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Abstract

Manifold learning theory has seen a surge of interest in the modeling of large and exten-
sive datasets in medical imaging since they capture the essence of data in a way that
fundamentally outperforms linear methodologies, the purpose of which is to essentially
describe things that are flat. This problematic is particularly relevant with medical imag-
ing data, where linear techniques are frequently unsuitable for capturing variations in
anatomical structures. In many cases, there is enough structure in the data (CT, MRI,
ultrasound) so a lower dimensional object can describe the degrees of freedom, such as in
a manifold structure. Still, complex, multivariate distributions tend to demonstrate highly
variable structural topologies that are impossible to capture with a single manifold learn-
ing algorithm. This chapter will present recent techniques developed in manifold theory
for medical imaging analysis, to allow for statistical organ shape modeling, image seg-
mentation and registration from the concept of navigation of manifolds, classification, as
well as disease prediction models based on discriminant manifolds. We will present the
theoretical basis of these works, with illustrative results on their applications from various
organs and pathologies, including neurodegenerative diseases and spinal deformities.

Keywords: manifold learning, medical imaging, discriminant manifolds, piecewise
geodesic regression, spine deformities, neurodegenerative diseases, shape modeling

1. Introduction

Learning on large medical imaging datasets is an emerging discipline driven from the avail-
ability of vast amounts of raw data in many of today’s biomedical studies. However, chal-
lenges such as unbalanced data distributions, complex multivariate data and highly variable
structural topologies demonstrated by real-world samples makes it much more difficult to
efficiently learn the associated representation. An important goal of scientific data analysis in
medicine, particularly in neurosciences or oncology, is to understand the behavior of biological
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process or physiological/morphological alterations. This introduces the need to synthesize
large amounts of multivariate data in a robust manner and raises the fundamental question of
data reduction: how to discover meaningful representations from unstructured high-dimen-
sional medical images.

Several approaches have attempted to understand how dimension reduction and regression
establishes the relationship in subspaces and finally determine statistics on manifolds that
optimally describe the relationships between the samples [1]. However, certain assumptions
based on the representation of shapes and images using smooth manifolds are made in most
cases, which frequently will not be adequate in the presence of medical imaging data and often
perturbed by nuisance articulations, clutter or varying contrast.

High-dimensional classification methods have shown promise to measure subtle and spatially
complex imaging patterns that have diagnostic value [2, 3]. Defining statistics on a manifold is
not a straightforward process when simple statistics cannot be directly applied to general
manifolds [4]. But while Euclidean estimators have been used for vector spaces, none have
been adapted for multimodal data lying in different spaces. Still, there has been interest in the
characterization of data in a Riemann space [5, 6]. Unfortunately, manifold-valued metrics
based on the centrality theory or the geometric median [7] often lacks robustness to outliers.

A related topic lies in dimensionally reduced growth trajectories of various anatomical sites
which have been investigated in neurodevelopment of newborns for example, based on geo-
desic shape regression to compute the diffeomorphisms with image time series of a population
[8]. These regression models were also used to estimate spatiotemporal evolution of the
cerebral cortex [9]. The concept of parallel transport curves in the tangent space from low-
dimensional manifolds proposed by Schiratti et al. [10] was used to analyze shape morphology
[11] and adapted for radiotherapy response [12]. Regression models were proposed for both
cortical and subcortical structures, with 4D varifold-based learning framework with local
topography shape morphing being proposed by Rekik et al. [13].

This chapter presents several manifold learning methodologies designed to address challenges
encountered in medical imaging. In Section 2, we present an articulated shape inference model
from nonlinear embeddings, expressing the global and local shape variations of the spine and
vertebrae composing it, introduced in [14]. We then present in Section 3 a probabilistic model
from discriminant manifolds to classify the neurodegenerative stage of Alzheimer’s disease.
Finally, a piecewise-geodesic transport curve in the tangent space from low-dimensional mani-
folds designed for the prediction of correction in spinal surgeries is shown in Section 4,
introducing a time-warping function controlling the rate of shape evolution. We conclude this
article in Section 5.

2. Shape inference through navigating manifolds

Statistical models of shape variability have been successful in addressing fundamental vision
tasks such as segmentation and registration in medical imaging. However, the high dimen-
sionality and complex nonlinear underlying structure unfortunately makes the commonly
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used linear statistics inapplicable for anatomical structures. Manifold learning approaches
map high-dimensional observation data that are presumed to lie on a nonlinear manifold, onto
a single global coordinate system of lower dimensionality.

Inferring a model from the underlying manifold is not a novel concept but far from being trivial.
In this section, we model both global statistics of the articulated model and local shape variations
of vertebrae based on local measures in manifold space. We describe a spine inference/segmen-
tation method from CT and MR images, where the model representation is optimized through a
Markov Random Field (MRF) graph, balancing prior distribution with image data.

