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Abstract. The success of real-time estimation and forecast-
ing applications based on geophysical models has been pos-
sible thanks to the two main existing frameworks for the
determination of the models’ initial conditions: Bayesian
data assimilation and variational data assimilation. However,
while there have been efforts to unify these two paradigms,
existing attempts struggle to fully leverage the advantages
of both in order to face the challenges posed by modern
high-resolution models — mainly related to model indeter-
minacy and steep computational requirements. In this article
we introduce a hybrid algorithm called OPTIMISTS (Opti-
mized PareTo Inverse Modeling through Integrated STochas-
tic Search) which is targeted at non-linear high-resolution
problems and that brings together ideas from particle fil-
ters (PFs), four-dimensional variational methods (4D-Var),
evolutionary Pareto optimization, and kernel density estima-
tion in a unique way. Streamflow forecasting experiments
were conducted to test which specific configurations of OP-
TIMISTS led to higher predictive accuracy. The experiments
were conducted on two watersheds: the Blue River (low res-
olution) using the VIC (Variable Infiltration Capacity) model
and the Indiantown Run (high resolution) using the DHSVM
(Distributed Hydrology Soil Vegetation Model). By selecting
kernel-based non-parametric sampling, non-sequential eval-
uation of candidate particles, and through the multi-objective
minimization of departures from the streamflow observations
and from the background states, OPTIMISTS was shown to
efficiently produce probabilistic forecasts with comparable
accuracy to that obtained from using a particle filter. More-
over, the experiments demonstrated that OPTIMISTS scales
well in high-resolution cases without imposing a significant
computational overhead. With the combined advantages of
allowing for fast, non-Gaussian, non-linear, high-resolution

prediction, the algorithm shows the potential to increase the
efficiency of operational prediction systems.

1 Introduction

Decision support systems that rely on model-based forecast-
ing of natural phenomena are invaluable to society (Adams
et al., 2003; Penning-Rowsell et al., 2000; Ziervogel et al.,
2005). However, despite increasing availability of Earth-
sensing data, the problem of estimation or prediction in geo-
physical systems remains as underdetermined as ever be-
cause of the growing complexity of such models (Clark et al.,
2017). For example, taking advantage of distributed physics
and the mounting availability of computational power, mod-
ern models have the potential to more accurately represent
impacts of heterogeneities on eco-hydrological processes
(Koster et al., 2017). This is achieved through the replace-
ment of lumped representations with distributed ones, which
entails the inclusion of numerous parameters and state vari-
ables. The inclusion of these additional unknowns has the
downside of increasing the level of uncertainty in their esti-
mation. Therefore, in order to be able to rely on these high-
resolution models for critical real-time and forecast appli-
cations, considerable improvements on parameter and ini-
tial state estimation techniques must be made with two main
goals: first, to allow for an efficient management of the huge
number of unknowns; and second, to mitigate the harmful
effects of overfitting — i.e. the loss of forecast skill due to an
over-reliance on the calibration and training data (Hawkins,
2004). Because of the numerous degrees of freedom asso-
ciated with these high-resolution distributed models, overfit-
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ting is a much bigger threat due to the phenomenon of equi-
finality (Beven, 2006).

There exists a plethora of techniques to initialize the state
variables of a model through the incorporation of avail-
able observations, and they possess overlapping features that
make it difficult to develop clear-cut classifications. How-
ever, two main schools can be fairly identified: Bayesian data
assimilation and variational data assimilation. Bayesian data
assimilation creates probabilistic estimates of the state vari-
ables in an attempt to also capture their uncertainty. These
state probability distributions are adjusted sequentially to
better match the observations using Bayes’ theorem. While
the Kalman filter (KF) is constrained to linear dynamics and
Gaussian distributions, ensemble Kalman filters (EnKF) can
support non-linear models (Evensen, 2009), and particle fil-
ters (PFs) can also manage non-Gaussian estimates for added
accuracy (Smith et al., 2013). The stochastic nature of these
Bayesian filters is highly valuable because equifinality can
rarely be avoided and because of the benefits of quantifying
uncertainty in forecasting applications (Verkade and Werner,
2011; Zhu et al., 2002). While superior in accuracy, PFs are
usually regarded as impractical for high-dimensional appli-
cations (Snyder et al., 2008), and thus recent research has
focused on improving their efficiency (van Leeuwen, 2015).

On the other hand, variational data assimilation is more
akin to traditional calibration approaches (Efstratiadis and
Koutsoyiannis, 2010) because of its use of optimization
methods. It seeks to find a single—deterministic initial-state-
variable combination that minimizes the departures (or varia-
tions) of the modelled values from the observations (Reichle
etal., 2001) and, commonly, from their history. One- to three-
dimensional variants are also employed sequentially, but the
paradigm lends itself easily to evaluating the performance of
candidate solutions throughout an extended time window in
four-dimensional versions (4D-Var). If the model’s dynamics
are linearized, the optimum can be very efficiently found in
the resulting convex search space through the use of gradient
methods. While this feature has made 4D-Var very popular in
meteorology and oceanography (Ghil and Malanotte-Rizzoli,
1991), its application in hydrology has been less widespread
because of the difficulty of linearizing land-surface physics
(Liu and Gupta, 2007). Moreover, variational data assimila-
tion requires the inclusion of computationally expensive ad-
joint models if one wishes to account for the uncertainty of
the state estimates (Errico, 1997).

Traditional implementations from both schools have in-
teresting characteristics and thus the development of hy-
brid methods has received considerable attention (Bannis-
ter, 2016). For example, Bayesian filters have been used as
adjoints in 4D-Var to enable probabilistic estimates (Zhang
et al., 2009). Moreover, some Bayesian approaches have
been coupled with optimization techniques to select ensem-
ble members (Dumedah and Coulibaly, 2013; Park et al.,
2009). The fully hybridized algorithm 4DEnVar (Buehner et
al., 2010) is gaining increasing attention for weather predic-

Hydrol. Earth Syst. Sci., 22, 5759-5779, 2018

F. Hernandez and X. Liang: Hybridizing Bayesian and variational data assimilation

tion (Desroziers et al., 2014; Lorenc et al., 2015). It is es-
pecially interesting that some algorithms have defied the tra-
ditional choice between sequential and extended-time eval-
uations. Weakly constrained 4D-Var allows state estimates
to be determined at several time steps within the assimilation
time window and not only at the beginning (Ning et al., 2014;
Trémolet, 2006). Conversely, modifications to EnKFs and
PFs have been proposed to extend the analysis of candidate
members/particles to span multiple time steps (Evensen and
van Leeuwen, 2000; Noh et al., 2011). The success of these
hybrids demonstrates that there is a balance to be sought be-
tween the allowed number of degrees of freedom and the
amount of information to be assimilated at once.

Following these promising paths, in this article we in-
troduce OPTIMISTS (Optimized PareTo Inverse Modelling
through Integrated STochastic Search), a hybrid data as-
similation algorithm whose design was guided by the two
stated goals: (i) to allow for practical scalability to high-
dimensional models and (ii) to enable balancing the imper-
fect observations and the imperfect model estimates to min-
imize overfitting. Table 1 summarizes the main characteris-
tics of typical Bayesian and variational approaches and their
contrasts with those of OPTIMISTS. Our algorithm incorpo-
rates the features that the literature has found to be the most
valuable from both Bayesian and variational methods while
mitigating the deficiencies or disadvantages associated with
these original approaches (e.g. the linearity and determinism
of 4D-Var and the limited scalability of PFs): Non-Gaussian
probabilistic estimation and support for non-linear model dy-
namics have been long held as advantageous over their alter-
natives (Gordon et al., 1993; van Leeuwen, 2009) and, simi-
larly, meteorologists favour extended-period evaluations over
sequential ones (Gauthier et al., 2007; Rawlins et al., 2007;
Yang et al., 2009). As shown in the table, OPTIMISTS can
readily adopt these proven strategies.

