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Abstract. Our inspiration comes from Nell (Never Ending Language
Learning), a computer program running at Carnegie Mellon University
to extract structured information from unstructured web pages. We con-
sider the problem of semi-supervised learning approach to extract cat-
egory instances (e.g. country(USA), city(New York)) from web pages,
starting with a handful of labeled training examples of each category or
relation, plus hundreds of millions of unlabeled web documents. Semi-
supervised approaches using a small number of labeled examples together
with many unlabeled examples are often unreliable as they frequently
produce an internally consistent, but nevertheless, incorrect set of ex-
tractions. We believe that this problem can be overcome by simultane-
ously learning independent classifiers in a new approach named Coupled
Bayesian Sets algorithm, based on Bayesian Sets, for many different cat-
egories and relations (in the presence of an ontology defining constraints
that couple the training of these classifiers). Experimental results show
that simultaneously learning a coupled collection of classifiers for random
11 categories resulted in much more accurate extractions than training
classifiers through original Bayesian Sets algorithm, Naive Bayes, BaS-all
and Coupled Pattern Learner (the category extractor used in NELL).

Keywords: Semi supervised learning, information extraction.

1 Introduction

The Web can be seen as a powerful source of knowledge. Translating the Web
content into a structured knowledge base containing facts about entities (e.g.,
Company(Disney)) and also about semantic relations between those entities
(e.g. CompanylIndustry(Disney, entertainment)) would be of great use to
many applications. Machine learning approaches have been successfully em-
ployed in tasks such as information extraction from text, where the main goal is
to learn to extract instances of various categories of entities (e.g., Athlete(Carl
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Lewis), City(Pittsburgh), Company(Google Inc.), etc.) as well as instances
of semantic relations (e.g., CompanyLocatedInCity(Google Inc.,Pittsburgh))
from structured and unstructured text [1-3].

One of the drawbacks of entity and semantic relation instance extractors
based on supervised learning approaches is that they tend to be costly. Tra-
ditionally, such an approach requires a substantial number of labeled training
examples for each target category and semantic relation. Therefore, many re-
searchers have explored semi-supervised learning methods that use only a small
number of labeled examples, along with a large volume of unlabeled text [4].
While such semi-supervised learning methods are promising, they might exhibit
low accuracy, mainly, because the limited number of initial labeled examples
tends to be insufficient to reliably constrain the learning process, thus, raising
concept drift problems [3, [6].

The Bayesian Sets algorithm, proposed in [7], was designed to extract entity
instances using a few labeled examples and a number of unlabeled examples (in
a task traditionally known as set expansion). It can be considered a Bayesian in-
ference method that, when applied to exponential family models with conjugate
priors, can be implemented using exact algorithms that tend to be computation-
ally efficient. Recent studies [, 9] have shown, however, that the direct appli-
cation of Bayesian Sets may produce poor results in tasks such as information
extraction from text. In addition, when Bayesian Sets are applied to problems
in which the number of labeled examples is too small, the induced results tend
to be deteriorated.

NELL[Y (Never-Ending Language Learner) [10] is a computer system that
runs 24 hours per day, 7 days per week. It was started up on January, 12th,
2010 and should be running forever, gathering more and more facts from the
web to populate its own knowledge base. In a nutshell, NELL’s knowledge base
(KB) is an ontology defining hundreds of categories and semantic relations that
should be populated by the system. One of the main components of NELL is
called CPL, which is described in more details in [4] and works as a free-text
knowledge extractor which learns and uses the learned category and semantic
relation contextual patterns (e.g. “mayor of X” and “X plays for Y7), to extract
instances of each category and each semantic relation defined in the KB.

