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Dissipative Toda-Rayleigh lattice and its oscillatory modes
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A detailed theoretical and experimental analysis of the possible oscillatory regimes of the dissipative Toda-
Rayleigh lattice system is provided. It is shown that the system has (N21) oscillatory modes with different
space-time scales and two rotatory modes. Using its analog electronic circuit implementation we also show
with a simple and robust method how switching between modes occurs.
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I. INTRODUCTION

Recent theoretical@1–17# and experimental@18–30#
works dealing with nearly integrable systems and nonlin
dissipative waves have illustrated the lasting structure
solitonic properties during time evolution, in collisions an
wall reflections. The theoretical work refers mostly to hydr
dynamics, electronics, and optical fiber experiments a
from the theoretical side, to generalizations of the Bou
inesq and Korteweg-de Vries equations which are the c
tinuous counterpart of various lattice systems@31,32#. As
already discussed by Chu and Velarde@5# an energy
pumping-dissipation balance is the crucial element in
driven system. If the energy is appropriately in balance w
dissipation, the soliton originated in an e.g., nonlineari
dispersion~local! balance can be sustained. Besides, the
ergy balance selects a single phase wave velocity among
infinitely many existing in the one-parameter family of so
tary waves of, say, the standard Korteweg-de Vries equa
@1,6–12#. A similar selection occurs for periodic wave train
but then we have a two-parameter problem. Here we s
restrict consideration to a dissipation-modified lattice syst
@33#.

Toda@34# provided exact solutions, including solitons, f
a Hamiltonian lattice system with exponential interactio
Subsequently, other~conservative! soliton bearing system
were proposed for nonlinear signal processing and trans
sion. However, observation of waves in nature and engin
ing devices shows that dissipation is unavoidable and m
on occasion, drastically affect the expected phenomena.
periments with analog electrical circuit implementations
the Toda lattice and numerical tests have shown that, in p
tical terms, unavoidable dissipative effects lead to ene
losses and indeed spoil the conservative nature of the T
lattice @35–39#. Thus interest has arisen in studying the ro
of dissipation and controlled energy pumping, e.g., in
stationary wave propagation along the Toda lattice. Acco
ingly we study, both analytically and experimentally, a To
lattice with a Rayleigh-type energy pumping-dissipation b
ance@40# much in the spirit of the above mentioned wor
on continuous systems.

The set of equations describing the motions in a chain
point masses coupled by Toda springs including dissipa
effects is
1063-651X/2001/64~3!/036601~14!/$20.00 64 0366
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dYn

dt
5Pn ,

~1!
dPn

dt
5

V2

B
~exp@B~Yn212Yn!#

2exp@B~Yn2Yn11!# !1G~Pn!,

wherePn , Yn , V, andB account, in Toda’s original prob
lem, for momenta, displacements, base frequency of lin
oscillations, and the stiffness of the springs~assumed to be
identical!. An interesting feature of the Toda interaction
that under appropriate limits it goes into the harmonic os
lator limit and into the hard sphere interaction in anoth
The nonlinear functionG(P) in the system Eq.~1! is going
to account for dissipation and sources of energy, which
general can be distributed nonhomogeneously on lattice s
@41#.

The system Eq.~1! is chosen with left-right symmetry
This means that if there is a solution (Yn(t), Pn(t)) ~a clock-
wise propagating wave! then there is a solution (2Y2n(t),
2P2n(t)) ~a counterclockwise propagating wave!. Hence
we require thatG(2P)52G(P). The simplest nonlinear
function satisfying this condition is a cubic polynomial

G~P!5d~ P̃22P2!P, ~2!

where P̃ is a constant having the dimension of momentu
Such cubic nonlinearity describes a pumping-saturation
ance introduced by Rayleigh@40# and is widely used in vari-
ous fields of science@42–45#.

Introducing new space and time scales, and correspon
dimensionless variables,yn5BYn , pn5(d/B)Pn , we get
from Eq. ~1!

ẏn5pn ,
~3!

ṗn5v0
2~eyn212yn2eyn2yn11!1~m2pn

2!pn ,

with

m5
P̃2

B2
, v05

dV

B2
, tnew5

B2

d
told .
©2001 The American Physical Society01-1



rs
in

ig
th
ve
at

ta
si
ry
ng
og
ys
. I
in

he
ui

tia

rs

nd
.

em

for
nce
tor-
vy
it is
e

lat-
ge
is

odel
ey

of

ing
-
ls,

a-
the
e of
rue
s’’
nal

an

of

MAKAROV, del RIO, EBELING, AND VELARDE PHYSICAL REVIEW E64 036601
The lattice system Eq.~3! has two independent paramete
~i! v0 which is the base frequency of linear oscillations
the original Toda lattice@34#, and ~ii ! m which is the linear
pumping constant accounting for the dissipative Rayle
part of the system. Their values and relation define
spatio-temporal dynamics of the chain. Further, for con
nience, we shall use nearest-neighbor relative coordin
along the lattice, i.e.

xn5yn212yn ~4!

with periodic boundary conditions that demand(n51
N xn50.

In contrast to the original Toda equations@34#, the system
Eq. ~3!, in a closed ring chain, does not permit the simul
neous propagation of stationary waves traveling in oppo
directions @33#. We shall focus on the stable oscillato
modes occurring in a relatively short Toda-Rayleigh ri
chain Eq.~3!. In Sec. II we give a succinct account of anal
circuit implementations of the Toda and Toda-Rayleigh s
tems. Section III is devoted to the analysis of a single unit
Sec. IV we investigate the possible wave modes in the r
Finally, in Sec. V some concluding remarks are given.

II. ANALOG CIRCUIT IMPLEMENTATION OF THE
MODEL

Let us discuss two different electric circuit models of t
Toda lattice that guided us in our analog electrical circ
implementation of the Toda-Rayleigh lattice.

A. Various electrical circuit analogs of the Toda lattice

For the original Toda lattice,G(P)[0, Hirota and Suzuki
@35# have shown that the mechanical chain with exponen
interactions is equivalent to a ladder ofLC circuits @Fig.
1~a!# with linear inductors and suitable nonlinear capacito

Qn5C0V0lnS 11
Vn

V0D , C~V![
dQ

dV
5

C0V0

V01V
, ~5!

