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Abstract Revealing mechanisms underlying complex diseases
poses great challenges to biologists. The traditional linkage
and linkage disequilibrium analysis that have been successful in
the identification of genes responsible for Mendelian traits, how-
ever, have not led to similar success in discovering genes influenc-
ing the development of complex diseases. Emerging functional
genomic and proteomic (�omic�) resources and technologies pro-
vide great opportunities to develop new methods for systematic
identification of genes underlying complex diseases. In this re-
port, we propose a systems biology approach, which integrates
omic data, to find genes responsible for complex diseases. This
approach consists of five steps: (1) generate a set of candidate
genes using gene–gene interaction data sets; (2) reconstruct a ge-
netic network with the set of candidate genes from gene expres-
sion data; (3) identify differentially regulated genes between
normal and abnormal samples in the network; (4) validate regu-
latory relationship between the genes in the network by perturb-
ing the network using RNAi and monitoring the response using
RT-PCR; and (5) genotype the differentially regulated genes
and test their association with the diseases by direct association
studies. To prove the concept in principle, the proposed approach
is applied to genetic studies of the autoimmune disease sclero-
derma or systemic sclerosis.
� 2005 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The traditional paradigm for genetic studies of diseases is to

connect DNA variation with phenotypic variation [1]. The ma-

jor tools for identification of genes influencing traits are link-

age analysis and association studies [2]. Although linkage

analysis and association studies are successful in localizing

genes responsible for Mendelian diseases, their applications

to identification of genes causing complex diseases have not

led to similar success [3]. The discovery of causative genes

for complex diseases poses great challenges to biologists

because disease develops as a consequence of interactions

between multiple DNA variants and exposures to environmen-
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tal agents varying over time and space, which are organized

into networks [4].

Emerging genomic, transcriptomic, proteomic, and meta-

bolomic (�omic�) resources and technologies are revolutionizing

biomedical research and allow a transition from the traditional

paradigm for genetic studies of complex diseases to a new par-

adigm based on systems biology. The systems biology ap-

proach to genetic studies of complex diseases has several

remarkable features. First, the systems biology approach as-

sumes that the majority of genes function through complex

networks. Biological networks abstractly represent biological

systems and capture their systemic properties [5]. In the sys-

tems biology approach, complex traits will not only be dis-

sected by individually studying some components of the

networks, but also will be investigated by studying networks

as a whole. Second, the data from any single approach may

contain incomplete information due to the occurrence of false

negatives and false positives [6]. The data from distinct omic

sources may be complementary to each other. Therefore, the

systems biology approach integrating DNA variation, gene

expression, protein–protein interaction and phenotypic varia-

tion will increase the reliability of discovering causative genes

for complex diseases.

One of the key issues in developing a systems biology ap-

proach to genetic studies of complex diseases is how to effi-

ciently integrate various omic data sets and to maximally

extract disease-relevant information. To address this issue,

we propose the following schemes for applying a systems biol-

ogy approach to unraveling the genetic mechanisms of com-

plex diseases.

First, we can select and model candidate genetic networks.

Widely used genomic and transcriptomic methods for complex

disease studies have focused on candidate gene approaches.

Most genetic association studies have been conducted as can-

didate polymorphism or gene studies [7]. A commonly used

method for using gene expression in dissecting the molecular

basis of the disease is to identify differentially expressed genes

[8]. However, the status of the cell and cellular processes is lar-

gely determined by a number of genes interwoven into net-

works, rather than a few genes [9]. An alternative method to

a candidate gene approach is a candidate genetic network

strategy. Candidate genetic network approaches will be useful

not only for identifying disease genes, but also for elucidating

pathogenesis and discovering treatments for diseases. Selection

of candidate genetic networks can be accomplished by (1)

choosing a set of candidate genes from either linkage analysis

or gene–gene interaction data sets, or gene expression analyses,
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and then reconstructing genetic networks from expression pro-

files of a selected set of candidate genes or (2) searching liter-

ature and network databases. After the candidate genetic

networks are selected, we then model quantitatively genetic

networks. We propose to use structural equations [10] as a

framework for genetic network modeling.

Second, we can identify differentially regulated genetic net-

works. Differential expression of genes is a widely used concept

for identifying genes that are able to discriminate cell pheno-

types. However, the level of gene expression does not reflect

genetic changes. Causes of differential expression are multiple.

