We also remark that the results of this subsection remain valid if we assume a
one-dimensional array of length N as interconnection topology instead of using the
complete model, since the BIN PACKING algorithms assign consecutive processors to the
jobs and the assignments in di9erent time-steps are independent from each other.

4.2. Hypercube

In this subsection we study the problem of on-line scheduling parallel job systems
with arbitrary precedence-constraints and unit execution times for hypercube connected
parallel computers.

It is not di1cult to schedule a set of independent parallel jobs each of which requests
a subcube of a certain dimension. First, we sort the jobs by size in non-increasing order.
To avoid fragmentation, we use only normal subcubes for job execution:

De%nition 8. A k-dimensional subcube is called normal; if the labels of all its proces-
sors di9er only in the last k positions.

For each time-step of our schedule we allocate jobs from the head of the sorted
list to normal subcubes while there are unscheduled jobs left and the hypercube is
not completely /lled. If the time-step is full, we have to add a new time-step to our
schedule (if there are any unscheduled jobs left).

It is easy to see that the e1ciency of this schedule for independent jobs is 1 in all
time-steps except possibly the last. We refer to this strategy as PACK HC. The algorithm
for job systems with arbitrary dependencies is just the LEVEL algorithm using PACK HC

instead of a BIN PACKING heuristic (cf. Fig. 7).

Theorem 9. LEVEL HC is an optimal deterministic on-line scheduler with competitive
ratio 2.

Proof. The number of iterations of the while-loop is exactly the length of a critical
path in the dependency graph. Thus T¡16Tmax6Topt. Since the e1ciency of the
schedule is at least 1=N all the time, we have for /xed N by Lemma 1:

TLEVEL HC6
(

1 +
1 − 1=N

1

)
Topt =

(
2 − 1

N

)
Topt :

It remains to show that no deterministic on-line scheduler can achieve a better com-
petitive ratio. To this behalf, we use a job system similar to the preceding subsection.
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Algorithm LEVEL HC:
begin

while not all jobs are /nished do
begin
A := { J ∈ J | J is available}; // next EPT level
schedule all jobs in A according to PACK HC;
wait until all scheduled jobs are /nished;
end;

end.

Fig. 7. The LEVEL HC algorithm.

It uses N − 1 levels with N + 1 tasks on each level. Again, the dependencies are
assigned dynamically by an adversary according to the decisions of the deterministic
on-line scheduler. The task from level i, 16 i6N − 2, scheduled last by the on-line
scheduler is designated to be predecessor of all tasks on level i + 1. Therefore, any
on-line scheduler ALG needs at least 2 time-steps to schedule all tasks of one level. In
an optimal schedule, the task with dependencies is scheduled /rst together with N − 1
other tasks from the same level. The N − 1 remaining tasks are scheduled in time-step
N . This gives the desired lower bound for the competitive ratio:

TALG

Topt
¿

2(N − 1)
N

= 2 − 1
N

:

The job system in the proof of Theorem 9 contains no parallel jobs and the hyper-
cube structure is not used at all. Therefore, the derived lower bound is valid for any
interconnection topology and sequential job systems as well as parallel job systems.
Note that the structure of the dependency graph is an out-forest.

Corollary 10. No deterministic on-line algorithm for scheduling job systems with unit
execution times and dependencies can have a competitive ratio better than 2.

This result has been obtained independently by Epstein [9]. Interestingly, the above
lower bound is identical to the lower bound proved by Shmoys et al. [26] for sequential
job systems with arbitrary running times but without precedence-constraints.

5. Parallel job systems with restricted runtime ratio

We have shown in the preceding section that on-line scheduling of parallel jobs
with unit execution time and precedence-constraints is possible with small constant
competitive ratio. On the other hand, if execution times are arbitrary, there exists no
on-line scheduler with acceptable worst-case performance. It is only natural to explore
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Fig. 8. Di1cult job system for RRR-scheduling.

the case that job runtimes are restricted by some criterion other than unit execution
time in order to achieve a respectable competitive ratio.

For a set of jobs J we therefore de/ne the runtime ratio RR(J):=tmax=tmin. In
this section we study the problem of on-line scheduling parallel job systems with
dependencies where the runtime ratio is bounded from above by a parameter TR ¿ 1
which is not known to the on-line scheduler. This problem often arises in practice
when upper and lower bounds for the running time of a job are known in advance but
the actual running time is unknown. This situation also makes clear that the parameter
TR cannot be used as additional information for scheduling decisions by the on-line
scheduler and is therefore not part of the problem instance. Indeed, our results show
that this knowledge is not necessary for the on-line scheduler to achieve a near optimal
competitive ratio that depends only on TR.