FIG. 1. Circuit implementations of the Toda lattice:~a! nonlin-
earLC circuit by Hirota and Suzuki@35#, ~b! diode-double capaci-
tor circuit by Singer and Oppenheim@36#.
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with Qn andVn accounting, respectively, for the charge a
the voltage at thenth capacitor.C(V) is the capacitance
Then the dynamic equations describing the ladder are

dQ

dt
5C0V0

d

dt
lnS 11

Vn

V0D 5I n112I n ,

~6!

L
dIn

dt
5Vn2Vn11 ,

which, indeed, are equivalent to the original Toda syst
@34#. To approximate the nonlinearity Eq.~5! in the experi-
ments, Hirota and Suzuki used varactor diodes. However,
high voltages the deviation of the varactor diode capacita
from the required one becomes significant. It leads to dis
tions of the soliton solutions and their collision leads to wa
forms which are self-destructive. Besides, since the circu
accurate for low voltages only, it is very difficult to observ
overtaking soliton collisions.

Recently, Singer and Oppenheim@36# proposed a differ-
ent electrical circuit supposed to better model the Toda
tice. They used junction diodes which have current-volta
(I -V) characteristics very close to exponential. Hence it
natural to use a number of series connected diodes to m
the effect of Toda springs. To compute time derivatives, th
used double capacitors@Fig. 1~b!#. The current through a
double capacitor is proportional to the second derivative
the voltage. Thus we have

d2Vn

dt2
5DI dc5D~ I n212I n!, ~7!

whereI dc is the current through the double capacitor andD is
a constant with dimension (V/s2A), which depends on inter-
nal components of the double capacitor. The currentI dc is
equivalent to the difference of currents through neighbor
junction diodes (I n212I n), which can be accurately mod
eled as a function of the voltage applied to the termina
hence

I n5I s
SeVn212Vn

Vt 21D , ~8!

whereI s is the saturation current of diodes, andVt is a con-
stant having voltage dimension. Equations~7! and ~8! are
equivalent to the Toda system@34#.

In the Singer-Oppenheim circuit voltage fronts can prop
gate to the right or to the left depending on the sign of
spatial difference between voltages from the opposite sid
the front. Singer and Oppenheim were able to observe ‘‘t
overtaking soliton collisions with a small number of node
@36#. They proposed using such circuits for nonlinear sig
processing.

B. Circuit implementation of the Toda-Rayleigh lattice

Before we proceed further let us note that in general
excitation passing through a unit in the chain increases~or
decreases! its voltage by a value depending on the type
1-2
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DISSIPATIVE TODA-RAYLEIGH LATTICE AND ITS . . . PHYSICAL REVIEW E 64 036601
excitation. For example, for the solitary wave solution of t
Toda chain the difference between voltages, before and a
the soliton passes a unit, is@36#

DV5E
2`

`

p~ t !dt5kVt ,

wherek is an arbitrary constant defining the spatial width
the soliton. Thus a wave rotating in the ring continuou
increases~respectively, decreases for a wave running in
opposite direction! the voltage in the units and, eventuall
saturates the circuit. To avoid this problem, Singer and O
penheim@36# used analog switches, allowing us to reset
circuit after each run, which resulted in short spikes in dio
currents. These switches are synchronized by an externa
cuit with an initial pulse imposed by a current genera
acting on the first unit of the chain. Here we take the Sing
Oppenheim electronic implementation of the circuit since
models the Toda equations better than the Hirota-Suzuki
cuit. We add a specific implementation ofG(P) in Eq. ~1! to
the circuit and propose a different solution to the saturat
problem. Our circuit does not contain switches and any
ditional synchronization block, i.e., it could work at all time
without the need of resetting the capacitors.

The voltagesVn on the units can be decomposed into tw
parts:~i! one always increasing~which leads to saturation!,
and ~ii ! another oscillating around some mean value

Vn5ct1Vn
new, ~9!

wherec is the voltage growth rate. In the mechanical ana
~a ring of point masses coupled by springs! the coordinate
change defined by Eq.~9! corresponds to a transformatio
into a reference frame rotating with constant velocityc, and
thus a wave appears as vibrations of masses around
correspondingfixedmean values. The transformation Eq.~9!
does not affect the original ‘‘Toda’’ part, but it leads to a sh
in the ‘‘Rayleigh’’ part,G(dV/dt)→G@(dV/dt)1c#, of the
system Eq.~1!. In general, for different wave regimes th
constantc may be different. Hence we have to introduce
additional electric block to tune the constantc thus eliminat-
ing saturation of the circuit.

The Singer-Oppenheim circuit was developed for mod
ing the original, conservative, Toda system@34#. Conse-
quently, all observed waves come from chosen initial con
tions imposed by the current generator. For a dissipa
system like Eq.~1! the initial conditions lose significance a
we have indicated that the input-dissipation energy bala
helps to select and sustain a specific solution, and hence
a limited and well-defined number of different stable so
tions are actually realized. Thus we chose between diffe
solutions by playing with an external voltage as we expl
below.

The circuit scheme for the Toda-Rayleigh chain is sho
in Fig. 2. Figure 3 shows a particular implementation of t
black boxes used in Fig. 2. According to theI -V relation of
the double capacitor, as in Eq.~7!, we have
03660
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d2Vn

dt2
5DI dc5D~ I n2I n112I nr2I R!, ~10!

with

D5vv
2Rdc, vv

25
1

C1R1C2R2
,

whereI R and I nr are currents through the corresponding li
earR and nonlinear,~NR! resistors~Fig. 2!.

The current through the nonlinear resistor~block NR in
Fig. 2! I nr is a nonlinear function of the voltage applied to i
terminals,DV5Vn2Va ~Fig. 2!. The voltage-current rela
tion for the nonlinear resistorI nr(DV), is shown in Fig. 4.
The block VA in Fig. 2 is a typical voltage adder. This is us
to obtain the linear combinationVa5Vb1Vext, and hence to
shift the variable in the functionI nr(DV) according to the
external voltageVext which is, simultaneously, applied to a
elements in the ring. Finally, the voltageVb at the left side
pin of the double capacitor~Fig. 2! is

Vb5Vn2
1

vv
2RdcC1

dVn

dt
. ~11!