Differential expression of genes between normal and abnormal

tissues may be due either to mutation of its own gene or the

effects of expression changes of other genes in the network.

We often observe that the degree of differential expression of

one gene due to its own mutations is lower than that of the

downstream genes in the network whose expression levels are

affected by expressions of upstream genes in the network.

Functional mutations in the gene often cause changes in

regulation.

The functional mutation of the gene may have more impact

on its regulation than on its expression. We expect that due to

the accumulation of mutations, the regulation of some genetic

networks in abnormal cells will be significantly different from

that in normal cells. Uncovering such differences may help to

identify the cause of the diseases. Coefficient parameters in

the structural equations measure the regulatory effects of one

gene on others or the strength of the gene–gene interaction,

and form a matrix that is referred to as a regulatory matrix.

Identification of differentially regulated genetic networks can

be accomplished by measuring differences in a norm of the reg-

ulatory matrix between normal and abnormal samples. By

identifying differentially regulated genetic networks, we are

likely to discover a set of genes and genetic networks that influ-

ence the development of diseases.

Third, we validate the regulatory relationship between genes

in the network by perturbing the network using RNA silencing

(RNAi) or antisense RNA and measuring the response using

RT-PCR. Due to biological and experimental variation, the re-

sults of differentially regulated genetic networks from gene

expression analysis may not be reliable and need to be con-

firmed. RNAi coupled with RT-PCR is a powerful tool for

changing gene regulation and can be used to examine the accu-

racy of predictions of regulatory relations between genes in ge-

netic network modeling.

Fourth, we previously assumed that changes in regulatory

effects may come from mutations. To test this hypothesis, we

can genotype the differentially regulated genes and test for

associations of the mutations with the disease as well as with

regulatory effect changes.

To prove the principle of concept, the proposed scheme for

systems biology approach to complex diseases was applied to

genetic studies of scleroderma or systemic sclerosis (SSc).
2. Selection of a set of candidate genes

For ease of presentation, we use our studies of SSc as an

example to describe a scheme of a systems biology approach

to genetic studies of a complex disease. SSc is a multi-system

disease of unknown etiology characterized by cutaneous and

visceral fibrosis, microvascular damage and autoimmune phe-
nomena [11]. Although candidate genes are not obvious, there

are still multiple ways to select them. The candidate genes can

be selected by (1) literature review, (2) linkage and association

studies and (3) gene or protein expression data analysis. Here,

we select candidate genes by identifying differentially expressed

genes from microarray data analysis of skin fibroblasts.

Great biological variability exists within each individual.

Causes of differential expressions of genes between normal

individuals and patients with a disease can be due to either ge-

netic differences or differences in environmental exposures. To

reduce the impact of genetics on the differential expressions of

the genes, we conducted twin studies that used 16 pairs of af-

fected and unaffected SSc twins. Among these twins, 11 pairs

were monozygotic and 5 were dizygotic. Each pair represents

an SSc patient and a normal individual. Fibroblast strains

were cultured from skin biopsies of lesional and non-lesional

skin of affected twins and normal skin of unaffected twins

(total 48 samples). Oligo microarrays containing 16650 human

genes were used in gene expression profiling of cultured fibro-

blasts of these twins [12].

We postulated that if the expression levels of the genes

between monozygotic SSc patients and their normal twins

showed no significant differences, but expression levels

between dizygotic SSc patients and their normal pairs, or be-

tween monozygotic SSc patients and dizygotic normals showed

significant differences, then the difference in gene expressions

between SSc patients and normal individuals is more likely

due to genetic differences. There are four ways to compare

the differential expressions of the genes between dizygotic

SSc patients and their normal twin pairs or between monozy-

gotic SSc patients and the dizygotic normal twins: (1) compar-

ison between lesional skin of dizygotic SSc patients and that of

their paired normal twins; (2) comparison between non-

lesional skin of dizygotic SSc patients and their paired twins;

(3) comparison between lesional skin of monozygotic SSc pa-

tients and dizygotic normals; and (4) comparison between

non-lesional skin of monozygotic SSc patients and dizygotic

normals. Table 1 lists genes whose P-values showed signifi-

cantly differential expression equal or less than 0.05 in at least

three of the above comparisons.

Collagens are important components of the extracellular

matrix (ECM) and connective tissue growth factor (CTGF)

is a cysteine-rich secreted protein. Earlier studies have shown

that transforming growth factor (TGF)-b induces CTGF

expression and that TGF-b pathways, including CTGF as a

downstream mediator, can induce collagen production [13].