The hypothesis explored in this paper is that we can follow the ideas proposed
in [10, 9], and achieve much higher accuracy in semi-supervised learning by cou-
pling the simultaneous training of many extractors using a Coupled Bayesian
Sets (CBS) algorithm to help NELL populating its own KB with more preci-
sion than the current CPL component. The intuition here is that the under-
constrained semi-supervised learning task can be made easier by adding new
constraints that arise from coupling the training of many extractors based on
Bayesian Sets. Following NELL’s principles, we present an approach in which
the input to the semi-supervised learner is an ontology defining a set of target
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categories and semantic relations, a handful of seed examples for each category
and for each semantic relation, and also, a set of constraints that couple the
various categories and relations (e.g., Person and Sport are mutually exclusive).
We show that, given this input and a huge set of unlabeled data (text from Web
pages written in English), and using a semi-supervised learning approach, CBS
can achieve very significant accuracy improvements by coupling the training of
extractors for dozens of categories and relations. In addition, CBS allows the
system to automatically identify new constraints suggesting new instances that
can be considered as mutually exclusive for a specific category.

2 Related Work

The literature shows that bootstrapping approaches used to information ex-
traction can yield impressive results with little initial human effort (in label-
ing examples). Bootstrapping approaches |11H13] start with a small number of
labeled seed examples and iteratively grow the set of labeled examples using
high-confidence labels from the current model. Such approaches have shown
promising results in applications such as web page classification, named entity
classification, parsing, and machine translation, among others. After many it-
erations, however, accuracy typically declines mainly because errors in labeling
tend to accumulate, a problem that has been referred to as semantic drift. To
reduce errors introduced in under-constrained semi-supervised learning, several
methods have been considered. Coupling the learning of category extractors by
using positive examples of one category as negative examples for others has been
shown to help limiting such a decline in accuracy|4]. Also, entity set expansion
using topic information can alleviate semantic drift in bootstrapping entity set
expansion [g].

Bayesian Sets (BS) algorithm is the basis for Coupled Bayesian Sets (CBS)
presented in Section [3of this paper. BS was proposed in [7], and its main idea is
to take a query consisting of a small set of items (labeled examples), and, based
on that query, the algorithm returns additional items (from a set of unlabeled
examples) which belong in this set. It computes a score for each item by compar-
ing the posterior probability of that item given the set, to the prior probability
of the item itself. These probabilities are computed with respect to a statistical
model for the data, and since the parameters of this model are unknown they
are marginalized out. As proposed in [7], let D be a dataset of items, and x be
an item from this set. Consider also that the user provides a query set D, which
is a small subset of D. Then, Bayesian Sets computes the ratio:

D, :De

score(x) = p(@|De) = p(@, De) (1)
p(x) p(x)

which can be interpreted as the ratio of the joint probability of observing x

and D., to the probability of independently observing x and D.. Intuitively, this
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ratio compares the probability that  and D. were generated by the same model
with the same (though unknown) parameters 6, to the probability that x and
D, came from models with different parameters 6 and 6.

The Bayesian Sets approach is based on an unsupervised idea of clustering to-
gether items that belong to the same set. Thus, it defines a cluster assuming that
the data points in the cluster all come independently and identically distributed
from some simple parameterized statistical model. To have a better understand-
ing on that, consider for example, that the parameterized model is p(x|6), where
0 are the parameters. In this example, if the all data points in D, belong to one
cluster, then under this definition they were generated from the same setting of
the parameters. The problem in this assumption is that the parameters setting is
unknown, thus, BS averages over all possible parameter values weighted by some
prior density on parameter values, p(#). Following along these lines it is possible
to estimate probabilities on z, D, and 6 as in equations (@) ,(3]), @) and (&):

plz) = / p(]6)p(6)d6 @)

H p(xi0)p 3)
n)- |

p(z|D.) = / p(2]0)p(6] D)0 (4)
 p(D.0)p(0)
(0] D) =P (5)

Considering that there are many more items (in the set of unlabeled examples)
that are not members of a target set 7 than items that are members of 7, the
data can be considered binary and sparse. Thus, it is possible to have log of the
score linear in z. Therefore, still following [7], let’s assume each item z; € D, is
a binary vector z; = (@1, ..., ¢;5) where z;; € {0,1}, and that each element of
x; has an independent Bernoulli distribution as in equation ():