However, there are other aspects of the assimilation prob-
lem for which no single combination of features has demon-
strated its superiority. For example, is the consistency with
previous states better achieved through the minimization of a
cost function that includes a background error term (Fisher,
2003), as in variational methods, or through limiting the ex-
ploration to samples drawn from that background state distri-
bution, as in Bayesian methods? Table 1 shows that in these
cases OPTIMISTS allows for flexible configurations, and it
is an additional objective of this study to test which set of
feature interactions allows for more accurate forecasts when
using highly distributed models. While many of the concepts
utilized within the algorithm have been proposed in the liter-
ature before, their combination and broad range of available
configurations are unlike those of other methods — including
existing hybrids which have mostly been developed around
ensemble Kalman filters and convex optimization techniques
(Bannister, 2016) — and therefore limited to Gaussian distri-
butions and linear dynamics.
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Table 1. Comparison between the main features of standard Bayesian data assimilation algorithms (KF: Kalman filter, EnKF: ensemble KF,
PF: particle filter), variational data assimilation (one- to four-dimensional), and OPTIMISTS.

Bayesian

Variational

OPTIMISTS

Probabilistic: Gaussian (KF,
EnKF), non-Gaussian (PF)

Resulting state-
variable estimate

Deterministic (unless adjoint
model is used)

Probabilistic
(using kernel density estimation)

Solution quality High likelihood given Minimum cost value (error, Flexible: e.g. minimum error, maximum
criteria observations departure from history) consistency with history
Analysis time step ~ Sequential Sequential (1-D-3-D) or entire ~ Flexible
assimilation window (4-D)
Search method Iterative Bayesian belief Convex optimization Coupled belief
propagation propagation and multi-objective
optimization
Model dynamics Linear (KF), Linearized to obtain convex Non-linear

non-linear (EnKF, PF)

solution space

(non-convex solution space)

2 Data assimilation algorithm

In this section we describe OPTIMISTS, our proposed data
assimilation algorithm which combines advantageous fea-
tures from several Bayesian and variational methods. As will
be explained in detail for each of the steps of the algorithm,
these features were selected with the intent of mitigating the
limitations of existing methods. OPTIMISTS allows select-
ing a flexible data assimilation time step A¢ — i.e. the time
window in which candidate state configurations are com-
pared to observations. It can be as short as the model time
step or as long as the entire assimilation window. For each
assimilation time step at time ¢ a new state probability distri-
bution S'T27 is estimated from the current distribution S’,
the model, and one or more observations of):é:rm . For hy-
drologic applications, as those explored in this article, these
states S include land-surface variables within the modelled
watershed such as soil moisture, snow cover and water equiv-
alent, and stream water volume; and observations o are typ-
ically of streamflow at the outlet (Clark et al., 2008), soil
moisture (Houser et al., 1998), and/or snow cover (Andreadis
and Lettenmaier, 2006). However, the description of the al-
gorithm will use field-agnostic terminology to not discourage
its application in other disciplines.

State probability distributions S in OPTIMISTS are deter-
mined from a set of weighted root or base sample states s;
using multivariate weighted kernel density estimation (West,
1993). This form of non-parametric distributions stands in
stark contrast with those from KFs and EnKFs in their ability
to model non-Gaussian behaviour — an established advantage
of PFs. Each of these samples or ensemble members s; is
comprised of a value vector for the state variables. The ob-
jective of the algorithm is then to produce a set of n samples
s§+A’ with corresponding weights w; for the next assimila-
tion time step to determine the target distribution §7 747,
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This process is repeated iteratively each assimilation time
step At until the entire assimilation time frame is covered,
at which point the resulting distribution can be used to per-
form the forecast simulations. In Sect. 2.1 we describe the
main ideas and steps involved in the OPTIMISTS data as-
similation algorithm; details regarding the state probability
distributions, mainly on how to generate random samples and
evaluate the likelihood of particles, are explained in Sect. 2.2;
and modifications required for high-dimensional problems
are described in Sect. 2.3.

2.1 Description of the OPTIMISTS data assimilation
algorithm

Let a “particle” P; be defined by a “source” (or initial) vec-
tor of state variables sf (which is a sample of distribution

S7), a corresponding “target” (or final) state vector s§+A' (a

sample of distribution $'T27), a set of output values o’ 2!

L

(those that have corresponding observations o' 4"), a set of
fitness metrics f;, a rank r;, and a weight w;. Note that the
denomination “particle” stems from the PF literature and is
analogous to the “member” term in EnKFs. The fitness met-
rics f; are used to compare particles with each other in the
light of one or more optimization objectives. The algorithm
consists of the following steps, whose motivation and details
are included in the sub-subsections below and their interac-
tions illustrated in Fig. 1. Table 2 lists the meaning of each
of the seven global parameters (At, 1, Wroot, Psamp> KF-classs
Nevo, and g).

1. Drawing: draw root samples s’ from S’ in descending
weight order until D> w; > wyoot.

2. Sampling: randomly sample S’ until the total number of
samples in the ensemble is pgamp X 7.

Hydrol. Earth Syst. Sci., 22, 5759-5779, 2018
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Table 2. List of global parameters in OPTIMISTS.

Symbol  Description Range

At Assimilation time step (particle evaluation time frame) Rt

n Total number of root states s; in the probability distributions N>2

Wroot Total weight of root samples drawn from St R e [0, 1]
Psamp Percentage of n corresponding to drawn and random samples R e[0, 1]
kp.class ~ Whether or not to use F-class kernels. If not, use D-class kernels.  true or false
Nevo Samples to be generated by the optimizers per iteration N>2

g Level of greed for the assignment of particle weights w; Rel[-1, 1]

Root
samples (b) ___ Assimilation__ _ o (c
# : " time step At !
1
<o g H From 2 me 2
&= 1 —
<> g V Simulation : g (0} ” “
<o ] i Al - |
A |
’ % 1 From 1 L /(//Lﬁ i
(Pareto front) Y - i
Q > S o i
i - Variable s
¢ Time Likelihood ble 1

Ariabje “:‘
Initial distribution (d) Evolutionary ()pl’lledtlUl] (optional) Target distribution of
of state variables S° state variables S¢+A¢

Figure 1. Steps in OPTIMISTS, to be repeated for each assimilation time step A¢. In this example state vectors have two variables, obser-
vations are of streamflow, and particles are judged using two user-selected objectives: the likelihood given S’ to be maximized and the error
given the observations to be minimized. (a) Initial state kernel density distribution S’ from which root samples (purple rhombi) are taken
during the drawing step and random samples (yellow rhombi) are taken during the sampling step. (b) Execution of the model (simulation
step) for each source sample for a time equal to Az to compute output variables (for comparison with observations) and target samples
(circles). (¢) Evaluation of each particle (evaluation step) based on the objectives and organization into non-domination fronts (ranking step).
The dashed lines represent the fronts while the arrows denote domination relationships between particles in adjacent fronts. (d) Optional
optimization step which can be executed several times and that uses a population-based evolutionary optimization algorithm to generate
additional samples (red rhombi). (e) Target state kernel density distribution $’*7 constructed from the particles’ final samples (circles) after
being weighted according to the rank of their front (weighting step): kernels centred on samples with higher weight (shown larger) have a
higher probability density contribution.

3. Simulation: compute st AL and oﬁ:t"'A’ from each non- weight — those that are the best performers — are drawn first,

evaluated sample s/ using the model. followed by the next ones in descending weight order, until
the total weight of the drawn samples > w; reaches wrqot-

4. Evaluation: compute the fitness values f; for each par- Wreor thus controls what percentage of the root samples to

ticle P;. draw, and, if set to one, all of them are selected.
5. Optimization: create additional samples using evolu-

tionary algorithms and return to 3 (if number of samples ~ 2.1.2  Sampling step

is below n).

In this step the set of root samples drawn is complemented
with random samples. The distinction between root samples
and random samples is that the former are those that define
the probability distribution S’ (that serve as centroids for the
kernels), while the latter are generated stochastically from
the kernels. Random samples are generated until the size of

6. Ranking: assign ranks r; to all particles P; using non-
dominated sorting.

7. Weighting: compute the weight w; for each particle P;
based on its rank r;.

2.1.1 Drawing step the combined set reaches psamp X n by following the equa-

tions introduced in Sect. 2.2. This second step contributes to
While traditional PFs draw all the root (or base) samples the diversity of the ensemble in order to avoid sample im-
from S’ (Gordon et al., 1993), OPTIMISTS can limit this se- poverishment as seen on PFs (Carpenter et al., 1999) and
lection to a subset of them. The root samples with the highest serves as a replacement for traditional resampling strategies
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(Liu and Chen, 1998). The parameter wroo; therefore con-
trols the intensity with which this feature is applied to offer
users some level of flexibility. Generating random samples
at the beginning, instead of resampling those that have been
already evaluated, could lead to discarding degenerate parti-
cles (those with high errors) early on and contribute to im-
proved efficiency, given that the ones discarded are mainly
those with the lowest weight as determined in the previous
assimilation time step.