The TGF-b pathways regulate multiple biological processes,

including inflammation, skeletal development, wound repair,

differentiation and apoptosis [14].

Because of the complexity of TGF-b pathways, the complete

structure of the network has not been elucidated. Table 2 lists

the genes that are directly or indirectly involved in TGF-b
transduction pathways and which show differential expression

in five comparisons of our SSc twin studies. Collagen types I,

III and XI, SPARC, MAD3, CTGF and CREB demonstrated

significantly differential expression in at least one comparison

between SSc patients and normal controls, but showed no sig-

nificant differential expressions between lesional skin of mono-

zygotic patients and their paired normal twins. This implies

that differential expression of these genes may be due to genetic

differences in one or more of them. Below we will study how to

use a structural equation model as a simplified representation



Table 2
P-values of 10 genes in TGF-b pathways showing significantly differential expressions

Gene name Dizygotic lesion/
normal pair

Monozygotic lesion/
dizygotic normal

Dizygotic non-
lesion/dizygotic
normal

Monozygotic
non-lesion/
dizygotic normal

Monozygotic lesion/
normal pair

P-value Fold P-value Fold P-value Fold P-value Fold P-value Fold

COL XIA1 0.0404 4.3987 0.018 8.4834 0.0157 21.899 0.0148 22.3686 0.3667 0.7032
SPARC 0.2002 1.6255 0.0501 1.5577 0.0008 3.9864 0.0097 4.2166 0.4531 0.7764
TGFB1 0.1445 1.4403 0.473 0.8009 0.08 1.6504 0.2289 1.1788 0.2889 0.6138
TGFB2 0.4069 0.8584 0.2541 1.3879 0.3167 0.9645 0.1235 0.8419 0.0130 1.9115
MAD3 0.3762 0.897 0.4454 1.1587 0.032 0.5716 0.1359 0.7637 0.4955 0.9746
CTGF 0.031 3.7412 0.0619 2.9199 0.0085 6.3289 0.0309 6.0569 0.1908 1.0902
CREB 0.4672 0.9837 0.0244 0.6021 0.1938 0.7474 0.1083 0.7344 0.442 1.1187
Plasminogen 0.1093 1.1769 0.2963 0.9447 0.0739 1.3732 0.0655 1.8568 0.4981 0.8668
COL 1A2 0.0143 0.5627 0.0408 0.7861 0.14 0.8912 0.4224 1.2339 0.4588 0.7034
COL 3A1 0.3083 2.8334 0.3872 0.8992 0.0145 3.8956 0.2015 2.9321 0.1194 0.3658

Table 1
Genes showing significantly differential expression in at least three comparisons

Gene name Monozygotic
lesion/normal pair

Dizygotic lesion/
normal pair

Monozygotic lesion/
dizygotic normal

Dizygotic non-lesion/
normal pair

Monozygotic
non-lesion/
dizygotic normal

P-value Fold P-value Fold P-value Fold P-value Fold P-value Fold

COL XIA1 0.3667 0.7032 0.0404 4.3987 0.018 8.4834 0.0157 21.899 0.0148 22.369
OCRL 0.1698 1.3261 0.0371 3.4459 0.0462 2.4577 0.0076 4.8684 0.0006 5.6031
PNMT 0.106 1.0773 0.0113 3.8834 0.0131 2.53 0.0178 2.0229 0.0609 2.1629
CTGF 0.1908 1.0901 0.0311 3.7412 0.0619 2.9199 0.0085 6.329 0.0309 6.0569
PRKAA2 0.4613 0.8258 0.011 3.4701 0.0837 2.124 0.0321 3.8 0.0271 6.2326
CPR8 0.2456 0.6822 0.0468 3.393 0.1686 1.6322 0.0276 2.531 0.0387 2.2136

*Gene names: COL, collagen; CRL, oculocerebrorenal syndrome of Lowe; PNMT, phenylethanolamine N-methyltransferase; CTGF, connective
tissue growth factor; PRKAA2, protein kinase, AMP-activated, alpha 2 catalytic subunit, CPR8, cell cycle progression 8 protein.
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of TGF-b pathways and to estimate the strength of regulatory

interactions between these ten genes.
3. Reconstruction and modeling of genetic networks

We start with modeling of genetic networks based on some

known networks. A genetic network can be represented by a

path diagram. The path diagram consists of nodes represented

by letters, and edges represented by lines. The nodes of the

path diagram correspond to variables. The directed edges be-

tween nodes denote the direction of the regulatory relationship

between the nodes (variables) connected by the edges and indi-

cate a directed regulatory influence of one gene on another.