Thus the argument of the functionI nr(DV) is

DV5
1

vv
2RdcC1

dVn

dt
2Vext ~12!

and hence depends on the time derivative ofVn and common
external voltageVext.

The term I R on the right-hand side~r.h.s.! of Eq. ~10!
comes from the large (120 kV) value of R ~Fig. 2!. This
resistor compensates unavoidable differences between
and prevents saturation of the circuit due to small dist
bances. We shall further discuss its role in Sec. IV.

Thus, from Eq.~10! we have

FIG. 2. Block scheme of the Toda-Rayleigh lattice:~DC! is a
double capacitor,~NR! accounts for the nonlinear dissipative fun
tion G(P) in the model Eq.~1!; ~VA ! provides variable shift of the
nonlinear functionG(P) to compensate voltage drift;R is an addi-
tional stabilizing high value resistor (R5120 kV). Diodes are
1n4148.
1-3
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d2Vn

dt2
5vv

2RdcH I sFexp S Vn212Vn

Vt
D 2exp S Vn2Vn11

Vt
D G

1I nrS dVn

dt
,VextD2

1

R
VnJ . ~13!

The direct measurement ofdVn /dt ~which corresponds to
the momentum in the mechanical analog! is not possible. The
alternative is to obtain these values from voltage differen

FIG. 3. Particular circuit implementation of the black boxes
the scheme shown in Fig. 2:~a! double capacitor,~b! nonlinear
resistor, and~c! voltage adder. Diodes are 1n4148. Unless otherw
specified we take the following parameter valuesC15C2

50.1 mF, R15R2510 kV.
03660
s

in a unit using Eq.~11!. The functionI nr ~Fig. 4! in Eq. ~13!
plays a similar role to that played by the functionG(P) in
the system Eq.~1!. We can approximate it by a cubic poly
nomial as in Eq.~2!

I nr~V!5
3A3I max

2Ṽ3
~Ṽ22V2!V, ~14!

whereI max andṼ are, respectively, the maximum and zero
the function I nr ~Fig. 4!. In our experiments we useṼ
'1.45 V andI max'45 m A.

Comparing the mechanical Eq.~1! and electrical Eq.~13!
implementations of the Toda-Rayleigh lattice we get the f
lowing relations between parameters and variables:

Yn→Vn , Pn→
dVn

dt
, B→ 1

Vt
, V2→vv

2 RdcI s

Vt
,

~15!

G~Pn!→vv
2RdcI nrS 1

vv
2RdcC1

dV

dt D .

Introducing in Eq. ~13! new dimensionless variables,pn
5(d/B)Pn , yn5BYn , with

d5
3A3I max

2Ṽ3C1
3vv

4Rdc
2

we get a system similar to Eq.~3!

ẏn5pn ,
~16!

ṗn5v0
2~eyn212yn2eyn2yn11!1~m2pn

2!pn2vR
2yn ,

with

e

FIG. 4. Experimental current-voltage relation for the nonline
resistor,I nr(DV), whereDV5Vn2Vb2Vext is voltage applied to its
terminals.
1-4



i

-
t

nt

ge

lt-
r

l-
-
e
e
nt
r

d

e
ce
wa
ith

T
o

is
i-

ju
on

n

y
y

r

s

ive
nd a

a-
ng

r

ut
is

.
of

f
’’

t

ns

rs
a-
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m5
27I max

2 Vt
2

4Rdc
2 @ṼC1vv#4

, v0
25

27I max
2 Vt

3I s

4Rdc
3 @ṼC1vv#6

,

vR
25

27I max
2 Vt

4

4RRdc
3 @ṼC1vv#6

.

Equation~16! yields Eq. ~3! as R→`. For the value ofR
used in our experiments there is no significant difference
the actual dynamic behavior of these equations.

In Eq. ~16!, the parametersm, v0, andvR depend onVt
and, in addition,v0 depends onI s . The experimental prob
lem to evaluate the parameter values of a diode is due to
fact that bothVt and I s are strongly temperature depende
At 300 K the relative change inI s is about 15% per 1 K. On
the other hand,I s depends strongly on the specific volta
range of the diode operation@46#. In the low voltage range
the approximate value ofI s is much higher than its value in
the high voltage range. Our circuit works in the whole vo
age range~from 20.6 to 0.6 V!. Thus to model the behavio
of the real diode we fit the experimentalI -V characteristics
with Eq. ~8! in this voltage range. We get the following va
ues I s'1.5 nA andVt'0.05 V. Note that the experimen
tally obtained value ofVt is higher than the thermal voltag
~0.026 V at 300 K! of the ideal diode. Fortunately, as w
shall see in the next sections, it is possible to verify qua
tatively the theoretical predictions by using appropriate va
ables in the circuit that do not depend onI s and Vt . Their
values are important to estimate the relation between the
mensionless parametersm and v0 only. This problem is
common for all types of diodes, including the varactors us
by Hirota and Suzuki. Finally, all measurements and tra
were done by using the digital oscilloscope Yokoga
DL1540C. Traces were digitalized and then plotted w
standard computer-graphics tools.

III. DYNAMICS OF A SINGLE UNIT

Let us first consider the dynamics of an isolated unit.
do this we connect to ground the terminals of two neighb
ing diodes. For such configuration the resistorR ~Fig. 2! does
not play a significant role, since the current through it
negligible relative to the current that flows through two d
odes grounded in opposite directions. The configuration
described corresponds to the following boundary conditi
for Eq. ~3!:

yn115yn2150.

Hence the evolution of an isolated unit obeys the equatio

ÿ12v0
2sinhy5m ẏ2 ẏ3. ~17!

When sinhy'y, Eq. ~17! is the equation first introduced b
Rayleigh to describe sustained oscillations in acoustic s
tems@40#.

