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a b s t r a c t 

Understanding atmospheric transport and dispersal events has an important role in a range of scenarios. 

Of particular importance is aiding in emergency response after an intentional or accidental chemical, bio- 

logical or radiological (CBR) release. In the event of a CBR release, it is desirable to know the current and 

future spatial extent of the contaminant as well as its location in order to aid decision makers in emer- 

gency response. Many dispersion phenomena may be opaque or clear, thus monitoring them using visual 

methods will be difficult or impossible. In these scenarios, relevant concentration sensors are required 

to detect the substance where they can form a static network on the ground or be placed upon mobile 

platforms. This paper presents a review of techniques used to gain information about atmospheric dis- 

persion events using static or mobile sensors. The review is concluded with a discussion on the current 

limitations of the state of the art and recommendations for future research. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

The growing threat of terrorism [1] , the Fukushima nuclear ac- 

cident (2011) [2] and the Eyjafjallajökull volcanic eruption (2010) 

[3] are significant events with a detrimental impact on public 

health and several industries including aviation and transport. 

What these events have in common is the dispersal of hazardous 

material into the atmosphere. Atmospheric transport and disper- 

sion (ATD) models are used to forecast the spread of the contami- 

nants to provide emergency responders with crucial intelligence to 

aid efficient response and post emergency assessment. For an accu- 

rate forecast, several variables are needed as an input to the model 

including, but not limited to: meteorological data, the strength of 

the release and its location. In general, sparse meteorological data 

are available from local weather stations or even across the globe. 

The strength, location and time of the release are often unknown, 

and thus should be inferred from relevant sensor measurements. 

For visibly detectable substances, such as volcanic ash, satellite 

images are the preferred form of measurement data [3] ; however, 

this approach is limited in terms of spatial and temporal resolu- 

tion of the satellite and obstruction by clouds. Alternatively, sen- 

sors that can measure the concentration of ash or a chemical, bio- 
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logical, radiological or nuclear (CBRN) substance are available. The 

determination of source parameters from these sensor measure- 

ments is a problem in inverse modelling; the inverse problem is 

highly non-linear, ill-posed [4] and subject to input data that is 

typically sporadic, noisy and sparse [5] . Traditionally, with regards 

to CBRN source term estimation (STE), a network of static sen- 

sors on the ground are used to estimate the source term as illus- 

trated in Fig. 1 . A benefit of this approach lies in early detection 

near places of strategic importance (e.g. nuclear power-plant sites). 

However, for accidents or deliberate attacks in random places, it is 

infeasible to cover all regions of importance with sensors dense 

enough to determine the source before it has spread significantly. 

With the technological developments in sensing and robotics, 

mobile sensors such as unmanned aerial vehicles (UAVs) are now 

well equipped for STE. Mobile sensors provide the additional abil- 

ity to perform boundary tracking of the contaminant and source 

seeking to aid in the emergency response. Boundary tracking will 

provide a direct picture of the spatial extent of the contaminant 

without modelling effort s. For inst ance, mobile sensors have been 

employed to determine the spread of a range of boundaries such 

as oil spills [6] , forest fires [7] , ocean temperatures [8] and the 

growth of harmful algae bloom [9] . Since the ultimate goal of 

STE is to predict the spread of hazardous material, the boundary 

can be used as a means to verify the source estimate. In addi- 

tion, the detected boundary can be used as additional observa- 
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Fig. 1. Example of a static sensor network. 

tional data within STE algorithms and to constrain the parameter 

space. Source seeking will attempt to drive the robot to the lo- 

cation of an emitting source without a direct attempt to estimate 

the release rate; similarly to boundary tracking, this provides an 

estimate without modelling effort s. Using mobile sensors f or STE 

introduces an additional area of research concerning how to op- 

timally move the sensor in order to produce the best estimate of 

source parameters in the minimum amount of time or effort. The 

method is related to a number of robotics research areas such as 

autonomous search, multiple robot cooperation, informative path 

planning and control. 

In this paper, the techniques used to gain information about at- 

mospheric dispersion events are explored where the substance is 

not detectable visibly. This includes STE using static or mobile sen- 

sors, boundary tracking and source seeking. Although there are a 

few reviews on STE using static sensors [4,10,11] , this paper aims 

to provide a more up to date and thorough review, featuring many 

new developments in the area and also an extension to the appli- 

cation of mobile sensors. 

This paper is organised as follows. Section 2 provides a brief 

discussion of dispersion modelling, the adjoint source-receptor re- 

lationship and STE datasets. Section 3 contains a review of STE 

techniques using a static network of sensors. Section 4 presents 

a review of the literature on the use of mobile sensors to gain in- 

formation of dispersing phenomena, specifically boundary tracking, 

source seeking and STE. Section 5 provides conclusions and recom- 

mendations for future research. 

2. Preliminary background 

Dispersion modelling, the adjoint source-receptor relationship 

and experimental dispersion datasets are of high importance to 

source term estimation and will be referred to several times 

throughout this paper. However, since they are not the main fo- 

cus of this review, a brief outline is provided in this section. For 

more detailed information on atmospheric dispersion an interested 

reader is referred to [12] . 

2.1. Dispersion modelling 

Atmospheric transport and dispersion models are used to esti- 

mate the dispersion of pollutants into the atmosphere. Models in 

the literature vary in terms of applicable scenarios, assumptions 

and complexities. Five types of fundamental dispersion models ex- 

ist along with a number of hybrids and extensions of them as be- 

low: 

• Box models [13] 
• Gaussian plume models [14] 

• Lagrangian models [15] 
• Eulerian dispersion models [16] 
• Dense gas models [17,18] . 

A comprehensive list of atmospheric transport and dispersion 

(ATD) models is provided by the US Environmental Protection 

Agency (EPA), including sections for recommended and alternative 

models. For more information a review can be found in [19] . In this 

section, the Gaussian plume model is described in further detail 

as it has been popular throughout the literature in STE due to its 

simplicity and fast computation. The key parameters in the model 

are the atmospheric turbulence coefficients σ y and σ z which rep- 

resent standard deviations that describe the crosswind and verti- 

cal mixing of the pollutant. Several derivations of these values ex- 

ist where a popular approach is based on Pasquill’s atmospheric 

stability class [20] . The equation of the Gaussian plume is derived 

from the turbulent diffusion equation by assuming homogeneous, 

steady state flow and a steady state point source, resulting in: 

C ( x, y, z, Q ) = 

Q 

ū σy σz 2 π

(
−y 2 

2 σ 2 
y 

)[
exp 

(
−( z − h ) 

2 

2 σ 2 
z 

)

+ exp 

(
−( z + h ) 

2 

2 σ 2 
z 

)]
(1) 

where C is a concentration at a given position, Q is the release rate, 

x, y and z are the downwind, crosswind and vertical distances, and 

ū is the mean wind speed at the height h of the release [3] . Several 

extensions of the Gaussian plume model exist to overcome some of 

its limiting assumptions such as the Gaussian puff model. 

2.2. The adjoint source-receptor relationship 

The adjoint source-receptor relationship is created by an inverse 

run of an ATD model from a sensor. Effectively the ATD model is 

run where sensors act as sources and meteorological variables such 

as wind speed are reversed. Concentrations expected at that sensor 

can then be calculated for any source term by computing the inner 

product of the source distribution and the adjoint concentration 

field [21] . 

Within the literature, the adjoint source-receptor relationship 

has been used standalone to estimate the source term [22] , and to 

quantify the uncertain relationship/sensitivity between source pa- 

rameters and sensor concentration readings [23] . By using the ad- 

joint, the number of potentially expensive dispersion model runs 

can be significantly reduced as a single adjoint can be used to test 

multiple inferences [21] . This provides great benefit in scenarios 

which prefer a complex and computationally expensive ATD model. 

However, the adjoint can be limited by non-linearities in the con- 

centration field and, in some complex scenarios (e.g. urban envi- 

ronments), the backwards and forwards dispersion runs will not 

match. This can be caused by effects from building interactions or 

puff splitting. Nonetheless, these complex events have seen limited 

research in the literature on STE. 

A simplified version of the adjoint models are back trajectory 

techniques, where only the inverse run is used. The method is ef- 

fective in splitting up regions where a source may occur by incor- 

porating null sensor measurements to determine where it is likely 

the source is not present [24] , effectively reducing the parameter 

space for the location estimate. The backward trajectory techniques 

have a number of limitations. The most critical of which is the re- 

liance on accurate and rich meteorological information. Under situ- 

ations where meteorological data are inaccurate, unreliable or un- 

available, the accuracy of STE will suffer. Despite this, the method 

is effective when used to define likely source regions as an initial 

guess in estimation algorithms. 
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2.3. Datasets 

Experimental datasets are of high importance to validate STE 

algorithms. When tested upon experimental data, significant per- 

formance in STE accuracy is often lost. This is most likely due to 

discrepancies between the ATD model simulations and real disper- 

sion events and in the current ability (e.g. accuracy and resolu- 

tion) of available sensors. Collecting atmospheric transport datasets 

is an expensive task and significant planning is required. For this 

reason, the number of available datasets is quite limited. Popu- 

lar datasets used to validate STE algorithms are the Fusion Field 

Trial 2007 (FFT07) experiment [25] and the Joint Urban Experi- 

ment 2003 [26] . The datasets can vary among equipment used, 

the amount of meteorological information available, the contami- 

nant material and the experiment scale. Alternative experimental 

methods use wind tunnels to validate STE algorithms, for example 

the mock urban setting test (MUST) [27] . These experiments ben- 

efit from better knowledge of the wind field, enabling researchers 

to focus on refining STE algorithms with less meteorological or dis- 

persion modelling uncertainties. A large collection of datasets and 

their descriptions can be found at the Atmospheric Transport and 

Diffusion Data Archive [28] and the Comprehensive Atmospheric 

Modelling Program [29] . 

3. Source term estimation using static sensors 

The goal of STE is to estimate the parameters that describe the 

source of a release: namely its location and strength. In the lit- 

erature, meteorological variables have also been included as pa- 

rameters to account for spatial variations in meteorological con- 

ditions in order to find a better estimate of the overall source. 

The most popular methods of STE use a network of concentration 

sensors on the ground. Measurements of concentration are fused 

with prior information such as meteorological data to estimate the 

unknown source parameters. Estimation has been performed us- 

ing two dominant approaches: (i) optimisation methods and (ii) 

probabilistic approaches based on Bayesian inference. Regardless 

of the approach, inferred source parameters are run in a forward 

ATD model to generate predicted concentrations that are compared 

with the observations in a cost or likelihood function. The overall 

goal of these methods is to find the best or most likely match be- 

tween the predicted and observed data, as illustrated in Fig. 2 . 

The major difference between the optimisation and Bayesian 

approaches is in the probabilistic aspect of the Bayesian approach. 

The Bayesian approach allows inputs and models used in the al- 

gorithm to be specified via a probability density function (PDF), 

taking into account uncertainties in the input data and the cho- 

sen ATD model. With probabilistic inputs, the final output of the 

algorithm will be in the form of a PDF, thereby, producing an esti- 

mate of the source term with associated confidence levels. In con- 

trast, the optimisation approach takes inputs without uncertainty 

and attempts to find a single optimal solution to the problem. Both 

methods have been shown to perform well in simulations; how- 

ever, it was discovered that there is a significant room for improve- 

ment for both when tested on experimental data [30] . Aside from 

the main estimation algorithm used, the STE algorithms developed 

have several other differences making a direct comparison difficult. 

Some of the differences include: 

• The source term parameters 
• Likelihood/Cost function used to measure the goodness of fit 
• Type of release 
• Atmospheric dispersion model 
• Domain size 
• Prior information 

Fig. 2. Flow diagram of generic STE algorithm. 

As mentioned earlier, the STE parameters include the source 

strength or release rate, its location, the number of sources, and 

meteorological variables. Note that this review has been limited 

to models that estimate at least the source strength and location. 

