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Dissipative Toda-Rayleigh lattice and its oscillatory modes
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A detailed theoretical and experimental analysis of the possible oscillatory regimes of the dissipative Toda-
Rayleigh lattice system is provided. It is shown that the system Rasl() oscillatory modes with different
space-time scales and two rotatory modes. Using its analog electronic circuit implementation we also show
with a simple and robust method how switching between modes occurs.
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I. INTRODUCTION dy,
at oo
Recent theoretical[1-17] and experimental[18—-30 )
works dealing with nearly integrable systems and nonlinear dp, 02
dissipative waves have illustrated the lasting structure of at =§(exF[B(Yn_1—Yn)]
solitonic properties during time evolution, in collisions and
wall reflections. The theoretical work refers mostly to hydro- —exdB(Yp,—Yn: )+ G(P,),

dynamics, electronics, and optical fiber experiments and,
from the theoretical side, to generalizations of the BousswhereP,, Y,, 1, andB account, in Toda’s original prob-
inesq and Korteweg-de Vries equations which are the conlem, for momenta, displacements, base frequency of linear
tinuous counterpart of various lattice systef®4,32. As  oscillations, and the stiffness of the springssumed to be
already discussed by Chu and Velar{l®] an energy identica). An interesting feature of the Toda interaction is
pumping-dissipation balance is the crucial element in ahat under appropriate limits it goes into the harmonic oscil-
driven system. If the energy is appropriately in balance withlator limit and into the hard sphere interaction in another.
dissipation, the soliton originated in an e.g., nonlinearity-The nonlinear functiorG(P) in the system Eq(1) is going
dispersion(local) balance can be sustained. Besides, the ento account for dissipation and sources of energy, which in
ergy balance selects a single phase wave velocity among tlgeneral can be distributed nonhomogeneously on lattice sites
infinitely many existing in the one-parameter family of soli- [41].
tary waves of, say, the standard Korteweg-de Vries equation The system Eq(1) is chosen with left-right symmetry.
[1,6—12. A similar selection occurs for periodic wave trains This means that if there is a solutio¥ {(t), P,(t)) (a clock-
but then we have a two-parameter problem. Here we shallise propagating wayehen there is a solution<{Y _(t),
restrict consideration to a dissipation-modified lattice system-P_(t)) (a counterclockwise propagating waveédence
[33]. we require thatG(—P)=—G(P). The simplest nonlinear

Toda[34] provided exact solutions, including solitons, for function satisfying this condition is a cubic polynomial
a Hamiltonian lattice system with exponential interaction.
Subsequently, othefconservative soliton bearing systems G(P)=d(P?-P?)P, 2
were proposed for nonlinear signal processing and transmis-
sion. However, observation of waves in nature and engineeiyhereP is a constant having the dimension of momentum.
ing devices shows that dissipation is unavoidable and mayguch cubic nonlinearity describes a pumping-saturation bal-
on occasion, drastically affect the expected phenomena. Exmnce introduced by Rayleigii0] and is widely used in vari-
periments with analog electrical circuit implementations ofous fields of sciencp42—45.
the Toda lattice and numerical tests have shown that, in prac- |ntroducing new space and time scales, and corresponding
tical terms, unavoidable dissipative effects lead to energyiimensionless variables;,=BY,, p,=(d/B)P,, we get
losses and indeed spoil the conservative nature of the Todgom Eq. (1)
lattice [35—39. Thus interest has arisen in studying the role
of dissipation and controlled energy pumping, e.g., in the V=P
stationary wave propagation along the Toda lattice. Accord- &)
ingly we study, both analytically and experimentally, a Toda
lattice with a Rayleigh-type energy pumping-dissipation bal-
ance[40] much in the spirit of the above mentioned works with
on continuous systems.

The set of equations describing the motions in a chain of P2 40 B2
point masses coupled by Toda springs including dissipative u=—, 0o=—, trew=—tod.
effects is B? B2 d

g 2 - - 2
p,= wo(e}’nfl Yn—@¥n yn+1)+(,u— pn)pn’
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FIG. 1. Circuit implementations of the Toda lattid@) nonlin-
earL C circuit by Hirota and SuzukKi35], (b) diode-double capaci-
tor circuit by Singer and Oppenheif86].

The lattice system Ed.3) has two independent parameters:
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with Q,, andV,, accounting, respectively, for the charge and
the voltage at thenth capacitor.C(V) is the capacitance.
Then the dynamic equations describing the ladder are

d d V
. (6)
L5¢ =Va— Vi1,

which, indeed, are equivalent to the original Toda system
[34]. To approximate the nonlinearity E() in the experi-
ments, Hirota and Suzuki used varactor diodes. However, for
high voltages the deviation of the varactor diode capacitance
from the required one becomes significant. It leads to distor-
tions of the soliton solutions and their collision leads to wavy
forms which are self-destructive. Besides, since the circuit is
accurate for low voltages only, it is very difficult to observe
overtaking soliton collisions.

Recently, Singer and Oppenhe{®6] proposed a differ-

(i) wo which is the base frequency of linear oscillations inent electrical circuit supposed to better model the Toda lat-

the original Toda lattic¢34], and(ii) x which is the linear

tice. They used junction diodes which have current-voltage

pumping constant accounting for the dissipative Rayleigh(l-V) characteristics very close to exponential. Hence it is

part of the system. Their values and relation define thenatural to use a number of series connected diodes to model
spatio-temporal dynamics of the chain. Further, for convethe effect of Toda springs. To compute time derivatives, they

nience, we shall use nearest-neighbor relative coordinatagsed double capacitofg=ig. 1(b)]. The current through a

along the lattice, i.e.
(4)

Xn=Yn-1"Yn

with periodic boundary conditions that demaEH: 1X,=0.
In contrast to the original Toda equatidra!], the system

Eq. (3), in a closed ring chain, does not permit the simulta-

double capacitor is proportional to the second derivative of
the voltage. Thus we have

d2v,
dt?