In this paper, we study this problem for the complete model. First, we give a lower
bound of max{(TR + 1)=2; h∞ + 1} for the asymptotic competitive ratio of any deter-
ministic on-line scheduler for this problem. For simplicity, we normalize the running
time of the shortest job to 1. The job system used in this lower bound argument is
very simple (see Fig. 8) and consists of N layers with two tasks and one parallel job
of size N on each layer. The parallel job depends on one of the tasks on the same
layer and is predecessor of both tasks of the following layer. The task scheduled /rst
by the on-line scheduler is assigned running time TR and the remaining task runs for
1 unit of time and is predecessor of the parallel job. Clearly, the makespan of any
schedule generated by an on-line scheduler is at least N (TR + 1). If TR is su1ciently
large (e.g., TR ¿ 2), the optimal solution /rst schedules the critical path which has
length 2N followed by the tasks of length TR in parallel. The competitive ratio of any
deterministic on-line scheduler is thus lower bounded by

N (TR + 1)
2N + TR

→
N→∞

TR + 1
2

:
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Algorithm RRR
begin

while L1 �= ∅ do
schedule a big job exclusively;

while not all jobs are /nished do
begin
while L2 �= ∅ do

schedule small jobs greedily;
if L1 �= ∅ then

if a big job can be scheduled then
do it;

else
if �¿ 1=2 then

wait for a scheduled job to /nish;
else // start of a delay phase

collect small jobs that become available
during the next 2 units of time;
schedule those jobs greedily and
then wait for all scheduled jobs to /nish;
while L1 �= ∅ do

schedule a big job exclusively;
%;

%;
else

wait for next available job;
%;
end;

end.

Fig. 9. The RRR algorithm.

For small TR, this bound is quite weak. But in this case, we can use the job system
from the lower bound construction in Section 4.1. Since the runtime ratio of this job
system is 1 this yields an asymptotic lower bound of h∞ + 1 for the competitive
ratio.

We now describe an algorithm designated RRR (see Fig. 9) that achieves com-
petitive ratio TR=2 + 4. A key feature of this algorithm is the distinction between big
jobs that request more than half of the total number of processors and small jobs with
size 6 �N=2�. Let �:=�(t) denote the e1ciency at time t. The RRR algorithm tries to
keep the e1ciency at least 1=2 whenever possible. There are two reasons that hinder
the RRR algorithm from achieving this goal. First, there might be no job available
and second, there might be not enough processors available to schedule a big job.
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The second case is much more severe than the /rst one which can be handled by
the GRAHAM argument (cf. Lemma 2) without much loss of performance. Therefore,
the RRR algorithm must prevent big jobs from being delayed too long in order to
bound the fraction of the total schedule length with low e1ciency. This is done by
occasionally stopping to schedule small jobs, if all big jobs request more processors
than currently available and the e1ciency is below 1=2.

We present two versions of the RRR algorithm. The /rst one assumes that tmin

is a known quantity. Again, we normalize the running time of the shortest job to 1
and a unit of time refers to this normalized time quantum. In the second version we
remove this assumption and employ an adaptive waiting-strategy to maintain a compa-
rable competitive ratio. The RRR algorithm maintains two sets, L1 and L2, containing
the available big and respectively small jobs. We assume that any job that becomes
available is immediately inserted into the appropriate set, and we will not state this
activity explicitly in the pseudo-code description of our algorithms.

Theorem 11. The RRR algorithm is (TR=2+4)-competitive for any job system (J;≺)
with RR(J)6TR.

Proof. We partition the schedule generated by the RRR algorithm into 3 di9erent kinds
of phases:

1. E1ciency is at least 1=2.
2. E1ciency is below 1=2 and there is no job available.
3. E1ciency is below 1=2 and the algorithm waits for the termination of all jobs.

We refer to the third type as a delay phase and denote the total time of each kind
by T¿ 1=2; Tnojob, and Tdelay, respectively. The total time of the RRR schedule that is
spent in phases of types 1 and 2 can easily be bounded by 3Topt, because we have
T¿ 1=26 2Topt by a straightforward area-argument and Tnojob6Tmax6Topt by Lemma 2.

