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Abstract
Secondary sexual trait expression can be influenced by fixed individual factors 
(such as genetic quality) as well as by dynamic factors (such as age and environ-
mentally induced gene expression) that may be associated with variation in condi-
tion or quality. In particular, melanin-based traits are known to relate to condition 
and there is a well-characterized genetic pathway underpinning their expression. 
However, the mechanisms linking variable trait expression to genetic quality re-
main unclear. One plausible mechanism is that genetic quality could influence trait 
expression via differential methylation and differential gene expression. We 
therefore conducted a pilot study examining DNA methylation at a candidate 
gene (agouti-related neuropeptide: AgRP) in the black grouse Lyrurus tetrix. We 
specifically tested whether CpG methylation covaries with age and multilocus 
heterozygosity (a proxy of genetic quality) and from there whether the expression 
of a melanin-based ornament (ultraviolet-blue chroma) correlates with DNA meth-
ylation. Consistent with expectations, we found clear evidence for age-  and 
heterozygosity-specific patterns of DNA methylation, with two CpG sites show-
ing the greatest DNA methylation in highly heterozygous males at their peak age 
of reproduction. Furthermore, DNA methylation at three CpG sites was signifi-
cantly positively correlated with ultraviolet-blue chroma. Ours is the first study to 
our knowledge to document age- and quality-dependent variation in DNA meth-
ylation and to show that dynamic sexual trait expression across the lifespan of an 
organism is associated with patterns of DNA methylation. Although we cannot 
demonstrate causality, our work provides empirical support for a mechanism that 
could potentially link key individual factors to variation in sexual trait expression 
in a wild vertebrate.
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1  | INTRODUC TION

Sexual selection is a key factor driving the evolution of exaggerated 
sexually selected traits (Darwin, 1871; Andersson, 1994). Sexual 
traits are often strongly age-  and condition-dependent, making 
them excellent candidates for honest signals that might be used 
by females to assess male quality; for example, they may carry in-
formation about an individual’s past and current nutritional status, 
hormonal status, and/or parasite load (Thompson, Hillgarth, Leu, 
& McClure, 1997; Ohlsson, Smith, Råberg, & Hasselquist, 2002; 
Scheuber, Jacot, & Brinkhof, 2003). Furthermore, in many species 
including birds (Aparicio, Cordero, & Veiga, 2001; Foerster, Delhey, 
Johnsen, Lifjeld, & Kempenaers, 2003; Ferrer, García-Navas, Bueno-
Enciso, Sanz, & Ortego, 2015), mammals (von Hardenberg et al., 
2007), and fishes (Herdegen, Dudka, & Radwan, 2014), sexual trait 
expression is associated with genetic quality, as measured by multi-
locus heterozygosity. Although these associations are as yet poorly 
understood, a plausible explanation is that they reflect a general 
tendency for heterozygous individuals to be superior in relation to 
diverse life history traits (Hansson & Westerberg, 2002) and that 
heterozygosity influences sexual trait expression indirectly via its 
effects on body condition.

Another important aspect of sexually selected traits is that their 
expression tends to be highly variable within individuals and often 
shows patterns of early life improvement, prime age maximum ex-
pression, and senescence (Jones et al., 2008; Nussey et al., 2009; 
Kervinen, Alatalo, Lebigre, Siitari, & Soulsbury, 2015). Hence, rela-
tionships between sexually selected traits and individual quality may 
vary with age, with the strongest relationships being found during 
periods of maximal trait expression (Hooper, Tsubaki, & Siva-Jothy, 
1999; Von Hardenberg et al., 2007). Such dynamic patterns of trait 
expression would not be possible if trait expression was solely under 
a purely static genetic control; instead epigenetic control mediated 
by body condition has been proposed as one means of modifying 
sexual trait expression (Jašarević, Geary, & Rosenfeld, 2012; Valena 
& Moczek, 2012).

Epigenetics is the study of changes in gene expression and func-
tion that cannot be explained by changes in the underlying DNA 
sequence (Richards, 2006; Bird, 2007). Epigenetic variation can un-
derpin developmental plasticity and canalization which brings about 
persistent developmental effects in both prokaryotes and eukary-
otes (Danchin et al., 2011; Jablonka, 2013). Unlike an individual’s 
genotype, the epigenetic state of an individual is dynamic and can 
change throughout its lifespan (Horvath, 2013). Such changes can be 
mediated by environmental variation, exposure to parasites (Wenzel 
& Piertney, 2014) and hormones (Dhiman, Attwood, Campbell, & 
Smiraglia, 2015).