=Dlg=D(l—1—1n), (7)

wherel 4. is the current through the double capacitor 8nig

neous propagation of stationary waves traveling in oppositg constant with dimension (V/&), which depends on inter-

directions [33]. We shall focus on the stable oscillatory

nal components of the double capacitor. The curigpts

modes occurring in a relatively short Toda-Rayleigh ringequivalent to the difference of currents through neighboring
chain Eq(3) In Sec. Il we give a succinct account of analogjunction diodes (n*l_ | n)’ which can be accurate'y mod-

circuit implementations of the Toda and Toda-Rayleigh Sysgled as a function of the voltage applied to the terminals,
tems. Section Il is devoted to the analysis of a single unit. Imence

Sec. IV we investigate the possible wave modes in the ring.

Finally, in Sec. V some concluding remarks are given.

II. ANALOG CIRCUIT IMPLEMENTATION OF THE
MODEL

Let us discuss two different electric circuit models of the
Toda lattice that guided us in our analog electrical circuit

implementation of the Toda-Rayleigh lattice.

A. Various electrical circuit analogs of the Toda lattice
For the original Toda lattices(P)=0, Hirota and Suzuki

[ Vn-1=Vq
Vl _1 1

()

wherel g is the saturation current of diodes, avidis a con-
stant having voltage dimension. Equatiof®d and (8) are
equivalent to the Toda systef84].

In the Singer-Oppenheim circuit voltage fronts can propa-
gate to the right or to the left depending on the sign of the
spatial difference between voltages from the opposite side of
the front. Singer and Oppenheim were able to observe “true
overtaking soliton collisions with a small number of nodes”
[36]. They proposed using such circuits for nonlinear signal

[35] have shown that the mechanical chain with exponentiaProcessing.

interactions is equivalent to a ladder bfC circuits [Fig.

1(a@)] with linear inductors and suitable nonlinear capacitors

dQ Co%°

dv o vo4y’

n

Vv
1+ o5

Q,=C%%n , C(V)= (5)

B. Circuit implementation of the Toda-Rayleigh lattice

Before we proceed further let us note that in general an
excitation passing through a unit in the chain incredses
decreasesits voltage by a value depending on the type of
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excitation. For example, for the solitary wave solution of the I, I,
Toda chain the difference between voltages, before and after Vz N V. ~ 'f:m
the soliton passes a unit, [86] 1 [ “
o0 lzlnr i Idc l IR
AV=f p(t)dt=xV;,
- NR % .1 DC R
VA
wherex is an arbitrary constant defining the spatial width of v 1
the soliton. Thus a wave rotating in the ring continuously T _T_ ext

increasedrespectively, decreases for a wave running in the
opposite directionthe voltage in the units and, eventually,  FIG. 2. Block scheme of the Toda-Rayleigh latti¢BxC) is a
saturates the circuit. To avoid this problem, Singer and Opdouble capacitortNR) accounts for the nonlinear dissipative func-
penheim[36] used analog switches, allowing us to reset thetion G(P) in the model Eq(1); (VA) provides variable shift of the
circuit after each run, which resulted in short spikes in diodenonlinear functionG(P) to compensate voltage drif§ is an addi-
currents. These switches are synchronized by an external ciional stabilizing high value resistorR=120 K2). Diodes are
cuit with an initial pulse imposed by a current generatorln4148.
acting on the first unit of the chain. Here we take the Singer-
Oppenheim electronic implementation of the circuit since it d2v
models the Toda equations better than the Hirota-Suzuki cir- 5
cuit. We add a specific implementation@{P) in Eq. (1) to dt
the circuit and propose a different solution to the saturation
problem. Our circuit does not contain switches and any adwith
ditional synchronization block, i.e., it could work at all times
without the need of resetting the capacitors. 1
The voltaged/,, on the units can be decomposed into two D= wfRdC, wfzm,
parts: (i) one always increasingvhich leads to saturation 1=2t2
and (ii) another oscillating around some mean value

n

=Dl4e=D(l = lni1=In—1R), (10

wherel g andl ,, are currents through the corresponding lin-
earR and nonlinear(NR) resistors(Fig. 2).
Vy=ct+Vp®", 9 The current through the nonlinear resistbtock NR in
Fig. 2) | ., is a nonlinear function of the voltage applied to its
_ . terminals,AV=V,—V, (Fig. 2. The voltage-current rela-
Whe_rec is the_ voltage growth rate. In the_mechanlcal_ analogion for the nonlinear resistar (AV), is shown in Fig. 4.
(a ring of point masses coupled by springse coordinate tpe piock VA in Fig. 2 is a typical voltage adder. This is used
phange defined by EqS) cqrresppnds o a transfo.rma'uon to obtain the linear combinatiovi,= V,+ V., and hence to
into a reference frame rotating Wlth constant velocityand shift the variable in the functiom, (AV) according to the
thus a wave appears as vibrations of masses around theéf(ternal voltage/ ., Which is, simultaneously, applied to all

correspondindixed mean values. The transf_ormation i) ... elements in the ring. Finally, the voltagg, at the left side
does not affect the original “Toda” part, but it leads to a shift pin of the double capacitafFig. 2) is

in the “Rayleigh” part, G(dV/dt) —G[(dV/dt) +c], of the
system Eq.(1). In general, for different wave regimes the
constantc may be different. Hence we have to introduce an _ 1 dv,
additional electric block to tune the constarthus eliminat- V=V w?R.C, dt’
ing saturation of the circuit. viidel
The Singer-Oppenheim circuit was developed for model- . .
ing the original, conservative, Toda systd®4]. Conse- 1hus the argument of the functidg(AV) is
quently, all observed waves come from chosen initial condi-
tions imposed by the current generator. For a dissipative 1 dv,
system like Eq(1) the initial conditions lose significance as AV= ——— at
we have indicated that the input-dissipation energy balance @, RacCa
helps to select and sustain a specific solution, and hence only
a limited and well-defined number of different stable solu-and hence depends on the time derivativ®/ pind common
tions are actually realized. Thus we chose between differergxternal voltage/ .
solutions by playing with an external voltage as we explain The termlg on the right-hand sidér.h.s) of Eq. (10)
below. comes from the large (120(K) value of R (Fig. 2). This
The circuit scheme for the Toda-Rayleigh chain is showrresistor compensates unavoidable differences between units
in Fig. 2. Figure 3 shows a particular implementation of theand prevents saturation of the circuit due to small distur-
black boxes used in Fig. 2. According to th&/ relation of  bances. We shall further discuss its role in Sec. IV.
the double capacitor, as in E(), we have Thus, from Eq.(10) we have