It remains to show that Tdelay6 (TR=2 + 1)Topt. We de/ne a delayed job as a big
job that was available at the beginning of a delay phase. Let ti denote the start time
of delay phase i. First, we bound the length of a delay phase by TR + 2. If no small
jobs become available during the /rst two units of time after the beginning of a delay
phase, no more jobs are scheduled until all currently running jobs terminate. Since the
running time of any job is no more than TR, such a delay phase lasts at most time TR.
On the other hand, if small jobs become available during the /rst two units of time,
these are collected and scheduled greedily at time t si = ti + 2 (resp. t si ¡ti + 2 if all
jobs running at time ti terminate before two units of time have elapsed) in addition to
those jobs still running at time t si . If the total size of these small jobs (i.e., the total
number of processors that all these small jobs request) is no more than the number of
idle processors at time t si , they can be scheduled immediately. Clearly, the length of
a delay phase is bounded by TR + 2 in this case. Should the total size of the small
jobs exceed the number of idle processors at time t si we can schedule enough small
jobs to raise the e1ciency above 1=2 as long as small jobs that were collected during
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the interval [ti; t si ] are available. The time-span while the e1ciency is at least 1=2 is,
of course, a phase of type 1 and not part of the delay phase. Clearly, the length of
the second part of a delay phase is bounded by TR and therefore the length of a delay
phase is always bounded by TR + 2.

Let d denote the number of delay phases in a schedule generated by the RRR
algorithm. We distinguish two cases:

1. d = 1: We have to show that the optimal solution needs at least time 2. This follows
immediately from the fact that each delayed job must have a predecessor in the job
system because otherwise it would have been scheduled earlier.

2. d¿1: This case will be proven by constructing a chain of jobs in the dependency
graph with total execution time at least 2d. From that we have Topt ¿ 2d and together
with Tdelay6d(TR + 2) the claim follows.

The construction of this chain proceeds as follows: Starting with an arbitrary delayed
job that is scheduled after delay phase d we observe that there must be a small job
that is ancestor of this delayed job and is available immediately after the delayed jobs
of delay phase d−1 (i.e., without having a small job as direct predecessor that is itself
scheduled after the delayed jobs of delay phase d− 1) because otherwise this delayed
job would have been scheduled earlier. We add such a small job at the front of the
chain.

To augment the chain, we state the possibilities for the direct predecessor of a small
job that is scheduled by the RRR algorithm immediately after the delayed jobs of delay
phase i:

Type 1: Delayed job of delay phase i or
big job that is successor of a delayed job of delay phase i,

Type 2: Small job collected during delay phase i,
Type 3: Small job running from the beginning of delay phase i.

This is due to the fact that the RRR algorithm schedules all small jobs that are
available by time t si before the delayed jobs of delay phase i.

We continue the construction inductively according to these three possibilities. If
there is a direct predecessor of Type 1 of the small job that is currently head of the
list, we can repeat the initial construction step of the chain and add a delayed job and
its small ancestor at the front of the chain. When there is no direct predecessor of
Type 1 but a direct predecessor of Type 2, we add 2 more jobs at the front of the
chain: the Type 2 job and a direct predecessor of this job that was running at the
beginning of the delay phase during which this Type 2 job was collected. Finally, if
there is only a direct predecessor of Type 3, we add this job at the front of the chain.
The inductive construction stops as soon as the head of the chain is a small job that
is scheduled before the delayed jobs of the /rst delay phase.

To complete the proof, we show that the total execution time of the jobs along this
chain is at least 2d. The construction of the chain starts with 2 jobs, a delayed job and
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its small ancestor. Since the minimum running time of any job is 1, these 2 jobs need
at least 2 units of time for execution in any schedule. If the construction proceeds by
adding a Type 1 job, the same argument applies. Continuing with a Type 2 job means
that again 2 more jobs were added to the chain. If a Type 3 job is encountered, we
know that this job must have execution time at least 2 because it is direct predecessor
of a small job that is scheduled immediately after the delayed jobs of the delay phase
the Type 3 job belongs to. Thus, for each delay phase in the schedule generated by the
RRR algorithm, the above construction adds jobs with total execution time at least 2
to the chain.

The assumption that tmin is known to the RRR algorithm can be dropped by employ-
ing an adaptive waiting strategy without much loss in competitive performance. We
describe this adaptive version separately in order to keep our presentation modular.
The modi/cations of the RRR algorithm are as follows (see also Fig. 10): Since tmin

is now unknown the RRR ADAPTIVE algorithm does not collect small jobs during the
/rst delay phase. In all following delay phases (if any), the algorithm calculates timin,
the minimum execution time of any /nished job up to the start of delay phase i. The
duration during which small jobs are collected is now limited by 2 t i

min (and, of course,
by tmax).

Theorem 12. The RRR ADAPTIVE algorithm is (TR=2 + 5:5)-competitive for any job
system (J;≺) with RR(J)6TR.