The most widespread and stable epigenetic modification is DNA 
methylation, which refers to the addition of a methyl group (–CH3) 
covalently to the base cytosine (C) in the dinucleotide 5′-CpG-3′ 
(Suzuki & Bird, 2008). Methylation of CpG dinucleotides is gener-
ally thought to occlude transcription factor binding, as the methyl 
groups protrude into the major groove where many transcription 

factors bind. As a consequence, DNA methylation often acts to si-
lence gene expression (Yin et al., 2017). Furthermore, it is known 
from human studies that DNA methylation at even single nucleotide 
positions can alter gene expression dramatically (Pogribny, Pogribna, 
Christman, & James, 2000).

Epigenetic states are a feature of every organism, and changes 
in gene expression due to epigenetic effects have the potential to 
affect numerous important traits (Hill, 2011). There are now a grow-
ing number of studies that have examined DNA methylation in wild 
organisms, mainly in birds (great tits Parus major; Riyahi, Sánchez-
Delgado, Calafell, Monk, & Senar, 2015; Derks et al., 2016; Laine 
et al., 2016; Verhulst et al., 2016; eastern blue birds Sialia sialis; 
Bentz, Sirman, Wada, Navara, & Hood, 2016; red grouse Lagopus la-
gopus; Wenzel & Piertney, 2014; house sparrows Passer domesitcus: 
Liebl, Schrey, Richards, & Martin, 2013; superb starlings Lamprotornis 
superbus; Rubenstein et al., 2016). These and other studies have 
begun to support a role for DNA methylation in mediating ecological 
effects on phenotypic traits in the wild (e.g., personality and cog-
nition: Laine et al., 2016; Verhulst et al., 2016) and emphasize the 
dynamic environmental sensitivity of DNA methylation levels across 
the life course. However, few if any studies have examined the po-
tential relationship between DNA methylation and sexually-selected 
traits, even though epigenetic regulation may represent a critical 
link between genes and sexually selected trait expression (Jašarević 
et al., 2012).

In this study, we investigated whether secondary sexual trait 
expression could be related to patterns of DNA methylation. For 
this, we exploited a well-understood genetic pathway—the mela-
nocortin system (Ducrest, Keller, & Roulin, 2008; Roulin & Ducrest, 
2013; Roulin, 2016; San-Jose et al., 2017) in which pigment depo-
sition is directly related to the activity of melanocortin receptors 
(MCRs). In vertebrates, the principal MCR gene expressed in the 
skin and implicated in melanogenesis is the melanocortin 1 recep-
tor gene (MC1R, (Mundy, 2005; Ducrest et al., 2008). Control over 
expression is achieved via the agonist α-melanocortin-stimulating 
hormone (α-MSH) and two inverse agonists agouti signaling protein 
(AsIP) and agouti-related neuropeptide (AgRP) (Ducrest et al., 2008; 
Oribe et al., 2012). High expression of AsIP and AgRP and binding 
of these inverse agonists induces the production of yellow-reddish 
pheomelanic pigments, whereas if the agonist binds to the MC1R, 
then more black eumelanic pigments are produced (Ducrest et al., 
2008). Any reduction in the expression of AgRP or AsIP genes 
via DNA methylation is thus hypothesized to increase eumelanic 
(black) coloration.

We tested this hypothesis in a model species for studies of sex-
ual selection in the wild, the black grouse Lyrurus tetrix (Figure 1). 
The dominant coloration of black grouse is eumelanin-based (black), 
with the exception of small depigmented patches on the upper and 
underside of the wing and the conspicuous white undertail coverts 
(Soulsbury, Kervinen, & Lebigre, 2016). The feathers of the neck and 
chest also show a blue structural coloration that exhibits high re-
flectance of short wavelengths in the UV-blue area (blue chroma; 
Siitari, Alatalo, Halme, Buchanan, & Kilpimaa, 2007). These sexually 
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selected sexually-selected traits are condition-dependent and vary 
substantially with age (Kervinen et al., 2015; Kervinen, Lebigre, & 
Soulsbury, 2016). Peak expression occurs at ages 3–5 (Kervinen 
et al., 2015) and is correlated to male mating success (Siitari et al., 
2007; Kervinen et al., 2016). Furthermore, inbreeding is frequent in 
our study population, with ca. 13% of chicks being the product of 
mating between close relatives (Lebigre, Alatalo, & Siitari, 2010), and 
both chick mass (Soulsbury, Alatalo, Lebigre, Rokka, & Siitari, 2011) 
and male reproductive success (Höglund et al. 2001) show inbreed-
ing depression. We therefore estimated the contributions of age and 
heterozygosity toward DNA methylation and from there tested for a 
relationship between DNA methylation and sexual trait expression.