(11)

- Vext (12)
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FIG. 4. Experimental current-voltage relation for the nonlinear
resistor| ,(AV), whereAV=V,—V,— V., is voltage applied to its
terminals.

in a unit using Eq(11). The functionl, (Fig. 4) in Eq. (13
plays a similar role to that played by the functi@(P) in
the system Eq(1). We can approximate it by a cubic poly-
nomial as in Eq(2)

33!

(V)= ———=(V2=V?2)V, 14
(V) Y ( ) (14

wherel .., andV are, respectively, the maximum and zero of

the function|,, (Fig. 4). In our experiments we us®
~1.45 V andl n,~45 uA.

Comparing the mechanical E€l) and electrical Eq(13)
implementations of the Toda-Rayleigh lattice we get the fol-
lowing relations between parameters and variables:

dv 1 (=3
Y, —V,, Pn_>d—t”, B_,Vt, 02— 02 \d/cts

1 dv

G(P,)— 0Ryd | ——— ==
n dc! nr wERdCCl dt

FIG. 3. Particular circuit implementation of the black boxes in . . . . .
the scheme shown in Fig. Za) double capacitor(b) nonlinear Introducing in Eq.(13) new dimensionless variableg,

resistor, andc) voltage adder. Diodes are 1n4148. Unless otherwise (d/B)Py, yn=BY,, with
specified we take the following parameter valu€s=C,

=0.1 uF, R=R,=10 KkQ. 3Bl
- 2VeC3wR2
dZVn 2R [I anvn) VnVn+1) Hee
= exp| ——| —exp| ——— L
g Cvdells P Vi P Vi we get a system similar to E¢R)
dv, 1 .
+|nr W!Vext _ﬁvn . (13) yn_pnv

(16)
The direct measurement div,,/dt (which corresponds to Pn= (V-1 Yn—e¥n Vn+1) + (u—pR)pn— wiyn,
the momentum in the mechanical anglagnot possible. The

alternative is to obtain these values from voltage differencesvith
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2712 \/2 2712 3 are closed orbits around it. Fer<0, Eq.(17) has a single
= Mt 2~ Maxls hich is the steady state at the origin. For positive
m 5= 7 @0 T 5 attractor whic y gin. p
4Ry {VCiow,] 4R {VCiw, ] w this steady state becomes an unstable node or focus and a
single periodic solution that attracts all nonequilibrium tra-
) 271 ;axvf jectories appears through a Hopf bifurcation. Introducing
wR:—4RF§O[VC G new variables and time scale,=—(2w3/x*?)sinhy, u
1%

=(Ap)Y, thew= Virtoq. EQ. (17) can be rewritten in the
Equation(16) yields Eq.(3) as R—o. For the value ofR  form
used in our experiments there is no significant difference in

the actual dynamic behavior of these equations. u= J;(U— u+v),

In Eq. (16), the parameterg, wq, andwg depend orV, (18
and, in additionw, depends ons. The experimental prob- i 4w6‘ )
lem to evaluate the parameter values of a diode is due to the v=-—u F +v”.

fact that bothV, andlg are strongly temperature dependent.

At 300 K the relative change ih, is about 15% pe_r_l K. On By constructing a map of the semiaxig ={(u,v)|v>0u
the other handls depends strongly on the specific voltage _ ) into itself in a spirit like it was done in Ref47] for the
range of the diode operatidd6]. In the low voltage range van der Pol equation, one can prove that E®) and, con-

the approximate value df is much higher than its value in g0 antlv. Eq(17) has a sinale stable limit cvcle existing for
the high voltage range. Our circuit works in the whole volt- arl?itraryﬁ>g(. 7 g Y g

age rangdfrom —0.6 0 0.6 J. Thus to model the behavior 14 compare with experimental results, information about
of the real diode we fit the experimentaV characteristics o amplitude, period, and shape of the oscillations is

with Eqg. (8) in this voltage range. We get the foIIowin'g val- heeded. Estimate of values of the parameteend w, used
lally abtained value o, is Higher than the thermal valtage. |- "o €Xperimental setup shows that- . In this Imit
tS ] . changing the time scalge,= (2w3/ 1)ty and introducing a
(0.026 V at 300 K of the ideal diode. Fortunately, as we - 8ar?ablev=(2w2/ I%‘?‘Z“)’ (W:(’ gt)fr(zl)dm Eq(17) 9
shall see in the next sections, it is possible to verify quanti- of LY 9 a

tatively the theoretical predictions by using appropriate vari-
ables in the circuit that do not depend bpandV,. Their
values are important to estimate the relation between the di- v
mensionless parameteys and wg only. This problem is sl..l=u—u3—aSin|'{— ,
common for all types of diodes, including the varactors used a
by Hirota and Suzuki. Finally, all measurements and traces . a2, 3P Cn 2, 2
were done by using the digital oscilloscope YokogawaVith @=2wg/u”" and e=2wy/p” is a small parameter.