The directed edges can represent either activation (positive

control) or inhibition (negative control).

Variables in path diagrams can be classified into two basic

types: observed variables that can be measured and the residual

error variables that cannot be measured and represent all other

un-modeled causes of the variables. Most observed variables

(e.g., gene expression levels) are random. Some observed vari-

ables might be non-random or control variables (e.g., drug

doses) whose values remain the same in repeated random sam-

pling or might be manipulated by the experimenter. The

observed variables will be further classified into exogenous vari-

ables, which lie outside the model, and endogenous variables,

whose values are determined through joint interaction with

other variables within the system. All non-random variables

and some of the gene (or protein) expression data (e.g., initiators
of pathway) can be viewed as exogenous variables. Most of the

gene (or protein) expression data are viewed as endogenous vari-

ables. The terms exogenous and endogenous are model specific.

It may be that an exogenous variable in one model is endoge-

nous in another. The observed variables are enclosed in boxes

and the error variables are not enclosed at all.

Linear structural equations can be used to model quantita-

tively genetic networks. Let Y be a vector of the p endogenous

variables and X be a vector of q exogenous variables. Occa-

sionally, one or more of the X�s are non-random. We denote

the errors by e. We assume that E [e] = 0 and that e is uncor-

related with the exogenous variables in X. We also assume that

ei is homoscedastic and non-autocorrelated [10]. Then, gene

expressions in the genetic network are modeled by the follow-

ing linear structural equations:

Y ¼ BY þ CX þ e; ð1Þ

where B is a p · p matrix and C is a p · q matrix. The elements

of the coefficient matrices B and C describe the regulatory (or

causal) effects of one gene on the other, or a non-random var-

iable on the gene, which are a direct regulatory influence of one

variable on the other. Therefore, throughout the paper, the

matrices B and C are referred to as the regulatory matrices.

Since the genetic networks are not fully connected, many ele-

ments in the matrices B and C will be zero. The matrices B

and C are, in general, sparse. The matrix B can describe feed-

back relations in the path diagram. The structural equations

can model directed cyclic graphs and hence genetic networks

with feedback loops [10].
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The basic hypothesis of the general structural equation is

R ¼ RðhÞ;

where R is the population covariance matrix and R(h) is the

covariance matrix. The above equation implies that each ele-

ment of the covariance matrix is a function of model param-

eters. To ensure that parameter estimators are consistent and

unbiased, the estimation procedures derive from the relation

of the covariance matrix of the observed variables to the

structural parameters. The unknown parameters are esti-

mated so that the implied covariance matrix R is close to

the sample covariance matrix S. To know when our estimates

are as ‘‘close’’ as possible, we must define ‘‘close’’, that is, we

require a function that is to be minimized. The most widely

used fitting function is based on the method of maximum

likelihood (ML) defined by maximizing the likelihood func-

tion or its log:

FML ¼ log jRðhÞj þ TrðSR�1ðhÞÞ � log jSj � ðp þ qÞ;

where p and q are the number of endogenous and exogenous

variables, and Tr denotes the trace of a matrix. The fitting

function FML compares the difference between the observed

and predicted covariance matrices. In general, FML is a compli-

cated non-linear function of the structural parameters, and

explicit solutions are not always found. Instead, a Newton

unconstrained optimization procedure is employed to find

solutions [11].

A linear structural equation model was applied to analyzing

the expression profiles of ten genes in these twin studies. The

tissue samples include lesional and non-lesional skin of 11

monozygotic and 5 dizygotic patients, and unaffected skin of

their 16 normal pairs. Since we assume that the structure of

the networks with ten candidate genes are unknown, we

repeatedly applied genetic algorithms to the data set 200 times.