J

plailg) =TT 67 (1 -5t (6)

i=1

It is well-known that the conjugate prior for the parameters of a Bernoulli dis-
tribution is the Beta distribution:

J

(6o, ) = H Ty +6]) 077 (10, (7)

Jj=1
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where « and § are hyperparameters, and the Gamma function (I") is a general-
ization of the factorial function. For a query D. = z; consisting of N vectors it
is easy to show that:

I(a; + B;) I'(d@;)'(B;)
p(Dela §) = [ o, 2 il (®)
; ()T (B5) I'(da; + B;)
where & = 0‘+Z£\i1 x;; and @ = 5+N72£\L1 x;; . Foranitemz = (z1...2.5)
the score, written with the hyperparameters explicit, can be computed as follows:

_ p(@|De, a, B)
score(x) =
p(z|a, B)
Do +8;+N) T(dj+z. ) (B +1-x.5) 9)
B H I(o+B8;+N+1) ()T (85)
I'(o;+B5) I'(aj+x )T (Bi+1—x5)
(o +B85+1) I'(e)I(By)

The log of the score is linear in x:

log score(z) = ¢+ quw.j (10)
where R
c=" log(a; + B;) —log(aj + B; + N) + log 3; — log 8; (11)
and -
g; =loga; —log o; —log B + log f3; (12)

One of the most important assumptions to make Bayesian Sets a very fast
method, in practice, is that if the entire data set D is stored into one large
matrix X with J columns, it is possible to compute the vector s of log scores for
all points using a single matrix vector multiplication

s=c+ Xq (13)

Thus, for sparse data sets this linear operation can be implemented very effi-
ciently. Each query D, corresponds to computing the vector ¢ and scalar c. As
aforementioned, the set of unlabeled examples tend to be sparse in a set expan-
sion task. In addition, as pointed out in [7], this can also be done efficiently if
the query is also sparse, since most elements of ¢ will equal log 8; — log(5 + N)
which is independent of the query.

In 9], the Bayesian Sets weakness (that can be observed when it is applied to
a problem having too few initially labeled examples) is investigated based on an
Iterative Bayesian Sets proposal. It explores the fact the seed data mean must be
greater than the instance data mean on feature j. Only such kind of features can
be regarded as high-quality features in Bayesian Sets. Unfortunately, it is not
always the case due to the idiosyncrasy of the data. There are many high-quality
features, whose seed data mean may be even less than the candidate data mean.
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In that proposed approach, however, the lterative Bayesian Sets still leaves
room to the insertion of new constraints (which are not explored) to adjust the
problem in a way that wrong extractions can be filtered out from the self-labeling
results. These new constraints are explored in our proposed approach described
in Section

When considering related works focusing on Machine Reading, there are in-
teresting approaches that do not implement the never-ending learning idea (as
done in NELL). The KnowltAll system, by Etizioni and co-workers [14] and its
extensions [15, 16], also, the Yago system [17] are good examples, although they
implement different strategies on how to build a system that can read the Web.

3 Coupled Bayesian Sets - CBS

This section describes the idea of coupling semi-supervised learning of multiple
functions to constrain Bayesian Sets. Our Coupled Bayesian Sets method starts
by training classifiers based on a small amount of labeled data, then uses these
classifiers to label unlabeled data. The most confident new labels are added to
the pool of labeled data and, then are used to retrain the models. The process
keeps iterating for an indefinite time (Section describes this process in more
details). The iterative training is coupled by constraints that restrict labellings.

3.1 Coupling Constraints Used by CBS

As already mentioned, the inspiration to CBS is taken from [10, 4], where three
coupling constraints are defined:

— Qutput constraints: For two functions f, : X = Y, and f, : X — Y}, if
we know some constraint on values ¥, and gy, for an input x, we can require
fo and fp to satisfy this constraint. For example, if f, and f; are Boolean-
valued functions and f,(z) = f»(x), we could constrain fi(z) to have value
1 whenever f,(z) = 1.