2  | MATERIAL S AND METHODS

2.1 | Fieldwork and color measurement

During 2002–2013 inclusive, we collected longitudinal data on male 
mating success and multiple sexual traits from five study sites in 
Central Finland (peat bogs with high visibility, ca. 62°15′N; 25°00′E). 
Data on morphological traits were collected annually in January–
March by catching birds from winter flocks with oat-baited walk-in 
traps [for details, see (Kervinen, Alatalo, Lebigre, Siitari, & Soulsbury, 
2012; Lebigre, Alatalo, Kilpimaa, Staszewski, & Siitari, 2012)]. Each 
captured individual was classified either as a yearling or as an adult 
based on plumage characteristics. Birds were individually ringed for 
future identification with an aluminum tarsus ring carrying a unique 
serial number and three colored tarsus rings. All captured birds were 
blood sampled (<2 ml, maximum <0.3% body mass) with a heparin-
ized syringe from the brachial vein. After centrifugation, the red 
blood cells were kept in 70% ethanol at 4°C for subsequent DNA 
analysis. As well as being blood sampled, individuals were measured 
for body mass, lyre (i.e., tail) length, eye comb size and a representa-
tive sample of breast feathers was taken for the measurement of 

ultraviolet reflectance [blue chroma (Siitari et al., 2007)] using a 
spectrophotometer.

2.2 | Microsatellite genotyping and derivation of 
multilocus heterozygosity

Genomic DNA was extracted from the red blood cells using the rea-
gents from the BioSprint 15 DNA Blood Kit (Qiagen, Ref. 940017) 
and a Kingfisher magnetic particle processor. All of the individuals 
were then genotyped at 11 autosomal microsatellite loci (see Lebigre, 
Alatalo, Siitari, & Parri, 2007 for details). Standardized multilocus 
heterozygosity (sMLH) was calculated based on the 11 autosomal 
loci (see Soulsbury & Lebigre, 2017) using inbreedR (Stoffel et al., 
2016) within R version 3.2.1 (R Core Team 2014). We used sMLH as 
a measure of male genetic quality as heterozygosity is strongly re-
lated to both male and female fitness in black grouse (Höglund et al., 
2002;  Soulsbury & Lebigre, 2017).

2.3 | Pilot study: characterization of candidate 
CpG sites

Several genes may be involved in color variation (Nadeau, Burke, & 
Mundy, 2007; Bourgeois et al., 2016). To focus our study, we there-
fore initially conducted a pilot study to evaluate the methylation 
status of selected candidate genes (Table S1). Bisulfite conversion 
of the DNA was carried out with EZ DNA Methylation-Gold™ Kit 
D5005 (Zymo Research Corporation, Irvine, CA, USA). Primers for 
sequencing were designed with MethPrimer (http://urogene.org/
methprimer/index.html). PCR products were cleaned with Exo-
SAP (Fermentas), sequenced with a BigDye V3.1 kit (#4336935, 
Applied Biosystems), and then purified using ethanol precipitation. 
These were then sequenced on a 3130xl Genetic Analyzer (Applied 
Biosystems). Using samples from a total of 46 males and females, 
we tested seven CpG sites across three genes: two CpG sites in the 
melanocortin-1 receptor (Mc1r), one CpG site in tyrosinase-related 
protein 1 gene (Tyrp1), and four CpG sites in the agouti-related pro-
tein gene (AgRP). The CpG sites within AgRP showed the greatest 
within-  and between-individual variation in methylation, whereas 
the other sites were fully methylated or demethylated, or showed 
lower variation (Table S1). We therefore focused subsequently on 
CpG sites within the AgRP gene.