Omitting the r.h.s., Eq.~17! is a conservative nonlinea
oscillator with HamiltonianH5 ẏ2/212v0

2(coshy21). It has
a steady state~a center! at the origin and all other trajectorie
03660
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are closed orbits around it. Form<0, Eq. ~17! has a single
attractor which is the steady state at the origin. For posit
m this steady state becomes an unstable node or focus a
single periodic solution that attracts all nonequilibrium tr
jectories appears through a Hopf bifurcation. Introduci
new variables and time scale,v52(2v0

2/m3/2)sinhy, u

5(1/Am) ẏ, tnew5Amtold , Eq. ~17! can be rewritten in the
form

u̇5Am~u2u31v !,
~18!

v̇52uA4v0
4

m3
1v2.

By constructing a map of the semiaxisv15$(u,v)uv.0,u
50% into itself in a spirit like it was done in Ref.@47# for the
Van der Pol equation, one can prove that Eq.~18! and, con-
sequently, Eq.~17! has a single stable limit cycle existing fo
arbitrarym.0.

To compare with experimental results, information abo
the amplitude, period, and shape of the oscillations
needed. Estimate of values of the parametersm andv0 used
in the experimental setup shows thatm@v0. In this limit,
changing the time scaletnew5(2v0

2/m)told and introducing a
new variablev5(2v0

2/m3/2)y we get from Eq.~17!

v̇5u,
~19!

«u̇5u2u32a sinhF v
aG ,

with a52v0
2/m3/2 and «52v0

2/m2 is a small parameter
Thus we have relaxation oscillations, when slow changes
the variableu are altered by its fast jumps whilev performs
ramp oscillations~Fig. 5!. The ‘‘amplitudes’’ ~maximal de-
viations from zero! are umax.2/A3, vmax

5a sinh21@2/3A3a#, respectively. Note that the trajectory o
the limit cycle largely remains in the domains of ‘‘slow
motion ~Fig. 5!. Approximating the slow motions byu'
61, integration of the first equation of Eq.~19! over the
regions of slow motions givesT.4a sinh21@2/3A3a# for
the oscillation period. Inverting the transformation we ge

Ay
st5sinh21F m3/2

3A3v0
2G , Ap

st5
2Am

A3
, Tst.

4Ay
st

Am
.

~20!

The amplitude ofp depends on the ‘‘Rayleigh parameter’’m
only. The theoretical estimate of the period of oscillatio
Eq. ~20! in dimensional form gives

T5
4R1R2C2

Ṽ

AV

Rdc
, ~21!

whereAV is the amplitude of the variableV ~corresponding
to Ay

st). We note that Eq.~21! does not include the paramete
Vt and I s which, as we earlier mentioned, cannot be me
1-5



in

-

w
d
r
ly

o

se

ta-
er

ible

iso-

in.
di-

ble
nd

or-

c-

t
on
-
r

he

MAKAROV, del RIO, EBELING, AND VELARDE PHYSICAL REVIEW E64 036601
sured with precision. A precise measurement of the lead
coefficient in Eq.~21! gives 4R1R2C2 /Ṽ529.32(s/V/V).
According to theory, the period of oscillations Eq.~21! does
not depend onC1. To check this experimentally in our mea
surements we used two values:C150.105 mF and C1
50.053 mF. For each value of the capacitorC1 we change
the other parameter of the double capacitorRdc , and mea-
sure the amplitude and period of oscillations. Figure 6 sho
experimental data and the theoretically predicted linear
pendence~21!. The agreement between theory and expe
ment is remarkable, both qualitatively and quantitative
within experimental errors~less than 3%!.

IV. OSCILLATIONS IN THE RING CHAIN

Earlier, we have numerically obtained different types
oscillations in the system Eq.~3! @33#. It was found that:~i!
rotation of a ring as a whole with constant velocity,~ii !
soliton-like waves moving clockwise or counterclockwi

FIG. 5. Dynamics of a single unit:~a! phase plane portrait of a
single unit in the casem@v0 ~single/double arrows on the limi
cycle correspond to slow/fast motions; the dashed line corresp
to the curvev5a sinh21@(u2u3)/a#). ~b! Experimental measure
ment of voltage at the unitV, (V}v) and voltage between uppe
and left-side pins of the double capacitorDV}dV/dt}u (Rdc

5681 V, m'0.16, v0'931024).
03660
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‘‘upstream’’ ~opposite to the direction of average mass ro
tion!, and ~iii ! short-length scale oscillations. On the oth
hand, for a system similar to Eq.~1! with a special form of
the functionG and for high values ofB, numerical compu-
tations show that the system possesses (N11) attracting sets
that differ by the total momentumP51/N(n51

N Pn @48#. Here
we shall proceed with a systematic analysis of the poss
modes of oscillations in the system Eq.~3!. In the previous
section we have investigated the dynamics of a single,
lated unit, and found that for positivem it always produces
oscillations. Let us now study the dynamics of the ring cha
For a closed ring we have the following boundary con
tions:

yn1N~ t !5yn~ t !,

whereN is the total number of units.
For any positivem the system Eq.~3! admits three non-

vibrating spatially homogeneous solutions:

~ i! xn50, pn50,

~ ii ! xn50, pn5Am, ~22!

~ iii ! xn50, pn52Am.

The first solution is unstable and the other two are sta
@33#. These stable solutions correspond to clockwise a
counterclockwise rotations of the ring as a whole with c
responding velocity6Am. In the electrical circuit they can
be observed by adjustingVext56Ṽ ~Fig. 2! so thatdVn /dt
50.

A. Space period-2 oscillations: Experiments with a ring of two
units and the role of the resistorR

Let us first consider the simplest oscillatory solutions o
curring in the ring Eq.~3! with anevennumber of units. The

ds

FIG. 6. Oscillation period as a function of the ratioAV /Rdc for
two different values of the capacitanceC1 @Fig. 3~a!#. Squares cor-
respond to C150.105 mF and triangles correspond toC1

50.053 mF. The straight line is the theoretical estimate of t
period Eq.~21!.
1-6
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DISSIPATIVE TODA-RAYLEIGH LATTICE AND ITS . . . PHYSICAL REVIEW E 64 036601
shortest ‘‘ring’’ is a chain of two units coupled by two oppo
sitely connected diodes, such thaty05y2 andy35y1.