2.1. Data representation

Our spine model S ¼ s1;…; sLf g consists of an interconnection of L vertebrae. For each verte-

bra si, we recover a triangular mesh with vertices vijjj ¼ 1;…;V
n o

, where the jth vertex corre-

sponds to approximately the same location from one shape to another and V the number of
vertices. Additionally, every si is annotated with landmarks on each model to rigidly register
each object to its upper neighbor. Hence, an articulated deformable model (ADM) is
represented by a vector of local intervertebral rigid transformations A ¼ T1;T2;…;TL½ �. To
perform global shape modeling of S, we convert A to an absolute representation Aabs ¼
T1;T1 ∘T2;…;T1 ∘T2 ∘… ∘TL½ � using recursive compositions. The transformations are
expressed in the local coordinate system (LCS) of the lower vertebra. Center of transformation
is the intersection of all three vertebral axes, following anteroposterior, cranial-caudal and left-
right directions. Rigid transformations described here are the combination of a rotation matrix
R, a translation t and scaling s. We formulate the rigid transformation T ¼ s;R; tf g of a
triangular mesh model as y ¼ sRxþ t where x, y, t∈ℜ3.

2.2. Manifold embedding

For nonlinear embeddings, we rely on the absolute vector representation Aabs as given previ-

ously. Let us now considerN articulated shape models expressed by the feature vectorsAi
abs, of

dimensionality D. The aim is to create a low-dimensional manifold consisting of N points Yi,
Yi ∈ℜd, i∈ 1;N½ � where d≪D based on [15]. In such a framework, if an adequate number of
data points is available, then the underlying manifold M is considered to be “well-sampled.”
Therefore, it can represent the underlying population structure. In the sub-cluster corres-
ponding to a pathological population, each point of the training set and its neighbors would
lie within a locally linear patch as illustrated in Figure 1.

The main limitation of embedding algorithms is the assumption of Euclidean metrics in the
ambient space to evaluate similarity between sample points. Thus, a metric in the space of
articulated structures is defined so that it accommodates for anatomical spine variability and
adopts the intrinsic nature of the Riemannian manifold geometry allowing us to discern
between articulated shape deformations in a topological invariant framework. For each point,
the K closest neighbors are selected using a distortion metric which is particularly suited for

geodesics. The metric dM Ai
abs;A

j
abs

� �
estimates the distance of articulated models i, j where
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Ai
abs. The distance measure for absolute representations can therefore be expressed as a sum of

articulation deviations

dM Ai
abs;A

j
abs

� �
¼

XL
k¼1

dM Ti
k;T

j
k

� �
¼

XL
k¼1

∥tik � tjk∥þ
XL
k¼1

dG Ri
k;R

j
k

� �
: (1)

While for the translation, the L2 norm is chosen, geodesical distances are used between rotation

neighborhoods. This is expressed as dG Ri
k;R

j
k

� �
¼ ∥ log Ri

k

� ��1
Rj

k

� �
∥F where the log map is

used to map a point in the manifold to the tangent plane.

Afterwards, the manifold reconstruction weights are estimated by assuming the local geome-
try of the patches can be described by linear coefficients that permit the reconstruction of every
model point from its neighbors. In order to determine the value of the weights, the reconstruc-
tion errors are measured using the following objective function:

ε Wð Þ ¼
XN
i¼1

Ai
abs �

XK
j¼1

WijA
j
abs

������
������
2

(2)

subject to
Wij ¼ 0 if Ai

abs not neighbor Aj
absX

j

Wij ¼ 1 for every i:

8><
>: (3)

Thus, ε Wð Þ sums the squared distances between all data points and their corresponding

reconstructed points. The weights Wij represent the importance of the jth data point to the

reconstruction of the ith element.

Figure 1. Representation of intervertebral transformations in manifold space.
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The algorithm maps each high-dimensional Ai
abs to a low-dimensional Yi. These internal

coordinates are found with a cost function minimizing the reconstruction error:

Φ Yð Þ ¼
XN
i¼1

Yi �
XK
j¼1

WijYj

������
������
2

¼
XN
i¼1

XN
j¼1

MijYT
i Yj

(4)

withM as a sparse and symmetric N �N matrix enclosing the reconstruction weightsWij such

that M ¼ I�Wð ÞT I�Wð Þ, and Y spanning the Yi’s. The optimal embedding, up to a global
rotation, is obtained from the bottom dþ 1 eigenvectors of M and helps to minimize the cost
function Φ Yð Þ as a simple eigenvalue problem. The d eigenvectors form the d embedding
coordinates. The coordinates Yi can be translated by a constant displacement without affecting
the overall costΦ Yð Þ. The eigenvector corresponding to the smallest eigenvalue corresponds to
the mean value of the embedded data Y0 ¼ y1;…; yd

� �
,yi ¼ 0, ∀i. This can be discarded withP

Yi ¼ 0 to obtain an embedding centered at the origin. Hence, a new ADM can be inferred in
the embedded d-space as a low-dimensional point Ynew by finding its optimal manifold
coordinates yi.