2.4 | Assessment of AGRP methylation

Forward/reverse and sequencing primers for the PCR and pyrose-
quencing steps, respectively, were designed from modified DNA 
sequences using the PyroMark Assay Design software version 
2.0.1.15 (Qiagen, Uppsala, Sweden). From each sample, 500 ng 
of genomic DNA was modified with sodium bisulfite (optimal 
range 200–500 ng) using the EZ DNA Methylation-Gold™ Kit fol-
lowing the manufacturer’s instructions (D5005, Zymo Research 
Corporation, Irvine, CA, USA). PCR was performed on the 
bisulfite-converted DNA samples using the forward and reverse 

F IGURE  1 A male black grouse Lyrurus tetrix (photo by Gilbert 
Ludwig)

http://urogene.org/methprimer/index.html
http://urogene.org/methprimer/index.html
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primers shown in Table S1. All other reagents were provided as 
part of the AmpliTaq Gold® DNA Polymerase, LD (low DNA) kit 
using a Hot Start, Strong Finish™ protocol (Applied Biosystems). 
PCRs were set up in 96-well plates. All of the samples were pro-
cessed on a single plate, eliminating the potential for interplate 
variation. In each well, 4 μl of bisulfite-converted DNA at 5 ng/
μl concentration was added to 50 μl PCR MasterMix containing 
2 mM MgCl2, and 1 unit of AmpliTaq Gold

® DNA polymerase LD (5 
units/μl). Plates were processed using a PTC-225 Peltier Thermal 
Cycler (MJ Research). Samples were initially incubated at 95°C for 
5 min, followed by 45 cycles of 95°C for 15 s, 57°C for 30 s, and 
72°C for 5 min. Subsequently, the resultant PCR products were 
subjected to gel electrophoresis to check that an amplicon of the 
expected size had been generated.

Pyrosequencing was performed on PCR products using the 
sequencing primers shown in Table S2. To begin, 20 μl of PCR 
product from each sample was added to 37 μl Pyromark bind-
ing buffer (Ref. 979006, Qiagen) and 3 μl streptavidin sephar-
ose beads (Ref. 17-5113-01, GE Healthcare) in a Abgene-skirted 
96-well plate (Ref. 732-4888, Merck Ltd, Feltham, Middlesex). 
A PCR plate seal was applied and the plate was continuously 
shaken on a high-speed microplate shaker (Illumina, San Diego, 
Ca, USA) at 1600 rpm for 20 min. Subsequently, a vacuum Prep 
workstation (Pyrosequencing®, Qiagen) was used to wash and 
denature the beads and transfer them to a new plate. Samples 
were then sequenced on a PSQ 96MA pyrosequencer (Qiagen). 
PSQ 96MA software version 2.1 (Qiagen) was used to calculate 
the required amounts of the PyroMark Gold Q96 reagents (Ref. 
972804, Qiagen). The substrate mix and enzyme mix were each 
resuspended in 620 μl MilliQ water prior to being loaded into a 
PyroMark Q96 cartridge (Ref. 979004, Qiagen) together with the 
required volumes of dATP, dGTP, dTTP, and dCTP. Pyro-Q-CpG 
software version 1.0.9 (Biotage) was used to analyze the pyro-
grams in order to determine the percentage of DNA methylation at 
each individual CpG site by measuring the ratio of the C to T peaks. 
Control samples were run on each assay. Maximal differences be-
tween highest and lowest percent methylation were calculated as 
follows: site 1 = 6.3%, site 2 = 22.1%, site 3 = 4.0%, site 4 = 4.5%, 
site 5 = 1.4%.

2.5 | Statistical analysis

We first tested for differences in the percentage of DNA methylation 
between sites using a one-way ANOVA with post hoc Tukey test, fol-
lowed by correlations between each individual methylation site. We 
then constructed linear mixed effects models to evaluate the relation-
ships between age, sMLH, and the percentage of DNA methylation. As 
blue chroma exhibits an inverse u-shaped pattern with age, we fitted 
age and age2 in each of the models, together with their respective in-
teractions with sMLH. As only two individuals survived to six years of 
age, we combined age classes five and six. Each of the CpG sites within 
the AGRP gene was analyzed separately and individual identity was 
included as a random effect. We analyzed each site singly because, 
although all of the sites are close together, they differ in respect of 
whether they are located within introns, exons, or on putative bind-
ing sites (Figure 2). Moreover, methylation probabilities at most of the 
sites were not significantly correlated with each other (Table S3).