DL1540C. Traces were digitalized and then plotted with Thus we have relaxation oscillations, when slow changes of
standard computer-graphics tools. the variableu are altered by its fast jumps white performs

ramp oscillationgFig. 5. The “amplitudes” (maximal de-
viations  from  zerd are  Upa=2/\3,  Umax
=asinh 2/3,/3a], respectively. Note that the trajectory of
Let us first consider the dynamics of an isolated unit. Tothe limit cycle largely remains in the domains of “slow”
do this we connect to ground the terminals of two neighbormotion (Fig. 5). Approximating the slow motions by~
ing diodes. For such configuration the resifqFig. 2) does =1, integration of the first equation of E¢19) over the
not play a significant role, since the current through it isregions of slow motions gived =4« sinh {2/3\/3a] for
negligible relative to the current that flows through two di- the oscillation period. Inverting the transformation we get
odes grounded in opposite directions. The configuration just
described corresponds to the following boundary conditions
for Eq. (3): A= Sinhl[

v=u,
(19

IIl. DYNAMICS OF A SINGLE UNIT

3/2
L -
3V3wi P B Vi
Yn+1=Yn-1=0. (20)

Hence the evolution of an isolated unit obeys the equation The amplitude op depends on the “Rayleigh parametex”
only. The theoretical estimate of the period of oscillations

st
st__ 2 \/; st, 4Ay

y+2w2sinhy = uy—y2, (17)  Ed.(20) in dimensional form gives
When sinty~y, Eq. (17) is the equation first introduced by T 4R1RC, Av (21)
Rayleigh to describe sustained oscillations in acoustic sys- Y, Ryc’

tems[40].

Omitting the r.h.s., Eq(17) is a conservative nonlinear whereA, is the amplitude of the variablé (corresponding
oscillator with HamiltoniarH = y?/2+ 2w3(coshy—1). Ithas  to Af,t). We note that Eq21) does not include the parameters
a steady statéa centey at the origin and all other trajectories V; andlg which, as we earlier mentioned, cannot be mea-
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FIG. 6. Oscillation period as a function of the rafig /R for
04 AN two different values of the capacitan€g [Fig. 3(@)]. Squares cor-
> / / \ / respond to C;=0.105 uF and triangles correspond td&;
N 0/ \ / / =0.053 uF. The straight line is the theoretical estimate of the
04 period Eq.(22).
& N\
“upstream” (opposite to the direction of average mass rota-
2 tion), and (iii) short-length scale oscillations. On the other
_ hand, for a system similar to E¢l) with a special form of
2 / \ f \ the functionG and for high values oB, numerical compu-
~ 0 / tations show that the system posses$és () attracting sets
< / \ ) \ that differ by the total momentu=1/N=N_, P, [48]. Here
2 we shall proceed with a systematic analysis of the possible
0 10 20 n 0 %0 modes of oscillations in the system E@). In the previous

. section we have investigated the dynamics of a single, iso-
(b) ame [ms] lated unit, and found that for positive it always produces
oscillations. Let us now study the dynamics of the ring chain.

_FIG. 5. Dynamics of a single unita) phase plane portrait of a - £ 5 ¢jgeq ring we have the following boundary condi-
single unit in the case.> w, (single/double arrows on the limit ions:

cycle correspond to slow/fast motions; the dashed line corresponds
to the curvev = a sinh [(u—u¥)/a]). (b) Experimental measure-
ment of voltage at the uni¥, (Vxv) and voltage between upper
and left-side pins of the double capacitaV«dV/dteu (Ryc
=681 Q, u~0.16, wy=9x 10" 4.

Yn+n(D)=Yn(1),

whereN is the total number of units.
For any positiveu the system Eq(3) admits three non-

. . . . vibrating spatially homogeneous solutions:
sured with precision. A precise measurement of the leading

coefficient in Eq.(21) gives 4R;R,C,/V=29.326/Q/V). (1) xp=0, p,=0,

According to theory, the period of oscillations Eg1) does

not depend orC,. To check this experimentally in our mea- (i) %,=0, pp=+u, (22)
surements we used two value€;=0.105 uF and C;

=0.053 uF. For each value of the capacitGy; we change (i) x,=0, p,=-— \/;

the other parameter of the double capaciRyr, and mea-

sure the amplitude and period of oscillations. Figure 6 showgg first solution is unstable and the other two are stable
experimental data and the theoretically predicted linear dg[—33]_ These stable solutions correspond to clockwise and
pendence21). The agreement between theory and experivqnterciockwise rotations of the ring as a whole with cor-
ment is remarkable, both qualitatively and quantltatlvely,resporlding velocity: . In the electrical circuit they can

within experimental errorgless than 39 - ~
P d % be observed by adjusting.,— =V (Fig. 2) so thatdV,/dt
=0.
IV. OSCILLATIONS IN THE RING CHAIN
A. Space period-2 oscillations: Experiments with a ring of two

Earlier, we have numerically obtained different types of units and the role of the resistor R

oscillations in the system E@3) [33]. It was found thatii)
rotation of a ring as a whole with constant velocityj,) Let us first consider the simplest oscillatory solutions oc-
soliton-like waves moving clockwise or counterclockwise curring in the ring Eq(3) with anevennumber of units. The
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21 other two modes were obtained by changWig,. For spe-
= cific external voltages the system jumped from one mode to
= 14 the other.
o V_ =134V Let us now discuss the stabilizing role of the resid®or
> 0.7 (Fig. 2. We have mentioned above that the external voltage

Veyxt» Which helps in eliminating the effect of a “constant
rotation,” has to be differently tuned for each mode. In prin-
ciple we have to choose the exact values of the external