— Compositional constraints: For two functions fi : X7 — Y7 and f5 : X7 X
X5 — Y5, we may have a constraint on valid y; and y2 pairs for a given 1 and
any xo. We can require f; and fs to satisfy this constraint. For example, f;
could “type check” valid first arguments of fa, so that Va1, Vs, fa(z1,22) =
fi(z1).

— Multi-view-agreement constraints: For a function f : X — Y, if X
can be partitioned into two “views” where we write X = (X1, X») and we
assume that both X; and X5 can predict Y, then we can learn f1 : X3 — Y
and fy : Xo — Y and constrain them to agree. For example, Y could be a
set of possible categories for a web page, X; could represent the words in
a page, and Xs could represent words in hyperlinks pointing to that page
(this example was used for the Co-Training setting [18]).

Considering the CBS approach, the learned functions can be considered classi-
fiers informing the system whether a given noun phrase is an instance of some
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category (or whether a pair of noun phrases is an instance of some semantic
relation).

In the experiments described in Section M the (output constraint) coupling
is used to implement the mutual exclusiveness constraint described in Subsec-
tion In this sense, consider that both city and company are categories.
In addition, consider that city has been defined as mutually exclusive with
company. In such a scenario, CBS will then have binary functions (classifiers)
fa: XNnE = Yeiry and fo : XnE — Yeompany- I, for a specific noun phrase (e.g.
Bristol), fqo(Bristol) = 1 and fp(Bristol) = 1, then the belief that Bristol is a
city (and also a company) decreases. However, if f,(Bristol) = 1 and f,(Bristol)
= 0, then the belief that Bristol is a city (and not a company) increases.

3.2 Coupled Bayesian Set Algorithm

In this section, we describe our algorithm CBS to improve semi-supervised learn-
ing for information extraction based on coupling principles. CBS was designed to
address the problem of learning extractors to automatically populate categories
(predefined in an initial ontology) with high-confidence instances. It has as input
an initial ontology (describing categories and semantic relations), a small set of
labeled instances for each category and for each semantic relation and also, a
large corpus of web pages.

CBS is a bootstrapping algorithm, based on Bayesian Sets (BS) [7], that lever-
ages mutual exclusion principle using positive examples of one category as neg-
ative examples for other ones to learn high-precision instances for all categories
defined in an initial ontology.

Based on BS scoring metric (see Equations ([I0) and ([I2)), consider, that in
CBS, we are simultaneously learning one classifier for each category given in the
initial ontology. Assume that category C has weight vector ¢¢ (obtained using
positive labeled examples for that category) and it is mutually exclusive with
K categories with ¢!, ¢%...¢" as their weight vector respectively. Then, in this
case, CBS score for an instance z is evaluated as:

log score(x) = ¢+ quc'l"j - Z Z gz (14)
J i g

where q; = 0 for all j which are positive features (obtained using positive labeled
examples) of category q; for all 7 and also for all j which are not features of the
it" class, and c is calculated as follows:

c=> log(a; + B;) —log(a; + B; + N) + log 8; — log ;
J
where a; and f3; are hyper-parameters, and

q;- =log &' — log a; — log sz‘ + log B;
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Following BS ideas, if we put the entire data set D into one large matrix X, we
can compute the vector s of log scores for all points using a single matrix vector
multiplication

s:c+qufZXqi (15)
i
The hyper-parameters a and 3 are empirically set from data,
a=nxm

B=mnx(1-m)

where m is a mean vector of features over all instances, and 7 is a scaling factor
(n = 2 in our experiments).