Finally, we tested for a relationship between blue chroma and the 
percentage of DNA methylation in adulthood. We focused only on 
birds that were at least two years old during the molt after sampling, 
as sexual traits are not fully expressed in younger males. For this 
analysis, we analyzed all of the CpG sites within the AgRP gene si-
multaneously within a single model and individual identity was again 
included as a random effect. All of the models were run using the 
lme4 package (Bates, Maechler, Bolker, & Walker, 2015) in R version 
(R Core Team 2014) and none of the models had variance inflation 
factors (VIF) above two.

3  | RESULTS

3.1 | DNA methylation

We sampled 94 males a total of 170 times, at ages varying one to 
six years old (Table S3). Mean ± SE methylation varied significantly 
among CpG sites (ANOVA: F4,823 = 507.26, p < .001), with post hoc 
tests showing that sites one, four, and five were significantly different 
from one another (Site one: 75.94 ± 0.35%; Site four: 72.59 ± 0.32; 
Site five: 64.90 ± 0.15) while there was no significant difference 
between the sites two (46.84 ± 1.22%) and three (47.83 ± 0.25%). 

F IGURE  2 Scaled depiction of the 
AgRP gene showing exons (black bars) and 
introns (gray bars). Within the sequence, 
CpG sites are shown in bold and putative 
transcription binding sites are underlined. 
Putative transcription binding site 
names were lifted over from the JASPAR 
database (http://jaspar.genereg.net/; 
Mathelier et al., 2016). 1Sox3, 2RHOXF1, 
3FoxD2, 4NKX2-8

http://jaspar.genereg.net/
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CpG site methylation was generally uncorrelated among different 
CpG sites (8/10 correlation coefficients were below 0.30) and the 
strength of correlation declined with increasing physical distance 
between dyads of CpG sites (Table S3).

3.2 | Age- and heterozygosity-dependent 
patterns of DNA methylation

We next investigated the effects of age and sMLH on the percentage 
of DNA methylation at five different CpG sites within the AgRP gene 

(Table 1, Figure 3). When all of the sites were analyzed together, 
we found a significant interaction between age and sMLH (linear) 
(Table 1). This pattern was also evident at the level of individual CpG 
sites. Neither age nor sMLH were related to DNA methylation at CpG 
site one, but a significant interaction between sMLH and age was 
found at CpG site two. More specifically, DNA methylation at this 
CpG site declined more strongly with increasing sMLH when indi-
viduals’ age increased (ca. four years of age or above). For CpG site 
three, there was a significant effect of age and the age x sMLH inter-
action was close to significance. Contrary to CpG site twp, (contrary 

TABLE  1 Linear mixed effect model outputs for the relationship between DNA methylation at CpG sites within the AgRP gene and age, 
heterozygosity, and their interaction. Age classes five and six were pooled as described in the Methods

CpG site N males/N samples Parameter β 95%CI Eff. Sampl. p

All sites Age (poly,1) −36.61 −2.80/−71.37 9000.00 .035

Age (poly,2) 21.14 53.33/−9.61 8144.39 .183

sMLH 0.44 1.82/−0.99 8712.76 .545

sMLH × Age (poly,1) 33.42 67.12/1.56 7687.02 .042

sMLH × Age 
(poly,2)

−21.58 8.40/−53.79 8117.15 0.173

CpG site N males/N samples Parameter β ±SE t p

One 91/161 Age (poly,1) −9.62 24.17 −0.40 .691

Age (poly,2) −13.22 22.48 −0.59 .557

sMLH −1.11 2.07 −0.54 .595

sMLH × Age (poly,1) 7.46 23.35 0.32 .750

sMLH × Age 
(poly,2)

16.14 22.04 0.73 .465

Two 91/160 Age (poly,1) 97.68 54.59 1.79 .077

Age (poly,2) −50.02 47.21 −1.06 .293

sMLH −6.67 8.72 −0.77 .446

sMLH × Age (poly,1) −112.67 52.62 −2.14 .035

sMLH × Age 
(poly,2)