2.1.3 Simulation step

In this step, the algorithm uses the model to compute the re-
sulting state vector s'™*" and an additional set of output vari-
ables o/ T2 for each of the samples (it is possible that state
variables double as output variables). The simulation is ex-
ecuted starting at time ¢ for the duration of the assimilation
time step At¢ (not to be confused with the model time step
which is usually shorter). Depending on the complexity of
the model, the simulation step can be the one with the high-
est computational requirements. In those cases, paralleliza-
tion of the simulations would greatly help in reducing the
total footprint of the assimilation process. The construction
of each particle P; is started by assembling the corresponding
values computed so far: s (drawing, sampling, and optimiza-

tion steps), and s’ 4! rit+At

; and o; (simulation step).

2.1.4 Evaluation step

In order to determine which initial state sﬁ is the most de-
sirable, a two-term cost function J is typically used in vari-
ational methods that simultaneously measures the resulting
deviations of modelled values o/ T2 from observed values
of;{):m and the departures from the background state distri-
bution S’ (Fisher, 2003). The function usually has the form

shown in Eq. (1):

t gt
Ji = ¢1 * Jvackground (si’ S ) +c2

t:it+At _tit+At
- Jobservations (01' N ) ) @)

where c¢; and ¢; are balancing constants usually set so that
c1 = ¢3. Such a multi-criteria evaluation is crucial both to
guarantee a good level of fit with the observations (sec-
ond term) and to avoid the optimization algorithm to pro-
duce an initial state that is inconsistent with previous states
(first term) — which could potentially result in overfitting
problems rooted in disproportionate violations of mass and
energy conservation laws (e.g. in hydrologic applications a
sharp, unrealistic rise in the initial soil moisture could re-
duce Jobservations but would increase Joackground). In Bayesian
methods, since the consistency with the state history is main-
tained by sampling only from the prior or background dis-
tribution S’, single-term functions are used instead — which
typically measure the probability density or likelihood of the
modelled values given a distribution of the observations.
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In OPTIMISTS any such fitness metric could be used and,
most importantly, the algorithm allows defining several of
them. Moreover, users can determine whether each function
is to be minimized (e.g. costs or errors) or maximized (e.g.
likelihoods). We expect these features to be helpful if one
wishes to separate errors when multiple types of observations
are available (Montzka et al., 2012) and as a more natural
way to consider different fitness criteria (lumping them to-
gether in a single function as in Eq. (1) can lead to balancing
and “apples and oranges” complications). Moreover, it might
prove beneficial to take into account the consistency with the
state history both by explicitly defining such an objective
here and by allowing states to be sampled from the previ-
ous distribution (and thus compounding the individual mech-
anisms of Bayesian and variational methods). Functions to
measure this consistency are proposed in Sect. 2.2. With the
set of objective functions defined by the user, the algorithm
computes the vector of fitness metrics f; for each particle
during the evaluation step.

2.1.5 Optimization step

The optimization step is optional and is used to generate ad-
ditional particles by exploiting the knowledge encoded in the
fitness values of the current particle ensemble. In a twist to
the signature characteristic of variational data assimilation,
OPTIMISTS incorporates evolutionary multi-objective opti-
mization algorithms (Deb, 2014) instead of the established
gradient-based, single-objective methods. Evolutionary opti-
mizers compensate for their slower convergence speed with
the capability of efficiently navigating non-convex solution
spaces (i.e. the models and the fitness functions do not need
to be linear with respect to the observations and the states).
This feature effectively opens the door for variational meth-
ods to be used in disciplines where the linearization of the
driving dynamics is either impractical, inconvenient, or un-
desirable. Whereas any traditional multi-objective global op-
timization method would work, our implementation of OP-
TIMISTS features a state-of-the-art adaptive ensemble algo-
rithm similar to the algorithm of Vrugt and Robinson (2007),
AMALGAM, that allows model simulations to be run in par-
allel (Crainic and Toulouse, 2010). The optimizer ensemble
includes a genetic algorithm (Deb et al., 2002) and a hybrid
approach that combines ant colony optimization (Socha and
Dorigo, 2008) and Metropolis—Hastings sampling (Haario et
al., 2001).

During the optimization step, the group of optimizers is
used to generate ney, New sample states s§ based on those in
the current ensemble. For example, the genetic algorithm se-
lects pairs of base samples with high performance scores f;
and then proceeds to combine their individual values using
standard crossover and mutation operators. The simulation
and evaluation steps are repeated for these new samples, and
then this iterative process is repeated until the particle en-
semble has a size of n. Note that wioot and psamp thus deter-
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mine what percentage of the particles is generated in which
way. For example, for relatively small values of wyo and a
Psamp Of 0.2, 80 % of the particles will be generated by the
optimization algorithms. In this way, OPTIMISTS offers its
users the flexibility to behave anywhere in the range between
fully Bayesian (psamp = 1) and fully variational (psamp = 0)
in terms of particle generation. In the latter case, in which no
root and random samples are available, the initial population
or ensemble of states s’ is sampled uniformly from the viable
range of each state variable.

2.1.6 Ranking step

A fundamental aspect of OPTIMISTS is the way in which
it provides a probabilistic interpretation to the results of the
multi-objective evaluation, thus bridging the gap between
Bayesian and variational assimilation. Such method has been
used before (Dumedah et al.,, 2011) and is based on the
employment of non-dominated sorting (Deb, 2014), another
technique from the multi-objective optimization literature,
which is used to balance the potential tensions between var-
ious objectives. This sorting approach is centred on the con-
cept of dominance, instead of organizing all particles from
the best to the worst. A particle dominates another if it out-
performs it according to at least one of the criteria/objectives
while simultaneously is not being outperformed according
to any of the others. Following this principle, in the ranking
step particles are grouped in fronts comprised of members
which are mutually non-dominated; that is, none of them is
dominated by any of the rest. Particles in a front, therefore,
represent the effective trade-offs between the competing cri-
teria.

Figure 1c illustrates the result of non-dominated sorting
applied to nine particles being analysed under two objectives:
minimum deviation from observations and maximum likeli-
hood given the background state distribution S’. Note that,
if a single-objective function is used, the sorting method as-
signs ranks from best to worst according to that function, and
two particles would only share ranks if their fitness values co-
incide. In our implementation we use the fast non-dominated
sorting algorithm to define the fronts and assign the corre-
sponding ranks r; (Deb et al., 2002). More efficient non-
dominated sorting alternatives are available if performance
becomes an issue (Zhang et al., 2015).

2.1.7 Weighting step

In this final step, OPTIMISTS assigns weights w; to each
particle according to its rank r; as shown in Egs. (2) and (3).
This Gaussian weighting depends on the ensemble size n and
the greed parameter g and is similar to the one proposed by
Socha and Dorigo (2008). When g is equal to zero, particles
in all fronts are weighted uniformly; when g is equal to one,
only particles in the Pareto or first front are assigned non-zero
weights. With this, the final estimated probability distribution
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of state variables for the next time step $'* can be estab-

lished using multivariate weighted kernel density estimation
(details in the next sub-section), as demonstrated in Fig. le.,
by taking all target states slH'At (circles) as the centroids of
the kernels. The obtained distribution S’/ can then be used
as the initial distribution for a new assimilation time step or,
if the end of the assimilation window has been reached, it can

be used to perform (ensemble) forecast simulations.