The intuition behind Equation(I4)) is that it predicts high score for an instance
2 which has more features related only to that particular category. On the other
hand, it penalizes the score of instances having a higher number of features
present in mutually exclusive categories. Penalization depends upon weight vec-
tor of mutually exclusive categories. Therefore, for an instance related only with
features that are exclusive to the target category (and having no relation with
features that are present in other mutually exclusive categories) equation(Id]) re-
duces to the same as equation(I{). In the case where the instance z is related to
features that are shared by mutually exclusive categories, equation(I4]) can also
be rewritten as given below showing reduced effective category weight vector.

log score(z) = ¢+ 2:(%C - Z )z (16)

The main motivation is to have a classifier that gives more strength to features
that are exclusive to a single category and penalizes features which are common
among various categories. This helps to integrate the constraint information in
our system and extract high confidence instances from data.

If for a given instance x, categories a and b are mutually exclusive, then both
feature and weigth vectors of category a and b will be used to estimate two scores
for z (score, and scorey, respectively). For example, if category a has non zero
feature ids say (1,2,4,6,8,10) for classification and (1,2,3,5,8,9,10,15) for category
b, out of 15 total ids. Then, log score,(z) will be calculated adding the values
for features (1,2,4,6,8,10) and subtracting (penalizing) the values for features
(3,5,9 and 15) according to the value of weight vector ¢, and g, respectively.
All the other features (7,11,12,13,14) do not contribute to log score,(x). This is
the reason why we have q;- =0 for all j which are features of the target category
(i.e in case of category a, q;? = 0 for all j = (1,2,4,6,8,10) and also for all j
which are not the features of i*" category weight vector). And in this example,
q;? =0 for all j = (7,11,12,13,14). A summarized version of CBS pseudo-code
is presented in Algorithm [I1
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Algorithm 1. Coupled Bayesian Sets algorithm

1: Input: An initial ontology O (defining categories, mutually exclusiveness relations
and a small set of labeled examples to each category) and a corpus C

2: Output: Trusted instances for each given category

3: for 1 =0to o do

4:  for each category do

5: extract new instances using available labeled examples
6: filter instances which are violating coupling;

7 rank instances using score mentioned in Equation (I4);
8: label top ranked instances;

9:  end for

10: end for

In CBS, instances are filtered to enforce mutual exclusion. An instance x is
rejected whenever score.;(x) for the target category ci is lower than all score;
for all the other categories ¢j (where j # ). This soft constraint is much more
tolerant of the inevitable noise in web text as well as ambiguous noun phrases
than a hard constraint.

CBS was specially designed to allow efficient learning of many categories si-
multaneously from a very large corpus of sentences extracted from web text.
Considering we have a binary sparse corpus (texts from the web), scoring all
items in a large data set can be accomplished using a simple sparse matrix-vector
multiplication (as done in BS). Thus, we get a very fast and simple algorithm.

4 Experiments and Results

We ran our experiments using a subset obtained from ClueWeb [19]. Our dataset
consists of 2,070,896 noun phrases (nps) as instances and 72,996 contexts (conts)
as features. The dataset is stored as a contxnp matrix (context by noun phrase
matrix) M, where each cell M; ; represents the number of co-occurrences of
cont; and np;. To transform M in a binary matrix, the data was preprocessed
normalizing each cell value based on the sum of each column, and then thresh-
olding so that M, ; = 1 if (np,;— frequency) > (2xcontext— frequency—mean).

The input ontology used in all experiments is a subset taken from NELL’s
ontology and has 11 categories namely Company, Disease, Kitchenltem, Per-
son, PhysicsTerm, Plant, Profession, SocioPolitics, Website, Vegetable, Sport.
Categories were initialized with 6-8 seed instances specified by a human.

The performed experiments were designed in order to help us having empirical
evidence to answer the following question:

1. Can CBS outperform other algorithms, such as BS [7], Iterative Bayesian
Sets BaS-all 9] and Coupled Pattern Learner CPL [4], in the task of category
instances extraction?
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2. Can CBS be applied to a task of populating NELL’s ontology in an iterative
bootstrap approach?

3. Can CBS be applied to a task of populating an ontology in which mutually
exclusiveness relations are not known (and in such a situation, these relation
can be automatically discovered and used as new constraints for coupling)?