The path diagram of the network with the largest fitting prob-

ability P = 0.8864 is shown in Fig. 1. The structural equations

for the network were given by
TGF- 1β

SMAD3

-0.2242
-0.1246

CREB

CTGF C

COL11A1 COL3

-0.6359
-0.4031

-0.17

1.3750

0.5916

0.9124 -0.6

Fig. 1. The scheme of path diagram for TGF-b pathways with 10 genes recon
tissue samples and 32 normal tissue samples. The number along the edges w
SMAD ¼ �0:2242TGF� b1� 0:1242TGF� b2;

CTGF ¼ �0:6359SMAD� 0:4031CREBþ 1:3750SPARC;

Collagen I ¼ �0:1720CREB� 0:2679SPARC;

Collagen III ¼ 0:5916CTGF� 0:6155Collagen I;

Collagen XI ¼ 0:9124CTGF;

Plas min ogen ¼ 0:1331SPARC� 0:1581TGF� b2.

The coefficients in the equations measure the magnitude of

influence of one gene on the expression of another gene and

hence are referred to as the regulatory effects of the genes.

The positive and negative regulatory effects of the gene indi-

cate activation and inhibition, respectively.

The proposed algorithm correctly identified the structure of

the network. The regulatory relations between the genes in the

reconstructed network can be confirmed by the experiments.

Numerous studies have shown that TGF-b families initiate

activation and the transduction of MAD3 proteins by binding

to TGF-b receptors type I and type II [15]. Since the regulatory

effects of TGF-b1 and TGF-b2 on MAD3 and the regulatory

effect of MAD3 on CTGF were negative, TGF-b1 and TGF-

b2 inhibit MAD3, which in turn increased expression of

CTGF. This was supported by the report that TGFb increases

expression of CTGF markedly in human fibroblasts [16].

CTGF was reported as a downstream mediator of bioactivities

of TGF-b [17]. CTGF also is reported to enhance expression of

collagen [18]. SPARC is shown to regulate the expression of

collagen type I in mesangal cells [19]. Previous data also con-

firm that CREB blocks expression of CTGF and collagen type

I [20].
4. Differentially regulated genetic networks

Differential regulation is a useful concept of genetic net-

works for identifying mutations causing diseases. Before we

investigate how to use differentially regulated genetic networks
-0.1581

βTGF- 2

SPARC

Plasminogen

OL1A1

A1

20 0.1331

-0.2679

155

structed from gene expression data in SSc studies of total 16 abnormal
as the estimated regulatory effect of one gene on another.
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to reveal pathogenesis of the disease, we study how to test dif-

ferential regulation of the gene between normal and abnormal

samples. Let A = [B C] be a coefficient matrix of structural

equations for modeling a genetic network. Let A1 and A2 be

its corresponding coefficient matrices in the normal and abnor-

mal tissue samples. Let W = A1 � A2 and wij be an element of

the matrix W. Since wij is a parameter in the network, its

asymptotic standard deviation can be calculated from the

square root of the main diagonal of the asymptotic covariance

matrix of the estimated parameters in the network and denoted

by SW ij . We define the test statistic TG as follows:

TG ¼ W ij

SW ij

.

Although the exact distribution of TG is unknown, its asymp-

totical distribution can be approximated by a t distribution

with N � 2 degrees of freedom. This statistic can be used to

test the difference of the regulatory effect of one gene on an-

other between normal and abnormal tissues.

The difference of the regulatory effect of one gene on another

cannot measure the difference in the global behavior of the ge-

netic networks between normal and abnormal tissues. A simple

quantity to measure the difference in global behavior of genetic

networks between the normal and abnormal tissues is the larg-

est absolute value of the difference of the regulatory effect of

one gene on another in the network between the normal and

abnormal tissues, i.e., w0 ¼ maxi;j j wij j¼j wi0j0 j. The statistic

TG for testing the difference of individual regulatory effects

can be used to test the difference in global behavior of genetic

networks. Specifically, the statistic for testing the differential

regulation of the genetic networks is given by

T G0
¼ wi0j0

Swi0 j0

.

The P-value is calculated by a permutation test. The gene

expression profile matrix is randomly permuted, and the struc-
TGF-β1

SMAD3

753)-0.3707 (-0.1

-0.1206

CRE

CTGF C

COL11A1 COL3

0.7857
(-0.5696)-0.7817

(-0.1390)

0.10

(-0.6879)

1.9461
(1.3643)

0.8731

(0.5607)

0.7650 (0.9977)
-1.9

Fig. 2. The scheme of path diagram for TGF-b pathways with 10 genes reco
and 16 abnormal tissue samples. The number along the edges was the estim
samples. The number in parenthesis along the edges was the estimated regul
tural equation model and genetic algorithms are applied to

randomly permutated gene expression data to reconstruct the

genetic network hundreds or thousands of times. Then, we

calculate T G0
and obtain an empirical distribution of T G0

.