Under such scenarios, it is common to assume a constant release 

rate. The literature is rich with estimation methods for releases of 

known origin and varying release rate such as the Fukushima acci- 

dent. For this scenario, Kalman filters and variational data assimi- 

lation approaches have been more popular [11] . Source estimation 

of multiple releases is a particularly complex problem which has 

been tackled in more recent research [23,24,31–40] . Several forms 

of likelihood and cost functions have been used throughout the lit- 

erature which will be discussed in the following sections. The type 

of release has varied from: (i) a steady state plume [21,23,31,37,41–

51] , (ii) a dynamic plume [24,32–36,38,39,52–55] and (iii) an in- 

stantaneous release or puff [24,39,55] . Most research has focused 

on continuous steady state plumes using the Gaussian plume equa- 

tion. Dynamic plumes and instantaneous releases yield a more de- 

manding problem which is more applicable to emergency response 

situations. The domain size can range from small scale ( < km) to 

continental scale; however, with a relevant dispersion model, the 

majority of techniques can be applied to any domain size [10] . 

Several forms of prior information have been used throughout the 

literature including meteorological variables, the geometry of the 

network and parameter bounds such as the time of release, release 

rate and domain size. 

The following section is organised as follows. Section 3.1 re- 

views STE solutions using the optimisation approach. In 

Section 3.2 , this process is done for solutions formulated in 

the Bayesian framework. Finally, the work on STE using static 

sensor networks is summarised in Section 3.3 . 
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3.1. Optimisation 

The optimisation approach to STE aims to find the combination 

of parameters that minimises a cost/objective function J . The objec- 

tive function has taken many forms, although most often it is de- 

rived from the sum of the squared differences between predicted 

C r and observed concentrations D r . C r are obtained from an ATD 

model run using the inferred source term and D r are concentra- 

tion data from deployed sensors. It is assumed that the parameter 

combination that produces the minimal difference is the optimal 

estimate of the source term. Most optimisation techniques employ 

an iterative process, where the objective function is minimised by 

using different update rules to provide new improved estimates of 

the parameters. 

The main focus of research on the optimisation approach has 

been on assessing the performance of existing algorithms in opti- 

mising a cost function, however the different methods have also 

explored various cost functions and the use of better initial esti- 

mates. A variety of methods have been used to optimise the objec- 

tive function such as gradient-based methods [23,56] , direct search 

methods (e.g. the pattern search method [54] ), and intelligent op- 

timisation methods (e.g. simulated annealing [51] and the genetic 

algorithm [38,57–60] ). Details about the specific optimisation ap- 

proaches are described in this section. 

3.1.1. Gradient based 

This sub-section describes gradient-based STE algorithms found 

in the literature. The methods used are the extension of the least 

squares technique known as Re-normalisation or regularised least 

squares. 

a) Least squares. The aim of least squares estimation is to min- 

imise the sum of the squares of the residuals between measured 

D r and predicted C r concentrations for the total number of sensors 

N . The cost function can be written as: 

J = 

N ∑ 

r=1 

( C r − D r ) 
2 
. (2) 

The least-squares method is applicable only for an over- 

determined inverse problem. The iterative minimisation of the cost 

function Eq. (2) requires an initial guess of source term [61] . Since 

the least squares optimisation method is not a global optimisation 

technique, it is largely dependent on a good initial guess, otherwise 

it may get stuck in a local minimum leading to a poor solution due 

to the non-linearity of the solution space. 

b) Re-normalisation. Re-normalisation or regularised least squares 

is a strategy for linear assimilation of concentration measurements 

to identify the unknown releases [62,63] . The method exploits the 

natural statistics provided by the geometry of the monitoring net- 

work. These statistics are expressed in the form of a weight func- 

tion derived by a minimum entropy criterion, which prevents the 

over-estimation of the available information that would lead to 

the artefacts especially close to the detectors. These weight func- 

tions serve as a priori information about the release apparent 

to the monitoring network and provide regularisation, thus lim- 

iting the search space of the algorithm and providing an initial 

guess. The weight functions could be computed iteratively using 

an algorithm proposed by Issartel [63] ; besides, a minimum norm 

weighted solution provides an estimate for the distributed emis- 

sions and is seen as a generalised inverse solution to the under- 

determined class of linear inverse problems [64] . Overall, the re- 

normalisation approach utilises the adjoint source-receptor rela- 

tionship mentioned in Section 2.2 and constructs a source estimate 

among a vector space of acceptable sources, which describes the 

possible distribution of the emission sources [65] . The method is 

applicable for both over-determined and under-determined prob- 

lems. 

Sharan et al. [56] used regularised least squares to determine 

the source term of a point release using the fact that the maxi- 

mum of the source estimate will coincide with the location of the 

release. An advection-diffusion based dispersion model [66] was 

used to generate an adjoint model of the source-receptor relation- 

ship. Unlike many other STE methods, the domain was discretised 

into a grid, where the size was dependant on the density of the 

sensor network. The method was extended in [67] for identifica- 

tion of an elevated release with an inversion error estimate. The 

algorithm was further extended to identify multiple-point releases 

[68] where the number of releases was known. Two steps were ap- 

plied to reduce the computational time of the algorithm. First, re- 

gions associated with weak weight functions were removed. Then, 

only one in five grid points in each direction were considered, and 

this was iteratively refined to obtain an estimate of the source. In 

[23] , Singh and Rani applied the algorithm to data from the FFT07 

experiment [25] . A sensitivity analysis was performed to determine 

the effect of the number of measurements on the inversion re- 

sults. It was found that on average nine measurements were re- 

quired to sufficiently identify the source parameters and the accu- 

racy of estimation was subject to the locations of sensors down- 

wind and crosswind of the release. In [40] , Singh and Rani applied 

the framework to multiple source scenarios of the FFT07 dataset. 

Recently, Kumar et al. [69,70] have extended the regularised least 

squares inversion approach to urban environments, where CFD has 

replaced the underlying ATD model [71] . The method is tested on 

experimental data from the Mock Urban Setting Test (MUST) field 

experiment under various stability conditions. Reasonable accuracy 

was demonstrated in an experimental setting with an idealised ur- 

ban geometry. 

c) Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS). The BFGS al- 

gorithm [72–75] is one of the most popular quasi-Newton optimi- 

sation techniques [75] . The method is used to rapidly search for 

extrema of a function. It is similar to Newton’s method however 

the inverse of the Hessian is approximated directly, greatly reduc- 

ing computational requirements. On its own, the algorithm would 

struggle to determine the source term since it can become stuck in 

local minima. To overcome this issue, the Inverse ATD models have 

been used to generate a suitable initial guess. 

In [24] , Bieringer et al. used the BFGS algorithm to refine an ini- 

tial guess of source parameters obtained from an inverse SCIPUFF 

run. To reduce computation, the simple Gaussian plume equation 

was used in the iterative optimisation. This equation was enhanced 

by using dispersion coefficients generated from the SCIPUFF run. 

The paper attempted to produce a final estimate where the final 

SCIPUFF and Gaussian plume runs matched as closely as possible 

with each other and the sensor readings. The algorithm was tested 

on experimental data from the FFT07 experiment to show similar 

performance to previous SCIPUFF based methods however with re- 

duced computational complexity. The method was created to be 

computationally efficient for emergency scenarios where a timely 

solution would be critical. It was tested more rigorously than pre- 

vious algorithms under scenarios including: different numbers of 

sensors, inconsistencies in observations and large distances be- 

tween sensors and source. The performance was degraded in cases 

where the measured gradients in the concentration field were re- 

duced (such as longer source to sensor distances, fewer sensors, 

larger sensor spacing etc.). The need for proper concentration gra- 

dients highlights the importance of having null sensor measure- 

ments that effectively characterise the spatial extent of the plume. 
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3.1.2. Meta-heuristics 

Meta-heuristic optimisation algorithms have been among the 

most popular of the STE algorithms in the literature. They bene- 

fit from their global search performance in order to prevent the 

estimate from becoming stuck in a local minimum. The algorithms 

reviewed in this section include the pattern search method (PSM), 

simulated annealing (SA) and the genetic algorithm (GA). The al- 

gorithms use different methods to iterate until convergence to a 

solution based on evaluation of a cost function. The methods differ 

by the means in which they alter the parameters to find improved 

solutions. 

a) Pattern search method. The pattern search method (PSM) is one 

of the basic optimisation methods, consisting of two simple steps. 

The first step defines the theoretical parameters (source strength Q 

and location x, y ) and their initial values. In the second step, the 

algorithm varies each parameter by increasing or decreasing their 

values from the current point applying a constant factor, known 

as the axis direction move. The cost function is then calculated for 

the new set of parameter values (the difference between calculated 

and measured concentration). If there is no increase or decrease of 

the cost function value compared with the values of the previous 

points, the step size is halved (the pattern move) and the process 

is repeated until the termination criteria are reached [76] . 

In [54] , Zheng and Chen developed a PSM to determine the 

strength and locations of a contaminant source. The method was 

shown to be more efficient than other intelligent optimisation 

methods such as the GA, however it was limited as the PSM is a 

local optimisation method, meaning that it was highly dependent 

on its initial value. To overcome this limitation, Zheng and Chen 

[77] developed a hybrid algorithm that incorporated the global 

search performance of the GA with local search performance of the 

PSM. The GA algorithm was used to produce a reasonable initial 

value for use in the PSM. The algorithm was able to define the lo- 

cation and strength of a contaminant source with great accuracy. 

The algorithms performance was compared with that of an origi- 

nal GA to find an increase in accuracy and efficiency [77] . 

b) Simulated annealing. The simulated annealing (SA) algorithm is 

a global optimisation algorithm that was introduced by Kirkpatrick 

et al. [78] . It is based on an analogy of thermodynamics, specifi- 

cally the process of heating and controlled cooling of a material to 

reduce defects. This process directly depends on thermodynamic 

energy E . Once applying this thermodynamic analogy to the op- 

timisation problem, the goal is to bring the system from its ini- 

tial state to a convergent state in which the system uses minimum 

possible energy. The rule for accepting change in state is based on 

the Boltzmann probability distribution [51] , given as: 

R ∼ u ( 0 , 1 ) < exp 

(
−E n − E n −1 

T n 

)
(3) 

where R is a random number from the uniform distribution u be- 

tween zero and one, E n is the energy of the system (similar to 

a cost function) and T n is the temperature or cooling parameter. 

This enables the algorithm to occasionally accept parameter sets 

that increase E n , thus achieving global search performance as it is 

able to escape from local minima. The algorithm repeats, generat- 

ing new parameter estimates randomly, until it converges to a so- 

lution. Throughout the simulation, T n is decreased to improve the 

convergence behaviour of the system. 

Thomson et al. [51] applied SA to locate a gas source from mea- 

surements of concentration and wind data. The search algorithm 

was employed to find the source location and emission rate. SA 

was found to be advantageous as it helps prevent the search al- 

gorithm from converging to local minima that might surround the 

targeted global minimum. Three cost functions with different reg- 

ularisation terms were evaluated, and the cost function that min- 

imises the total source emissions was found to be the most ro- 

bust, producing successful event reconstructions. In addition, SA 

was also used by Newman et al. [79] to determine contaminant 

source zones in natural ground water. The paper compares SA with 

Minimum Relative Entropy (MRE) methods for STE, and concluded 

that SA was more robust and converged more quickly than MRE; 

however, it was found that the optimal solution was to use a hy- 

brid algorithm, which ran MRE after SA in order to refine the so- 

lution and add confidence limits to the parameter space. 

c) Genetic algorithm. The genetic algorithm (GA) is a popular 

global optimisation technique used in numerous STE algorithms. It 

is classified as one of the artificial intelligent optimisation meth- 

ods. Similarly to most optimisation techniques, the GA is based on 

iterations, but the major difference of the algorithm is in the alter- 

ation of parameter estimates to generate new solution candidates. 

This is inspired by the process of natural evolution [80] . The pro- 

cess of the GA can be summarised by the following steps: 

(1) Initialisation: A random population of candidate solutions 

called chromosomes are generated. 

(2) Selection: A cost function is evaluated to measure the quality 

(fitness) of the solutions. 

(3) Mating: High quality solutions are mated with each other to 

generate new parameter estimates while creating a second gen- 

eration population of solutions. The second generation contains 

a higher quality of chromosomes than the earlier generation. 

(4) Mutation: As is the process in evolution, a selection of chromo- 

somes are mutated in order to generate more new solutions. 

(5) Convergence or termination check is performed. 