Let us now assume that we have the space period-2 s
tion

yn~ t !5yn12~ t !. ~23!

Changing variabless5pn211pn and r 5pn212pn , from
Eqs.~3! and ~23! we have

ẋ5r ,

ṙ 524v0
2sinhx1r @m2 1

4 ~r 213s2!#, ~24!

ṡ5s@m2 1
4 ~3r 21s2!#.

For the shortest ring (N52), Eqs.~24! give a full description
of all possible motions. For rings withN.2 units, Eqs.~24!
are determined in the three-dimensional manifold of the c
responding 2N21 dimensional phase space.

For m<0 the rest state is the only attractor. For positivem
the system Eq.~24! has~see Appendix A! three attractors:~i!
two steady states (xn50, pn56Am) corresponding to con
stant rotations with velocitiesc56Am, and~ii ! a limit cycle
in the planes50. The limit cycle corresponds to antipha
oscillations in neighboring units~the so-called ‘‘optical
mode’’! with c50. Figure 7 shows oscilloscope traces f
these three modes. They have been obtained for diffe
values of external voltages. At the beginning, we fixedVext
and one of the three modes was formed in the system.

FIG. 7. Ring with two units. Experimental voltages at the un
for different values ofVext , corresponding to two nonoscillator
modes~top and bottom! and the optical mode~center region! (Rdc

513681 V, m'3.7531024, v0'1025).
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other two modes were obtained by changingVext. For spe-
cific external voltages the system jumped from one mode
the other.

Let us now discuss the stabilizing role of the resistorR
~Fig. 2!. We have mentioned above that the external volta
Vext, which helps in eliminating the effect of a ‘‘constan
rotation,’’ has to be differently tuned for each mode. In pri
ciple we have to choose the exact values of the exte
voltage Vext5$0,2Ṽ,Ṽ% to avoid saturation in the circuit
However, such fine tuning is impossible in practical term
Any small differences in the electronic components, u
avoidable spontaneous fluctuations, or noise will lead to
viation from ideality, and consequently, to a relatively slo
voltage drift that finally saturates the circuit. The resistorR
does not permit these slow changes by expanding the ra
of values ofVext valid for the correct circuit operation from
points ~exact values! into intervals. To show this let us ana
lyze the influence of the resistor on the dynamics of the ri
Besides, here we take into account that the dissipative fu
tion G depends on the external voltageVext. From Eq.~16!
we have

ÿ15v0
2~ey22y12ey12y2!1 f ~ ẏ12pext!2vR

2y1 ,
~25!

ÿ25v0
2~ey12y22ey22y1!1 f ~ ẏ22pext!2vR

2y2 ,

where f (x)5(m2x2)x is the nonlinear function andpext

5vv
2RdcC1Vext @see Eq.~12!#. Let us now assume that th

valuepext ~or, in practical terms,Vext) is tuned such that for
a certain mode the constant voltage drift disappears. The

^p1,2~ t !& t5
1

TE0

T

ẏ1,2~ t !dt5y1,2~T!2y1,2~0![0,

whereT denotes the period of the oscillations. Averaging E
~25! we have for the mean value of the variablesy1 andy2

ȳ5
^y11y2& t

2
5

^ f ~ ẏ12pext!1 f ~ ẏ22pext!& t

2vR
2

. ~26!

For nonoscillatory modes (ẏ1,250), from Eq.~26! we have a
solution of Eq.~25!

y15y25 ȳhom52
f ~pext!

vR
2

. ~27!

To have the electrical circuit working, the voltage (V}y) has
to be inside the operating regime,uy1,2u,ysat. Hence, forR
→` (vR→0) we have to demandf (pext)→0, which corre-
sponds toperfecttuning ofVext. For finiteR, the circuit will
not saturate for the external voltage inside the intervals

upextu&
vR

2ysat

m
, upext6Amu&

vR
2ysat

2m
~28!

that can be experimentally satisfied.
Linearizing Eq.~25! near solutions Eq.~27!, we obtain the

following eigenvalues:
1-7
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l1,25
1

2
@ f 8~pext!6Af 82~pext!24vR

2 #,

l3,45
1

2
@ f 8~pext!6Af 82~pext!24vR

2216v0
2#,

and hence they are stable forf 8(pext),0. There exist two
branches of the functionf (pext) ~Fig. 4! with negative de-
rivative: pext,2Am/3 andpext.Am/3. PositioningVext in-
side these regions and intervals Eq.~28! we can observe two
nonoscillatory modes.

For the optical mode we get from Eq.~26!

ȳopt5
2 f ~pext!13pext̂ ẏ1,2

2 &

vR
2

. ~29!

Let us estimate the valuêẏ1,2
2 &. For y1,2(t) we can write

y1(t)5 ȳopt1v(t) and y2(t)5 ȳopt2v(t) with ^v&[0. Then
from Eq. ~25! we have

v̇5u1pext,
~30!

u̇522v0
2sinh@2v#1 f ~u!2vR

2~ ȳopt1v !.

Now we can write

^ ẏ1,2
2 & t5^v̇2& t5

1

TE0

T

~u~ t !1pext!
2dt5

1

T R u~v !dv,

~31!

whereT is the period of the oscillations. Assuming thatv0
!m we can calculateT as in Sec. III and, consequently, th
integral. We obtain̂ ẏ1,2

2 & t.m2pext
2 . Thus substituting this

result into Eq.~29! we get an estimate for the mean value
the voltage

ȳopt5
2 f ~pext!

vR
2

. ~32!

Again, to have finite mean voltage value~inside circuit op-
eration region! for the imperfectly tunedVext we need to
require thatvRÞ0. Finally, the optical mode exists fo
upextu,Am. This domain ofpext intersects with the domain o
stability of the nonvibrating modes,upextu.Am/3.