1 ,("i*;)z 2
w; = e 20
' o2
Uzn-[0.1+9.9-(1—g)5] 3)

2.2 Model state probability distributions

As mentioned before, OPTIMISTS uses kernel density prob-
ability distributions (West, 1993) to model the stochastic es-
timates of the state-variable vectors. The algorithm requires
two computations related to the state-variable probability dis-
tribution S’: obtaining the probability density p or likeli-
hood £ of a sample and generating random samples. The first
computation can be used in the evaluation step as an objec-
tive function to preserve the consistency of particles with the
state history (e.g. to penalize aggressive departures from the
prior conditions). It should be noted that several metrics that
try to approximate this consistency exist, from very simple
(Dumedah et al., 2011) to quite complex (Ning et al., 2014).
For example, it is common in variational data assimilation to
utilize the background error term

Jbackground = (8 — sb)TC_l (s —sp), “4)

where sy, and C are the mean and the covariance of the back-
ground state distribution (S’ in our case), which is assumed
to be Gaussian (Fisher, 2003). The term Jyackground 18 plugged
into the cost function shown in Eq. (1). For OPTIMISTS, we
propose that the probability density of the weighted state ker-
nel density distribution S at a given point (p) be used as a
stand-alone objective. The density is given by Eq. (5) (Wand
and Jones, 1994). If Gaussian kernels are selected, the ker-
nel function K, parameterized by the bandwidth matrix B, is
evaluated using Eq. (6).

n

1
p(sls) = Z—wZ[wi - Kp (s —5i)] )

Li=1

Kgauss (Z) —

1 ( 1 Tg-1 ) ©)
———exp|—=z zZ
V@2r)" - B| :
Matrix B is the covariance matrix of the kernels and thus
determines their spread and orientation in the state space.
B is of size d x d, where d is the dimensionality of the
state distribution (i.e. the number of variables), and can be
thought of as a scaled-down version of the background error
covariance matrix C from the variational literature. In this
sense, matrix B, together with the spread of the ensemble of
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samples s;, effectively encodes the uncertainty of the state
variables. Several optimization-based methods exist to com-
pute B by attempting to minimize the asymptotic mean inte-
grated squared error (AMISE) (Duong and Hazelton, 2005;
Sheather and Jones, 1991). However, here we opt to use a
simplified approach for the sake of computational efficiency:
we determine B by scaling down the sample covariance ma-
trix C using Silverman’s rule of thumb, which takes into ac-
count the number of samples n and the dimensionality of the
distribution d, as shown in Eq. (7) (Silverman, 1986). Fig-
ure 1 shows the density of two two-dimensional example dis-
tributions using this method (Fig. 1a and e). If computational
constraints are not a concern, using AMISE-based methods
or kernels with variable bandwidth (Hazelton, 2003; Terrell
and Scott, 1992) could result in higher accuracy.

2
Silverman 4 e .
B = (d+2) n-a# .C @)
Secondly, OPTIMISTS’ sampling step requires generating
random samples from a multivariate weighted kernel den-
sity distribution. This is achieved by dividing the problem
into two: we first select the root sample and then generate
a random sample from the kernel associated with that base
sample. The first step corresponds to randomly sampling a
multinomial distribution with n categories and assigning the
normalized weights of the particles as the probability of each
category. Once a root sample sy, is selected, a random sam-
ple Srandom can be generated from a vector v of independent
standard normal random values of size d and a matrix A as
shown in Eq. (8). A can be computed from a Cholesky de-
composition (Krishnamoorthy and Menon, 2011) such that
AAT = B. Alternatively, an eigendecomposition can be used

to obtain QAQT = B to then set A = QA 7.
Srandom = Sroot + AV 8

Both computations (density or likelihood and sampling) re-
quire B to be invertible and, therefore, that none of the vari-
ables have zero variance or are perfectly linearly dependent
on each other. Zero-variance variables must therefore be iso-
lated and B marginalized before attempting to use Eq. (6) or
to compute A. Similarly, linear dependencies must also be
identified beforehand. If we include variables one by one in
the construction of C, we can determine if a newly added one
is linearly dependent if the determinant of the extended sam-
ple covariance matrix C is zero. Once identified, the regres-
sion coefficients for the dependent variable can be efficiently
computed from C following the method described by Fried-
man et al. (2008). The constant coefficient of the regression
must also be calculated for future reference. What this pro-
cess effectively does is to determine a linear model for each
dependent variable that is represented by a set of regression
coefficients. Dependent variables are not included in C, but
they need to be taken into account afterwards (e.g. by deter-
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mining their values for the random samples by solving the
linear model with the values obtained for the variables in C).

2.3 High-dimensional state vectors

When the state vector of the model becomes large (i.e. d in-
creases), as is the case for distributed high-resolution numer-
ical models, difficulties start to arise when dealing with the
computations involving the probability distribution. At first,
the probability density, as computed with Egs. (5) and (6),
tends to diverge either towards zero or towards infinity. This
phenomenon is related to the normalization of the density —
so that it can integrate to one — and to its fast exponential de-
cay as a function of the sample’s distance from the kernel’s
centres. In these cases we propose replacing the density com-
putation with an approximated likelihood formulation that
is proportional to the inverse square Mahalanobis distance
(Mahalanobis, 1936) to the root samples, thus skipping the
exponentiation and normalization operations of the Gaussian
density. This simplification, which corresponds to the inverse
square difference between the sample value and the kernel’s
mean in the univariate case, is shown in Eq. (9). The result-
ing distortion of the Gaussian bell-curve shape does not af-
fect the results significantly, given that OPTIMISTS uses the
fitness functions only to check for domination between parti-
cles — so only the signs of the differences between likelihood
values are important and not their actual magnitudes.

£Mahalanobis (s | S)

,Z|(s—s )TB L(s —si)| ®

However, computational constraints might also make this
simplified approach unfeasible both due to the O (d?) space
requirements for storing the bandwidth matrix B and the
O(d?) time complexity of the decomposition algorithms,
which rapidly become huge burdens for the memory and the
processors. Therefore, we can chose to sacrifice some accu-
racy by using a diagonal bandwidth matrix B which does
not include any covariance term — only the variance terms
in the diagonal are computed and stored. This implies that,
even though the multiplicity of root samples would help in
maintaining a large portion of the covariance, another por-
tion is lost by preventing the kernels from reflecting the exist-
ing correlations. In other words, variables would not be ren-
dered completely independent, but rather conditionally inde-
pendent because the kernels are still centred on the set of
root samples. Kernels using diagonal bandwidth matrices are
referred to as “D-class” kernels while those using the full
covariance matrix are referred to as “F-class” kernels. The
kE-class parameter controls which version is used.

With only the diagonal terms of matrix B available (b;;),
we opt to roughly approximate the likelihood by computing
the average of the standardized marginal likelihood value for
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each variable j, as shown in Eq. (10):

d«/_Zw, ZZ

j=li=

(sj—si A)2
{wi -exp [—#ju, (10)

where s; represents the jth element of state vector s and
s;,j represents the jth element of the ith sample of proba-
bility distribution S. Independent and marginal random sam-
pling of each variable can also be applied to replace Eq. (8)
by adding random Gaussian residuals to the elements of the
selected root sample §poor- Sparse bandwidth matrices (Fried-
man et al., 2008; Ghil and Malanotte-Rizzoli, 1991) or low-
rank approximations (Bannister, 2008; Ghorbanidehno et al.,
2015; Li et al., 2015) could be worthwhile intermediate al-
ternatives to our proposed quasi-independent approach to be
explored in the future.

Lindependent (s S) =

3 Experimental set-up

In this section we prepare the elements to investigate whether
OPTIMISTS can help improve the forecasting skill of hy-
drologic models. More specifically, the experiments seek
to answer the following questions. Which characteristics
of Bayesian and variational methods are the most advanta-
geous? How can OPTIMISTS be configured to take advan-
tage of these characteristics? How does the algorithm com-
pare to established data assimilation methods? And how does
it perform with high-dimensional applications? To help an-
swer these questions, this section first introduces two case
studies and then it describes a traditional PF that was used
for comparison purposes.

3.1 Case studies

We coupled a Java implementation of OPTIMISTS with
two popular open-source distributed hydrologic modelling
engines: Variable Infiltration Capacity (VIC) (Liang et al.,
1994, 1996a b; Liang and Xie, 2001, 2003) and the Dis-
tributed Hydrology Soil Vegetation Model (DHSVM) (Wig-
mosta et al., 1994, 2002). VIC is targeted at large water-
sheds by focusing on vertical subsurface dynamics and also
enabling intra-cell precipitation, soil, and vegetation hetero-
geneity. The DHSVM, on the other hand, was conceived for
high-resolution representations of the Earth’s surface, allow-
ing for saturated and unsaturated subsurface flow routing and
1-D or 2-D surface routing (Zhang et al., 2018). Both engines
needed several modifications so that they could be executed
in a non-continuous fashion as required for sequential assim-
ilation. Given the non-Markovian nature of surface routing
schemes coupled with VIC that are based either on multi-
scale approaches (Guo et al., 2004; Wen et al., 2012) or on

Hydrol. Earth Syst. Sci., 22, 5759-5779, 2018

the unit hydrograph concept (Lohmann et al., 1998), a sim-
plified routing routine was developed that treats the model
cells as channels — albeit with longer retention times. In the
simplified method, direct run-off and baseflow produced by
each model cell is partly routed through an assumed equiva-
lent channel (slow component) and partly poured directly to
the channel network (fast component). Both the channel net-
work and the equivalent channels representing overland flow
hydraulics are modelled using the Muskingum method. On
the other hand, several important bugs in version 3.2.1 of the
DHSVM, mostly related to the initialization of state variables
but also pertaining to routing data and physics, were fixed.