4.1 Coupled Bayesian Sets versus Other Approaches

In order to have empirical evidence to answer questions (1), Coupled Bayesian set
algorithm (CBS) was used to extract (from a specific corpus) category instances
following the methodology described in [4]. In CBS, for each extracted instance
a score is calculated (based on equation(15)) and then a filter is applied coupling
the results of all the classifiers. Here, the mutually exclusive principle is used for
coupling (i.e. an instance = can not belong to more than one mutually exclusive
category). After filtering out the instances (using coupling), we promote the top 5
new instances as new labeled examples for that category. To allow comparative
analysis, the same methodology was applied using the original Bayesian Sets
algorithm (BS), the CPL algorithm (the category extractor used in NELL),
and also the Bas-all algorithm [9]. Following along these lines, we performed 10
iterations. Top 20 output instances for sports category are shown in Table
(where incorrect output instances are highlighted).

To have a better idea of the precision of each one of the methods used in the
performed experiments, a metric commonly used in set expansion evaluation [9]
was adopted. This metric is referred to as Precision@QN and is calculated in the
following way: after ranking all the promoted instances in an specific iteration,
the percentage of correct instances in the subset formed by the top N entities
(in the ranked list) is calculated. Table 2] shows the results after one, three, five
and ten iterations. The net effect is substantial, as is apparent

Analyzing Table ] it is possible to notice that CBS is the only method (in
these experiments) that could keep precision rates above 85% even after 10
iterations. This can be considered empirical evidence that CBS can avoid concept
drift in situations where other approaches would fail. BS and Bas-all achieved
very low precision rates after ten iterations (below 40%). And CPL could keep
good precision up to seven iteration, but its results started deteriorating after
ten iterations. It is important to mention, however, that CPL is not the only
algorithm employed by NELL. Thus, the results shown for CPL (in Table [2))
do not represent NELL’s precision. On the other hand, these result can give
some evidence that CBS could help NELL’s self-supervised approach to prevent
concept drift. Table B presents the precision of different categories for CBS, BS,
Bas-all and CPL.

Considering that Bayesian Sets are defined on some adaptation from the Naive
Bayes classifier [20], to finish this subsection we present (see Table[d]) some results
from experiments performed to compare CBS and Naive Bayes algorithm using a
small version of our dataset consisting of 5548 contexts and 12,500 noun phrases.
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Table 1. Top 20 instances for Category Sport in the first and second iterations of CBS,
BS and Bas-all

Iteration 1 Iteration 2
CBS BS BaS-all CBS BS BaS-all
Football Football football football golf sports
Baseball Baseball baseball Baseball football boxing
Basketball basketball Basketball Basketball baseball dance
Soccer Soccer Soccer Soccer soccer politics
Skiing Skiing Skiing Skiing surfing fishing
Tennis Tennis Tennis Tennis skiing golf
Hockey Hockey Hockey Hockey cricket football
Swimming swimming Swimming Swimming Tennis baseball
Wrestling Wrestling Wrestling Wrestling hockey basketball
Boxing Boxing Boxing Boxing swimming soccer
Volleyball Golf sport Volleyball chess skiing
Polo Volleyball golf Softball wrestling tennis
Badminton  Chess fishing Polo boxing hockey
Curling Cricket chess Badminton  dancing chess
table tennis Yoga cricket table tennis Meditation swimming
water polo surfing guitar Curling cooking wrestling
Bocce guitar dancing cycling piano photography
Softball Dancing hunting scuba diving guitar yoga
cycling sailing sailing water polo sailing writing

Table 2. Precision@30 of CBS, BS, CPL and Bas-all after one, three, five and ten
iterations

Precision@30 after Iteration

Algorithms 1 grd 5th Tth 10"

CBS 9% 84%  92% 90% 8%
BS 68 0% 2%  54%  36%
CPL 4% 8% 9% 82% 0%
Bas-all 0% 2% 4%  64%  39%

Top 10 output instances for the very first iteration of categories countries, sports,
food are shown in Table [l