(6) Repeat (2) ∼ (5) 

Several variations of the GA exist: incorporating different mu- 

tation, mating and population generation strategies. It is important 

to tune parameters such as population size and mutation rate to 

optimise the performance of the algorithm with regards to effi- 

ciency, accuracy and avoidance of local minima. In [59,81] , Haupt 

et al. first demonstrated the ability of the GA to link readings from 

receptor data with the Gaussian plume ATD model. Later in [57] , 

Allen et al. used this method to characterise a pollutant source 

by estimating its two dimensional location, strength and the sur- 

face wind direction. Including the surface wind direction as a pa- 

rameter to be optimised in the GA could account for the sparse 

resolution of meteorological wind field data and any error therein 

[57] . The algorithm performed very well during twin experiments 

(where the Gaussian plume was used to create synthetic data), and 

performance was decreased with sensor grids with less than 8x8 

receptors. It is worthwhile noting that the algorithm showed rea- 

sonable performance under sensor noise provided that the noise 

was less than the signal [57] . To further refine the final estimate of 

the source term, a hybrid GA was formulated in [58] . A traditional 

gradient descent algorithm (the Nelder-Meade Downhill Simplex 

(NMDS)) was run after the GA. The GA produced a suitable ini- 

tial estimate to prevent the NMDS from becoming stuck in a non 

global minima. The hybrid algorithm was benefited from the speed 

and performance of NMDS in a local search with the global search 

performance of the GA. 

To improve the performance of the algorithm in more realis- 

tic scenarios, Allen et al. [38] replaced the simple Gaussian plume 

model with SCIPUFF. This was also used by Long et al. [60] to de- 

termine the location of a contaminant release. The sensitivity of 

the GA in STE was assessed in [82] . The paper investigated the 

number of sensors necessary to identify source location, height, 

strength, surface wind direction, surface wind speed, and time of 
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release. It was found that the number of sensors required varied 

depending on the signal to noise ratio. 

In [55] Annunzio et al. combined the GA with the adjoint 

method in an Entity and Field framework (where entities are Gaus- 

sian plumes) for an improved estimate of the source term. This had 

been demonstrated by Young et al. [83] , and this required an input 

of a large amount of wind and concentration data. The approach 

estimates the axis of the plume/puff while providing an estimate of 

the wind direction and the spread of the contaminant. The source 

was located using a GA with a cost function based on contaminant 

spread. 

To estimate the source terms in a scenario of multiple releases, 

Annunzio et al. [39] extend the Entity and Field framework ap- 

proach to use multiple entities. The number of entities was in- 

creased to improve the concentration field approximation. When 

increasing the number of entities did not yield an improved field 

approximation, the number of sources was found. As there were 

too many correlated unknowns (i.e. entity mass M , release time t 

and wind speed U ), the source strength was not estimated. Instead, 

a scaling variable was determined during the optimisation process 

M / U �t . Based on a comparison by Platt and Deriggi [30] using the 

FFT07 experimental data, the algorithm obtained a better source 

location estimate than several other optimisation and Bayesian- 

based approaches. 

3.1.3. Summary on optimisation 

Optimisation methods provide a single point estimate of source 

parameters by minimising discrepancies between predicted and 

measured concentrations. The gradient climbing methods are lim- 

ited as without a suitable initial guess they can become stuck in 

an incorrect local minima. However, with a reasonable initial esti- 

mate, for instance by using the adjoint, the algorithm can converge 

to a solution quite rapidly. Intelligent global search algorithms such 

as the GA, SA and the PSM have been classified as Meta-heuristics 

in this paper. The methods benefit over gradient descent methods 

as they can handle poor initial estimates as they employ methods 

to prevent becoming stuck in local minima. 

Many modifications of the original algorithms have been pre- 

sented, in which some interesting features include: 

• The wind direction in the parameter space to account for sparse 

meteorological data [57] . 
• Hybrid algorithms to gain the benefits of global and local search 

[58] . 
• Prior information to limit the search space of the algorithms 

[63] . 
• The combination of global search algorithms or the adjoint to 

generate a good initial guess to be refined by a local search al- 

gorithm [55] . 
• Complex ATD models to improve the simple Gaussian plume 

equation resulting in improved accuracy without increasing too 

much computational load [24] . 
• Null sensor readings to narrow down where the source is not 

present [24] . 

In twin experiments, the majority of optimisation methods per- 

form well [84] . When tested upon experimental data, the accuracy 

of the solution is heavily reliant upon the ATD model and knowl- 

edge of the atmospheric conditions/stability. Several more complex 

ATD models exist that may overcome this issue. Unfortunately, for 

an accurate simulation, a vast amount of meteorological parame- 

ters were also required. Furthermore, the benefit of a more accu- 

rate dispersion model may be outweighed by the increase in the 

computational time. 

3.2. Bayesian inference 

Bayesian-based methods of STE allow probabilistic considera- 

tions to be introduced to the problem in order to account for un- 

certainties in input data. Another way of exploiting the Bayesian 

approach consists in seeking not just for one optimal solution, but 

obtaining the probability density function (PDF) of the estimated 

source parameters. In this case, the source is defined by a set 

of parameters, which are the quantities of interest. By means of 

stochastic sampling, the posterior probability distribution of these 

parameters is evaluated to fully describe the parameters of the 

source and the uncertainty on them. The goal of STE is then to 

look for the most probable parameters for the source in terms of 

posterior probability. 

Bayes theorem estimates the probability of a hypothesis or in- 

ference being true, given a new piece of evidence as given [85] : 

P osterior ∝ 

P rior × Likelihood 

Ev idence 
→ P (θ | D, M, I) 

∝ 

P (θ | I) × P (D | θ, M, I) 

P (D | M, I) 
(4) 

where the theorem estimates the probability of a hypothesis θ be- 

ing true, given the data (measurements) D , model M and prior 

information I . The prior distribution P ( θ | I ) expresses the state of 

knowledge about θ prior to the arrival of data D . The likelihood 

function P ( D | θ , M, I ) describes the probability of the data D , assum- 

ing the hypothesis θ is true. This is also known as the sampling 

distribution when considered as a function of the data. The pos- 

terior distribution P ( θ | D, M, I ) is the full solution to the inference 

problem and, converse to the likelihood, expresses the probability 

of θ given D . The final goal is to conduct inference over the pa- 

rameters which define θ , and the posterior expresses the complete 

state of knowledge of these parameters given all of the available 

data. Once completed, post processing is often required in order to 

extract useful summary information from the posterior. 

The evidence (sometimes known as the marginal likelihood) 

P ( D | M, I ) is so-named because it measures the support for the hy- 

pothesis of interest. For inference problems where only a single 

hypothesis has been or will ever be considered, the evidence is 

an unimportant constant of proportionality. When applied to STE, 

the hypothesis θ is an inferred set of parameters that describe the 

source term, the data D are the measured concentrations from the 

sensors, the model M is an ATD model, and the prior information 

I can be any information related to the problem. In early work 

where only a single source is considered, the evidence term is ne- 

glected so Eq. (4) may be simplified to: 

P osterior ∝ P rior × Likelihood → P (θ | D, M, I ) ∝ P (θ | I ) 
× P (D | θ, M, I) . (5) 

The likelihood function is used to quantify the probability of dis- 

crepancy between the measured and predicted concentrations at 

each sensor. Predictions are made by inputting the inferred param- 

eters into an ATD model. The prior probability is used to encom- 

pass any information about the source parameters known prior to 

any detection. It is often assumed no prior information is known 

beforehand and therefore this is often initially given a uniform dis- 

tribution. The posterior probability of the parameters is then pro- 

portional to the likelihood. When the inference is performed in a 

sequential process, the prior is set as the posterior of the previous 

iteration. 

Monte Carlo (MC) sampling methods are employed to deter- 

mine an accurate estimate of the posterior PDF for the source 

parameters θ . Parameter estimates and uncertainty can be deter- 

mined from the statistics of the posterior, commonly the mean 

and the standard deviations. In a high dimensional space, where 
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there are many parameters inferred, the computational effort in- 

creases exponentially. For this reason, efficient sampling techniques 

are used such as the popular Markov Chain Monte Carlo (MCMC) 

and Sequential Monte Carlo (SMC). The sequential aspect of SMC 

enables it to update the data as it arrives making it more appli- 

cable to dynamic plumes. In the following sections, different im- 

provements and modifications of the Bayesian approach to STE 

conducted in the literature are discussed. Improvements have been 

made in terms of computational efficiency of the algorithms, ac- 

curacy, improvements to the likelihood function, extension of the 

methods to handle multiple-source release scenarios and urban 

environments and how the algorithm could be enhanced to gain 

robustness under sensor noise. The Bayesian-based methods ex- 

plored in this section include: MCMC [21,41,52] , SMC [36,43,52,86] , 

differential evolution Monte Carlo (DEMC) [53] and polynomial 

chaos quadrature (PCQ) [49] among others. 

3.2.1. Markov chain Monte Carlo (MCMC) 

MCMC methods are used to efficiently sample from probabil- 

ity distributions by constructing a Markov Chain with the desired 

distribution equivalent to its equilibrium distribution [87] . With an 

initial random or informed starting point, a Markov chain is cre- 

ated where new inferences are drawn from the current link in 

the chain. The likelihood of the current inference is evaluated and 

based on acceptance criteria, it is either rejected or accepted as 

the next link in the Markov chain. Several techniques have been 

proposed to generate and accept new inferences. The most popu- 

lar one is the Metropolis-Hastings (MH) algorithm [88] , described 

by the following steps. 

Step 1 Initialisation: Propose a starting estimate of the source 

parameters: θ1 

For i = 1 : N

Step 2 Proposal: Generate a new estimate θ̄ . Sample from 

the proposal distribution q ( ·): 
θ̄ ∼ g( ̄θ | θi ) 

Step 3 Evaluate the MH acceptance probability: 

α = 

P ( ̄θ | D, M, I) q (θi | ̄θ ) 

P (θi ) | D, M, I) q ( ̄θ | θi ) 

Step 4 Accept or reject new parameters into the Markov 

chain: 

θi +1 = 

{
θ̄ if α ≥ u [0 , 1] , 
θi otherwise, 

where u represents the uniform distribution. The initialisation pro- 

cess involves selecting an initial guess of the source parameters. 

This should be based on prior information as the initial guess can 

have a significant impact on the convergence of the algorithm. The 

next proposal is generated by sampling from the end of the pre- 

vious link in the Markov Chain. A random walk is the most popu- 

lar technique, however in the literature more informed techniques 

have been proposed. During Step 3, the probability of the proposal 

being accepted is calculated based on the posterior distribution 

and proposal density of the prior estimate and of that proposed. 

In Step 4, this is compared with a random number to determine 

whether or not it is accepted as the next link in the Markov Chain 

[52] . 

The MCMC algorithms have been popular in STE due to the 

computational benefit over the more traditional Monte Carlo 

method. In [52] , Johannesson et al. proposed a number of benefits 

and implementations of the MCMC algorithms for inverse prob- 

lems including STE of ATD events. Several approaches to generat- 

ing proposals were discussed including the Gibbs sampler, random 

walk and Langevin diffusion which was suggested to yield the most 

effective random walk. In [41] Borysiewicz et al. compared several 

MCMC algorithms for STE. Those compared include: 

• Standard MCMC 

• MCMC via maximal likelihood 

• MCMC via rejuvenation and extension 

• MCMC via rejuvenation, modification and extension 

MCMC via rejuvenation, modification and extension was pro- 

posed to be the most effective during a number of synthetic tests 

which included an assessment of their efficiency when smaller 

amounts of measurements were available. In [42] , Senocak et al. 

extended the MCMC algorithm for STE to incorporate null/zero 

sensor measurements. Another extension was an enhancement of 

the simple Gaussian plume model by incorporating the turbulent 

diffusion parameters into the parameter space, thus better match- 

ing of predicted and observed concentrations. 