From Eqs.~27! and ~32! it follows that both nonoscilla-
tory and optical modes have linear dependencies of the m
voltage (V̄} ȳ) on the current via the nonlinear resistor (I nr
} f ). Experimental measurements of the mean voltage va
V̄ for different solutions as a function of the current via t
nonlinear resistorI nr are shown in Fig. 8. The data have be
obtained with less than 3% relative error. In agreement w
theory we have linear dependency both for nonoscillat
solutions and the optical mode. The two lines marked
triangles correspond to two non-oscillatory solutions. T
small mismatch between them is due to no strict identity
the units and a small asymmetry of the nonlinear funct
I nr . The slope of these straight lines is2104 kV. Theory
03660
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gives the valueR5V̄/I nr52120 kV. The 13% difference is
explained by the nonzero current via the double capac
even if the voltage applied is constant. Our measureme
show that the leakage currentI dc'8 mA in this case, which
corresponds to a decreasing effective resistance from 120V
to 104 kV. For the optical mode, theory predicts a slope
240 kV @Eq. ~32!# but experimentally we got 141 kV. This
discrepancy is again due to an additional current via
double capacitors and the approximations used to com
the period and integral in Eq.~31!.

To conclude this section we should mention that the
ditional term proportional toyn in the Toda-Rayleigh mode
due to the resistorR leads to the appearance of a new attra
tor. This attractor does not exist in the approximationR
→`. Substituting the ansatzsy15y25y(t) into Eq.~25! we
get for y(t)

ÿ1vR
2y5 f ~ ẏ2pext!. ~33!

Equation ~33! has a stable limit cycle. Its large amplitud
precludes its experimental observation as the circuit satur
and we hence disregard it from our present study.

B. NÀ1 oscillatory modes„bifurcation at µÄ0…

Earlier we have investigated some special cases. We h
shown that in a ‘‘ring’’ of two units form.0 only one os-
cillatory ~optical! mode exists. Now let us study the bifurca
tion at m50 for a ring consisting of an arbitrary number o
units. We shall considerm as the significant bifurcation pa
rameter.

Let us consider the function

H~y,p!5 (
n51

N Fpn
2

2
1v0

2~exn212xn!G , ~34!

which is the Hamiltonian for the conservative case (G50).
The time derivative ofH(y,p) along the solution curves o
Eq. ~3! is

FIG. 8. Average voltage on the unitsV̄ vs current through the
nonlinear resistorI nr for the optical mode~squares! and for the
homogeneous solutions~up/down triangles correspond to ‘‘left’’/
‘‘right’’ rotations!.
1-8
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dH

dt
5 (

n51

N

~m2pn
2!pn

2 . ~35!

For m<0, this derivative Eq.~35! is less or equal to zero
(dH/dt50 only if all pn50). Hence in this case the func
tion H(y,p) can be considered as a Lyapunov function. Co
sequently, the motionless state$pn50, yn112yn50% is glo-
bally asymptotically stable.

For m.0 the derivative Eq.~35! is positive definite in the
domainupnu,Am. Hence all trajectories of Eq.~3! cross the
level surfaces

pn
212v0

2~exn212xn!5h, h,m, n51,2, . . . ,N
~36!

outwards. Thus the rest state$pn50, xn[yn2yn2150% is
unstable and, moreover, there is no attractor inside the
main bounded by the surface Eq.~36! with h5m.

Let us now investigate the bifurcation atm50. First, we
investigate the linear case. Introducing perturbations aro
the steady state (pn5xn50) yn5jn , pn5hn and using their
Fourier representation

jn5 (
m51

N

j̃meiMn, hn5 (
m51

N

h̃meiMn,

~37!

M5
2pm

N
, m51,2, . . . ,N

we get from Eq.~3! N uncoupledlinear second-order equa
tions for the space Fourier amplitudes

j̇̃m5h̃m ,
~38!

ḣ̃m522v0
2~12cosM !j̃m1mh̃m .

Thus the stability analysis in the 2N-dimensional system
drastically simplifies. The eigenvalues corresponding to
~38! are given by

l1,2
m 5

m7Am228v0
2~12cosM !

2
. ~39!

One eigenvaluel1
N ~for m5N) vanishes due to the transla

tion symmetry of the system. Another is real (l2
N5m) and

changes sign asm also changes sign. The other 2(N21)
roots have negative real part form,0 and,simultaneously,
cross the imaginary axis atm50, and form.0 we have an
unstable steady state as we have already seen. Atm50 we
have (N21) pairs of imaginary roots with frequencies
linear oscillations

vm52v0sin
pm

N
, m51,2, . . . ,N21

that form5N vanishes. This corresponds to two nonoscill
ing solutions Eq.~22! ~‘‘clockwise’’ or ‘‘counterclockwise’’
03660
-

o-

d

.

-

homogeneous rotations! of the system Eq.~3!. Thus we have
a kind of symmetricHopf bifurcation.

Using the results of the linear analysis let us now consi
the caseumu!min$vm,vm

2 %. Further we shall require tha
umu!min$v0sinp/N,v0

2sin2p/N%. This condition is rather dif-
ficult to be fulfilled by very long ring chains. Hence w
assume that the ring consists of a suitably low number
units.

For positivem we expect the appearance of low amplitu
oscillations with a frequency near the linear value. Acco
ingly, we set

yn5
Ama

vm
cos~vmt1Mn1w!,

~40!
pn52Ama sin~vmt1Mn1w!,

wherea and w are the amplitude and the phase of oscil
tions. They are slow functions of time. In this notationm can
be treated as a wave number. Then, the wavelength isN/m.

Substituting the variable transformation Eq.~40! into the
system Eq.~3!, changing time,tnew5vmtold , and expanding
the exponentials we obtain

ȧ5FAma2

2v0
F~a,u!1

ma

vm
~sinu2a2sin3u!Gsinu,

~41!

ẇ5FAma

2v0
F~a,u!1

m

vm
~sinu2a2sin3u!Gcosu,

with

u5vmt1Mn1w,

F5cos
M

2
sin 2u1

Ama

12v0
„3 cosu2cos 3u~112 cosM !….