To obtain the articulation vector for a new embedded point in the ambient space (image
domain), one has to determine the representation in high-dimensional space based on its
intrinsic coordinates. We first assume an explicit mapping f : M ! ℜD from manifold space
M to the ambient space ℜD. The inverse mapping of Yi is then performed by estimating the
relationship between ℜD and M as a joint distribution, such there exists a smooth functional
which belongs to a local neighborhood. Theoretically the manifold should follow the condi-
tional expectation:

f Yið Þ � E Ai
absjM Aið Þ ¼ Yi

� � ¼ ð
Ai

p Yi;Aið Þ
pM Aið Þ Yið Þ dD (5)

which captures the overall trend of the data in D-space. Here, both pM Aið Þ Yið Þ (marginal

density of M Aið Þ) and p Yi;Aið Þ (joint density) are unknown. Based on the Nadaraya-Watson
kernel regression [16], we replace densities by kernel functions as pM Aið Þ Yið Þ ¼ 1

K

P
j∈N ið Þ

Gh Yi;Yj
� �

and p Yi;Aið Þ ¼ 1
K

P
j∈N ið ÞGh Yi;Yj

� �
Gg Ai;Aj

� �
[17]. The Gaussian regression kernels

G require the neighbors Aj
abs of j∈N ið Þ to determine the bandwidths h, g so it includes all K

data points (N ið Þ representing the neighborhood of i). Plugging these estimates in Eq.(5), this
gives:

fNW Yið Þ ¼
ð
Ai

1
K

P
j∈N ið ÞGh Yi;Yj

� �
Gg Ai;Aj

� �
1
K

P
j∈N ið ÞGh Yi;Yj

� � dD: (6)
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By assuming G is symmetric about the origin, we propose to integrate in the kernel regression
estimator, the manifold-based distortion metric dM which is particularly suited for geodesic
metrics and articulated diffeomorphisms. This generalizes the expectation such that the obser-
vations Y are defined in manifold space M:

fNW Yið Þ ¼ argmin
Ai

abs

P
j∈N ið ÞG Yi;Yj

� �
dM Ai

abs;A
j
abs

� �
P

j∈N ið ÞG Yi;Yj
� � (7)

which integrates the distance metric dM Ai
abs;A

j
abs

� �
defined in Eq. (1) and updates fNW Yið Þ

using the closest neighbors of point Yi in the manifold space. This constrains the regression to

be valid for similar data points in its vicinity since locality around Yi preserves locality in Ai
abs.

2.3. Optimization on manifold

Once an appropriate modeling of spine shape variations is determined with a manifold, a
successful inference between the image and manifold must be accomplished. We describe here
how a new model is generated. We search the optimal embedded manifold point Y ¼
y1;…; yd
� �

of the global spine model. Such a strategy offers an ideal compromise between the
prior constraints, as well as the individual shape variations described by the weight vector
W ¼ w1;…;wnð Þ in a localized sub-patch. The energy E of inferring the model S in the image I
is a function of the set of displacement vectors Δ in the manifold space for global shape
representation. This involves: (a) a data-related term expressing the image cost and (b) a global
prior term measuring deformation between low-dimensional vectors with shape models. The
third term represents (c) a higher-order term which is expressed by the reconstruction weights
Ω for local vertebra modeling. The energy E can be expressed as the following combination of
a global and local optimization:

E S0; I ;Δ;Ω
� � ¼ V Y0 þ Δ; I

� �þ α V N;Δð Þ þ β V H;Δ;Ωð Þ: (8)

The global alignment of the model with the target image primarily drives the deformation of
the model. The purpose is to estimate the set of articulations describing the global spine model
by determining its optimal representation Y0 in the embedded space. This is performed by
obtaining the global representation using the mapping in (7) so that: fNW Yi þ Δð Þ ¼
fNW y1 þ δ1;…; yd þ δd

� �� �
. This allows to optimize the model in manifold space coordinates

while retrieving the articulations in I . The global cost can be expressed as:

V Y0 þ Δ; I
� � ¼ V fNW y1 þ δ1;…; yd þ δd

� �� �
; I

� ��
: (9)

The inverse transform allows to obtain Ai
abs þD, with D as deformations in the image space.

Since the transformations Ti are implicitly modeled in the absolute representation A0
abs, we can

formally consider the singleton image-related term as a summation of costs associated with
each L vertebra of the model:
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V A0
abs þD; I

� � ¼ XL
i¼1

Vi si∗ T0
i þ di

� �
; I

� �
(10)

where Vi s; Ið Þ ¼ P
vi ∈ sn

T
i við Þ∇I við Þ minimizes the distance between mesh vertices of the

inferred shape and gradient image I by a rigid transformation. Here, ni is the normal pointing
outwards and ∇I við Þ the image gradient at vi.

The prior constraint for the rigid alignment are pairwise potentials between neighboring
models yi such that the difference in manifold coordinates is minimal with regards to a prior
distribution of neighboring distances P:

αV N;Δð Þ ¼ α
X
i∈G

X
j∈N ið Þ

Vij y0i þ δi; y0j þ δj;P
� �

: (11)

This term represents the smoothness term of the global cost function to ensure that the
deformation δi applied to point coordinates are regular, with Vij ¼ 0; 1ð Þ a distance assigning
function based on the distances to P.