We selected two watersheds to perform streamflow fore-
casting tests using OPTIMISTS: one with the VIC model
running at a 1/8° resolution for the Blue River in Oklahoma
and the other with the DHSVM running at a 100 m resolu-
tion for the Indiantown Run in Pennsylvania. Table 3 lists
the main characteristics of the two test watersheds and the
information of their associated model configurations. Fig-
ure 2 shows the land cover map together with the layout
of the modelling cells for the two watersheds. The multi-
objective ensemble optimization algorithm included in OP-
TIMISTS was employed to calibrate the parameters of the
two models with the streamflow measurements from the cor-
responding USGS stations. For the Blue River, the traditional
£>-norm Nash-Sutcliffe efficiency (NSE¢,) (which focuses
mostly on the peaks of hydrographs), an ¢;-norm version
of the Nash—Sutcliffe efficiency coefficient (NSEy, ) (Krause
et al., 2005), and the mean absolute relative error (MARE)
(which focuses mostly on the inter-peak periods) were used
as optimization criteria. From 85 600 candidate parameteri-
zations tried, one was chosen from the resulting Pareto front
with NSE;, =0.69, NSE;, = 0.56, and MARE = 44.71 %.
For the Indiantown Run, the NSE;,, MARE, and absolute
bias were optimized, resulting in a parameterization, out
of 2575, with NSE¢, = 0.81, MARE = 37.85 %, and an ab-
solute bias of 11.83Ls~!.

These optimal parameter sets, together with additional sets
produced in the optimization process, were used to run the
models and determine a set of time-lagged state-variable vec-
tors § to construct the state probability distribution SO at the
beginning of each of a set of data assimilation scenarios. The
state variables include liquid and solid interception; ponding,
water equivalent, and temperature of the snow packs; and
moisture and temperature of each of the soil layers. While
we do not expect all of these variables to be identifiable and
sensitive within the assimilation problem, we decided to be
thorough in their inclusion — a decision that also increases the
challenge for the algorithm in terms of the potential for over-
fitting. The Blue River model application has 20 cells, with a
maximum of seven intra-cell soil-vegetation partitions. After
adding the stream network variables, the model has a total of
d = 812 state variables. The Indiantown Run model applica-
tion has a total of 1472 cells and d = 33455 state variables.
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Table 3. Characteristics of the two test watersheds: Blue River and Indiantown Run. US hydrologic units are defined in Seaber et al. (1987).
Elevation information was obtained from the Shuttle Radar Topography Mission (Rodriguez et al., 2006); land cover and impervious per-
centage from the National Land Cover Database, NLCD (Homer et al., 2012); soil type from CONUS-SOIL (Miller and White, 1998); and
precipitation, evapotranspiration, and temperature from NLDAS-2 (Cosgrove et al., 2003). The streamflow and temperature include their
range of variation of 90 % of the time (5 % tails at the high and low end are excluded).

Model characteristic

Blue River

Indiantown Run

USGS station; US hydrologic unit
Area (kmz); impervious
Elevation range; average slope
Land cover

Soil type

Average streamflow (90 % range)
Average precipitation; average ET
Average temperature (90 % range)
Model cells; stream segments; d
Resolution

Calibration

07332500; 11140102

3031; 8.05 %

158403 m; 3.5 %

43 % grassland, 28 % forest,

21 % pasture/hay

Clay loam (26.4 %), clay (24.8 %),
sandy loam (20.26 %)

9.06m3s~1 (0.59-44.71m3 s~ 1)
1086; 748 mm yr— !

17.26°C (2.5-31°C)

20; 14; 812

0.125°; daily

167 parameters; 85 months;
objectives: NSEy,, NSE;,, MARE

01572950; 02050305
14.78; 0.83 %

153412 m; 14.5 %
74.6 % deciduous forest

Silt loam (51 %), sandy loam (49 %)

0.3m3s~!(0.035-0.793 m3 s~ 1)
1176; 528 mm yr_1

10.9°C (—3.5-24°C)

1472; 21, 33455

100 m; hourly

18 parameters; 20 months; objectives:
NSEy,, MARE, absolute bias

(a)
Blue River

0.125° resolution
VIC

- Cultivated crops

Pasture/hay

Grassland/herbaceous
- Forests (deciduous — evergreen)

Pennsylvania

)
Indiantown Run

100 m resolution
DHSVM

- Developed (low — high intensity)
—|—H—|— Hydrologic model’s cells

Figure 2. Maps of the two test watersheds in the United States displaying the 30 m resolution land cover distribution from the NLCD (Homer
et al., 2012). (a) Oklahoma’s Blue River watershed 0.125° resolution VIC model application (20 cells). (b) Pennsylvania’s Indiantown Run
watershed 100 m resolution DHSVM model application (1472 cells).

Three diverse scenarios were selected for the Blue River,
each of them comprised of a 2-week assimilation period
(when streamflow observations are assimilated) and a 2-week
forecasting period (when the model is run in an open loop us-
ing the states obtained at the end of the assimilation period):
Scenario 1, starting on 15 October 1996, is rainy through the
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entire 4 weeks. Scenario 2, which starts on 15 January 1997,
has a dry assimilation period and a mildly rainy forecast pe-
riod. Scenario 3, starting on 1 June 1997, has a relatively
rainy assimilation period and a mostly dry forecast period.
Two scenarios, also spanning 4 weeks, were selected for the
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Table 4. Set-up of the three factorial experiments, including the watershed, the total number of configurations (conf.), the values assigned
to OPTIMISTS’ parameters, and which objectives (objs.) were used (one objective: minimize MAE given the streamflow observations; two
objectives: minimize MAE and maximize likelihood given the source or background state distribution SY). nevo was set to 25 in all cases.
The total number of configurations results from combining all the possible parameter assignments listed for each experiment. Note that for
Experiment 3 there are configurations that require a 4-week assimilation period (all others have a length of 2 weeks).

No. Watershed Conf. At n Wroot  Psamp  KF-class g Objs.
1 Blue River 48 1d,5d,2w 100, 500 0.95 0.25,1 false, true 0.75 1,2

Indiantown Run 32 1h,2w 100,200 0.6,0.95 0.25,1 false 0.75 1,2
3 Indiantown Run 24 1h,6h,1d,3.5d,2w,4w 100 0.95 04,1 false 0.5,1 2

Indiantown Run, one starting on 26 July 2009 and the other
on 26 August 2009.

We used factorial experiments (Montgomery, 2012) to test
different configurations of OPTIMISTS on each of these sce-
narios, by first assimilating the streamflow and then measur-
ing the forecasting skill. In this type of experimental designs
a set of assignments is established for each parameter and
then all possible assignment combinations are tried. The de-
sign allows us to establish the statistical significance of al-
tering several parameters simultaneously, providing an ade-
quate framework for determining, for example, whether us-
ing a short or a long assimilation time step At is preferable,
or if utilizing the optional optimization step within the al-
gorithm is worthwhile. Table 4 shows the set-up of each of
the three full factorial experiments we conducted, together
with the selected set of assignments for OPTIMISTS’ param-
eters. The forecasts were produced in an ensemble fashion,
by running the models using each of the samples s; from the
state distribution S at the end of the assimilation time period,
and then using the samples’ weights w; to produce an aver-
age forecast. Deterministic model parameters (those from the
calibrated models) and forcings were used in all simulations.

Observation errors are usually taken into account in tradi-
tional assimilation algorithms by assuming a probability dis-
tribution for the observations at each time step and then per-
forming a probabilistic evaluation of the predicted value of
each particle/member against that distribution. As mentioned
in Sect. 2, such a fitness metric, like the likelihood utilized
in PFs to weight candidate particles, is perfectly compatible
with OPTIMISTS. However, since it is difficult to estimate
the magnitude of the observation error in general, and fitness
metrics f; here are only used to determine (non-)dominance
between particles, we opted to use the mean absolute er-
ror (MAE) with respect to the streamflow observations in all
cases.