In [21] , Keats et al. estimated the source strength and location 

of a contaminant plume in an urban environment with the MCMC 

MH algorithm. A key feature of the method was the adjoint based 

source-receptor relationship which greatly reduced the computa- 

tional burden as the advection-diffusion equation was solved only 

once for each detector as opposed to solving for every combination 

of source parameters. The method was tested on experimental data 

from the Joint Urban 2003 atmospheric dispersion study, and the 

true parameters were shown to be located within one standard de- 

viation of the estimate. In [31] , Yee et al. successfully extended the 

aforementioned method [21] to estimate the parameters of mul- 

tiple sources during synthetic simulations where the number of 

sources was known a priori. Here the MH procedure was applied 

with simulated tempering (ST) [89] . ST was used to alter the like- 

lihood function in a way that the effects of the measured con- 

centration data were introduced gradually. This allowed the algo- 

rithm to explore the prior distribution for a number of different 

source parameter hypotheses, helping with the burn in phase of 

the MCMC algorithm by delaying sampling from the posterior. In 

[32] , Yee used a reversible jump MCMC algorithm to detect mul- 

tiple sources where the number of sources was unknown a priori. 

The reversible jump sampling algorithm which was first introduced 

by Green. [90] enables the Markov Chain to jump between model 

spaces of different dimensions. In this STE case, a different dimen- 

sion referred to a different number of sources. The jump could ei- 

ther add a single new source or remove an existing source from 

the inferred parameters. The methods successfully estimated the 

number of sources when tested on synthetic data. 

In [33] , Yee improved the method by employing a simulated an- 

nealing scheme to move between the hypothesis space, increasing 

the mixing rate of the Markov Chains, which leads to faster con- 

vergence. Similarly to ST in [31] , the algorithm alters the likelihood 

function over time to facilitate the burn-in phase of MCMC. The al- 

gorithm was tested on data from the FFT07 experiment, resulting 

in good performance of identifying the parameters of up to four 

sources along with their associated uncertainties. However, large 

parameter space by adding the number of sources into the estima- 

tion problem caused a slow computational speed. This issue was 

addressed in [34] , where a model selection approach was proposed 

to determine the number of sources. The number of sources was 

determined by finding the minimum number of sources necessary 

to represent the concentration signal in the data. The accuracy of 

the method was similar to [31,33] with the computational load sig- 

nificantly reduced. 

In [37] , Wade and Senocak. presented another method to de- 

termine the parameters of an unknown number of sources using 

the Bayesian MCMC algorithm. The method used a ranking system 

inspired by the environmental protection agencies (EPA) metric to 

determine the quality of ATD models. The method successfully de- 

termined the correct number of sources on experimental data from 
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the FFT07 experiment. The major drawback of the method, how- 

ever, was its need to run simulations for each number of sources. 

It is worthwhile noting that most algorithms above performed 

well on synthetic data and on data from the FFT07 experiment. 

This experiment was conducted in an idealistic scenario, featuring 

a high number of sensors, releases in the vicinity of the sensor 

array and a rich amount of meteorological data available. A real 

world application was presented in [91,92] by Yee et al. Here, the 

location and emission rate of a source (from the Chalk River Lab- 

oratories medical isotope production facility) was estimated using 

a small number of activity concentration measurements of a noble 

gas (Xenon-133) obtained from three stations that form part of the 

International Monitoring System radionuclide network [92] . It was 

discovered that the key difficulty in the STE lay in the correct spec- 

ification of the model errors. The initial algorithm obtained a rea- 

sonable estimate of the source parameters though the precision of 

the estimate was poor as the uncertainty bounds of the estimated 

source parameters did not include the actual values. An alternative 

measurement model was proposed, which incorporated scale fac- 

tors of the predicted concentrations in order to compensate for the 

model errors [92] . 

3.2.2. Sequential Monte Carlo (SMC) 

SMC is another technique used for efficient sampling. Unlike 

MCMC, the method is inherently parallel which allows all Monte 

Carlo proposals to be generated and evaluated simultaneously [93] . 

For this reason, it is considered to be computationally more ef- 

ficient than MCMC provided the algorithm converges well. An- 

other benefit is the sequential nature of SMC, allowing new data to 

run in the algorithm as it becomes available [93] . A popular SMC 

method uses importance sampling (IS). This involves taking a cer- 

tain number of samples from the current estimate of the source 

parameters, weighting them and using these weights to form a 

new posterior distribution, which new samples are drawn from. 

The steps are outlined as follows: 

Step 1 Initialisation: Propose an initial importance sample: 

�1: t 0 = { θ (i ) 
1: t 0 

, w 

(i ) 
1: t 0 

: i = 1 , . . . , N} 
For t = t 0 : T 

Step 2 Proposal: Generate a new estimate. Sample from 

the proposal distribution q ( ·): 
For i = 1 : N, sample 

˜ θ (i ) 
1: t 

∼ q t ( ̃  θ1: t ) = q t ( ̃  θt | ̃  θ1: t−1 ) q t ( ̃  θ1: t−1 ) 

Step 3 Update importance weights: 

For i = 1 : N, evaluate importance weights 

˜ w 

(i ) 
1: t 

∝ 

πt ( ̃  θ (i ) 
1: t 

) 

q t ( ̃  θ (i ) 
1: t 

) 
∝ 

P (D t | ̃  θ i 
t , M, I) P ( ̃  θt | ̃  θ1: t−1 ) 

q t ( ̃  θt | ̃  θ1: t−1 ) 

πt−1 ( ̃  θ (i ) 
1: t−1 

) 

q t ( ̃  θ (i ) 
1: t−1 

) 

Step 4 Normalise weightings: 

Let θ (i ) 
1: t 

= 

˜ θ (i ) 
1: t 

and w 

(i ) 
1: t 

= 

˜ w 

(i ) 
1: t ∑ N 

j=1 ˜ w 

( j) 
1: t 

Step 5 Approximate the posterior distribution: 

π(θt ) � 

N ∑ 

i =1 

w 

i 
t δ(θt − θ i 

t ) 

In [52] , Johannesson et al. first proposed SMC for STE of an 

atmospheric release. The article provides an introduction to the 

SMC algorithm for Bayesian inference and some sampling tech- 

niques including a hybrid MCMC-SMC algorithm. In [43] , Gunati- 

laka et al. used SMC with a progressive correction (PC) technique 

to converge to a solution for STE. Some limitations of the Gaussian 

plume model were addressed. In particular, as the assumption of 

uniform wind speed and diffusivity caused the plume height and 

ground level concentration to be underestimated. The concentra- 

tion read by the sensors was represented by the sum of the mean 

and fluctuating components where the mean was derived from an 

analytic solution of the turbulent diffusion equation and the fluc- 

tuating part modelled by a PDF. The performance of the algorithm 

was tested on synthetic data for a range of sensor grid densities. 

Reasonable performance was attained using grid densities as small 

as three by three. 

In [86] , Wawrzynczak et al. estimated the source strength, lo- 

cation, and ATD coefficients using SMC. Sequential importance re- 

sampling (SIR) was used which combines IS with a re-sampling 

procedure. Re-sampling was used to replace samples with low im- 

portance weights with those from a higher weighting. The algo- 

rithm was implemented first by running several iterations of mul- 

tiple MCMC chains using MH and a random walk. After a number 

of iterations, the importance weights were found and the initial 

SMC sample was drawn. The paper compared the performance of 

the MCMC and SMC algorithms using synthetic data generated us- 

ing SCIPUFF. It was found that SMC performed significantly bet- 

ter in obtaining the location estimate of the source. However, nei- 

ther found the correct release rate. This was expected to be caused 

by differences among the Gaussian dispersion model and SCIPUFF. 

Additionally, no results were presented for the estimate of the 

ATD coefficients, which were said to differ among the SCIPUFF and 

Gaussian puff models in its estimation. 

One reason many STE algorithms lose substantial performance 

when tested on experimental data arise from poor probabilistic 

models of the likelihood function. Errors in the measurements 

come from both sensor noise and modelling inaccuracies, both of 

which are difficult to specify precisely. Issues due to a lack of 

knowledge of the correct form of the likelihood function were ad- 

dressed by Lane et al. [36] . Approximate Bayesian computation 

(ABC) was used to replace the likelihood function in the SMC al- 

gorithm with a measure of the difference between predicted and 

measured concentrations. The method was able to estimate the 

strength and location of a release, in addition to the release time. 

Multiple hazardous releases were handled via a trans-dimensional 

version of the ABC-SMC algorithm. Ristic et al. [46] used ABC- 

SMC with multiple dispersion models to find the most relevant 

ATD model for the release scenario. A rejection sampler was used, 

which removes inferences that do not match the observed data 

within a specified tolerance. An adaptive iterative multiple model 

ABC sampler was proposed to increase the acceptance rate of the 

rejection sampler by adaptively generating the proposal distribu- 

tion for each sample. The algorithm was tested on experimental 

data sets collected by COANDA Research and Development Corpo- 

ration which used a recirculating water channel specifically de- 

signed for dispersion modelling. Results were shown for scenarios 

with and without obstacles. Without obstacles, very good results 

were obtained although, in the presence of obstacles, the estimate 

of the upwind source location was affected by producing a bimodal 

posterior distribution. 

In [47] , Gunatilaka et al. used binary sensor measurements 

where the threshold was unknown to determine the parameters 

of a biochemical source. The achievable accuracy of binary mea- 

surements for dispersion events was previously explored using the 

Cramer Rao bounds by Ristic et al. [45] resulting in promising re- 

sults. The algorithm found a solution iteratively using SMC IS with 

PC. The wind speed was included in the parameter space to ac- 

count for uncertainty in the prior meteorological data. The method 

was tested on experimental data showing that the algorithm could 

reasonably estimate the source location, wind speed and a nor- 

malised release rate. Due to the unknown sensor threshold, it was 

unable to determine the exact source strength; only the source 
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strength normalised by the assumed sensor threshold could be es- 

timated. 

3.2.3. Differential evolution Monte Carlo (DEMC) 

DEMC is a combination of differential evolution (DE) and the 

Bayesian MCMC methods. Essentially, it is an MCMC version of the 

GA [94] . The method is a population MCMC algorithm in which 

multiple Markov Chains are run in parallel. The selection process 

is based on the Metropolis acceptance ratio and the main differ- 

ence to the MCMC lies in the generation of new proposals via a 

jump. Instead of a tuned random walk or multivariate normal dis- 

tribution, DEMC uses multiple chains to adaptively determine the 

jump proposal based on the difference among them. 

In [53] , Robins et al. used DEMC to determine the source term 

of a biological [95] or chemical [96] release. DEMC was used to 

enable the jump size to adapt itself to the current state of the 

posterior estimate, thus alleviating responsibility from the user to 

specify a reasonable jump size. To reduce the number of expensive 

dispersion calculation runs, a two step decision process was used. 

The first accepted or rejected the proposal based on prior infor- 

mation. If it was accepted, it was passed to the dispersion model. 

Unlike much of the related work, the method had a large focus on 

operational aspects in emergency response such as incorporating 

time variant data, additional data collected by newly alerted sen- 

sors, and the removal of older data and inferences. The approach 

used a probabilistic sensor model proposed in [97] based on an 

analysis of experimental data. 

3.2.4. Polynomial chaos expansion (PCE) 

The polynomial chaos-based estimation algorithms have re- 

ceived increasing attention in research recently. They arise from 

an extension of the homogeneous chaos idea developed by Wiener 

[98] as a non-sampling based method to determine the evolution 

of uncertainty in a dynamical system. The main principle of the 

PCE approach when applied to inverse problems such as STE is to 

expand random variables using polynomial basis functions. Suit- 

ably chosen polynomials converge rapidly to a solution of the pos- 

terior probability distribution. To manage the non-polynomial non- 

linearity difficulties in polynomial chaos integration, Dalbey et al. 

proposed a formulation known as polynomial chaos quadrature 

(PCQ) [99] . PCQ replaces the projection step of PCE with numerical 

quadrature. The resulting method can be viewed as a Monte Carlo 

evaluation of system equations with sample points being selected 

by quadrature rules. 

In [49] , Madankan et al. used a PCE based minimum variance 

approach for STE. PCQ was implemented using the conjugate un- 

scented transform method [100] to generate new sampling points 

from the posterior distribution using the Bayesian framework. The 

paper compared the performance of PCQ with SMC and an ex- 

tended Kalman filter (EKF) to determine the source parameters 

of an atmospheric release using SCIPUFF as the underlying ATD 

model. It was found that the PCQ technique outperformed the EKF 

in terms of accuracy and the SMC method in computational speed. 