One can integrate the global data and prior terms along with local shape terms parameterized
as the higher-order cliques, by combining (9), (11):

E S0; I ;Δ;Ω
� � ¼ V fNW y1 þ δ1;…; yd þ δd

� �� �
; IÞ� �

þ α
X
i∈G

X
j∈N ið Þ

Vij y0i þ δi; y0j þ δj
� �

þ β
X
c∈ C

Vc w0
c þ ωc

� �
:

(12)

The optimization strategy of the resulting MRF (12) in the continuous domain is not a straight-
forward problem. The convexity of the solution domain is not guaranteed, while gradient-
descent optimization approaches are prone to nonlinearity and local minimums. We seek to
assign the optimal labels LΔ ¼ l1;…; ldf g and LΩ ¼ l1;…; lnf g which are associated to the
quantized space Δ of displacements and local weight parameters Ω respectively. We consider
that displacing the coordinates of point y0i by δli is equivalent to assigning label li to y0i . An
incremental approach is adopted where in each iteration t we look for the set of labels that
improves the current solution s.t. yti ¼ y0i þ

P
tδ

li t, which is a temporal minimization problem.
Then (12) can be rewritten as:

Et LΔ;LΩ� � ¼ V fNW yt�1
1 ; lΔ1 ;…; yt�1

d ; lΔd
� �� �

; IÞ� �
þ α

X
i∈G

X
j∈N ið Þ

Vij yt�1
i ; yt�1

j ; lΔi ; l
Δ
j

� �
þ β

X
c∈ C

Vc wt�1
c ; lΩc

� �
:

(13)

We solve the minimization of the higher-order cliques in (13) by transforming them into
quadratic functions [18]. We apply the FastPD method [19] which solves the problem by
formulating the duality theory in linear programming.
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2.4. Results

Manifold learning. The manifold was built from a database containing 711 scoliotic spines
demonstrating several types of deformities. Each spine model in the database was obtained
from biplanar radiographic stereo-reconstructions. It is modeled with 12 thoracic and 5 lumbar
vertebrae (17 in total), represented by 6 landmarks on each vertebra (4 pedicle extremities and
2 endplate center points) which were manually identified by an expert on the radiographic
images. The resulting manifold is shown in Figure 2.

Adaptation of the articulated model was done on two different data sets. The first consisted of
volumetric CT scans (512� 512� 251, resolution: 0:8� 0:8 mm, thickness: 1� 2 mm) of the
lumbar and main thoracic regions obtained from 21 different patients acquired for operative
planning purposes. The MR dataset comprised multi-parametric volumetric data
(256� 256� 160, resolution: 1:3� 0:9 mm, thickness: 1 mm) of 8 patients acquired for diag-
nostic purposes. For this study, only the T1 sequence was selected for the experiments. All
patients on both datasets (29 in total) had 12 thoracic and 5 lumbar vertebrae. Both CTand MR
data were manually annotated with 3D landmarks by an expert in radiology, corresponding to
left and right pedicle tips as well as midpoints of the vertebral body. Segmentation of the
vertebrae from the CT and MR slices were also made by the same operator.

CT imaging experiments. We first evaluated the model accuracy in CT images by computing
the correspondence of the inferred vertebral mesh models to the segmented target structures.
As a preprocessing step, a rough thresholding was performed on the whole volume to filter
out noise artifacts. The overall surface-to-surface comparison results between the inferred 3D
vertebral models issued from the articulated model and from known segmentations were first

Figure 2. Low-dimensional manifold embedding of the spine dataset comprising 711 models exhibiting various types of
deformities. The sub-domain was used to estimate both the global shape pose costs and individual shape instances based
on local neighborhoods.
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calculated. The mean errors are 2:2� 1:5 mm (range: 0:6� 5:4 mm) for thoracic vertebra and
2:8� 1:9 mm (range: 0:7� 8:1 mm) for lumbar vertebra.

MR imaging experiments. For the experiments involving the segmentation of 3D spine
models from MR images, the surface-to-surface comparison showed encouraging results (tho-
racic: 2:9� 1:8 mm, lumbar: 3:0� 1:9 mm) based on differences to ground-truth. As in the
previous experiments with CT imaging, ground-truth data was generated by manually
segmenting the structures models which were validated by an expert in radiology. As difficult
as the CT inference is, the MR problem represent an even greater challenge as the image
resolution is more limited and interslice spacing is increased compared to CT. Modeling of
the statistical properties of the shape variations and global pose becomes even more important
in this case, as it relies heavily in the nonlinear distribution of the patient morphology.

3. Probabilistic modeling of discriminant nonlinear manifolds in the
identification of Alzheimer’s

Neurodegenerative pathologies, such as Alzheimer’s disease (AD), are linked with morpho-
logical and metabolic alterations which can be assessed from medical imaging and biological
data. Recent advances in machine learning have helped to improve classification and progno-
sis rates, but lack a probabilistic framework to measure uncertainty in the data. In this section,
we present a method to identify progressive mild cognitive impairment (MCI) and predict
their conversion to AD fromMRI and positron emitting tomography (PET) images. We show a
discriminative probabilistic manifold embedding where locally linear mappings transform
data points in low-dimensional space to corresponding points in high-dimensional space. A
discriminant adjacency matrix is constructed to maximize the separation between different
clinical groups, including MCI converters and nonconverters, while minimizing the distance in
latent variables belonging to the same class.