The P-value of the test is then defined as the probability that

T G0
exceeds its observed value. The statistic T G0

can be used

to measure the difference in regulation of the genetic network.

Identification of differentially regulated genetic networks

consists of three steps. First, we reconstruct genetic networks

using structural equations and gene expression data in all

available samples. Second, we fix the structure of the genetic

networks and then estimate network parameters by using gene

expression data of normal and abnormal samples. Third, we

rank the genetic networks according to some statistics, which

measure the extent of the difference in regulatory effects of

the genetic networks between normal and abnormal tissue

samples.

In twin studies, for the reconstructed genetic network shown

in Fig. 1, we estimated regulatory effects of the genes in the net-

work by using gene expression data of abnormal samples con-

sisting of lesional skin of 11 monozygotic SSc patients and 5

dizygotic SSc patients and putative normal samples consisting

of non-lesional skin of 11 monozygotic and 5 dizygotic SSc

patients and skin of 11 normal monozygotic and 5 dizygotic

pairs, respectively. The results are shown in Fig. 2. The number

in parenthesis along the edges was the regulatory effect of the

genes in the normal tissue samples. The largest difference of the

regulatory effects of the genes was 1.3553 (T G0
¼ 12:4387,

P-value = 1.1102 · 10�16), which was associated with the regu-

lation of CREB on CTGF, where the P-value was obtained by

a permutation test. In the normal tissues, the function of

CREB is to inhibit the expression of Collagen type I and

CTGF, which in turn regulates the expression of collagen

III. As Fig. 2 shows, in the abnormal tissues, CREB increased

the expression of collagen type I and CTGF, which in turn in-

creased the expression of collagen type III. From Fig. 2, we
TGF-β2

B SPARC

Plasminogen

OL1A2

A1

-0.05687

(-0.2013)

31 (-0.1211) 0.1299 (0.1352)

0.2837
(-0.4738)

573 (-0.4372)

nstructed from gene expression data of total 32 normal tissue samples
ated regulatory effect of one gene on another from abnormal tissue
atory effect of one gene on another from normal tissue samples.



Fig. 3. Comparison of transcript levels of SPARC, COL1A2 and
COL3A1 in different conditions. (A) Cultured fibroblasts with
transfection media. (B) Cultured fibroblasts with SPARC siRNA
transfection 10 lg/ml for 72 h. (C) Cultured fibroblasts treated with
TGF-b1 10 ng/ml. (D) Cultured fibroblasts with SPARC siRNA
transfection 10 lg/ml for 24 h before addition of TGF-b1 10 ng/ml.
Error bars represent standard deviation in four assays.
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can also see that SPARC changed regulatory roles from nega-

tive control to positive control when the normal skin tissues

became lesional. In the normal tissues, SPARC inhibited

expression of collagen type I, but increased production of col-

lagen type I.

The above observations can be well supported by previous

experiments and explained by the pathogenesis of SSc. SSc is

a chronic multi-system disease. It is believed that widespread

tissue fibrosis is due to expansion of fibrogenic clones of tissue

fibroblasts, which produce excessive amounts of ECM compo-

nents, such as collagens and fibronectin [11]. Growth factors

and matricellular proteins are believed to play major roles in

the maintenance of the homeostasis of the ECM. In SSc

tissues, increased activities of growth factors or cytokines, such

as TGF-b and CTGF, are well documented [21]. TGF b signal-

ing in SSc tissue is believed to play important role in fibrotic

process [21]. The CTGF is a downstream gene in TGF-b
signaling [17]. Transfection of the CTGF gene into normal

fibroblasts induced an autocrine fibrotic phenotype including

over-production of collagens [22]. SPARC is a matricellular

protein and an important regulator of cell–matrix interaction.

Our previous studies have demonstrated an over-expression of

SPARC gene in SSc fibroblasts and an increased level of

SPARC protein in both cellular lysates and culture media in

SSc [23]. It is also reported that SPARC-null cells showed

decreased expression of collagen type I and addition of recom-

binant SPARC to SPARC null cells restored the expression of

collagen type I to 70% [19].
5. Validation by perturbing networks and genetic association

studies

The inferred regulatory relations between the genes in the

network should be validated by perturbing network and ana-

lyzing its response to perturbation. The changes of regulatory

roles of the genes from activation to inhibition or vice versa

from inhibition to activation due to affection of tissues also

should be validated by perturbing network. Several methods,

for example, antisense RNA and RNA interference, can be

used to perturb networks.