56.60 45.73 1.24 .220

Three 89/157 Age (poly,1) −38.96 17.02 −2.29 .024

Age (poly,2) −4.51 15.84 −0.29 .776

sMLH −0.39 1.56 −0.25 .802

sMLH × Age (poly,1) 31.96 16.46 1.94 .054

sMLH × Age 
(poly,2)

3.59 15.64 0.23 .819

Four 90/159 Age (poly,1) −45.49 21.47 −2.12 .036

Age (poly,2) 32.52 20.32 1.60 .112

sMLH 2.11 1.65 1.28 .208

sMLH × Age (poly,1) 48.41 20.71 2.34 .021

sMLH × Age 
(poly,2)

−37.21 19.98 −1.86 .065

Five 83/146 Age (poly,1) −29.09 9.94 −2.93 .004

Age (poly, 2) 21.92 9.01 2.43 .016

sMLH 0.04 0.85 0.04 .967

sMLH × Age (poly,1) 27.73 9.54 2.91 .004

sMLH × Age 
(poly,2)

−21.02 8.97 −2.38 .019
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to CpG site two, this tendency suggests that DNA methylation in-
creased with sMLH in older individuals (Figure 3b). By contrast, CpG 
sites four and five showed highly consistent patterns with both mod-
els retaining significant interactions between sMLH and both the lin-
ear terms, and either significant (Site 5) or near significant (Site 4) 
interactions with the quadratic age terms (Table 1). In both cases, 
there was a positive relationship between methylation and sMLH at 
intermediate ages (three to four years of age, Figure 3c and d).

3.3 | DNA methylation and ultraviolet-blue chroma

The percentage of DNA methylation at CpG sites one and two 
was unrelated to blue chroma across males aged two or more 
(CpG site 1: β ± SE = 0.001 ± 0.001, t = 0.95, p = .351; CpG site 2: 

β ± SE = −0.003 ± 0.004, t = −0.78, p = .447). However, significant 
positive associations were found between DNA methylation and 
blue chroma at CpG sites three (β ± SE = 0.003 ± 0.002, t = 2.14, 
p = .041) and five (β ± SE = 0.005 ± 0.002, t = 2.16, p = .040), with 
location four showing a similar positive trend that was close to sig-
nificance (β ± SE = 0.002 ± 0.001, t = 1.82, p = .080; Figure 4).

4  | DISCUSSION

4.1 | Aging, heterozygosity, and DNA methylation

Our study reveals clear associations between age, heterozygo-
sity and CpG methylation, which in turn was correlated to sexual 
trait expression in a natural bird population. In both humans and 

F IGURE  3 Contour plots showing how DNA methylation varied in relation to age (years) and sMLH for CpG sites (a) two, (b) three, (c) four, 
and (d) five
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domesticated animals, there is vast literature characterizing genes 
or genomic regions that either become hyper- or hypomethylated 
with age (Bollati et al., 2009; Christensen et al., 2009; Bell et al., 
2012; Gryzinska, Blaszczak, Strachecka, & Jezewska-Witkowska, 
2013; Gryzinska et al., 2016; Spiers et al., 2016). In wild animals, 
there is growing interest in age-specific DNA methylation (Paoli-
Iseppi et al., 2017), but few studies have examined this and the 
results are often contradictory. For example, DNA methylation 
shows age-specific linear changes in humpback whales (Megaptera 
novaeangliae: Polanowski, Robbins, Chandler, & Jarman, 2014) 
but no changes in superb starlings (Rubenstein et al., 2016), pos-
sibly because these studies selected different candidate genes. In 
black grouse, we found a nonlinear (inverse u-shaped) pattern of 
DNA methylation with age, as has similarly been reported in oc-
casional human studies (for an example, see Armstrong, Rakoczy, 
Rojanathammanee, & Brown-Borg, 2013). As our study focused 
primarily on the correlation between DNA methylation and sexual 
trait expression, such a pattern is to be expected. Sexually selected 
traits typically show strong inverse u-shaped responses with age 
(e.g., Balbontín, De Lope, Hermosell, Mousseau, & Møller, 2011; 
Kervinen et al., 2015) so factors associated with expression of 
these traits such as DNA methylation and gene expression might 
also be expected to show similar patterns.