3.1. Probabilistic model for discriminant manifolds

Manifold learning algorithms are based on the premise that data are often of artificially high
dimension and can be embedded in a lower dimensional space. However the presence of
outliers and multiclass information can on the other hand affect the discrimination and/or
generalization ability of the manifold. We propose to learn the optimal separation between
four classes (1) normal controls, (2) nonconverter MCI patients, (3) converter MCI patients and
(4) AD patients, by using a discriminant graph-embedding. Here, n labeled points Y ¼

yi; li
� �� �n

i¼1 defined in RD are generated from the underlying manifold M, where li denotes
the label (NC, cMCI, nMCI or AD). For the labeled data, there exists a low-dimensional (latent)
representation of the high-dimensional samples such that X ¼ xi; lið Þf gni¼1 defined in Rd. We

assume here that the mapping Mi ∈RD�d between high and low-dimensional spaces is locally
linear, such that tangent spaces in local neighborhoods can be estimated with yj � yi and
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xj � xi, representing the pairwise differences between connected neighbors i, j. Therefore the

relationship can be established as yj � yi ≈Mi xj � xi
� �

.

In order to effectively discover the low-dimensional embedding, it is necessary to maintain the
local structure of the data in the new embedding. The graph G ¼ V;Wð Þ is an undirected
similarity graph, with a collection of nodes V connected by edges, and the symmetric matrix
W with elements describing the relationships between the nodes. The diagonal matrix D and
the Laplacian matrix L are defined as L ¼ D�W, with D i; ið Þ ¼ P

j 6¼iW ij∀i.

Using the theoretical framework from [20], we can determine a distribution of linear maps
associated with the low-dimensional representation to describe the data likelihood for a specific
model:

log p YjGð Þ ¼ log
Z Z

p Y;M;XjGð ÞdxdM (14)

This joint distribution can be separated into three prior terms: the linear maps, latent variables
and the likelihood of the high dimensional points Y:

p Y;M;XjGð Þ ¼ p YjM;X;Gð Þp MjGð Þp XjGð Þ (15)

We now define the discriminant similarity graphs establishing neighborhood relationships, as
well define each of the three prior terms included in the joint distribution.

Within and between similarity graphs: In our work, the geometrical structure of M can be
modeled by building a within-class similarity graphWw for feature vectors of same group and
a between-class similarity graph Wb, to separate features from all four classes. When constru-
cting the discriminant locally linear latent variable embedding, elements are partitioned into
Ww andWb classes. The intrinsic graph G is first created by assigning edges only to samples of
the same class (ex: nMCI). Each sample is therefore reconstructed only from feature vectors of
the same clinical group. Local reconstruction coefficients are incorporated in the within-class
similarity graph, such that Ww is defined as:

Wwi,j ¼
1 if yi ∈N w yj

� �
or yj ∈N w yi

� �
0, otherwise:

(
(16)

with N w containing neighbors of the same class. Conversely, Wb depicts the statistical proper-
ties to be avoided in the inference process. Distances between samples from different clinical
groups are computed as:

Wbi,j ¼
1 if yi ∈N b yj

� �
or yj ∈N b yi

� �
0, otherwise

(
(17)

with N b containing neighbors having different class labels from the ith sample. The objective
is to transform points to a new manifold M of dimensionality d, i.e., yi ! xi, by mapping
connected samples from the same group in Ww as close as possible to the class cluster, while
moving NC, nMCI, cMCI and AD samples of Wb as far away from one another.
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Model components: The prior added on the latent variables X are located at the origin of the
low-dimensional domain, while minimizing the Euclidean distance of neighboring points that
are associated with the neighborhood of high-dimensional points and maximizing the distance
between coordinates of different classes. In order to set the variables with an expected scale α
and H representing the probability density function, the following log prior is defined:

log p XjW;αð Þ ¼ � 1
2

Xn
i¼1

α∥xi∥þ
Xn
j¼1

Wwi,j∥yi � yj∥
2 �

Xn
j¼1

Wbi,j∥yi � yj∥
2

0
@

1
A� logHX (18)

The prior added to the linear maps defines how the tangent planes described in low and high
dimensional spaces are similar based on the Frobenius norm. This prior ensures smooth mani-
folds:

log p MjWð Þ ¼ � 1
2

Xn
i¼1

xi

�����
�����
2

F

�
Xn
i¼1

Xn
j¼1

Wwi,j �Wbi,j

� �
∥Mi �Mj∥2F

0
@

1
A� logHM (19)

Finally, approximation errors from the linear mapping Mi between low and high-dimensional
domains are penalized by including the following log likelihood:

log p YjX;W;γð Þ ¼ ∥
Xn
i¼1

yi∥
2 � 1

2

Xn
i¼1

Xn
j¼1

Wwi,jΔ i; jð ÞTγIΔ i; jð Þ

þ 1
2

Xn
i¼1

Xn
j¼1

Wbi,jΔ i; jð ÞTγIΔ i; jð Þ � logHy

(20)

with Δ i; jð Þ the difference in Euclidean distance between pairs of neighbors in high and low-
dimensional space and γ the update parameter for the EM inference. Samples of y are drawn
from a multivariate normal distribution.