We used SPARC siRNA and CTGF siRNA to suppress

the expression of SPARC and CTGF and RT-PCR to mea-

sure changes of expressions of collagen type I and type III

for investigations of regulatory relations between genes in

the network. Fig. 3 shows effects of SPARC siRNA and

CTGF siRNA and TGF-b1 in transfected and normal fibro-

blasts. Several features emerged from Fig. 3. First, it showed

in normal fibroblasts that TGF-b1 increased expression of

CTGF and collagen type III. This observation was consistent

with prediction of the structural equation model for the net-

work. In both lesional and non-lesional skin tissues, regula-

tion of TGF-b1 on CTGF through negative control of

TGF-b1 on MAD3 and MAD3 on CTGF. Therefore, the

structural equation model predicted that addition of TGF-

b1 would increase expression of CTGF, which in turn in-

creased the expression of collagen type III.

In fibroblasts transfected with SPARC siRNA, we observed

that expression of both collagen type I and type III were de-

creased. The structural equation model precisely predicted a

large reduction of expression of collagen type I and type III

by inhibition of the SPARC gene. Significant changes in regu-
lation of a gene may imply the occurrence of a mutation or

gene variations within the gene, which provides information

for identifying disease genes. This was supported by associa-

tion studies of SPARC with SSc. Our previous genetic associ-

ation studies in an isolated population with a high prevalence

of SSc (Choctaw Indians), as well as in a multi-ethnic cohort of

SSc patients, strongly suggest that the SPARC gene influenced

disease susceptibility [23].
6. Discussion

We present gene microarray studies of disease-discordant

SSc twins as an example to illustrate the power of a systems

biology approach to genetic studies of complex diseases. The

traditional paradigm for identifying disease susceptibility

genes is positional cloning that connects DNA variation to

phenotypic variation. However, there is an intermediate �omic�
world between the DNA genotypes and the disease phenotypes

– end point observations. The system from occurrence of DNA

mutations to phenotypes through molecular events at the gene

and protein level is highly likely to be organized into compli-

cated biological networks. The number of paths from DNA

genotypes to the end point observations – phenotypes are

numerous. This may explain why positional cloning can only

lead to limited success in identification of causative disease

genes. It is therefore necessary to relate DNA variation to phe-

notypic variation through an �omic� world organized into bio-

logical networks.

Systems biology that integrates genetic, transcriptomic, pro-

teomic and metabolomic data to understand a whole biological

system provides an exciting new paradigm for genetic studies

of diseases. DNA genotypes provide only partial information

on the connection of DNA to phenotypic variation. It is unli-

kely to directly map DNA genotypes to their corresponding

phenotypes using DNA data alone. In the past decade, great
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progress in molecular biology has paved the way to generate

vast amounts of valuable data, including genotyping, profiling

of mRNA, protein expression, gene–gene interaction, protein–

protein interaction and biological networks. The �omic� data
provide the basis to conduct systems biology analyses for ge-

netic studies of complex diseases. The analyses integrating

�omic� data offer insight into the pathogenesis of complex dis-

eases that could not be gained by using each type of �omic� data
independently.

Key elements of a systems biology approach include (1) start

working points, (2) network analysis, and (3) integration. Sys-

tems biology approaches can begin with any one type of �omic�
data: genotypes, gene expression, protein expression, and met-

abolic profiles, and then correlate each type of �omic� data with

end point observations, phenotypes. Positional cloning begins

with genotype data and attempt to establish linkage or associ-

ation of genotypes with phenotypes. In SSc studies, we started

with gene expression data and intended to associate differen-

tially expressed genes with SSc. By analyzing gene expression

data in studies of discordant SSc twin pairs, we found that col-

lagens, which are components of the extracellular matrix, and

CTGF, which induces persistent fibrotic tissue formation, are

associated with SSc. The results in the initial stage of gene dis-

covery in the studies of complex diseases are used to identify a

set of candidate genes.

To further analyze data for expanding the list of candidate

genes and establishing formal burden of proof, we suggest

performing network analysis. A gene does not work alone,

but rather functions together with other genes interwoven

into the network. The network analysis has two advantages.