3.2.5. Summary on Bayesian inference 

Bayesian-based approaches to STE were described in this sec- 

tion. The major benefit of methods was in the output of posterior 

PDFs to determine parameter estimates with associated uncertain- 

ties or confidence level. The methods presented implementations 

of efficient sampling methods to determine the source term. The 

algorithms varied in the source parameters estimated, specification 

of the likelihood function, ATD models used and several schemes 

to improve performance with regards to computational efficiency, 

solution accuracy and robustness. A range of scenarios have been 

considered including utilising varying meteorological information, 

steady or dynamic plumes, long/short range dispersion events, ur- 

ban/plain environments and single/multiple releases. 

One of the advantages of the Bayesian-based approaches was in 

specifying probability distributions of the measured and modelled 

data. In most cases, this had been assumed to take a Gaussian dis- 

tribution. In [53] , more complex models were derived based on the 

characteristics of particular sensors and the agent. 

Several approaches have been proposed to reduce the compu- 

tational time of the algorithms. This was predominantly done by 

reducing the number of ATD model runs. This was achieved via: 

(i) a two step inference acceptance criteria so poor samples are 

not run in a dispersion model [53] ; (ii) the adjoint source-receptor 

relationship [21] and (iii) by storing a library of pre-computed ATD 

simulations. The focus of DEMC and PCQ was on reducing the 

number of iterations required in an MCMC-like algorithm by gen- 

erating better inferences. 

The event of multiple releases posed a significant problem. 

Methods to determine the number of sources and to correctly 

characterise them required significantly more computational time. 

Earlier methods simply ran the original Bayesian algorithms with 

a specified number of sources and parameters in the parame- 

ter space and determined the appropriate number which is most 

closely matched with the data. Yee [33] determined the number of 

sources using simulated annealing to move a Markov Chain among 

parameter spaces and later work used a more efficient model se- 

lection method [34] . 

Upon testing in realistic scenarios or on experimental data, sev- 

eral problems were also identified including the limitation of the- 

oretical/ideal dispersion models (e.g. Gaussian plume model) and 

the difficulty in attaining accurate representations of model er- 

rors and noise. Yee discovered the significance of the represen- 

tation of model errors and the loss in accuracy caused by differ- 

ences between the dispersion model and the real dispersion event 

[92] . Other limitations included computational time despite sev- 

eral improvements to reduce it, the amount of prior information 

required and the increase in computational cost when more vari- 

ables are included in the parameter space. Ristic et al. proposed 

several strategies to overcome the problems such as: making use 

of ABC to account for the fact it is nearly impossible to accurately 

know the exact model and sensor errors [36] ; the use of multiple 

dispersion models to find the most appropriate one for the current 

scenario [46] ; the use of binary measurements to reduce noise ef- 

fects and enable the use of cheaper sensors [45] ; and the use of 

binary sensors where the threshold was unknown was explored in 

[47] to account for sensor bias/drift and for easy inclusion of alter- 

native data sources. 

An example of the limitation of the Gaussian dispersion model 

was found in [86] , where the Gaussian plume dispersion model 

was unable to accurately estimate the strength of release from sim- 

ulated data generated using SCIPUFF. A trade-off is required be- 

tween the accuracy of the dispersion model and its calculation 

speed. The difficulty of estimating the strength of the release was 

highlighted further in [30] where algorithms attempted to estimate 

the strength of release from experimental data. Among eight dif- 

ferent algorithm developers, incorporating a number of techniques, 

only a few of them were able to consistently estimate the strength 

to within a factor of ten. 

3.3. Discussion on STE 

The STE methods examined have been split into optimisation 

and Bayesian-based approaches. At the end of each subsection, a 

summary of each of the techniques was given discussing innova- 

tive ideas and problems found within the literature. Within each 

section, there was a range of ideas and implementations of the al- 

gorithms; in the following, we will discuss the application of the 
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Table 1 

Variables and acronyms used in Table 2 . 

Variable Description 

rule q Source strength or release rate 

n Number of sources 

x,y,z Location coordinates, typically downwind, crosswind, height 

t 0 Release time 

t Release duration 

U Wind speed 

θ Wind direction 

ζ Dispersion model parameters, dependant on the model used 

SS Steady state 

LS Lagrangian stochastic 

general frameworks and describe the key problems found within 

the literature of STE. 

The Bayesian methods benefit from producing a final estimate 

with confidence levels and the fact that prior information can be 

incorporated into the algorithm with a probability distribution. Any 

inaccuracies due to modelling errors or sensor noise could be ac- 

counted for with appropriate distributions, though these might be 

difficult to characterise perfectly, in particular, when applied to a 

real scenario. 

The optimisation methods produce a single point estimate of 

the source parameters. The methods suffer from their inability to 

include confidence intervals on any prior information it may use 

or in the final estimate. In spite of this, the optimisation methods 

are often less computationally expensive and may converge faster 

than Bayesian methods. They also benefit from the requirement of 

little or no prior information, though the more available can result 

in better performance. 

Incorporating the adjoint source-receptor relationship or back 

trajectories methods produces a point estimate of the source by 

inverting meteorological variables and back tracking from triggered 

sensors. The method is very fast but highly dependent on accurate 

rich meteorological information and accurate dispersion models. 

As a technique to gain an initial estimate to be optimised, it has 

shown significant performance benefits. The back trajectory algo- 

rithms show how the system can benefit from null sensor readings, 

as these can be used to narrow down the search space for possible 

source locations. In other words, it helps by providing more infor- 

mation about where the source is not present. By narrowing down 

the search space, the accuracy of the source term estimate can be 

increased significantly and computational time reduced. A sum- 

mary of the STE algorithms that have been reviewed is given in 

Table 2 which is accompanied by Table 1 to describe the variables 

and acronyms that have not been previously defined in the paper. 

The algorithms described were created for a static network; how- 

ever, with some modification, most would be applicable to data 

gathered by mobiles sensors. 

To summarise the literature in STE, it can be seen that a num- 

ber of methods produce very good performance in an idealistic 

scenario of little or no noise, a plain flat environment, plenty of 

sensors and a single source. Difficulties arise when these condi- 

tions are not met, which is generally the case in real scenarios. 

The difficulties found in STE when moving from a theoretical to a 

realistic setting are common to most research fields. Some of the 

key issues are listed in Table 3 . In the following section, the use of 

mobile sensors to solve atmospheric dispersion problems are re- 

viewed. Mobile sensors provide several benefits to solve many of 

the limitations encountered by static networks. 

4. Boundary tracking and source estimation using mobile 

sensors 

The use of mobile sensors for STE is a relatively new area of 

research. It incorporates many of the same research disciplines 

as static networks for STE with the addition of sensor movement 

strategies, cooperation between mobile sensors, and dynamics. In 

estimation of environmental plumes, mobile sensors also provide 

the ability to track the contaminant boundary directly and to per- 

form source seeking. Boundary tracking refers to approaches that 

direct sensors along a contour of interest. Source seeking refers 

to guiding sensors towards the location of a source. Both of these 

are highly relevant to gain information in contaminant dispersal 

events. They can be used as data collection strategies for STE and 

also for verification of the source term estimate. For this reason, a 

brief review of boundary tracking and source seeking approaches 

is presented in Section 4.1 and 4.2 , followed by a review of al- 

gorithms developed specifically for STE using mobile sensors in 

Section 4.3 . Note that source seeking and source term estimation 

are considered differently as source seeking attempts to move the 

sensor towards the source whereas source term estimation will es- 

timate the source position and strength not necessarily attempting 

to move towards it. 

4.1. Boundary tracking 

Boundary tracking algorithms are used to determine the edge of 

a region. Researchers have explored boundary tracking algorithms 

to monitor oil spills, algae growth, volcanic ash clouds, contami- 

nant gases and nuclear radiation levels. In the literature, bound- 

ary tracking algorithms have taken the form of control approaches 

[101–113] and estimation and control approaches [114–129] where 

several estimation techniques have been used to produce more in- 

formative trajectories. A major difference among methods lies in 

the approximations of the concentration field. Most methods use 

point measurements of the concentration value of the substance 

provided by sensors on-board mobile robots, and with these mea- 

surements, various approximations have been made. Many meth- 

ods use the point measurement itself [107,109,110,118,119] or as a 

binary signal to determine whether or not the sensor is inside or 

out of the affected/contaminated region [6,101–105,116,117] . Some 

use an estimate of the gradient or Hessian of the contaminant ob- 

tained either through spatially separated simultaneous measure- 

ments by collaborating multiple sensors or via consecutive mea- 

surements by a single sensor [106,111,112,121,124–129] . Another 

method is to estimate the curvature of the boundary; this has been 

done using several sensors in a formation or by visually estimating 

the curvature using a camera [7] . The majority of researchers have 

assumed slow moving, clearly defined, 2-D boundaries with accu- 

rate sensors. Some have attempted to extend the state of the art, 

researching the effect of sensor noise and studying 3-D boundaries 

[125] . The remainder of this section provides a brief description of 

the boundary tracking algorithms found in the literature. 

4.1.1. Control law 

a) Bang-bang control. Bang-bang control is a simple algorithm 

which involves switching abruptly between two states. In the case 

of tracking a boundary, the turning direction of the vehicle is 

changed upon crossing the contour boundary. Several papers in the 

literature have researched the use of bang-bang control for track- 

ing an environmental boundary [101–106] . 

Kemp et al. [105] implemented a bang-bang control algorithm 

that required only a concentration sensor to monitor an underwa- 

ter perimeter using unmanned underwater vehicles (UUVs). Some 

drawbacks of the method include: (i) with a large crossing angle, 

the tracking can become very inefficient; (ii) noise can cause the 

UUV to turn the wrong way and fail to track the boundary; and 

(iii) narrow bottle necks in the boundary may cause sections to 

be missed. A turning angle correction was proposed by Bertozzi 

et al. [103] to improve efficiency and a cumulative sum algorithm 
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Table 2 

Summary of STE methods. 

Ref. Date Paramters Type Source Algorithm Domain knowledge Met var Dispersion model 

[52] 2004 x,y,q Plume Single SMC-MCMC MH NA U, θ , ζ INPUFF 

[41] 2012 x,y,q, ζ SS plume Single MCMC MH NA U, θ Gaussian plume 

[42] 2008 x,y,q, θ , U,H, ζ SS plume Single MCMC MH Uniform priors NA Gaussian plume 

[21] 2007 x,y,z,q SS plume Single MCMC MH Urban map U, θ , ζ Adv-diff

[31] 2007 x,y,q,n SS plume Multiple MCMC SA n U, θ , ζ Adv-diff

[32] 2007 x,y,q,n,t Plume Multiple RJ MCMC Time prior U, θ , ζ Backward-time LS 

[33] 2010 x,y,q,n,t Plume Multiple MCMC SA Time prior U, θ , ζ Adv-diff

[34] 2012 x,y,q,n,t Plume Multiple MCMC MS Time prior U, θ , ζ Backward-time LS 

[35] 2010 x,y,t, θ , ζ Plume Multiple MCMC MH Informative priors, n U absorption-drift-diff

[43] 2008 x,y,q SS plume Single MC IS PC NA U, θ , ζ Turbulent diff equ 

[44] 2014 x,y,z,q,U, ζ SS plume Single MC IS MH PC NA U, θ Gaussian plume 

[45] 2014 x,y,z,q,U, ζ SS plume Single MCMC MH NA U, θ Gaussian plume 

[46] 2014 x,y,z, ζ , q/U, SS plume Single ABC-SMC Informative priors U, θ Various 

[36] 2009 x,y,z, t 0 , n,q Plume Multiple ABC-SMC Gaussian priors U, θ , ζ Gaussian plume 

[47] 2016 x,y,q,U SS plume Single MC IS PC Urban map U, θ , ζ Turbulent Adv-diff

[37] 2013 x,y,q/U, θ , ζ , n SS plume Multiple MCMC MH Uniform priors NA Gaussian plume 

[53] 2009 x,y,q, t 0 , t Plume Single DEMC Parameter bounds U, θ , ζ Gaussian plume 

[48] 2015 x,y,q SS plume Single EnKF NA U, θ , ζ Gaussian plume 

[49] 2012 x,y,q SS plume Single gPCq minVar NA U, θ , ζ SCIPUFF 

[23] 2014 x,y,q SS plume Single Least squares Geometry exploitation U, θ , ζ Advection-diffusion 

[40] 2015 x,y,q SS plume Multiple Least squares Geometry exploitation, n U, θ , ζ Advection-diffusion 

[69] 2015 x,y,q SS plume Single Least squares Urban geometry U, θ , ζ CFD 

[50] 2014 x,y,q SS plume Single MRE-PSO Parameter bounds U, θ , ζ Gaussian plume 

[54] 2010 x,y,q,t Plume Single PSM NA U, θ , ζ Gaussian plume 

[51] 2006 x,y,q SS plume Single SA NA U, θ , ζ Gaussian plume 

[57,58] 2007 x,y,q, θ SS plume Single GA-NMDS U ζ Gaussian plume 

[38] 2008 x,y,q,t,n Plume Multiple GA x,y,q,t Inv SCIPUFF U, θ , ζ SCIPUFF 

[39,55] 2012 x,y,q/tU, ζ , θ ,n Plume/Puff Multiple GA Plume axis/spread NA Gaussian plume/puff

[24] 2015 x,y,z,q,t,U, θ ,n Plume/Puff Multiple BFGS x,y,q,t Inv SCIPUFF U, θ , ζ SCIPUFF & HLEPM 

Table 3 

Key difficulties in STE. 