For the Blue River scenarios, a secondary likelihood ob-
jective or metric was used in some cases to select for par-
ticles with higher consistency with the state history. It was
computed using either Eq. (10) if kp.class Was set to false
or Eq. (9) if it was set to true. Equation (10) was used for
all Indiantown Run scenarios given the large number of di-
mensions. The assimilation period was of 2 weeks for most
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configurations, except for those in Experiment 3, which have
At =4 weeks. During both the assimilation and the fore-
casting periods we used unaltered streamflow data from the
USGS and forcing data from the North American Land Data
Assimilation System (NLDAS-2) (Cosgrove et al., 2003) —
even though a forecasted forcing would be used instead in an
operational setting (e.g. from systems like NAM, Rogers et
al., 2009; or ECMWE, Molteni et al., 1996). While adopting
perfect forcings for the forecast period leads to an overesti-
mation of their accuracy, any comparisons with control runs
or between methods are still valid as they all share the same
benefit. Also, removing the uncertainty in the meteorologi-
cal forcings allows the analysis to focus on the uncertainty
corresponding to the land surface.

3.2 Data assimilation method comparison

Comparing the performance of different configurations of
OPTIMISTS can shed light into the adequacy of individ-
ual strategies utilized by traditional Bayesian and variational
methods. For example, producing all particles with the opti-
mization algorithms (psamp = 0), setting long values for At,
and utilizing a traditional two-term cost function as that in
Eq. (1) makes the method behave somewhat as a strongly
constrained 4D-Var approach, while sampling all particles
from the source state distribution (psamp = 1), setting At
equal to the model time step, and using a single likelihood
objective involving the observation error would resemble
a PF. Herein we also compare OPTIMISTS with a tradi-
tional PF on both model applications. Since the forcing is
assumed to be deterministic, the implemented PF uses Gaus-
sian perturbation of resampled particles to avoid degener-
ation (Pham, 2001). Resampling is executed such that the
probability of duplicating a particle is proportional to their
weight (Moradkhani et al., 2012).

Additionally, the comparison is performed using a con-
tinuous forecasting experiment set-up instead of a scenario-
based one. In this continuous test, forecasts are performed
every time step and compiled in series for different fore-
cast lead times that span several months. Forecast lead times
are of 1, 3, 6, and 12 days for the Blue River and of 6h,
and 1, 4, and 16 days for the Indiantown Run. Before each
forecast, both OPTIMISTS and the PF assimilate stream-
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flow observations for the assimilation time step of each al-
gorithm (daily for the PF). The assimilation is performed
cumulatively, meaning that the initial state distribution S’
was produced by assimilating all the records available since
the beginning of the experiment until time 7. The forecasted
streamflow series are then compared to the actual measure-
ments to evaluate their quality using deterministic metrics
(NSEg,, NSEy,, and MARE) and two probabilistic ones: the
ensemble-based continuous ranked probability score (CRPS)
(Brocker, 2012), which is computed for each time step and
then averaged for the entire duration of the forecast; and the
average normalized probability density p of the observed
streamflow gobhs given the distribution of the forecasted en-
semble 9 forecast>

p (‘ZObs |qforecast)

3 wi - (2m5%) 2 exp[—(qabs — 40/ (267)]
i=1
= . .an
> w;

i=1

where the forecasted streamflow g ¢, ..at 1S composed of val-
ues g; for each particle i and accompanying weight w;, and
b is the bandwidth of the univariate kernel density estimate.
The bandwidth b can be obtained by utilizing Silverman’s
rule of thumb (Silverman, 1986). The probability p is com-
puted every time step, then normalized by multiplying by the
standard deviation of the estimate, and then averaged for all
time steps. As opposed to the CRPS, which can only give
an idea of the bias of the estimate, the density p can detect
both bias and under- or overconfidence: high values for the
density indicate that the ensemble is producing narrow esti-
mates around the true value, while low values indicate either
that the stochastic estimate is spread too thin or is centred far
away from the true value.

4 Results and discussion

This section summarizes the forecasting results obtained
from the three scenario-based experiments and the continu-
ous forecasting experiments on the Blue River and the In-
diantown Run model applications. The scenario-based ex-
periments were performed to explore the effects of multiple
parameterizations of OPTIMISTS, and the performance was
analysed as follows. The model was run for the duration of
the forecast period (2 weeks) using the state configuration
encoded in each root state s; of the distribution S obtained
at the end of the assimilation period for each configuration
of OPTIMISTS and each scenario. We then computed the
mean streamflow time series for each case by averaging the
model results for each particle P; (the average was weighted
based on the corresponding weights w;). With this averaged
streamflow series, we compute the three performance metrics
— the NSEy,, the NSEy,, and the MARE — based on the ob-
servations from the corresponding stream gauge. The values
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for each experiment, scenario, and configuration are listed in
tables in the Supplement. With these, we compute the change
in the forecast performance between each configuration and
a control open-loop model run (one without the benefit of
assimilating the observations).

4.1 Blue River — low-resolution application

The Supplement includes the performance metrics for all the
tested configurations on all scenarios and for all scenario-
based experiments. Figure 3 summarizes the results for Ex-
periment 1 with the VIC model application for the Blue
River watershed, in which the distributions of the changes
in MARE after marginalizing the results for each scenario
and each of the parameter assignments are shown. That is,
each box (and pair of whiskers) represents the distribution of
change in MARE of all cases in the specified scenario or for
which the specified parameter assignment was used. Nega-
tive values in the vertical axis indicate that OPTIMISTS de-
creased the error, while positive values indicate it increased
the error. It can be seen that, on average, OPTIMISTS im-
proves the precision of the forecast in most cases, except for
several of the configurations in Scenario 1 (for this scenario
the control already produces a good forecast) and when using
an assimilation step At of 1 day. We performed an analysis of
variance (ANOVA) to determine the statistical significance
of the difference found for each of the factors indicated in
the horizontal axis. While Fig. 3 shows the p values for the
main effects, the full ANOVA table for all experiments can
be found in the Supplement. From the values in Fig. 3, we
can conclude that the assimilation time step, the number of
objectives, and the use of optimization algorithms are all sta-
tistically significant. On the other hand, the number of parti-
cles and the use of F-class kernels are not.

A At of 5 days produced the best results overall for the
tested case, suggesting that there exists a sweet spot that bal-
ances the amount of information being assimilated (larger for
a long At) and the number of state variables to be modi-
fied (larger for a small Ar). Based on such results, it is rea-
sonable to assume that the sweet spot may depend on the
time series of precipitation, the characteristics of the water-
shed, and the temporal and spatial resolutions of its model
application. From this perspective, the poor results for a step
of 1 day could be explained in terms of overfitting, where
there are many degrees of freedom and only one value be-
ing assimilated per step. Evaluating particles in the light of
two objectives, one minimizing departures from the observa-
tions and the other maximizing the likelihood of the source
state, resulted in statistically significant improvements com-
pared to using the first objective alone. Additionally, the data
suggest that not executing the optional optimization step of
the algorithm (optimization = false), but instead relying only
on particles sampled from the prior or source distribution,
is also beneficial. These two results reinforce the idea that
maintaining consistency with the state history to some ex-
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Figure 3. Box plots of the changes in forecasting error (MARE) achieved while using OPTIMISTS on Experiment 1 (Blue River). Changes
are relative to an open-loop control run where no assimilation was performed. Each column corresponds to the distribution of the error
changes on the specified scenario or assignment to the indicated parameter. Positive values indicate that OPTIMISTS increased the error,
while negative values indicate it decreased the error. Outliers are noted as asterisks and values were limited to 100 %. For the one-objective
case, the particles’” MAE was to be minimized; for the two-objective case, the likelihood given the background was to be maximized in
addition. No optimization (*“false”) corresponds to psamp = 1.0 (i.e. all samples are obtained from the prior distribution); “true” corresponds
to psamp = 0.25. The p values were determined using ANOVA (Montgomery, 2012) and indicate the probability that the differences in means
corresponding to boxes of the same colour are produced by chance (e.g. values close to zero indicate certainty that the parameter effectively

affects the forecast error).

tent is of paramount importance, perhaps to the point where
the strategies used in Bayesian filters and variational meth-
ods are insufficient in isolation. Indeed, the best performance
was observed only when both sampling was limited to gener-
ate particles from the prior state distribution and the particles
were evaluated for their consistency with that distribution.