Proof. With the notation of the proof of Theorem 11 we conclude analogously that
the above theorem holds for d = 1. If d¿1, we have

Tdelay6dtmax + 2
d∑

i=2

timin :

First, we show that 2
∑d

i=2 timin6 2Topt −2tmin. To see this, we observe that after delay
phase i, 16 i6d, at least one delayed job has to be scheduled. Let t d+1

min := tmin. The
running time of such a delayed job is at least t i+1

min , since this job is executed before
the start of delay phase i + 1 (if i¡d). Even in an optimal schedule all delayed jobs
must be scheduled sequentially because they require more than half of the available
processors for execution. Therefore,

2Topt ¿ 2
d+1∑
i=2

timin = 2
d∑

i=2

timin + 2tmin : (2)

As in the proof of Theorem 11 we can construct a chain of jobs in the dependency
graph with total execution time at least (2d − 1)tmin. The only di9erence in the con-
struction is that there is no collection of small jobs during the /rst delay phase and
therefore a Type 3 job might only run for time tmin in this delay phase. This yields
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Algorithm RRR ADAPTIVE
begin

i := 0; // i counts the number of delay phases
while L1 �= ∅ do

schedule a big job exclusively;
while not all jobs are /nished do

begin
while L2 �= ∅ do

schedule small jobs greedily;
if L1 �= ∅ then

if a big job can be scheduled then
do it;

else
if �¿ 1=2 then

wait for a scheduled job to /nish;
else // start of a delay phase

if i¿0 then
i := i + 1;
timin := current minimum execution time;
collect small jobs that become available
for time 6 2 timin;
schedule those jobs greedily and
then wait for all scheduled jobs to /nish;

else
i := i + 1;
wait for all scheduled jobs to /nish;

%;
while L1 �= ∅ do

schedule a big job exclusively;
%;

%;
else

wait for next available job;
%;
end;

end.

Fig. 10. The RRR ADAPTIVE algorithm.

another lower bound for the optimum schedule length:

Topt ¿ (2d − 1)tmin : (3)
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From (2) and (3) we conclude

Tdelay 6 dtmax + 2
d∑

i=2

timin

6 dtmax + 2Topt − 2tmin

6
(d − 1=2)TR

2d − 1
Topt +

tmax

2
+ 2Topt

6
(

TR

2
+

5
2

)
Topt :

If the number of delay phases of a schedule generated by the RRR ADAPTIVE algorithm
is less than (TR + 1)=2, we can derive a better upper bound

Tdelay6 (d + 2)Topt :

However, this bound is useful for a posteriori analysis only, since the number of delay
phases can be arbitrarily large. Since the total schedule time that is spent in phases of
types 1 and 2 (cf. proof of Theorem 11) is bounded by 3Topt, the proof is complete.

Clearly, both algorithms can easily compute the runtime ratio RR(J) for any sched-
uled job system J. From this, we can bound the actual performance for the generated
schedules:

TRRR 6 (RR(J)=2 + 4)Topt ;

TRRR ADAPTIVE6 (RR(J)=2 + 5:5)Topt :

For practical purposes it is desirable to have tools that allow to control the performance
of a scheduler in addition to worst-case guarantees such as the competitive ratio. Let
Tbig be the sum of the execution times of all big jobs in J, and let Wtotal denote the
total work of all jobs. Then we have the following lower bound for the length of an
optimal schedule:

Topt ¿ max{Wtotal=N; Tmax ; Tbig}:

Again, our on-line algorithms can compute Wtotal and Tbig during the scheduling pro-
cess. Assuming that the on-line scheduler has knowledge of the predecessor=successor
relationships (which usually will be the case after all jobs have been scheduled), Tmax

can be computed by searching a longest path in the dependency graph. The quotient of
the length of the on-line schedule and the above lower bound is then an upper bound
for the performance of our on-line schedulers.
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6. Conclusion and open problems

We have presented and analyzed several on-line scheduling algorithms for parallel
job systems. It has become evident that runtime restrictions improve the competitive
performance achievable by on-line schedulers. Therefore, if enough a priori knowl-
edge on job running times is available to bound the runtime ratio of a job system,
our schedulers can guarantee a reasonable utilization of the parallel system. But even
without any such knowledge the RRR ADAPTIVE algorithm produces schedules that are
almost best possible from a worst-case point of view. All on-line algorithms considered
in this paper are computationally simple, and thus the scheduling over-head involved
can safely be neglected, provided that the system has suitable means to deliver the
necessary load information.

It still remains to study the described scheduling problems for a number of other
popular interconnection topologies. In the unit execution time model, we have a 46=7-
competitive algorithm for two-dimensional array [2], but in general it appears that the
competitive ratio might grow exponentially with the dimension of the array.
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