2 0.5 AN TN SN A\ voltage Ve,={0,—V,V} to avoid saturation in the circuit.
a8 >< However, such fine tuning is impossible in practical terms.
>~ 0 N A \_// \// Any small differences in the electronic components, un-
Vv, =031V avoidable spontaneous fluctuations, or noise will lead to de-
viation from ideality, and consequently, to a relatively slow
voltage drift that finally saturates the circuit. The resid®or
= 07 does not permit these slow changes by expanding the range
- V=134V of values ofV,, valid for the correct circuit operation from
—_14 points (exact valuesinto intervals. To show this let us ana-
> lyze the influence of the resistor on the dynamics of the ring.
21 Besides, here we take into account that the dissipative func-
0 1 2 3 4 5 tion G depends on the external voltayfg,;. From Eq.(16)
time [ms] we have
FIQ. 7. Ring with two units. Experimental voltages at the units 91: w%(eyz—yl_eyl—yz)+ f(yl_ Pext) — wéYl:
for different values ofV.,, corresponding to two nonoscillatory (25)

modes(top and bottomand the optical modécenter regioh (R, G 20V Yo oYYl o 2
=13681 0, u~3.75<10 %, wy~10"). Y2= wole &+ (Y2 Ped) ~ wRY2.
_ . where f(x)=(u—x?)x is the nonlinear function angey
shortest ring” is a_cham of two units coupled by two oppo- :L(,ngc(;l\/ext [see Eq.(12)]. Let us now assume that the
sitely connected diodes, such that=y, andy;=y;. value pey (0r, in practical termsy,,) is tuned such that for

; Let us now assume that we have the space period-2 soly; certain mode the constant voltage drift disappears. Then
ion

1/(T7.
Yn(t)=Ynia(t). (23) <p1,2(t)>t:ff0 y1A)dt=y; T)—y; 0)=0,
Changing variables=p,_,+p, and r=p,_,—p,, from  \yhereT denotes the period of the oscillations. Averaging Eq.
Egs.(3) and(23) we have (25) we have for the mean value of the variabjgsandy,
X=r, — (yYatY2)i (F(Y1—Pexd + (Y2~ Pexd)s
y="5—= 5 . (26
_ 2wg
r=—4w3sinhx+r[ u—%(r2+3s?)], (24)

For nonoscillatory modesy( ,=0), from Eq.(26) we have a
. solution of Eq.(25)
s=s[u—5(3r2+s?)].
= f(pew

For the shortest ringN=2), Eqs.(24) give a full description Y1=Y2=Yhom= ~ w2 (27)
of all possible motions. For rings with>2 units, Eqs(24) R
are determined in the three-dimensional manifold of the COITo have the electrical circuit Working, the Vo|tagéo(y) has
responding R —1 dimensional phase space. to be inside the operating regim, J <y, Hence, forR

For u=<0 the rest state is the only attractor. For posifive ., (wr—0) we have to demant{pe,)— 0, which corre-
the system Eq(24) has(see Appendix Athree attractorsi)  sponds tgperfecttuning of Vey,. For finiteR, the circuit will
two steady states<g=0, p,= = \/u) corresponding to con- not saturate for the external voltage inside the intervals
stant rotations with velocities= = \/u, and(ii) a limit cycle
in the planes=0. The limit cycle corresponds to antiphase wéysat wﬁysat
oscillations in neighboring unitsthe so-called “optical |Pexd = n |Pexi V| = 24
mode”) with c=0. Figure 7 shows oscilloscope traces for
these three modes. They have been obtained for differemhat can be experimentally satisfied.
values of external voltages. At the beginning, we fixég, Linearizing Eq.(25) near solutions Eq27), we obtain the
and one of the three modes was formed in the system. Thi@llowing eigenvalues:

(28)
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1
Al,zzz[f/(pext)i \/flz(pext)_‘le],

1
Naa= 5[ (Pex) * VT 2(Pex) — 4R~ 16w0],

and hence they are stable fbf(pe,)<<0. There exist two
branches of the functiofi(pey) (Fig. 4 with negative de-
rivative: Pey< — Vuu/3 and e /3. PositioningVey in-
side these regions and intervals E28) we can observe two
nonoscillatory modes.

For the optical mode we get from E(R6)

— - f(pext) +3pext<yi2>
Yopt™ 2 ’
wR

(29

Let us estimate the valu(g'/fz). Fory; J(t) we can write

y1(t) = Yoprt v(t) andy,(t)=yop—v(t) with (v)=0. Then
from Eq. (25 we have

l.}:LH'pextv

) _ (30

U= —2w3sini 201+ f(U) — WA(Yopt v).

Now we can write
) s 1(T 5 1
<y1,2>t:<v >t:f (u(t)+pext) dt:? u(v)dv,
0
(3D

whereT is the period of the oscillations. Assuming thag

<u we can calculatd as in Sec. lll and, consequently, the

integral. We obtain(y? ;= u—p2. Thus substituting this

PHYSICAL REVIEW E64 036601

V [V]

-4x10° 2x10°

FIG. 8. Average voltage on the units vs current through the
nonlinear resistol,,, for the optical mode(squares and for the
homogeneous solution@ip/down triangles correspond to “left"/
“right” rotations).

gives the valu&k=V/l,= —120 K. The 13% difference is
explained by the nonzero current via the double capacitor
even if the voltage applied is constant. Our measurements
show that the leakage current~8 wA in this case, which
corresponds to a decreasing effective resistance from 020 k
to 104 K). For the optical mode, theory predicts a slope of
240 K [Eg.(32)] but experimentally we got 141 (k. This
discrepancy is again due to an additional current via the
double capacitors and the approximations used to compute
the period and integral in E¢31).

To conclude this section we should mention that the ad-
ditional term proportional ty,, in the Toda-Rayleigh model
due to the resistoR leads to the appearance of a new attrac-
tor. This attractor does not exist in the approximati@n
— oo, Substituting the ansatzg =y,=y(t) into Eq.(25) we

result into £q.(29) we get an estimate for the mean value of get fory(t)

the voltage

—  2f(pey
Yopt=—"% -
WR

(32

Again, to have finite mean voltage valgi@side circuit op-
eration region for the imperfectly tunedV, we need to

require thatwr#0. Finally, the optical mode exists for
|Pexd < Vit This domain ofpe,, intersects with the domain of

stability of the nonvibrating mode$pe,{ > vu/3.
From Egs.(27) and (32) it follows that both nonoscilla-

y+ wRY="f(y— Pex)- (33

Equation(33) has a stable limit cycle. Its large amplitude
precludes its experimental observation as the circuit saturates
and we hence disregard it from our present study.