Prior knowledge Sensing Sensor locations 

rule Meteorological data Noise Not enough triggered sensors 

Parameter space Bias/drift Poor sensor locations 

Domain knowledge Sampling frequency 

Modelling issues Release scenario Computational time 

Dispersion modelling Multiple sources Accuracy vs. cost 

Accuracy Environment Estimation algorithms 

Modelling errors Release type 

was implemented to provide robustness to noise. The turning an- 

gle correction was based on the assumption that the boundary be- 

tween the last two crossing points and beyond was a straight line. 

In [104] , this method was extended to multiple vehicles where 

separation was maintained between them by alternating the speed 

should they come to close to one another. In [6] , the authors used 

a random coverage controller, a collision avoidance controller and 

a bang-bang angular velocity controller to detect and surround an 

oil spill. In [102] , a bang-bang controller was used to follow con- 

tours of a radiation field with an autonomous helicopter. The for- 

ward speed of the helicopter was set at the beginning of the test 

and could be adjusted to adapt to search area, the desired speed of 

the search, and the desired accuracy of the finished contour. The 

applicability of these sensor movement strategies has only been 

evaluated for static phenomena, or the authors assumed that the 

movement of the sensing vehicles was much faster than that of 

the observed phenomenon. In [101] , Brink adapts the method in 

[103] to track the boundary of a dynamic plume in an environ- 

ment where a low-density static sensor network was installed. An 

estimate of the plume centre movement was added to the sensors 

to account for plume dynamics [101] . 

b) Sliding mode control. When applied to boundary tracking, slid- 

ing mode control [107] is similar to bang-bang control as both 

methods change the turning direction of the vehicle based on its 

position relative to the contour. Sliding mode control can produce 

more efficient tracking as the vehicle turns before exiting/entering 

the contour. The sliding variable was defined as the difference be- 

tween the desired/threshold density and the measured density of 

the contaminant. In [107] , a sliding mode control law was used 

to steer a vehicle to a location where the distribution assumed a 

pre-specified value and afterwards ensured circulation of the ve- 

hicle along this set at the prescribed speed. In simulation, the al- 

gorithm tracked a boundary with noise added to the concentra- 

tion data. In [108] , this method was extended to multiple vehicles 

where a guidance law that altered the longitudinal speed was used 

to ensure effective distribution of the team. In [109] , a real world 

experiment was performed to justify the navigation and guidance 

algorithms. The experiments showed some robustness to common 

sources of uncertainties in robotic applications. The effect of chat- 

tering which is common in sliding mode based approaches was 

not observed in the experiments. In [110,130] a sliding mode con- 

trol algorithm was proposed that allowed a single, sensor enabled 

agent to navigate along the boundary of a contaminated region. 

The efficacy of the proposed approach was demonstrated on a re- 

alistic example pertaining to synthetic volcanic eruption dispersion 

data generated by the NAME ATD model [131] . 

c) Formation control. Based on estimated concentration gradient, 

Hessian matrix and curvature of the environmental contour line, 

Zhang and Leonard [111] used a formation of Newtonian particles 

to track level sets of a field at unitary speed. The desired forma- 

tion was maintained by a formation shape control law based on 

Jacobi transform. The Jacobi transform decoupled the dynamics of 

the formation centre from the dynamics of the formation shape, 

which allowed separate control laws to be developed. Following a 

differential geometric approach, steering control laws were devel- 

oped separately that controlled the formation centre to detect and 

move to a desired level surface and track a curve on the surface 

with known curvatures. The particles’ relative position changed so 
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that they optimally measured the gradient, and the curvature of 

the field in the centre of the formation was estimated using data 

fusion. In [112,113] , the estimates from the cooperative filter were 

used in a provable convergent motion control law that drove the 

centre of the formation along level curves of an environmental 

field. The method was later extended [112] to track a 3-D surface. 

4.1.2. Estimation and control 

a) Approximation of boundaries. In [114] , White et al. presented a 

method of approximating a cloud boundary using a 2-D splinegon 

defined by a set of vertices linked by segments of constant cur- 

vature. The method was inspired by the fact that it is beneficial 

to be able to express the predicted dispersion of a contaminant 

cloud in a compact form so that it can be shared among a UAV 

group with minimal communication overhead and maximum util- 

ity in guidance algorithms. Traditional methods of modelling cloud 

dispersion are computationally expensive and have limited use for 

directing UAVs. The clouds behaviour must be expressed in a sim- 

plified manner to allow fast algorithms to guide UAVs and track the 

contaminant. The research in [114] is one of very few methods that 

estimate the dispersion of the cloud in a low computational man- 

ner. The splinegon algorithm was tested against contours produced 

using SCIPUFF and showed a good representation; however, there 

was some error in predicting the future dispersion of the cloud. 

The dispersion estimation used a simple linear equation and could 

be a potential area for improvement using improved estimation 

techniques. Subchan et al. [115] presented a path planning algo- 

rithm comprised of Dubins paths and straight lines to guide UAVs 

to approximate a boundary. Equipped with a relevant sensor, the 

UAVs recorded the entry and exit points of the cloud. These points 

were used as vertex data in construction of a splinegon [114] that 

represented the contaminant cloud. In [116,117] , Sinha et al. pro- 

posed two methods for coordinating a group of UAVs to gather the 

vertex data. In [117] , the paths of the UAVs were designed progres- 

sively, after every transition through the cloud. A transition ended 

near the centre of the cloud, here the UAVs negotiated optimum 

target vertices based on the distance from them. Though it is ef- 

ficient, this method presented problems in collision and obstacle 

avoidance. In [116] , each UAV was assigned a sector. It circulated 

in its sector and updated the location of two neighbouring vertices. 

This provided collision avoidance among UAVs and obstacle avoid- 

ance was achieved by a simple alteration of the planned path. 

b) Model predictive control. In [118] , Zhang and Pei used model 

predictive control (MPC) to track the boundary of an oil spill us- 

ing a single UAV. Universal Kriging, otherwise known as Gaussian 

process regression, was used to predict the future state of the sys- 

tem for use in the MPC. The advantage of the Kriging method was 

that it is an optimal interpolator in the sense that the estimates 

were unbiased and the minimum variance was known, so that it 

could relatively accurately construct the environment map. In ad- 

dition, the advantage of the MPC was its constraint handling ca- 

pacity. Nonlinear MPC was used to estimate the future states at 

sampling instants and determine the optimal manoeuvre based on 

minimising a cost function with control constraints. The cost func- 

tion was derived from the difference between measured concentra- 

tion and the desired threshold with a penalty weight added to con- 

strain the angular rate of the vehicle. The method was tested on 

simulated data based on the advection-diffusion equation which 

demonstrated the proposed method was feasible and effective; 

however, this was in the absence of sensor noise and the contam- 

inant boundary was relatively well defined and bounded. 

Euler et al. [119] proposed an adaptive sampling strategy to 

track multiple concentration levels of an atmospheric plume by a 

team of UAVs. The approach combined uncertainty and correlation- 

based concentration estimates to generate sampling points based 

on already gathered data. The adaptive generation of sampling lo- 

cations was coupled to a distributed MPC for planning optimal ve- 

hicle trajectories under collision and communication constraints. 

The domain area was represented as a grid of discrete cells. Each 

cell stored a Gaussian distribution defined by the expected con- 

centration value and variance. A vehicle remained at a sampling 

location for a number of time steps in order to successfully pro- 

cess the sample. A correlation among adjacent measurements was 

assumed and used to infer information about the concentration 

at locations surrounding the sampling point. New sampling points 

were selected based on the maximum variance of reachable posi- 

tions. Numerical simulation results demonstrated the ability of the 

method to track a boundary with noise added to the data. The ma- 

jor limitation was in the amount of time taken to generate an es- 

timate of the perimeter, caused by sampling times used to handle 

noise. 

c) Support vector learning. Kim et al. [120] used mobile sensors to 

estimate the boundary of physical events such as oil spills. The 

boundary estimation problem was set in the form of a classifica- 

tion problem of the region in which the physical events occur. Sup- 

port vector domain description (SVDD) was employed, which was 

able to represent boundaries in a mathematical form regardless 

of the shape. Furthermore, by using the hyper-dimensional radius 

function obtained from SVDD, a velocity vector field was generated 

which gave asymptotic convergence to the boundary with circula- 

tion at the desired speed. The desired speed was adjusted to coor- 

dinate the mobile sensor so that their intra-vehicular spaces were 

maximised for efficient estimation of the boundary and fast reac- 

tion when the boundary changes. The method was tested in both 

simulations and experiments though the boundary was clearly de- 

fined and bounded with no account for sensor noise. It was noted 

by the authors [120] that future work would focus on time-varying 

boundaries and other methods such as the MPC. 

d) Optimisation. In [121] , Srinivasan and Ramamritham estimated 

the contour of a specified concentration in a bounded region with 

mobile sensors. The spatial domain was modelled as a grid and 

the sensor was assumed to be able to measure the concentration 

at its current and neighbouring grid points. At each time step, 

the sensors could remain still or move to a neighbouring point. 

The contour was tracked by minimising a cost function based on 

the difference between the desired and measured concentration of 

pollutant. The ability to minimise the cost function and track the 

boundary was assessed for three optimisation algorithms: (i) the 

greedy algorithm; (ii) simulated annealing; and (iii) a newly pro- 

posed collaborative algorithm based on minimising centroid dis- 

tance. It was found that the collaborative method estimated the 

contour with less error and latency. The method was capable of 

estimating complex shaped contours though it required a number 

of assumptions such as: a well-defined closed curve, an interior 

point known by the sensors, no sensor error, and that the sen- 

sor could determine concentrations at its neighbouring grid loca- 

tions. In [122] , Srinivasan et al. improved the method and named 

it ACE (adaptive contour estimation). The method estimated and 

exploited information regarding the gradients in the field to move 

towards the contour. Instead of assuming knowledge of the cen- 

troid, the centroid of the contour was estimated based on history 

of movements, points already traced on the contour and sensor’s 

current locations. A comparison was made among techniques of 

approaching the contour, including a direct descent algorithm, a 

spread always algorithm and the newly proposed adaptive algo- 

rithm. In ACE, at each step, a sensor decides whether to move to- 

wards the contour or spread, (direct descent or spread always). A 

bias parameter was used to determine whether the sensors should 

spread or approach the contour, and it was computed based on the 
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size of the contour, the spread of the sensors and distance from the 

contour. In numerical simulations, ACE was shown to significantly 

reduce latency in contour estimation when compared to directly 

approaching the contour. 

Glow-worm swarm optimisation (GSO) is an algorithm origi- 

nally proposed in [123] primarily to detect multiple optima of a 

function and considered to be ideal for implementation in multi- 

robotics platforms. It is used commonly for the detection of multi- 

ple emission sources. In [124] , this method was extended to simul- 

taneously detect multiple emission sources and map the bound- 

ary. Subsequently, the methodology was also extended to map 3- 

D boundaries [125] . The algorithm finds the source by following 

the gradient until it reaches a maximum; conversely, it finds the 

boundary by following the gradient in the negative direction un- 

til it reaches a threshold concentration. Once on the boundary, the 

swarm does not move. In order to prevent clumping up of swarm 

agents, once on the boundary, they repel one another. The method 

was successful in simulations [124] using 150 agents to map a 

boundary and detect three sources. Although the algorithm per- 

formed well, the use of such a large number of agents is not ideal. 