We believe that most of our results are self-explanatory, there are a few details
that we would like to elaborate on. We found out that though Naive Bayes
classifier can predict correctly the classes for large number of instances but the
probability with which it classifies is not good enough for methods like iterative
bootstrapping learning. It is evident from the Table 4 that CBS completely
outperforms the Naive Bayes algorithm in our case.
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Table 3. Precision@30 for CBS, BS, CPL and Bas-all in all 11 categories (after 5 and

10 iterations)

Iteration 5

Categories CBS
Companies 100%
Diseases 100%
KitchenItems 94%
Persons 100%
PhysicsTerms 100%
Plants 100%
Professions 100%
SocioPolitics 48%
Sports 97%
Websites 94%
Vegetables 83%

Average Preci- 92%

sion@30

BS CPL
8%  64%
84%  100%
2% 9%
64%  82%
8%  82%
68%  94%
84%  84%
30%  38%
84%  90%
64%  67%
2% 8%
2%  79%

Bas- CBS
all

8%  100%
84%  100%
92%  94%
64%  100%
84%  100%
74%  100%
84%  8T%
30%  34%
84%  100%
4%  90%
64%  48%
74% 87%

Iteration 10

BS

44%
48%
40%
32%
36%
38%
54%
18%
43%
36%
14%

36%

CPL Bas-
all
54%  44%
4%  54%
94%  40%
68%  32%
8%  48%
84%  32%
8%  54%
28% 14%
87%  54%
58%  36%
54% 14%
70% 39%

Table 4. Top 10 output instances for CBS and Naive Bayes after 15 iteration. Wrong
extractions are highlighted.

Query:Countries

NB

Order
Argentina
India
Future
US

U.S.

cash

France

CBS

United States
China
Canada
England
Japan

India

France

Russia

South Africa Mexico
government Singapore

Query:Sports

NB

Fishing
Guitar
Development
Politics
Baseball
character
competition

creation
poker
football

CBS

football
basketball
Baseball
Soccer
Tennis
Wrestling
Hockey

Boxing
Softball
NFL football

4.2 CBS wversus CPL: Beyond Concept Drift

Query:Food
NB CBS
information  tomatoes
Glass spinach
advice fontina
interview Shrimps
manager Pancetta
bread Strawberry
butter parmesan-

cheese

fruits Coffees
list bread
chance GreenOnions

The results presented in the previous subsection (Subsection ]) give empirical
evidence that CBS can prevent concept drift in scenarios where other algorithms
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Table 5. CPL probability and CBS score for extracted instances (after 5 iterations)
for category Website

CPL probability ~ CBS score
Wikepedia 0.9375 google 1104.486
Google 0.9375 wikipedia 1104.486
radio 0.9375 facebook 8774
page 0.9375 mysapce 806.103
yahoo 0.9375 youtube 718.338
blog 0.9375 twitter 482.433
facebook 0.9375 yahoo 457.542
monday 0.9375 Wordpress 443.554
ebay 0.875 amazon 416.628
MSN 0.875 skype 394.378

might fail. Therefore, CBS tends to be a good algorithm to perform category
instances extractions in a system like NELL.

Another interesting issue related to CBS (that can make it suitable to be used
in a never-ending learning system like NELL) is its capability of discriminating
the probabilistic score of each extracted instance. In other words, when running
a classifier based on many features (hundreds of features or more) it is common
that the probabilistic score of most predictions are close to each other (tending
to 0 or 1). Such a behavior is very common in the Naive Bayes classifier and
also in logistic regression approaches having too many features. Considering that
CBS (as well as BS) is based on the idea of marginalizing out the (unknown)
parameters of the model (for each query), the algorithm tends to give a more
discriminative probabilistic score for each performed prediction.

To have some empirical evidence on how CBS would perform regarding the
probabilistic score precision and discriminations (when compared to CPL) some
experiments were designed. Thus, a smaller dataset consisting of 5200 contexts
and 68,919 instances was used as input to both CBS and CPL and results (after
5t iteration) for categories Websites (see Table 2 and Sports (Table E2)
extractions as well as their respective scores were analyzed.