3.2. Variational inference

The objective is to infer the low-dimensional coordinates and linear mapping function for the
described model, as well as the intrinsic parameters of the model Φ ¼ α; γð Þ. This is achieved
by maximizing the marginal likelihood of:

log p YjW;Φð Þ ¼
Z Z

r M;Xð Þ log p Y;M;XjW;Φð Þ
r M;Xð Þ dxdM: (21)

By assuming the posterior r M;Xð Þ can be factored in separate terms r Mð Þ and r Xð Þ, a varia-
tional expectation maximization algorithm can be used to determine the model’s parameters,
which are initialized with Φ. The E-step updates the independent posteriors r Xð Þ and r Mð Þ,
while the parameters of Φ are updated in the M-step by maximizing Eq. (21).

The discriminant latent variable model can then be used to perform the mapping of new image
feature vectors to the manifold. The variational EM algorithm described in the previous section
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can be used to transform a set of new input points yq without changing the overall neighbor-

hood graph structure, by finding the distribution of the local linear map yq and it is low-

dimensional coordinate using the E-step explained above. Once the manifold representation
xq is obtained, a cluster analysis finds the corresponding class in the manifold, yielding a
prediction of the input feature vector yq.

3.3. Experiments

We used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with 1.5 or 3.0 T
structural MR images (adni.loni.usc.edu) and FDG-PET images. For this study, 187 subjects
with both MRI and PET images during a 24 month period were used to train the probabilistic
manifold model, including 46 AD patients, 94 MCI patients, and 47 normal controls. During
the follow-up period, 43 MCI subjects converted to AD and 56 remained stable. All groups are
matched approximately by age (mean of 76:7� 5:4) and gender. Images were non-rigidly
registered to a standard template, which was then segmented using FSL-FIRST automatic
segmentation [21].

A 9-fold cross-validation was performed to assess the performance of the method. The optimal
manifold dimensionality was set at d ¼ 8, when the trend of the nonlinear residual reconstruc-
tion error stabilized for the entire training set. We evaluated the classification performance of
the proposed method for discriminating between cMCI and nMCI patients, by training the
model with MRI, PET and with MRI + PET biomarkers from the ROIs illustrated in Figure 3.
Figure 4 presents ROC curves obtained by the proposed and comparative methods such as
SVM (nonlinear RBF kernel), LLE and LL-LVM [20]. The discriminative nature of the proposed
framework clearly shows an improvement to standard learning approaches models which
were trained using MRI only, PET only and combined multimodal features. It illustrates that
increased accuracy (77.4%) can be achieved by combining MRI and PET features, showing the
benefit of extracting complementary features from the dataset for prediction purposes. When
comparing the performance of the proposed method to the other learning methods (SVM, LLE,

Figure 3. Selected FSL segmented brain regions for feature selection on (left) MRI and (right) PET images.
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LL-LVM), the probabilistic model integrating similarity graphs shows a statistically significant
improvement p < 0:01ð Þ to all three approaches based on paired t-test.

4. Spatiotemporal manifold prediction model for surgery prediction

In this final section, we present a statistical framework for predicting the surgical outcomes
following spine surgery of adolescents with idiopathic scoliosis. A discriminant manifold is
first constructed to maximize the separation between responsive and nonresponsive groups of
patients. The model then uses subject-specific correction trajectories based on articulated trans-
formations in order to map spine correction profiles to a group-average piecewise-geodesic
path. Spine correction trajectories are described in a piecewise-geodesic fashion to account for
varying times at follow-up exams, regressing the curve via a quadratic optimization process.
To predict the evolution of correction, a baseline reconstruction is projected onto the manifold,
from which a spatiotemporal regression model is built from parallel transport curves inferred
from neighboring exemplars (Figure 5).

Figure 4. ROC curves comparing the SVM, LLE and LL-LVM with the proposed method for cMCI/nMCI prediction
using MRI, PET and multimodality data.

Figure 5. Proposed prediction framework for spine surgery outcomes. In the training phase, a dataset of spine models are
embedded in a spatiotemporal manifoldM, into responsive (R) or nonresponsive (NR) groups. During testing, an unseen
baseline 3D spine reconstruction yq is projected onM using fNW based on Nadaraya-Watson kernels. The closest samples

to the projected point x are selected to regress the spatiotemporal curve γ used for predicting the correction due with
surgery.
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4.1. Discriminant embedding of spine models

We propose to embed a collection of nonresponsive (NR) and (2) responsive (R) patients to
surgery which will offer a maximal separation between the classes, by using a discriminant
graph-embedding. Here, n labeled points Y ¼ yi; li; ti

� �� �n
i¼1 defined in RD are embedded in

the low-dimensional manifoldM, where li describes the label (NR or R) and ti defines the time
of follow-up. We assume that for the sampled data, an underlying manifold of the high-
dimensional data exists such that X ¼ xi; li; tið Þf gni¼1 defined in Rd. We rely on the assumption

that a locally linear mapping Mi ∈RD�d exists, where local neighborhoods are defined as
tangent planes estimated with yj � yi and xj � xi, describing the paired distances between

linked neighbors i, j. Hence, the relationship can be established as yj � yi ≈Mi xj � xi
� �

.