Other problems arise in becoming stuck in local minima or max- 

ima if the assumption of the distribution of the field does not hold. 

e) Neural networks. Sun et al. [126] proposed a robust wavelet 

neural network (WNN) control method to address the problem of 

environmental contour line tracking using a Newtonian particle. It 

was assumed that each vehicle was able to estimate the concen- 

tration value, the gradient and its current location. To track the 

contour line, a dynamic control law was designed using the ve- 

hicle’s uncertain dynamics and the Hessian matrix of the environ- 

ment concentration function which was approximated by an on- 

line learning WNN. The method was tested using Lyapunov func- 

tions to show accurate tracking of a well-defined, bounded contour 

line in the absence of sensor noise. 

In [127] , Sun et al. used a radial basis function neural network 

(NN) in a similar manner to above; however, the method was de- 

signed for a non-holonomic mobile robot as oppose to a Newto- 

nian particle. A radial basis function NN was used to approximate a 

non-linear function containing the uncertain model terms and the 

elements of the Hessian matrix of the environmental concentration 

function. Then, the NN approximation was combined with robust 

control to construct a robust adaptive NN controller for the mobile 

robot to track the desired environment boundary. The method was 

tested in simulations similar to [126] . 

f) Model based prediction and control. Li et al. developed a con- 

trol strategy to track the front of an evolving dynamic plume in 

a marine environment modelled by the advection-diffusion equa- 

tion [128] . Instead of using only concentration gradient measure- 

ments, the transport and dispersion model was incorporated into 

the control design. An observer was designed to estimate the dy- 

namic movement of the plume front, and a feedback control law 

was constructed for a robot to track it. The method was extended 

to a multi-robot scenario where the control laws were designed 

to account for a robot team in a nearest neighbour communication 

topology. For the single robot case, the aim was to patrol along the 

plume front, and for the multi robot case, the aim was to achieve 

an even distribution of the robots around the plume front. The 

methods were tested in simulations without consideration of noise. 

In [129] , Fahad et al. tested the method presented above in 

a more realistic environmental model set-up. A probabilistic La- 

grangian environmental model was used, which can capture both 

the time-averaged, idealised structure and the instantaneous, real- 

istic structure of a dynamic plume. The simulation demonstrated 

how a single robot was capable of patrolling a plume front using 

the control law designed in [128] where the plume front was noisy 

and fairly realistic. It was found that the sensor measurement of 

the concentration and estimation of the gradient and divergence 

of the concentration were of vital importance to the success of the 

plume tracking. It was assumed that the sensors were area-level 

measurement sensors (such as ultraviolet, infra-red, visible band, 

radar or passive microwave sensors) rather than point detectors 

(such as chemical sensors). If the sampling radius was reduced to 

a very small value, the plume concentration had very high vari- 

ance so that the controller struggled to produce accurate tracking 

results. 

4.1.3. Summary 

A range of methods have been proposed to track the boundary 

of environmental fields. The methods vary in their measurements 

of the field such as binary, concentration values (point measure- 

ments), gradients or curvature and also in the types of tracking al- 

gorithms used to trace the boundary. The effect of 3-D boundaries, 

sensor noise, and dynamics has been briefly explored with a large 

area available for potential improvements. Table 4 provides a sum- 

mary of the boundary tracking methods that have been reviewed. 

4.2. Source seeking 

This section explores source seeking algorithms with mobile 

sensors. The methods aim to localise a source by moving towards 

it without an attempt to estimate other parameters such as the 

release rate. Although there is less information output than STE 

techniques, source seeking algorithms are still very relevant to the 

STE problem using mobiles sensors. A number of techniques exist 

ranging from simple gradient climbing algorithms to more complex 

techniques to account for sporadic measurements of concentration. 

As this is not the primary topic of the current work, only a brief 

overview of source seeking is presented in this paper. A more de- 

tailed review has been done by Kowaldo and Russel [132] which 

focused on odour source localisation, though a lot of research has 

been conducted in the field since this time. 

4.2.1. Bio-inspired 

Chemotaxis are used throughout the literature for source seek- 

ing [133,134] . The method was biologically inspired from the be- 

haviour of a number of organisms (Moths, Lobsters, E-coli bacteria, 

Dung beetles, and Blue crabs). Most chemotaxic methods focused 

on climbing a gradient of the concentration value. The gradient 

was determined by taking measurements of the concentration at 

spatially separated positions. These methods relied on the assump- 

tion that the concentration gradient would consistently be positive 

in the direction of the source; this is often not a valid assumption 

for atmospheric dispersion due to turbulence. 

Anemotaxis are another method that has been used in the lit- 

erature [135,136] . This technique used knowledge of the motion of 

fluid to help find the source. Several researchers have combined 

chemical concentration and fluid flow measurements to find an 

odour source. Some techniques include: 

• The Zigzag/Dung Beetle method, which involved moving up- 

wind within the odour plume in a zigzagging motion [130,135] 
• Plume-centred upwind search [130,136] 
• Silkworm moth inspired algorithm [133,137] 

Fluxotaxis is a source seeking technique that incorporates fluid 

and chemical concentration measurements and estimation of the 

mass flux. Zarzhitsky et al. developed a Fluxotaxic algorithm for 

a swarm, which found the source by climbing up the mass flux 

gradient [138–141] . Computational fluid dynamics had been used 

to estimate the average bearing of the flow. The technique outper- 

formed several chemotaxis and anemotaxis methods during simu- 

lations though there was no experimental comparison. 
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Table 4 

Boundary tracking summary. 

Ref Date Boundary type Vehicle Cooperation Measurement Tracking algorithm Boundary 

approximation estimation 

[101] 2014 Cloud UAV NA Binary Bang-Bang NA 

[102] 2012 Radiation UAV NA Binary Bang-Bang NA 

[103] 2007 Ellipse Robot NA Binary Bang-Bang Optimised Ellipse 

[104] 2009 Well defined edge Robot Speed control Binary Bang-Bang NA 

[105] 2004 Underwater plume UUV Speed control Binary Bang-Bang NA 

[6] 2005 Well defined edge Robot Potential Field Binary Bang-Bang NA 

[107] 2011 Radiation Nonholonomic NA Conc Sliding mode NA 

[109] 2014 Scalar field Nonholonomic Speed control Conc Sliding mode NA 

[110] 2014 Cloud Nonholonomic NA Conc Sliding mode NA 

[116,117] 2008 Cloud UAV Geometrical Binary Geometrical Splinegon 

[106] 2008 Oil spill UAV Speed control Curvature Geometrical Polygon 

[118] 2014 Oil spill UAV NA Conc MPC Kriging 

[119] 2012 Cloud UAV MPC Conc MPC Correlation 

[121] 2006 Environmental Agent Est centre Gradient Minimise cost function NA 

[124,125] 2012 Environmental Agent Repel Gradient GSO NA 

[126] 2011 Environmental Newtonian NA Gradient Dynamic control law WNN 

[127] 2011 Environmental Newtonian NA Gradient Dynamic control law NN 

[128] 2014 Cloud USV Geometric Gradient Estimator-controller Transport model 

[129] 2015 Cloud USV Geometric Gradient Estimator-controller Lagrangian model 

[111,112] 2011 Scalar field Newtonian Formation Curvature Curve tracking control Curvature by formation 

Conc: Concentration 

4.2.2. Bayesian 

Bayesian methods introduced probabilistic robotics to the 

source localisation problem [142,143] . In [143] , Pang and Farrell 

modelled the plume using stochastic methods based on Bayesian 

reasoning. A hidden Markov model (HMM) was used to imple- 

ment the stochastic approach for plume modelling and predicting 

the most likely location of a source. The approach was tested in 

simulations and with experimental data. The global wind field was 

used to integrate upwind and predict the path of the contaminant. 

Several other approaches have located a source using the Bayesian 

framework. Li et al. [144] and Neumann et al. [145] have used a 

particle filter to localise an odour source in outdoor environments. 

In [146] , Vergasolla et al. proposed a search strategy based on in- 

formation theoretic principles, referred to as Infotaxis. A measure- 

ment strategy was adopted, which measured the rate of particle 

encounters rather than a concentration reading. In a lattice envi- 

ronment, the searcher would determine the move that maximised 

the expected information gain in the form of entropy reduction or 

increase in particle encounters. The expectations were based on 

the information currently available, which was the posterior field. 

The method capitalised on the fact that the closer to the source, 

the higher the rate of information acquisition (particle encounters), 

hence tracking the rate of information acquisition would guide the 

searcher to the source similarly to the concentration gradients in 

chemotaxis. The method could handle situations of sporadic and 

intermittent concentration information where the chemotaxis al- 

gorithms would struggle. The infotaxis search attempts to find a 

balance between exploring to gain more information and exploit- 

ing the information currently available. This method was shown to 

successfully find the source where the data was intermittent and 

sporadic. Following [146] , several researchers have studied the effi- 

cacy of infotaxis and proposed modifications and extensions [147–

151] . 

4.2.3. Summary 

Source seeking algorithms have featured many techniques that 

have been dependant on the quality of information available to 

the robot. Gradient climbing methods such as chemotaxis perform 

well in concentration fields with well defined gradients; however, 

in turbulent flows or with a noisy sensor, the gradient does not al- 

ways lead directly to the source. Several biologically inspired algo- 

rithms have been proposed using a combination of chemotaxis and 

anemotaxis to capitalise on available wind information. Bayesian 

based source seeking algorithms yield a benefit from their proba- 

bilistic aspect, thus enabling a robot to localise a source in stochas- 

tic environments with uncertainty in the observations. An interest- 

ing measurement strategy was adopted in [146] where the number 

of particle encounters were used rather than a concentration read- 

ing. 

4.3. Source term estimation 

STE using mobile sensors is a relatively immature area of re- 

search. The increase in performance and decrease in cost of small 

computers and electronics has made it a more appealing and feasi- 

ble option than in the past. Mobile sensors could be used indepen- 

dently, or in conjunction with static sensors. They can overcome 

many of the limitations imposed by a static network. Firstly, it is 

infeasible to cover all regions of importance with static sensors, 

particularly a dense enough grid of static sensors for STE to be 

performed before the contaminant has spread significantly. Sensors 

are expensive, as will be their communication network, powering, 

maintenance and protective holdings. Mobile sensors enable mea- 

surements to be taken from more informative locations. This intro- 

duces a new area of research to STE, with relation to sensor path 

planning strategies to provide an accurate estimate of the source 

term in the least amount of time. In the literature, sensor move- 

ment strategies for STE include expert systems, where the sensors 

follow a set of pre-set guidance rules and information driven mo- 

tion control, where the movement of the sensor is based on es- 

timates of the expected information gained. The aforementioned 

techniques are described in more detail in the remainder of this 

section. 

4.3.1. Pre-planned rules 

In [152] , Kuroki et al. used an expert system of navigation 

rules to guide a UAV to determine the strength and location of 

a contaminant source. Concentration data was collected through- 

out the flight and used in the GA described in [82] to estimate 

the source term. The method required a single concentration sen- 

sor on the ground in order to help guide the UAV. The rules then 

guide the UAV to fly towards the sensor, downwind and then cross- 

wind to gather concentration data. In simulations, an improved es- 

timate was found than using the GA with an 8x8 grid of sensors, 
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with less computation required. Tests were done for both Gaus- 

sian plume and puff models. Particular difficulty was found with 

the puff model where a high amount of UAVs and plume traverses 

were required to estimate the source location. 

Hirst et al. [153] used the Bayesian framework to estimate the 

location and strength of multiple methane sources with remotely 

obtained concentration data gathered using an aircraft. The aircraft 

was flown in a somewhat pre planned manner where it would 

fly in consecutive crosswind directions, downwind of the source. 