First, it will open a new way to identify causative genes for

diseases. Second, it can provide insights into the pathogenesis

of the disease. In a positional cloning approach, network

analysis is difficult to perform. Although we can incorporate

gene–gene interaction into the disease model, DNA data

themselves do not provide information on reconstruction of

gene networks. We have a long history of studies of genetic

and metabolic networks that have been reconstructed mostly

by experiments. Genetic and metabolic network databases

provide information on the structure of the networks. An

advancement of high throughput �omic� technologies, inter-

ests in reconstruction of genetic and metabolic networks

using mathematical models coupled with experiments are

now resurging. In our example, we show how to use struc-

tural equations for modeling genetic networks. Starting with

an initial set of candidate genes coupled with model selec-

tion, we reconstructed networks by searching whole genome

gene expression profiles. Although the genes in the TGFb
pathway are known, the proposed structural equations for

construction of genetic networks can infer relations between

new, novel and uncharacterized genes. The reconstruction of

genetic networks will expand the initial set of candidate

genes. Alternative to structural equations for modeling genet-

ic networks, Bayesian networks and other statistical methods

can be used to model genetic networks. Advantage of the

structural equations for construction of genetic networks,

compared to Bayesian networks is that structural equations

can model feedback structure of gene regulation networks,

but in general, Bayesian networks are difficult to deal with

feedback regulation. To identify causative genes for disease,

we proposed the concept of differentially regulated genetic

networks. We postulated that the changes in gene regula-
tion in abnormal cells are due to gene variation. The preli-

minary results in SPARC genotyping analysis support this

assumption.

Directionality of interactions was inferred from model

selection, assuming that the network with correct causal rela-

tions should best fit the data. The inferred causality or regu-

latory relations among genes in the network should be

validated by perturbing network using gene and/or protein

regulatory methods. We propose to perturb networks for

examining regulatory relationships between the genes in the

network shown in the network model. This step is necessary

because of biological and experimental variability in gene and

protein expression data. We used RNA interference to per-

turb the networks and RT-PCR to measure gene expression

levels. Total regulatory relations which we inferred are 12. Se-

ven of them were known in the literature and remaining five

relations were new. The results show that the identified new

regulatory relationships between SPARC and collagen type

I, SPARC and CTGF, and collagen type I and collagen type

III in the model were supported by perturbation analysis of

the network.

Integration of multiple types of data is important in system

biology studies. Each type of �omic� data provides only partial

information. More importantly, each �omic� data is only one

level of multiple level organization of the biological system.

We should study not only the relationships between the genes

within one type of �omic� data, but also their connections

between different types of �omic� data. For example, we first

studied the regulatory relationship between SPARC and colla-

gen type I using gene expression data. Then, we correlated reg-

ulation of SPARC on collagen type I to phenotypes by

estimating the regulatory effect of SPARC on collagen type I

in the structural equation model using gene expression profiles

in normal and abnormal tissues separately. We found that reg-

ulation of SPARC on Collagen type I was changed from inhi-

bition in normal tissues to activation in SSc disease tissues. We

further correlated regulation data with DNA genotypes and

found that the regulation changes were likely due to gene se-

quence variation in the SPARC gene. Integration of �omic�
data allows one to reveal the path from DNA mutation to phe-

notypes through gene–protein-metabolic interaction, and to

gain deeper insights into the developments of the diseases.

The results of TGF-b pathways in SSc are very limited. Like

any statistical inferences, the reliability and robustness of the

model inference depend on the number of tissue samples used

for gene expression profiling, which in turn depends on the

number of genes in the networks. There are no theoretic sam-

ple sizes in construction of genetic networks. Heuristically, we

suggested using as many samples as four times of the number

of the genes in the networks. The sample sizes will limit the size

of the inferred genetic networks. One way to overcome this

problem is to decompose a large network into several modules

of the networks with small size. For each module of the net-

work we can make robust inference.

The purpose of this example is to illustrate the basic scheme

of systems biology approach to genetic studies of complex dis-

eases. We did not study the interactions between environments

and genes (in each �omic�). Environments will definitely affect

transcription, translation, and metabolism of the genes. We

should keep in mind that the real biological systems are extre-

mely complicated. However, the information available for

biological systems will be increased when we have more �omic�
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data. The increased information in conjunction with develop-

ment of mathematical models will offer exciting perspectives

for uncovering the causes of many diseases.
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