Because the discriminant manifold structure in Rd requires to maintain the local structure of
the underlying data, a undirected similarity graph G ¼ V;Wð Þ is built, where each node V are
connected to each other with edges that are weighted with the graph W. The overall structure
of M is therefore defined with Ww for feature vectors belonging to the same class and Wb,
which separate features from both classes. During the embedding of the discriminant locally
linear latent manifold, data samples are divided between Ww and Wb.

4.2. Piecewise-geodesic spatiotemporal manifold

Once sample points xi are in manifold space, the objective is to regress a regular and smooth
piecewise-geodesic curve γ : t1; tN½ � that accurately fits the embedded data describing the
spatiotemporal correction following surgery within a 2 year period. For each sample data xi,
the K closest individuals demonstrating similar baseline features are identified from the
embedded data, creating neighborhoods N xq

� �
with measurements at different time points,

thus creating a low-dimensional Riemannian manifold where data points xi, j, with i denoting a
particular individual, j the time-point measurement and j ¼ 0 the preoperative model. By
assuming the manifold domain is complete and piecewise-geodesic curves are defined for each
time trajectories, time-labeled data can be regressed continuously in RD, thereby creating
smooth curves in time intervals described by samples in Rd.

However, due to the fact the representation of the continuous curve is a variational problem of
infinite dimensional space, the implementation follows a discretization process which is
derived from the procedure in [22], such that:

E γð Þ ¼ 1
Kd

XKd

i¼1

XtN
j¼0

wi∥γ ti, j
� �� xi, j � xi,0 � xq

� �� �
∥2

þ λ
2

XKd

i¼1

αi∥vi∥2 þ μ
2

XKd

i¼1

βi∥ai∥
2:

(22)

This minimization process simplifies the problem to a quadratic optimization, solved with LU

decomposition. The piecewise nature is represented by the term Kd ∈N xq
� �

, defined as
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samples along γ. The first component of Eq.(22) is a penalty term to minimize the geodesic
distance between samples xi, j and the regressed curve, where wi are weight variables based on
sample distances. This helps regress a curve that will lie close to xi, j, shifted by xq in order to
have the initial reconstructions co-registered. The second term represents the velocity of the
curve (defined by vi, approximating _γ tið Þ), minimizing the L2 distance of the 1st derivative of γ.
By minimizing the value of the curve’s first derivatives, this prohibits any discontinuities or
rapid transitions of the curve’s direction, and is modulated by αi. Finally, an acceleration
penalty term (defined by ai) focuses on the 2nd derivative of γ with respect to ti by minimizing
the L2 norm. The acceleration is modulated by βi. Estimates for vi and ai (weighted by λ;μ

� �
,

respectively), are generated using geometric finite differences. These estimates dictates the
forward and backward step-size on the regressed curve, leading to directional vectors in M
as shown in [22]. In order to minimize E γð Þ, a nonlinear conjugate gradient technique defined

in the low-dimensional space Rd is used, thus avoiding convergence and speed issues. The
regressed curve γ is therefore defined for all time points, originating at t0. The curve creates a
group average of spatiotemporal transformations based on individual correction trajectories.

4.3. Prediction of spine correction

Finally, to predict the evolution of spine correction from an unseen preoperative spine model,
we use the geodesic curve γ : RD ! M modeling the spatiotemporal changes of the spine,
where each point x∈M is associated to a speed vector v defined with a tangent plane on the
manifold such that v∈TxM.

Based on Riemannian theory, an exponential mapping function at x with velocity v can be
defined from the geodesics such that eMx vð Þ. Using this concept, parallel transport curves
defined in Tx can help define a series of time-index vectors along γ as proposed by [10]. The
collection of parallel transport curves allows to generate an average trajectory in ambient space
RD, describing the spine changes due to the corrective forces of tethering. The general goal is to
begin the process at the preoperative sample, and navigate the piecewise-geodesic curve
describing correction evolution in time, where one can extract the appearance at any point
(time) in RD using the exponential mapping. For implementation purposes, the parallel trans-
port curve are constrained within a smooth tubular boundary perpendicular to the curve (from
an ICA) to generate the spatiotemporal evolution in the coordinate system of the preoperative
model.

Hence, given the manifold at time t0 with v defined in the tangent plane and the regressed
piecewise-geodesic curve γ, the parallel curve is obtained as:

ηv γ; sð Þ ¼ eMγ sð Þ xγ, t0, s vð Þ� �
, s∈Rd: (23)

Therefore by repeating this mapping for manifold points seen as samples of individual pro-
gression trajectories along γ sð Þ, an evolution model can be generated. Whenever a new sample
is embedded, new samples points along γ sð Þ, denoted as ηv γ; �ð Þ can be generated parallel to
the regressed piecewise curve in M, capturing the spatiotemporal changes in correction.
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A time warp function allowing s to vary along the geodesic curve is described as ϕi tð Þ ¼
θi t� t0 � τið Þ þ t0. Here, we propose to incorporate a personalized acceleration factor based
on the spine maturity and flexibility derived from the spine bending radiographs and Risser
grade. A coefficient θi ¼ Ci � Ri describing the change in Cobb angle Ci between poses, and
modulated by the Risser grade Ri. This coefficient regulates the rate of correction based on the
K neighboring samples. Finally, to take under account the relative differences between the
group-wise samples and the query model once mapped onto the regressed curve, a time-shift
parameter τi is incorporated in the warp function.