On the other hand, we found it counterintuitive that nei-
ther using a larger particle ensemble nor taking into account
state-variable dependencies through the use of F-class ker-
nels leads to improved results. In the first case it could be hy-
pothesized that using too many particles could lead to over-
fitting, since there would be more chances of particles being
generated that happen to match the observations better but
for the wrong reasons. In the second case, the non-parametric
nature of kernel density estimation could be sufficient for en-
coding the raw dependencies between variables, especially in
low-resolution cases like this one, in which significant corre-
lations between variables in adjacent cells are not expected
to be too high. Both results deserve further investigation, es-
pecially concerning the impact of D- vs. F-class kernels in
high-dimensional models.

Interestingly, the ANOVA also yielded small p values
for several high-order interactions (see the ANOVA table in
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the Supplement). This means that, unlike the general case
for factorial experiments as characterized by the sparsity-of-
effects principle (Montgomery et al., 2009), specific com-
binations of multiple parameters have a large effect on the
forecasting skill of the model. There are significant inter-
actions (with p smaller than 0.05) between the following
groups of factors: objectives and Ar (p =0.001); n and
kE-class (p =0.039); At and the use of optimization (p =
0.000); the use of optimization and kp_cjass (p = 0.029); the
objectives, At, and the use of optimization (p = 0.043); n,
At, and kp_class (p = 0.020); n, the use of optimization, and
kp-class (p = 0.013); and n, At, the use of optimizers, and
kp.class (p = 0.006). These interactions show that, for exam-
ple, (i) using a single objective is especially inadequate when
the time step is 1 day or when optimization is used; (ii) em-
ploying optimization is only significantly detrimental when
At is 1 day — probably because of intensified overfitting; and
(iii) choosing F-class kernels leads to higher errors when Af
is small, when # is large, and when the optimizers are being
used.

Based on these results, we recommend the use of both ob-
jectives and no optimization as the preferred configuration
of OPTIMISTS for the Blue River application. A time step
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Table 5. Continuous daily streamflow forecast performance metrics for the Blue River application using OPTIMISTS (Af = 7 days; three ob-
jectives: NSE@Z, MARE, and likelihood; n = 30; no optimization; and D-class kernels) and a traditional PF (n = 30). The continuous forecast
extends from January to June 1997. The NSEy,, NSE; , and MARE (deterministic) are computed using the mean streamflow of the forecast
ensembles and contrasting it with the daily observations, while the CRPS and the density (probabilistic) are computed taking into account all
the members of the forecasted ensemble.

Algorithm Lead NSEy;, NSE;; MARE CRPS Density
time (m3 sfl)
1 day 0.497 0.293 51.40 % 7.173 0.061
3 days 0.527 0.312  50.16% 6.959 0.065
OPTIMISTS 6 days 0.534 0.315  50.18% 6.945 0.073
12 days 0.516 0.297 51.26 % 7.124 0.078
1 day 0.675 0.522  30.06 % 4.480 0.098
Particle filter 3 days 0.623 0.493  33.20% 4.744 0.113
6 days 0.602 0473  3579% 5.000 0.109
12 days  0.515 0.432  38.36% 5.593 0.105
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Figure 4. Comparison of 6-day lead time probabilistic streamflow (a) and area-averaged soil moisture (b) forecasts between OPTIMISTS
(At =7 days; three objectives: NSEy,, MARE, and likelihood; n = 30; no optimization; and D-class kernels) and a traditional PF (n = 30)
for the Blue River. The dark blue and orange lines indicate the mean of OPTIMISTS’ and the PF’s ensembles, respectively, while the light
blue and light orange bands illustrate the spread of the forecast by highlighting the areas where the probability density of the estimate is at

least 50 % of the density at the mode (the maximum) at that time step. The green bands indicate areas where the light blue and light orange
bands intersect.

of around 5 days appears to be adequate for this specific
model application. Also, without strong evidence for their
advantages, we recommend using more particles or kernels
of class F only if there is no pressure for computational fru-
gality. However, the number of particles should not be too
small to ensure an appropriate sample size.

Table 5 shows the results of the 5-month-long continuous
forecasting experiment on the Blue River using a 30-particle
PF and a configuration of OPTIMISTS with a 7-day assimi-
lation time step At, three objectives (NSE¢,, MARE, and the
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likelihood), 30 particles, no optimization, and D-class ker-
nels. This specific configuration of OPTIMISTS was chosen
from a few that were tested with the recommendations above
applied. The selected configuration was the one that best bal-
anced the spread and the accuracy of the ensemble as some
configurations had slightly better deterministic performance
but larger ensemble spread for dry weather — which lead to
worse probabilistic performance.

Figure 4 shows the probabilistic streamflow forecasts for
both algorithms for a lead time of 6 days. The portrayed

Hydrol. Earth Syst. Sci., 22, 5759-5779, 2018
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Figure 5. Box plots of the changes in forecasting performance (NSEy,, NSE,, and MARE) achieved while using OPTIMISTS on Experi-
ment 2 (Indiantown Run). Changes are relative to an open-loop control run where no assimilation was performed. Each column corresponds
to the distribution of the error metric changes on the specified scenario or assignment to the indicated parameter. Outliers are noted as stars
and values were constrained to NSEy, > —3, NSEy; > —3, and MARE < 200 %. Positive values indicate improvements for the NSE,, and
the NSEy, . The meaning for the MARE and for other symbols is the same as those defined in Fig. 3.

evolution of the density, in which the mean does not nec-
essarily correspond to the centre of the ensemble spread, ev-
idences the non-Gaussian nature of both estimates. Both the
selected configuration of OPTIMISTS and the PF methods
show relatively good performance for all lead times (1, 3, 6,
and 12 days) based on the performance metrics. However, the
PF generally outperforms OPTIMISTS.

We offer three possible explanations for this result. First,
the relatively low dimensionality of this test case does not
allow OPTIMISTS to showcase its real strength, perhaps es-
pecially since the large scale of the watershed does not allow
for tight spatial interactions between state variables. Second,
OPTIMISTS can find solutions based on multiple objectives
rather than a single one, which could be advantageous when
multiple types of observations are available (e.g. of stream-
flow, evapotranspiration, and soil moisture). Thus, the so-
lutions are likely not the best for each individual objective,
but the algorithm balances their overall behaviour across the
multiple objectives. Due to the lack of observations on multi-
ple variables, only streamflow observations are used in these
experiments even though more than one objective is used.
Since it is the case that these objectives are consistent with
each other, to a large extent, for the studied watershed, the
strengths of using multiple objectives within the Pareto ap-
proach in OPTIMISTS cannot be fully evidenced. Third, ad-

Hydrol. Earth Syst. Sci., 22, 5759-5779, 2018

ditional efforts might be needed to find a configuration of the
algorithm, together with a set of objectives, that best suits the
specific conditions of the tested watershed.

While PFs remain easier to use out of the box because of
their ease of configuration, the fact that adjusting the parame-
ters of OPTIMISTS allowed us to trade off deterministic and
probabilistic accuracy points to the adaptability potential of
the algorithm. This allows for probing the spectrum between
exploration and exploitation of candidate particles — which
usually leads to higher and lower diversity of the ensemble,
respectively.

4.2 Indiantown Run - high-resolution application

Figure 5 summarizes the changes in performance when us-
ing OPTIMISTS in Experiment 2. In this case, the more uni-
form forcing and streamflow conditions of the two scenar-
ios allowed us to statistically analyse all three performance
metrics. For Scenario 1 we can see that OPTIMISTS pro-
duces a general increase in the Nash—Sutcliffe coefficients,
but a decline in the MARE, evidencing tension between fit-
ting the peaks and the inter-peak periods simultaneously. For
both scenarios there are configurations that performed very
poorly, and we can look at the marginalized results in the box
plots for clues into which parameters might have caused this.
Similar to the Blue River case, the use of a 1 h time step sig-
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Figure 6. Box plots of the changes in forecasting performance (NSEy,, NSE;,, and MARE) achieved while using OPTIMISTS on Experi-
ment 3 (Indiantown Run). Changes are relative to an open-loop control run where no assimilation was performed. Each column corresponds
to the distribution of the error metric changes on the specified scenario or assignment to the indicated parameter. Positive values indicate
improvements for the NSEy, and the NSEy, . See the caption of Fig. 3 for more information.

nificantly reduced the forecast skill, while the longer step al-
most always improved it; and the inclusion of the secondary
history-consistent objective (two objectives) also resulted in
improved performance. Not only does it seem that for this
watershed the secondary objective mitigated the effects of
overfitting, but it was interesting to note some configurations
in which using it actually helped to achieve a better fit during
the assimilation period.