B. N—1 oscillatory modes(bifurcation at p=0)

Earlier we have investigated some special cases. We have
shown that in a “ring” of two units foru>0 only one os-

tory and optical modes have linear dependencies of the meanillatory (optica) mode exists. Now let us study the bifurca-

voltage (Vocy) on the current via the nonlinear resistop,(

tion at w=0 for a ring consisting of an arbitrary number of

«f). Experimental measurements of the mean voltage valuehits. We shall consider as the significant bifurcation pa-

V for different solutions as a function of the current via the "@Meter: . .

nonlinear resistor,, are shown in Fig. 8. The data have been Let us consider the function

obtained with less than 3% relative error. In agreement with N 2

theory we have linear dependency both for nonoscillatory H(y,p)= 2 &+wg(exn_1_xn) ,
solutions and the optical mode. The two lines marked by n=1]2

triangles correspond to two non-oscillatory solutions. The

small mismatch between them is due to no strict identity ofwhich is the Hamiltonian for the conservative case=0).
the units and a small asymmetry of the nonlinear functionThe time derivative oH(y,p) along the solution curves of
I.. The slope of these straight lines #5104 K). Theory Eq.(3) is

(34
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dH N homogeneous rotationsef the system Eq(3). Thus we have
T > (w—p3)p2. (350 a kind of symmetricHopf bifurcation.
n=1 Using the results of the linear analysis let us now consider

the case|u|<min{wy,,w2}. Further we shall require that
| | < min{wgsina/N,w3sirP/N}. This condition is rather dif-
ficult to be fulfilled by very long ring chains. Hence we
assume that the ring consists of a suitably low number of
units.

For positiveu we expect the appearance of low amplitude
oscillations with a frequency near the linear value. Accord-

For u=<0, this derivative Eq(35) is less or equal to zero
(dH/dt=0 only if all p,=0). Hence in this case the func-
tion H(y,p) can be considered as a Lyapunov function. Con
sequently, the motionless stde,=0, y,+1—Y,=0} is glo-
bally asymptotically stable.

For u>0 the derivative Eq(35) is positive definite in the
domain|p,|< V. Hence all trajectories of Eq3) cross the

level surfaces ingly, we set
a
p2+2wd(e—1-x,)=h, h<pu, n=12,...N yo= 2 od w t - Mn+ o),
(36) Om
_ (40)
outwards. Thus the rest stafp,=0, X,=y,—Y,-1=0} is pr=—Vpasinomt+Mn+ o),

unstable and, moreover, there is no attractor inside the do- . .
main bounded by the surface E&6) with h= . wherea and ¢ are the amplitude and the phase of oscilla-

Let us now investigate the bifurcation at=0. First, we tions. Th%y are slow functlobns o_lf_rt:me. Ln this ncl)tatnm:gn
investigate the linear case. Introducing perturbations arount:]e treated as a wave number. Then, the wave e_ngthm;
the steady statep=x,=0) yn=&,, P= 7, and using their Substituting the variable transformation E¢0) into the

n n n» Mn n

Fourier representation system Eq(3)., changing ti_metnewz wmtod, and expanding
the exponentials we obtain

N N
_N' % M N T M . [Jpa? a
fn_z Eme™ ", ”n_z 7me", a=| 2 F(a,0)+M—(sin0—azsin30) siné,
m=1 m=1 2w, o
- 37) (ra (41)
M="—" m=12,...N o= Y% (2, 0)+ X (sino—aZsint) |cose,
N 2wq Om

we get from Eq.(3) N uncoupledinear second-order equa- with

tions for the space Fourier amplitudes
0=wntt+Mn+ g,

Em:%m ) M a
(38 F=coszsin 260+ \/;
2 12w

_ (3 cosf#—cos 3H(1+2 cosM)).
Nm=— 2051~ COSM)Z+ 7.
Now we can apply the averaging method to the system Eqg.
Thus the stability analysis in theN2dimensional system (41) and obtain
drastically simplifies. The eigenvalues corresponding to Eq.

. ) 3
(38) are given by a= M oal1- 22
2wy 4
pF\p?—8wi(1—cosM) (42)
A= . (39
: 2 o *
o=——a’.
16wg

One eigenvalua? (for m=N) vanishes due to the transla-
tion symmetry of the system. Another is rea\l’z\‘(z p) and  The system Eq42) has an unstable steady state at the origin
changes sign ag also changes sign. The otherNe{ 1) and a stable limit cycle with amplitude= 2/./3.

roots have negative real part far<O and,simultaneously Thus in the ring we haveN—1) different stable oscilla-
cross the imaginary axis at=0, and foru>0 we have an tory modes with the following stationary amplitudes and fre-
unstable steady state as we have already seep.=A® we  quencies:

have (N—1) pairs of imaginary roots with frequencies of

linear oscillations AT Vi AT 2\u
y am' ’
_m \/§wosin— \/§
wp=200sin-, M=12,...N-1 N
(43
m
that form=N vanishes. This corresponds to two nonoscillat- wg::ZwosinWW 1+ 2) .
ing solutions Eq(22) (“clockwise” or “counterclockwise” 12wj
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A = 90 el ——
y E m=2
m=+1 Am) — m=3 —>
§
m=+2 = 2
m=+3 3)
(0]
=
1) S
o 00
00 04 08 12 16
m=-3 time [ms]
m=-2
FIG. 10. Oscilloscope traces of current through a diode for dif-
m=-1 ferent modes in the ring of six units. For each mode the first peak
has been positioned at the same instant of tindg,£0.45 V,
Rgc=13681 Q, u~3.75<10 %, wo~10"5).