For spine correction evolution, displacement vectors vi are obtained by a PCA of the hyper-
plane crossing TxiM in manifold M [10]. Hence, for any query sample xq which represents the
mapped preoperative 3D reconstruction (prior to surgery), the predicted model at time tk can
be regressed from the piecewise-geodesic curve generated from embedded samples x inN xq

� �
such that:

yq, tk ¼ ηvq γ;ϕi tkð Þ� �þ εq, tk (24)

which yields a predicted postoperative model yq, tk in high-dimensional space RD, and εq, tk
a zero-mean Gaussian distribution. The generated model offers a complete constellation of
interconnected vertebral models composing the spine shape S, at first-erect (FE), 1 or 2-
year visits, including landmarks on vertebral endplates and pedicle extremities, which can
be used to capture the local shape morphology with the correction process.

4.4. Experiments

The discriminant manifold was trained from a database of 438 3D spine reconstructions
generated from biplanar images [23], originating from 131 patients demonstrating several
types of deformities with immediate follow-up (FE), 1 and 2 year visits. Patients were recruited
from a single center prospective study. Patients were divided in two groups, with the first
group composed of 94 responsive patients showing a reduction in Cobb angle over or equal to
10 ∘ between the FE and follow-up visit. The second group was composed of 37 nonresponsive
(NP) patients with a reduction of less than 10 ∘ . We evaluated the geometrical accuracy of the
predictive manifold for 56 unseen surgical patients (mean age 12� 3, average main Cobb

FE visit 1-year visit 2-year visit

3D RMS Dice Cobb 3D RMS Dice Cobb 3D RMS Dice Cobb

Biomec. sim 3.3 � 1.1 85 � 3.4 2.8 � 0.8 3.6 � 1.2 84 � 3.6 3.2 � 0.9 4.1 � 2.3 82 � 3.9 3.6 � 1.0

LL-LVM [20] 3.6 � 1.4 83 � 4.0 3.8 � 1.5 4.7 � 3.3 79 � 4.4 5.5 � 2.6 6.6 � 4.4 71 � 5.9 7.0 � 3.9

Deep AE [24] 4.1 � 1.5 80 � 4.4 5.1 � 2.7 5.0 � 1.9 77 � 4.9 5.8 � 3.0 6.3 � 4.6 72 � 5.7 6.6 � 4.2

Proposed 2.4 � 0.8 92 � 2.7 1.8 � 0.5 2.9 � 0.9 90 � 2.8 2.0 � 0.7 3.2 � 1.3 87 � 3.1 2.1 � 0.6

Predictions are evaluated at FE, 1 and 2-years.

Table 1. 3D RMS errors (mm), dice (%) and cobb angles (o) for the proposed method, and compared with biomechanical
simulations, locally linear latent variable models (LL-LVM) and deep auto-encoders (AE).
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angle on the frontal plane at the first visit was 47� 10 ∘ ), with predictions at t ¼ 0 (FE), t ¼ 12
and t ¼ 24 months. For the predicted models, we evaluated the 3D root-mean-square differ-
ence of the vertebral landmarks generated, the Dice coefficients of the vertebral shapes and in
the main Cobb angle. The results are shown in Table 1. Results were confronted to other
techniques such as biomechanical simulations performed on each subject using finite element
modeling with ex-vivo parameters [25], a locally linear latent variable model [20] and a deep
auto-encoder network [24]. Results from the predicted geometrical models show the regressed
spatiotemporal geodesic curve yields anatomically coherent structures, with accurate local
vertebral morphology.

5. Discussion

Algorithms capable of extracting clinically relevant and meaningful descriptions from medical
imaging datasets have become of widespread interest to theoreticians as well as practitioners
in the medical field, accelerating the pace in recent years involving varied fields such as in
machine learning, geometry, statistics and genomics to propose new insights for the analysis of
imaging and biologic datasets. Towards this end, manifold learning has demonstrated a
tremendous potential to learn the underlying representation of high-dimensional, complex
imaging datasets.

We presented frameworks describing longitudinal, multimodal image features from neuroim-
aging data using a Bayesian model for discriminant nonlinear manifolds to predict the conver-
sion of progressive MCI to Alzheimer’s disease. This probabilistic method introduces class-
dependent latent variables which is based on the concept that local structure is transformed
from manifold to the high-dimensional domain. This variational learning method can ulti-
mately assess uncertainty within the manifold domain, which can lead to a better understand-
ing of relationships between converters and nonconverters for patients with MCI.

Finally, a prediction method for the outcomes of spine surgery using geodesic parallel trans-
port curves generated from probabilistic manifold models was presented. The mathematical
models allow to describe patterns in a nonlinear and discriminant Riemannian framework by
first distinguishing nonprogressive and progressive cases, followed by a prediction of struc-
tural evolution. The proposed model provides a way to analyze longitudinal samples from a
geodesic curve in manifold space, thus simplifying the mixed effects when studying group-
average trajectories.
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