Now we can apply the averaging method to the system
~41! and obtain

ȧ5
m

2vm
aS 12

3

4
a2D

~42!

ẇ5
m

16v0
2

a2.

The system Eq.~42! has an unstable steady state at the ori
and a stable limit cycle with amplitudea52/A3.

Thus in the ring we have (N21) different stable oscilla-
tory modes with the following stationary amplitudes and fr
quencies:

Ay
m5

Am

A3v0sin
pm

N

, Ap
m5

2Am

A3
,

~43!

vst
m52v0sin

pm

N S 11
m

12v0
2D .
1-9
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Besides, there exist two trivial states withpn56Am. Thus
the system Eq.~3! for 0,m!v0sinp/N has (N11) differ-
ent stable states: (N21) oscillatory modes and two
nonoscillatory, rotatory modes. For the momentapn the am-
plitude of oscillations is the same for all modes. However
the voltage variabley the amplitude depends on the wa
number. The modesm5(N21),(N22), . . . have the same
amplitude as the modes withm51,2, . . . .They correspond
to waves with the same space scales like waves withm
51,2, . . . , butpropagating in opposite directions. We ca
denote them as modes having negative mode numberm5
21,22, . . . . ForevenN there is a ‘‘special’’~optical! mode
with m56N/2 ~both signs define the same wave form!. In
such modes, neighboring units oscillate in anti-phase as
ready studied in Sec. IV A. The two longest~propagating in
opposite directions! modes withm561 have the largest am
plitude. The amplitude decreases with the increase of m
number. Figure 9 illustrates the bifurcation occurring atm
50. For positivem we haveN2155 different waves (m
563 corresponds to one and the same optical mode!. Nega-
tive amplitude values correspond to a phase shift ofp and to
waves propagating in the opposite direction. Depending
initial conditions, after a transient time one of the seven~5
oscillatory 1 2 nonoscillatory! modes appears in the ring
Equations~43! are valid for small enoughm. With increasing
m, oscillations become stiffer and the amplitude does
follow the Am law.

To visualize the experimental results several variab
such as currents through diodesI n , voltages at the unitsVn ,
or their time derivativesdVn /dt can be used. For example
in @36# currents through diodes were measured by placin
small resistor (1V) in series with each diode. Figure 1
shows our measurements of the voltage on the resistor,
current, by a 12-bit digital oscilloscope NICOLET-42
However, due to the exponential voltage-current characte
tics of diodes, these variables show practically the same
havior for all modes~Fig. 10!. Even, the optical mode (m
53), whose voltage trace is rather close to harmonic os
lations ~Fig. 7!, looks like the longest mode withm51 that

FIG. 9. Schematic diagram of mode amplitudes Eq.~43! as a
function of bifurcation parameter for different mode numb
m (N56).
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represents a soliton solution in the limit of a long enou
chain. Thus we have chosen the voltage and its time der
tive to illustrate the dynamics of the circuit~in the original
Toda lattice the soliton shape solution is observed for
time derivative of displacement variables or for their neare
neighbor differences!.

Figure 11 shows experimental traces for three differ
modes taken for the same external voltage. Them51 wave
has the largest amplitude while waves withm52,3 have
about the same amplitude as theoretically predicted~Fig. 9!.
Besides, the shape and the mean values of voltages
clearly different for all modes. Figure 12 shows voltage d
ferences,Vn2Vb , taken from all units~Fig. 2!. These volt-
age differences are proportional to the time derivatives
voltagesdVn /dt @see Eq.~11!#. Due to the designed left
right symmetry of the system we have two similar wav
propagating clockwise and counterclockwise. The clockw
@Fig. 11~a!#/counterclockwise@Fig. 11~b!# waves propagate
over some negative/positive base levels and have posi

FIG. 10. Oscilloscope traces of current through a diode for d
ferent modes in the ring of six units. For each mode the first p
has been positioned at the same instant of time (Vext50.45 V,
Rdc513681 V, m'3.7531024, v0'1025).

FIG. 11. Oscilloscope traces of the voltages taken from all
units of the ring for three different modes. All parameter values
the same as for Fig. 10.
1-10
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negative humps as theory predicts.
Due to the multistability in the system, we can obser

different modes for the same parameter set. Such a situa
can lead to competition of waves. We usedVext as a param-
eter to study this phenomenon. We started from the nono
latory mode and a high, negative value ofVext (21.8 V).
Then we slowly increaseVext to high positive values and
follow the mode dynamics. Figure 13 shows the results
measurement of mode stability and the jumps that occur
tween modes. Several modes can overlap for the same v
of the external voltage. Thus asVext increases beyond a criti
cal point the initial mode becomes unstable. For that valu
Vext we have two other modes that are stable. Hence on
them can be the winner in the competition. For example,
Vext*20.85 V the m520 ~nonoscillatory mode with
‘‘left’’ rotation ! becomes unstable but the two others w
m521,22 are stable. Then either the mode withm521 or
the m522 mode can win and be established in the ring.
our experiments we observed both possibilities in differ
runs. Further increasingVext leads to new jumps betwee
modes as shown in Fig. 13. Analogous jumps are obse

FIG. 12. Oscilloscope traces showing propagation of the
longest waves: ~a! wave running clockwise, m51 (Vext

50.45 V) and~b! wave running counterclockwise,m521 (Vext

50.45 V). TheY axes provide voltage differences between volta
on the unit and left side pin of the double capacitor~Fig. 2! that is
proportional to the time derivative ofVn(t) Eq. ~11!. The total time
interval corresponds to the oscillation period. All parameter val
~excludingVext) are the same as on Figs. 10 and 11.
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while decreasing the external voltage from 1.8 V to
21.8 V ~not shown in Fig. 13!.