Concentration measurements were modelled as the sum of spa- 

tially and temporally smooth atmospheric background concentra- 

tion, augmented by concentrations due to local sources. The under- 

lying dispersion model was a Gaussian plume atmospheric eddy 

dispersion model. Initial estimates of background concentrations 

and source emission rates were found using optimisation over a 

discrete grid of potential source locations. Refined estimates (in- 

cluding uncertainty) of the number, emission rates and locations 

of sources were then found using a reversible jump MCMC al- 

gorithm. Other parameters estimated include the source area, at- 

mospheric background concentrations, and model parameters in- 

cluding plume spread and Lagrangian turbulence time scale. The 

method was tested on synthetic and real data. Two real scenarios 

were considered, first featuring two landfills in a 1600 km 

2 area 

and then a gas flare stack in a 225 km 

2 area. Experiments showed 

good performance of the algorithms. An interesting feature was an 

extra source estimated downwind of the actual source. This was 

attributed to bias in wind directions. 

4.3.2. Informative path planning 

An information guided search strategy can be formulated as a 

partially observed Markov decision process (POMDP) [154] . This 

consists of an information state, a set of possible actions and a re- 

ward function. With regards to STE, the information state is the 

current estimate of the source parameters. The set of possible ac- 

tions are the locations where the robot can move next, and the re- 

ward function determines a measure of the amount of information 

gained for each manoeuvre. The reward function can take several 

forms, such as Kullback-Lieber divergence [155] (variation of en- 

tropy), Rényi divergence [156] or a measure of the mutual infor- 

mation. 

a) Information gain. In [157] , Ristic and Gunatilaka presented an 

algorithm to detect and estimate the location and intensity of a 

radiological point source. The estimation was carried out in the 

Bayesian framework using a particle filter. The sensor motion and 

radiation exposure time were controlled by the algorithm. The 

search began with a predefined motion until a detection was made, 

and then control vectors were selected based on reducing the ob- 

servation time. The selection of control vectors was done using a 

multiple step ahead maximisation of the Fisher information gain 

(Hessian of the Kullback-Leibler divergence). In [158] , this was ex- 

tended to the estimation of multiple point sources using the Rényi 

divergence between the current and future posterior densities. This 

enabled decision making using maximum information gain for the 

entire search duration regardless of the estimate of the number of 

sources. The method was tested on experimental data with one 

and two source scenarios and compared with a uniform random 

and deterministic search. The information driven search obtained 

much more accurate estimates of the location and strength of the 

source with similar but slightly faster search time. 

In [5] , Ristic et al. presented a method to determine the lo- 

cation of a diffusive source in an unknown environment featur- 

ing randomly placed obstacles. The method used a particle filter 

to simultaneously estimate the source parameters, the map of the 

search domain and the location of the searcher in the map. The 

map was represented as a lattice where missing links represented 

obstacles and the source was assumed to be located at a node. The 

gas and searcher travelled down links in the lattice and concen- 

tration measurements were taken from the nodes. Concentration 

measurements were taken from a Poisson distribution to mimic 

the sporadic nature of measurements. The searcher travelled along 

the grid and stopped at the nodes to take measurements of gas 

concentration and to determine the existence of neighbouring links 

(available paths). At each step, the searcher remained at its current 

node or move along one link. Movement was based on information 

gain similar to that mentioned previously [158] . Numerical simula- 

tions demonstrated the concept with a high rate of success. 

In [159] , a number of different search strategies based on infor- 

mation theoretic rewards were compared for determining the loca- 

tion of a diffusive source in turbulent flows. The reward functions 

compared include: Infotaxic reward, Infotaxic II reward and Bhat- 

tacharyya distance. The Infotaxic reward is based on the expected 

information gain for a single step ahead. It is based on the assump- 

tion that the source location coincides with one of the nodes of the 

square lattice introduced to restrict motion of the searcher. The 

reward is defined as the decrement of the entropy. The Infotaxic 

II reward is a slight modification to account for the case where 

the source may not coincide with a node of the lattice. The Bhat- 

tacharyya distance is a particular type of Renyi divergence, which 

measures the similarity between two densities. In this context, the 

densities are the posterior distributions at the current time and 

that expected in the next step. The control is selected based on 

the maximum reward. The techniques were compared on synthetic 

and experimental data implemented using the SMC method. It was 

found that the ratio between the search and sensing areas was 

a key factor to the performance. With a larger search area, sys- 

tematic search such as parallel sweep outperformed information 

theoretic searches. However, with a smaller search area, the cogni- 

tive strategies were far more efficient. It was also found that for a 

smaller search area, the Infotaxic reward performed slightly worse 

than the others and this was attributed to its more exploratory be- 

haviour. 

b) Mutual information. In [160] , Madankan et al. presented an 

information driven sensor movement strategy that attempted to 

maximise the mutual information between the model output 

and data measurements. A combination of generalised polynomial 

chaos and Bayesian inference were used for data assimilation sim- 

ilar to the previous work that used static sensors [49] . A sensor 

movement strategy was created to move a group of UAVs to max- 

imise the mutual information between the sequence of observa- 

tional data and the source parameters over the time. To reduce 

computational complexity a limited look-ahead policy was used 

and the optimal positions of the UAVs were chosen individually. 

This means the only cooperation among them was to maintain a 

distance from one another. This approach was compared with a 

static network approach using synthetic data. The results show sig- 

nificant improvements in accuracy and confidence in the estima- 

tion. 

4.3.3. Summary 

The main area of research in mobile sensors for STE has been 

in developing intelligent motion strategies for maximum informa- 

tion gained by the sensors. The STE algorithms themselves are sim- 

ilar to those reviewed earlier using static networks. Pre-planned 

rules have shown to be capable of moving the sensor to determine 

the source term provided there is enough information on the wind 

and there exists at least one static sensor within the contaminant 

plume. Informative path planning strategies have featured max- 

imising information in terms of entropy gain and mutual informa- 

tion. In [5] , the need to sample from a position for a significant 
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amount of time was highlighted whilst using a Lagrangian stochas- 

tic dispersion model in order to gain a more accurate concentra- 

tion estimation from noisy sensor readings. The effect of search 

area was studied and its impact on the performance of reactive 

or informative search strategies. 

4.4. Discussion 

Mobile sensors provide an ideal platform for data gathering 

of atmospheric events. Approaches to perform boundary tracking, 

source seeking and STE have been summarised. The main limita- 

tions of the algorithms presented arise due to assumptions that 

limit their applicability in realistic scenarios such as: gradient esti- 

mation, which is infeasible in turbulent flows where the gradient is 

not consistent; sensor measurement models where sampling times 

are neglected or errors are assumed Gaussian or ignored; static as- 

sumptions with regards to the plume; and the availability and cer- 

tainty of prior information such as source release rate and meteo- 

rological data. 

5. Conclusions and future work 

This paper has presented the problem and importance of esti- 

mating atmospheric dispersion events, a review of STE algorithms 

using static or mobiles sensors, and a brief review on boundary 

tracking and source seeking. 

Static sensors have been the dominant method of STE in the lit- 

erature, particularly for emergency response applications arguably 

due to their benefit of early detection. Despite this, they have a 

number of limitations when it comes to estimating the source 

which have been referred to throughout this paper. The algorithms 

of STE are relevant for both static and mobiles sensors. Mobile 

sensors reveals new research opportunities given by their mobil- 

ity. STE algorithms are dominantly iterative based on probabilistic 

or optimisation techniques. The iterative behaviour results in high 

computational demand, and for this reason, many researchers have 

used the simple Gaussian plume equation as the underlying dis- 

persion model. When applied to real data from experiments such 

as the FFT07 dataset, the loss in accuracy of this model is unde- 

niable. In fact, even complex dispersion models have shown sig- 

nificant loss of accuracy on real data with a distinct problem in 

estimation of the release rate. This limitation is one of many that 

boast the use of mobile sensors which can provide a boundary or 

source location estimate without modelling errors. Besides, much 

more data is needed than what can be provided by a static net- 

work and mobile sensors can gather data from more desirable lo- 

cations and be used to check source estimates by also searching for 

where the contaminant is not present. Most research into STE has 

focused on improving existing methods to reduce computational 

cost, a crucial factor in emergency response. It was found that re- 

ducing the search space and a good initial estimate worked best 

in reducing computation by decreasing the number of iterations 

needed and hence the number of dispersion model runs. 

Future research could take many directions to improve the cur- 

rent state of the art. Prior information, in terms of narrowing down 

possible source locations, can significantly improve performance 

of the approaches shown by the performance of [39] and [30] . 

Prior information may be used further with regards to release time 

and more refined narrowing of possible source locations with lev- 

els of uncertainty included to account for errors in meteorologi- 

cal variables. Improvements to sampling techniques such as adap- 

tive sampling or using prior information to generate better infer- 

ences could significantly reduce the number of iterations required. 

Dispersion modelling could be improved by applying a multiple 

model filter. Computational time has been reduced by applying a 

two step acceptance criteria in [53] to reduce the number of ex- 

pensive dispersion model runs, and this could be reduced further 

by: adding more steps; improved generation of inferences; or by 

emulating the dispersion model [161,162] . The effect of poor or 

varying (or perhaps anything other than ideal) meteorological data 

has received limited attention in the literature, but their effect on 

STE results will be of high importance and should be studied. Dy- 

namic plumes have also received little attention, which will intro- 

duce much more difficulty in estimation of the source term. Varia- 

tions in temporal concentration readings could provide some use- 

ful information. 

There is limited research in the area of STE using mobile sen- 

sors. In simplified simulations, current approaches have obtained 

more accurate, less uncertain estimates than static sensors thanks 

to their ability to sample from more informative locations [49] . 

However, this benefit has not been experimentally validated yet. 

Research has focused on optimal information collection strategies. 

In future research, cooperative multiple vehicle approaches should 

be explored and their performance benefit over a single vehicle or 

a static network analysed. Besides, alternative derivations of the in- 

formation gain should be researched. It is expected that the max- 

imum entropy will provide good results, following the theory that 

the most information may be gained by sampling from positions 

where the least is known. Other extensions and research follow 

from STE using static networks such as applying uncertainty in 

meteorological data and improvements to estimation algorithms. 

Computational complexity will play an especially important role to 

reduce idle time of the mobile sensor, so fast converging sequential 

algorithms could be explored for faster on-line estimation such as 

variational Bayesian inference, use of the adjoint source-receptor 

relationship and null sensor readings. It will be valuable to inves- 

tigate the effect on performance between waiting for an algorithm 

to converge to an optimal manoeuvre versus collecting more infor- 

mation while the algorithm runs with available sub-optimal ma- 

noeuvres. 

Boundary tracking algorithms have been shown to perform well 

in simulations where there are many simplifying assumptions. Fu- 

ture research should focus on tracking of boundaries in more com- 

plex scenarios that may feature plume splitting, dynamic bound- 

aries and noisy or intermittent sensing. Probabilistic boundary 

tracking is expected to be one approach that could extend the cur- 

rent state of the art. Other areas of future research should extend 

the cooperation among mobile sensors, estimating the boundary 

growth and capitalising prior information such as meteorological 

data for more effective tracking. 

Source seeking algorithms have been created for various appli- 

cations. Performance comparisons have been made between reac- 

tive and cognitive strategies. The best approach has been shown 

to depend greatly on the scenario between the type of source, the 

meteorological conditions and the size of the search domain. Al- 

gorithms have been developed that can handle complex scenarios; 

however, their efficiency can yet be improved. Possible areas of fu- 

ture research in this domain include: (i) exploration of varying me- 

teorological conditions; (ii) the application of probabilistic chemi- 

cal sensor models; and (iii) development of more efficient source 

seeking systems either by extension to multiple cooperating vehi- 

cles or the development of hybrid approaches to take advantage of 

the benefits provided by different strategies. For example, an ap- 

proach to effectively balance exploration and exploitation to more 

effectively handle multiple scenarios. 

Unmanned mobile sensor platforms have seen a huge growth in 

popularity and ability over the past few years. With the reduction 

in cost and size of electronics and growth of research, they will 

soon have applications in a vast amount of disciplines. They are the 

preferred tool for environmental monitoring tasks such as STE as 

they can sample from optimal positions in the atmosphere with- 
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out putting humans in harm’s way. For emergency response, UAVs 

provide a particular benefit as they can travel to and within the 

search area quickly, unobstructed by objects on the ground. Some 

issues encountered by mobile sensors for environmental monitor- 

ing include the need to sample the atmosphere for a duration of 

time and the effect movement will have on sensing accuracy and 

the local meteorology. 
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