Our results also suggest a previously unexplored link be-
tween DNA methylation and condition dependence, which in 
the case of black grouse appears to be modulated by multilocus 
heterozygosity. Several studies have established relationships be-
tween elaborate sexual traits and heterozygosity (Foerster et al., 
2003; von Hardenberg et al., 2007; Pérez-González, Carranza, 
Torres-Porras, & Fernández-García, 2010) and these associations 
tend to be strongest at peak reproductive age (Von Hardenberg 
et al., 2007). However, our study is the first to our knowledge 

to have explored the covariation between DNA methylation 
and sexual trait expression and specifically to attribute age- and 
heterozygosity-dependent CpG methylation patterns to trait ex-
pression. Consequently, even though our study focused on a single 
candidate gene, it provides intriguing insights that could poten-
tially contribute toward our understanding of the mechanistic 
basis of sexual trait expression. While gene expression studies are 
needed to establish causal links between DNA methylation pat-
terns and sexual trait expression, we suspect that our study will 
be the first of many to uncover such relationships. It is also clear 
that much more could be learned by extending our approach from 
a single candidate gene to the entire (epi)genome, which is becom-
ing increasingly feasible thanks to recent advances in the field of 
genomics.

4.2 | DNA methylation and melanin coloration

To date, the majority of studies of melanin-based traits have fo-
cused on the genes encoding the melanocortin system and charac-
terized either genetic variation between species (Doucet, Shawkey, 
Rathburn, Mays, & Montgomerie, 2004; Toews et al., 2016) or how 
mutations in genes like the MC1R are associated with different 
melanin-based phenotypes within species (Peters et al., 2016; San-
Jose et al., 2017). So far, only a single study has examined how DNA 
methylation may impact melanin coloration. This study showed 
that mice exhibiting a darker (pseudoagouti) phenotype have more 
methylated CpG sites within a intracisternal A-particle (IAP) as well 
as lower levels of AsIP expression and darker coloration (Michaud 
et al., 1994). Our results support this earlier finding because we 
found no variation among individuals in DNA methylation of the 
MC1R but instead found variation at an antagonist (AgRP). AgRP 
may influence melanogenesis in two ways. Firstly, increased CpG 
methylation at locations within the AgRP gene may lead to reduced 
expression of this inverse agonist and consequently increase blue 
chroma via increased melanogenesis and consequent changes to 
the structural coloration (e.g., by increasing the number or density 
melanin granules, Doucet et al., 2006). Alternatively, AgRP could be 
linked to some other factor, such as body condition or nutritional 
status (Boswell, Li, & Takeuchi, 2002) that in turn may impact the 
ability to express the blue chroma.

In avian species with melanin-based sexual ornaments, there 
are clear opportunities to further explore the link between DNA 
methylation and condition dependence. Indeed, studies have 
shown that melanin colorations are sensitive to sex steroids 
(Kimball, 2006), that there is pleiotropy between the melano-
genic genes and androgens (Ducrest et al., 2008; Béziers, Ducrest, 
Simon, & Roulin, 2017), and that hormonal stimulation of androgen 
receptors mediates dynamic changes in DNA methylation patterns 
at regulatory elements (Dhiman et al., 2015). Furthermore, there 
are clear links in many species between androgens, immunocompe-
tence and interactions with parasites (Alatalo, Hoglund, Lundberg, 
Rintamaki, & Silverin, 1996; Mougeot, Irvine, Seivwright, Redpath, 
& Piertney, 2004; Mougeot, Perez-Rodriguez, Martinez-Padilla, 

F IGURE  4 Scatterplot showing the relationship between blue 
chroma and DNA methylation at CpG sites three, four, and five
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Leckie, & Redpath, 2007), suggesting a plausible pathway linking 
condition via immunity to melanin expression (Gangoso, Roulin, 
Ducrest, Grande, & Figuerola, 2015). A critical future step will be 
to carry out integrative studies that characterize all components 
of this pathway, from condition and its impact on physiology, 
through DNA methylation and gene expression, ultimately to trait 
expression.

5  | CONCLUSION

We examined gene-specific patterns of DNA methylation in relation 
to age, genetic quality, and sexual trait expression in a wild animal. 
Our findings highlight the dynamic nature of DNA methylation and 
provide insights into age- and genotype-dependent trajectories of 
sexual trait expression. Although our study is correlative and some-
what preliminary in nature, our findings emphasize that DNA meth-
ylation may be a critical component of condition-dependent sexual 
trait expression.
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