In practical terms, in contrast to what we have seen in F
13, the absence of uncertainty in mode formation and jum
between them is usually preferable. We found experiment
that by decreasing the value of the resistor R to its half va
~from 120 to 60 kV) we have a situation without uncer
tainty in jumps between modes. Namely, the jumps oc
between two nearest modes only and there are no jump
the next nearest neighbors. Figure 14 shows the sequen
all jumps between modes. Clearly, there is an hysteresis-
behavior between any two nearest modes. Changing
value of the external voltage we can get the desired mod

V. CONCLUSION

We have studied the formation and propagation of wav
and switching between different wave modes, in a dissipa

o

e

s

FIG. 13. Average voltage on units for different modes and
rection of jumps between them vs the external voltageVext in the
ring of six units. Each curve corresponds to a certain mode w
mode number markedm on its corresponding top (R5120 kV).

FIG. 14. Jumping sequence between modes for low value
the resistorR560 kV ~Fig. 2!. The remaining parameter values a
the same as for Fig. 13.
1-11
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Toda-Rayleigh system. A rather general Rayleigh type of
ergy pumping-dissipation balance was used. We have sh
up to what extent new phenomena appear that the orig
Toda lattice cannot exhibit. A finite number of stable wa
modes exists and grows with the increase in the numbe
units asN21. For a long enough ring the longest mod
with m561,62, . . . transform into soliton-like waves hav
ing umu crests. All crests have the same ‘‘polarization’’ an
propagate in the same direction. Initial conditions permit t
a certain wave finally forms in the ring. However, its actu
shape is defined by the energy balance and does not de
on the initial conditions. We have also studied the bifurcat
leading to wave multistability. For a prime number of un
~e.g.,N55) we have found that all (N21) modes have the
same oscillatory regime in each unit. The modes differ b
phase shift between units only. For example, forN55, m
562, phase growth occurs along the ring in a time seque
forming an imaginary five-ray star~1–3–5–2–4–1!.

Theory has been complemented with experiments us
an electronic implementation of the model with a nov
method to stabilize a stationary rotating wave without
need of resetting the setup after each period. For rings w
five and six units we experimentally observed all wa
modes predicted by the theory. We have also studied ju
between different modes while the common external volt
changes. Besides, we have experimentally found the valu
the resistorR (60 kV) when our circuit allows us to choos
between different modes by playing with only one exter
voltage, whatever the initial conditions in the units may b
This property of the circuit can be used in applications
formation and control of various spatio-temporal patte
without changing the geometry or the internal structure
the system.
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APPENDIX A:

Let us show that the system Eq.~24! has only three at-
tractors for positivem.

The planes50 is the integral surface of Eq.~24!. This
plane divides the phase space into two symmetrical parts
this plane we have

ẋ5r , ṙ 524v0
2sinhx1mr 2 1

4 r 3, ~A1!

which correspond to the equation for a single unit Eq.~17!.
Accordingly, we have a stable~at least to perturbations insid
the plane! limit cycle.

Let us investigate the dynamics of Eq.~24! when m
!min$v0,v0

2%. We can introduce new variablesx
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5(Am/2v0)w, r 5Amu, s5Amz, tnew52v0told , and ex-
pand sinh@(Am/2v0)w#. Then from Eq.~24! we get

ẇ5u,

u̇52w1«FuS 12
1

4
~u213z2! D2

1

12v0
w3G , ~A2!

ż5«zS 12
1

4
~3u21z2! D ,

with «5m/2v0. Now introducing amplitude-phase (a,w)
variables,w52a cos(t1w), u522a sin(t1w), and averag-
ing over the period of oscillations we obtain

ȧ5
«

2
aF12

3

4
~a21z2!G ,

~A3!

ż5«F12
1

4
~6a21z2!G ,

ẇ5
«

8v0
a2. ~A4!

The first two equations, Eq.~A3!, are independent of the
third one, Eq.~A4!, and we can consider them separately

On the plane (a,z) the vector field is invariant to the
changesa→2a and ~or! z→2z, and hence it suffices to
consider only the first quadrant (a>0, z>0). In the first
quadrant there exist four steady states

O1 :~0,0!, O2 :~0,2!, O3 :S 2

A3
,0D , O4 :SA 8

15
,

2

A5
D .

The steady state at the originO1 is unstable, while the stead
states on the axesO2 andO3 are stable, andO4 is a saddle.

To get a complete picture of the phase space let us c
sider a set of nested elliptical curves

W~a,z!53a21z25h. ~A5!

The derivative ofW(a,z) at W5h along the solution curves
is

FIG. 15. Phase plane of the system Eq.~A3!.
1-12
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dW

dt
5«Fz41z2S 12

5h

4 D2
h2

4
1hG . ~A6!

Now we seek conditions on the parameterh such that

ẆuW5h.0 or ẆuW5h,0 for 0<z<Ah.

From Eq.~A6! we determine that the derivative is negati
for h.4 and is positive forh,4(1318A2)/41. Conse-
quently, in the phase plane there is an absorbing dom
bounded by two nested elliptical curves

D:H ~a,z!U 4~1318A2!

41
<3a21z2<4J . ~A7!

All trajectories enter into this domain and remain there.
note thatD consists of two stable steady statesO2 andO3,
which are the only attractors for all trajectories. To confi
this we have to prove the absence of limit cycles insideD. To
do this we use Bendixson’s criterion@49#. The Bendixson
function for Eq.~A3!
s

.

.

. E

s.

b:

o

03660
in

e

FB~a,z!52
3«

8
~3z217a224!

is negative in the domainD, and hence no closed orbits exi
lying entirely inD. Thus the steady statesO2 andO3 are the
only attractors while the saddleO4 divides the phase plan
~first quadrant! into the corresponding two basins of attra
tion ~Fig. 15!. Hence, in the original system Eq.~24! there
exist three attractors: two steady states and a limit cycle
the planes50. For nonsmall«, analogous results can b
obtained for Eq.~24! by constructing a point map of th
planex50 into itself. For the map we have two stable fixe
points, one on the axisr 50 that corresponds to the stead
state (0,0,Am) and another on the axiss50, which corre-
sponds to the limit cycle on the integral planes50, one
unstable fixed point in the origin corresponding to the u
stable steady state (0,0,0), and a saddle corresponding
hyperbolic limit cycle. The saddle divides the trajectori
into two basins of attraction of the corresponding stable fix
points similar to Fig. 15.
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