FIG. 9. Schematic diagram of mode amplitudes B&)) as &  represents a soliton solution in the limit of a long enough
function of bifurcation parameter for different mode number .hain Thus we have chosen the voltage and its time deriva-
m (N=6). tive to illustrate the dynamics of the circuin the original
Toda lattice the soliton shape solution is observed for the
time derivative of displacement variables or for their nearest-
neighbor differences

Figure 11 shows experimental traces for three different
modes taken for the same external voltage. el wave
has the largest amplitude while waves with=2,3 have

Besides, there exist two trivial states with= =+ \/u. Thus
the system Eq(3) for 0<u<wgsina@/N has N+ 1) differ-
ent stable states: N—1) oscillatory modes and two
nonoscillatory, rotatory modes. For the momepjathe am-
plitude of oscillations is the same for all modes. However for

the voltage variabley the amplitude depends on the wave about the same amplitude as theoretically predi¢Eég. 9).
number. The modesi=(N—1),(N—2), ... have the same pgggiges the shape and the mean values of voltages are
amplitude as the modes with=1,2,....They correspond 641y different for all modes. Figure 12 shows voltage dif-
to waves with the same space scales like waves With ¢orencesy, —V, , taken from all unitsFig. 2. These volt-
=12,..., butpropagating in opposite directions. We can 5q¢ gitferences are proportional to the time derivatives of
denote them as modes having negative mode number qjtagesdv, /dt [see Eq.(11)]. Due to the designed left-
—1-2,.... ForevenN there is a “special(optical) mode  jgnt symmetry of the system we have two similar waves
with m=N/2 (both signs define the same wave forrm ropagating clockwise and counterclockwise. The clockwise
such modes, neighboring units oscillate in anti-phase as Fig. 11(a)]/counterclockwisdFig. 11(b)] waves propagate

ready studied in Sec. IV A. The two longegropagating in - gyer some negative/positive base levels and have positive/
opposite directionsmodes withm= =1 have the largest am-

plitude. The amplitude decreases with the increase of mode
number. Figure 9 illustrates the bifurcation occurringrat 50 m=1
=0. For positivex we haveN—1=5 different waves ifn m@@
=+ 3 corresponds to one and the same optical mddega- -5.6

tive amplitude values correspond to a phase shift @nd to @
waves propagating in the opposite direction. Depending on 6
initial conditions, after a transient time one of the seyBn

V [V]

m=2
0.8 NN AN NN LN

oscillatory + 2 nonoscillatory modes appears in the ring. _ N
Equationg43) are valid for small enougja. With increasing d Lo %MM
w, oscillations become stiffer and the amplitude does not >
follow the /i law. -16
To visualize the experimental results several variables
such as currents through diodgs voltages at the unit¥,, 44 m=3

in [36] currents through diodes were measured by placing a
small resistor (1€2) in series with each diode. Figure 10 /\//\/ \./\./
shows our measurements of the voltage on the resistor, i.e., 3.6
current, by a 12-bit digital oscilloscope NICOLET-420. 0 0.5 1.0 1.5 2.0
However, due to the exponential voltage-current characteris-
tics of diodes, these variables show practically the same be-
havior for all modes(Fig. 10. Even, the optical modeng FIG. 11. Oscilloscope traces of the voltages taken from all six
=3), whose voltage trace is rather close to harmonic oscilunits of the ring for three different modes. All parameter values are
lations (Fig. 7), looks like the longest mode witm=1 that the same as for Fig. 10.

or their time derivativeslV,/dt can be used. For example, & '\/\ /\/\/\
4
>

time [ms]
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8
of \ f6 m=:-0 -1 -2 3 2 +1 +0
2 M . AN S S ]

V V]
=
.

voltage difference [V]
o
W
unit number

@ time [ms] 43 -1 0 1 2
[\, V.. V]
, — FIG. 13. Average voltage on units for different modes and di-
4\ 3 rection of jumps between them vs the external volt&gg in the
. ring of six units. Each curve corresponds to a certain mode with
B \_/ 4 mode number markeoh on its corresponding topR=120 K2).

while decreasing the external voltage from 1.8 V to
—1.8 V (not shown in Fig. 18

z \ 2 In practical terms, in contrast to what we have seen in Fig.

13, the absence of uncertainty in mode formation and jumps
z \ /|t between them is usually preferable. We found experimentally
that by decreasing the value of the resistor R to its half value
(b) time [ms] (from 120 to 60 K)) we have a situation without uncer-
tainty in jumps between modes. Namely, the jumps occur
etween two nearest modes only and there are no jumps to
the next nearest neighbors. Figure 14 shows the sequence of
all jumps between modes. Clearly, there is an hysteresis-like
behavior between any two nearest modes. Changing the
value of the external voltage we can get the desired mode.

voltage difference [V]
b o
W
unit number

FIG. 12. Oscilloscope traces showing propagation of the tw
longest waves: (@) wave running clockwise, m=1 (Vgy
=0.45 V) and(b) wave running counterclockwisei=—1 (Vey
=0.45 V). TheY axes provide voltage differences between voltage
on the unit and left side pin of the double capacitéig. 2) that is
proportional to the time derivative &f,(t) Eq.(11). The total time
interval corresponds to the oscillation period. All parameter values
(excludingV,,,) are the same as on Figs. 10 and 11. V. CONCLUSION

We have studied the formation and propagation of waves,

negative humps as theory predicts. and switching between different wave modes, in a dissipative
Due to the multistability in the system, we can observe

different modes for the same parameter set. Such a situation 6
can lead to competition of waves. We uség; as a param-
eter to study this phenomenon. We started from the nonoscil-

latory mode and a high, negative value\8f,; (—1.8 V). 3 m=.9._ -1 2 S ¥ 10
Then we slowly increas&,; to high positive values and ' e ; f :
follow the mode dynamics. Figure 13 shows the results of / i / ; / /
measurement of mode stability and the jumps that occur be- 2 ' i

of the external voltage. Thus &5, increases beyond a criti-

tween modes. Several modes can overlap for the same valug;> / /
cal point the initial mode becomes unstable. For that value of ; i