Results are self explanatory but one important thing which we would like to
point is that, for CPL results, most of instances have same probability, while in
CBS results, the scores tend to discriminate each extracted instance. In order to
illustrate an interesting scenario related to it, consider that, after every iteration
only the top five extractions (the ones with higher confidence associated) should
be promoted. In such a situation, CPL results (presented in Table .2)) would
introduce some uncertainty on which would be the best instances to be promoted
(because there are 8 instances with the same probability). Results obtained using
CBS, on the contrary, would not bring this uncertainty to the promotion task.

These results reflect the potential of CBS to learn through bootstrapping
approach and stand robustly against BS, Naive Bayes, Bas-all and Nell.
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Table 6. CPL probability and CBS score for extracted instances (after 5 iterations)
for category Sport

CPL probability CBS score
Game 0.998047 Baseball 1782.201
Show 0.998047 Basketball 1630.333
Football 0.998047 Soccer 1223.195
Day 0.998047 Skiing 1162.535
Drama 0.996094 Tennis 1022.093
Music 0.996094 Hockey 1012.905
Basketball 0.996094 Sailing 984.733
chess 0.992188 Wrestling 802.307
Baseball 0.992188 Boxing 724.129
Golf 0.992188 Swimming 677.489

4.3 Automatically Finding Negative Examples for Coupling

To find some insight and empirical evidence to help us answering the third ques-
tion, some extra experiments were designed as follows. In this experiments, at
first, we run CBS without any negative seed example (Classifiery). After get-
ting the top instances for each category (to be promoted), we also extract the
bottom instances (from Classifier;) as negative seed examples. Then, for each
category, we create a new CBS version (Classifiers), whose seed instances are
these negative seed examples. Therefore, we can apply the two CBS versions
(Classifiery and Classifiers) as if they were classifiers for two mutually exclu-
sive categories. Thus with this approach, we have built a new constraint relation
for a category which is independent of previously known mutually exclusive
relationships. For support of our above discussion we have compared this ap-
proach with BaS-all[9] which consider only positive seed examples for entity set
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Fig.1. Precision@50 of CBS and BaS-all algorithms over categories Vegetables and
Diseases
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expansion. We run CBS for two categories namely Vegetables and Diseases
against BaS-all and the results are shown in Figure [1l

Analyzing Figure[Ilit is possible to notice that using CBS results to generate
new negative examples, which can be coupled to the extractions process, can
help the system to reduce the impact of concept drift even when no mutually
exclusive relation is given in advance.

5 Conclusion and Future Work

In this paper, we consider the problem of semi-supervised learning approach to
extract category instances (e.g. country(USA), city(New York) from web pages,
starting with a handful of labeled training examples of each category, plus hun-
dreds of millions of unlabeled web documents (as described in NELL [10]. Fol-
lowing along these lines, we propose a new algorithm, based on Bayesian Sets [1],
to perform a set expansion task which can help a never-ending learning system
(such as NELL) to avoid concept drifting during the iterative (and never-ending)
process of extracting facts from the Web. The proposed algorithm is named Cou-
pled Bayesian Sets (CBS). CBS implementation makes it fast as its only need
to perform a sparse Matrixx Vector multiplication, and thus, it can easily be
applied to huge data collections. The performed experiments revealed that CBS
can outperform algorithms such as the original Bayesian Set, the Naive Bayes
classifier, the Bas-all and the coupled semi-supervised logistic regression algo-
rithm (CPL) on which Nell is currently running. In addition, CBS can be used
to automatically generate new constraints to the set expansion task even when
no mutually exclusiveness relationship is previously defined, thus, allowing the
method to help NELL’s self-reflection capabilities. As future work we intend to
adjust and evaluate CBS for exploring also other types of coupling constraints
such as Compositional and Multi-view-agreement constraints. We would also like
to use CBS in the Portuguese version of Nell which is currently under develop-
ment.
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