Ve We have two other modes that are stable. Hence one of -3

them can be the winner in the competition. For example, for

Vei=—0.85 V the m=—-0 (nonoscillatory mode with

“left” rotation ) becomes unstable but the two others with ‘6.2 -1 0 1 2
m= —1,—2 are stable. Then either the mode witk= — 1 or vV _ V]

them= —2 mode can win and be established in the ring. In ext

our experiments we observed both possibilities in different  FIG. 14. Jumping sequence between modes for low values of
runs. Further increasinye,; leads to new jumps between the resistoR=60 k( (Fig. 2. The remaining parameter values are
modes as shown in Fig. 13. Analogous jumps are observettie same as for Fig. 13.
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Toda-Rayleigh system. A rather general Rayleigh type of en=(\/./2w0)w, r=uu, s=uz, tpew=2wotoq, and ex-

ergy pumping-dissipation balance was used. We have sho : 2 Then f Eq (24 t
up to what extent new phenomena appear that the origin nd sinf(Vju/2wo)w]. Then from Eq.(24) we ge

Toda lattice cannot exhibit. A finite number of stable wave
modes exists and grows with the increase in the number of
units asN—1. For a long enough ring the longest modes
with m==*=1,+2 ... transform into soliton-like waves hav-
ing |m| crests. All crests have the same “polarization” and
propagate in the same direction. Initial conditions permit that
a certain wave finally forms in the ring. However, its actual . —
shape is defined by the energy balance and does not depend ZISZ( 1-7@u+z )),
on the initial conditions. We have also studied the bifurcation

leading to wave multistability. For a prime number of units ;i e=ul2w,. Now introducing amplitude-phasea )

(e.g.,N=5) we have found that allN— 1) modes have the variables,w=2a cosf+¢), u= —2asin{+¢), and averag-
same oscillatory regime in each unit. The modes differ by 8ng over the period of oscillations we obtain

phase shift between units only. For example, for5, m

=+ 2, phase growth occurs along the ring in a time sequence e

forming an imaginary five-ray stdi—3-5-2—-4-1 a= Ea
Theory has been complemented with experiments using

an electronic implementation of the model with a novel

method to stabilize a stationary rotating wave without the

need of resetting the setup after each period. For rings with

five and six units we experimentally observed all wave

modes predicted by the theory. We have also studied jumps : e

between different modes while the common external voltage = 8—%3 . (Ad)

changes. Besides, we have experimentally found the value of

the resistoR (60 k() when our circuit allows us to choose The first two equations, EqA3), are independent of the
between different modes by playing with only one external; g one, Eq(A4), and we can consider them separately.
voltage, whatever the initial conditions in the units may be. op the plane &,7) the vector field is invariant to the
This property of the circuit can be used in applications forchangega—>—a and (or) z— —z, and hence it suffices to

formation and control of various spatio-temporal patterns.,siger only the first quadrang£0, z=0). In the first
without changing the geometry or the internal structure quuadrant there exist four steady states

the system.

w=u,

u=—-w+eglu

1—£(u2+322) —iw3 (A2)
4 120, |’

3
Va2 52
1 4(a+z)

(A3)

: 1
z=g|1- Z(6a2+ z%)

2 8 2
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W(a,z)=3a’+z>=h. (A5)

APPENDIX A: The derivative oW(a,z) at W=h along the solution curves

Let us show that the system E(4) has only three at- IS
tractors for positivew.

The planes=0 is the integral surface of E¢24). This z
plane divides the phase space into two symmetrical parts. On
this plane we have

X=r, 'r=—4w§sinhx+,ur—%r3a (A1)

which correspond to the equation for a single unit Edg).
Accordingly, we have a stablat least to perturbations inside

the plane limit cycle. o'
Let us investigate the dynamics of ER4) when u
<min{w0,w§}. We can introduce new variablesx FIG. 15. Phase plane of the system E43).
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1 shy_r° +h
4] 4

Now we seek conditions on the parametesuch that

dw
——=s

A6 Fa(a.2)=— = (32+7a%-4
T . (A6) (a,2)=— 5 (377+7a°—4)

7'+ 72

is negative in the domaib, and hence no closed orbits exist

; ; lying entirely inD. Thus the steady stat€s, andO; are the
> < sz<h. . o

Wlw=n>0  or Wlw-y<0 for 0<z< vh only attractors while the saddi®, divides the phase plane

From Eq.(A6) we determine that the derivative is negative (first quadrantinto the corresponding two basins of attrac-

for h>4 and is positive forh<4(13+8y2)/41. Conse- ton (Fig. 15. Hence, in the original system ER4) there
quently, in the phase plane there is an absorbing domaifXist three attractors: two steady states and a limit cycle in
bounded by two nested elliptical curves the planes=0. For nonsmalle, analogous results can be
obtained for Eq.(24) by constructing a point map of the
4(13+8\/§) - planex=0 into itself. For the map we have two stable fixed
Diy(az)| ——7 =3a"+z°=4. (A7) points, one on the axis=0 that corresponds to the steady
state (0,0/x) and another on the axis=0, which corre-
All trajectories enter into this domain and remain there. Wesponds to the limit cycle on the integral plase-0, one
note thatD consists of two stable steady sta@s andO5;,  unstable fixed point in the origin corresponding to the un-
which are the only attractors for all trajectories. To confirmstable steady state (0,0,0), and a saddle corresponding to a
this we have to prove the absence of limit cycles infdddo  hyperbolic limit cycle. The saddle divides the trajectories
do this we use Bendixson’s criteridd9]. The Bendixson into two basins of attraction of the corresponding stable fixed
function for Eq.(A3) points similar to Fig. 15.
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