While the ANOVA also provided evidence against the use
of optimization algorithms, we are reluctant to instantly rule
them out on the grounds that there were statistically signifi-
cant interactions with other parameters (see the ANOVA ta-
ble in the Supplement). The optimizers led to poor results
in cases with 1 h time steps or when only the first objective
was used. Other statistically significant results point to the
benefits of using the root samples more intensively (in oppo-
sition to using random samples) and, to a lesser extent, to the
benefits of maintaining an ensemble of moderate size.

Figure 6 shows the summarized changes in Experiment 3,
where the effect of the time step At is explored in greater de-
tail. Once again, there appears to be evidence favouring the
hypothesis that there exists a sweet spot, and in this case it ap-
pears to be close to the 2-week mark: both shorter and longer
time steps led to considerably poorer performance. In this
experiment, with all configurations using both optimization
objectives, we can see that there are no clear disadvantages
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of using optimization algorithms (but also no advantages).
Experiment 3 also shows that the effect of the greed parame-
ter g is not very significant. That is, selecting some particles
from dominated fronts to construct the target state distribu-
tion, and not only from the Pareto front, does not seem to
affect the results.

Table 6 and Fig. 7 show the results from comparing con-
tinuous forecasts from the PF and from a configuration of
OPTIMISTS with a time step of 1 week, two objectives,
50 particles, and no optimization. Both algorithms display
overconfidence in their estimations, which is evidenced in
Fig. 7 by the bias and narrowness of the ensembles’ spread.
It is possible that a more realistic incorporation of uncertain-
ties pertaining to model parameters and forcings (which, as
mentioned, are trivialized in these tests) would help to com-
pensate for overconfidence. For the time being, these exper-
iments help characterize the performance of OPTIMISTS in
contrast with the PF, as both algorithms are deployed under
the same circumstances. In this sense, while the forecasts ob-
tained using the PF show slightly better results for lead times
of 6h and 1 day, OPTIMISTS shows a better characterization
of the ensemble’s uncertainty for the longer lead times.

OPTIMISTS’ improved results in the high-resolution test
case over those in the low-resolution one suggest that the
strengths of the hybrid method might become more apparent
as the dimensionality, and therefore the difficulty, of the as-
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Table 6. Continuous hourly streamflow forecast performance metrics for the Indiantown Run application using OPTIMISTS (Ar = 7 days,
two objectives, n = 50, no optimization, and D-class kernels) and a traditional PF (n = 50). The continuous forecast extends from September
to December 2009. The NSEy,, NSEy, , and MARE (deterministic) are computed using the mean streamflow of the forecast ensembles and
contrasting it with the daily observations, while the CRPS and the density (probabilistic) are computed taking into account all the members
of the forecasted ensemble.

Algorithm Lead NSEy;, NSE;; MARE CRPS  Density
time (L g1 )
6h 0.574 0.316  32.25% 97.27 0.016
1 day 0.609 0.340 31.42% 93.92 0.013
OPTIMISTS 4 days 0.573 0316 3220% 97.19 0.025
16 days  0.521 0.272 33.90% 103.51 0.013
6h 0.660 0.480 26.87% 79.61 0.061
Particle filter 1 day 0.639 0.464  26.68 % 82.75 0.051
4 days 0.558 0.401 27.42 % 93.20 0.021
16 days  0.520 0.346  28.75% 102.37 0.010
T T ' U lad | wov—T 0
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Figure 7. Comparison of 4-day lead time probabilistic streamflow (a) and area-averaged soil moisture (b) forecasts between OPTIMISTS
(At =17 days, two objectives, n = 50, no optimization, and D-class kernels) and a traditional PF (n = 50) for the Indiantown Run. The dark
blue and orange lines indicate the mean of OPTIMISTS’ and the PF’s ensembles, respectively, while the light blue and light orange bands
illustrate the spread of the forecast by highlighting the areas where the probability density of the estimate is at least 50 % of the density at
the mode (the maximum) at that time step. The green bands indicate areas where the light blue and light orange bands intersect. Layer 2 of
the soil corresponds to 100 to 250 mm depths.

similation problem increases. However, while OPTIMISTS
was able to produce comparable results to those of the PF,
it was not able to provide definite advantages in terms of
accuracy. As suggested before, additional efforts might be
needed to find the configurations of OPTIMISTS that better
match the characteristics of the individual case studies and,
as with the Blue River, the limitation related to the lack of ob-
servations of multiple variables also applies here. Moreover,
the implemented version of the PF did not present the parti-
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cle degeneracy or impoverishment problems usually associ-
ated with these filters when dealing with high dimensionality,
which also prompts further investigation.

4.3 Computational performance
It is worth noting that the longer the assimilation time step,
the faster the entire process is. This occurs because, even

though the number of hydrological calculations is the same in
the end, for every assimilation time step the model files need
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to be generated accordingly, then accessed, and finally the
result files written and accessed. This whole process takes a
considerable amount of time. Therefore, everything else be-
ing constant, sequential assimilation (like with PFs) automat-
ically imposes additional computational requirements. In our
tests we used RAM drive software to accelerate the process
of running the models sequentially and, even then, the over-
head imposed by OPTIMISTS was consistently below 10 %
of the total computation time. Most of the computational ef-
fort remained with running the model, both for VIC and the
DHSVM. In this sense, model developers may consider al-
lowing their engines to be able to receive input data from
main memory, if possible, to facilitate data assimilation and
other similar processes.

4.4 Recommendations for configuring OPTIMISTS

Finally, here we summarize the recommended choices for the
parameters in OPTIMISTS based on the results of the exper-
iments. In the first place, given their low observed effect, de-
fault values can be used for g (around 0.5). A wyoo higher
than 90 % was found to be advantageous. The execution of
the optimization step (psamp < 1) was, on the other hand, not
found to be advantageous and, therefore, we consider it a
cleaner approach to simply generate all samples from the ini-
tial distribution. Similarly, while not found to be disadvanta-
geous, using diagonal bandwidth (D-class) kernels provide a
significant improvement in computational efficiency and are
thus recommended for the time being. Future work will be
conducted to further explore the effect of the bandwidth con-
figuration in OPTIMISTS.

Even though only two objective functions were tested, one
measuring the departures from the observations being assim-
ilated and another measuring the compatibility of initial sam-
ples with the initial distribution, the results clearly show that
it is beneficial to simultaneously evaluate candidate particles
using both criteria. While traditional cost functions like the
one in Eq. (1) do indeed consider both aspects, we argue that
using multiple objectives has the added benefit of enriching
the diversity of the particle ensemble and, ultimately, the re-
sulting probabilistic estimate of the target states.

Our results demonstrated that the assimilation time step
is the most sensitive parameter and, therefore, its selection
must be done with the greatest involvement. Taking the re-
sults together, we recommend that multiple choices be tried
for any new case study looking to strike a balance between
the amount of information being assimilated and the num-
ber of degrees of freedom. This empirical selection should
also be performed with a rough sense of what is the range
of forecasting lead times that is considered the most impor-
tant. Lastly, more work is required to provide guidelines to
select the number of particles n to be used. While the liter-
ature suggests that more should increase forecast accuracy,
our tests did not back this conclusion. We tentatively recom-
mend trying different ensemble sizes based on the computa-
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tional resources available and selecting the one that offers the
best observed trade-off between accuracy and efficiency.

5 Conclusions and future work

In this article we introduced OPTIMISTS, a flexible, model-
independent data assimilation algorithm that effectively com-
bines the signature elements from Bayesian and variational
methods: by employing essential features from particle fil-
ters, it allows performing probabilistic non-Gaussian esti-
mates of state variables through the filtering of a set of par-
ticles drawn from a prior distribution to better match the
available observations. Adding critical features from varia-
tional methods, OPTIMISTS grants its users the option of
exploring the state space using optimization techniques and
evaluating candidate states through a time window of arbi-
trary length. The algorithm fuses a multi-objective or Pareto
analysis of candidate particles with kernel density probability
distributions to effectively bridge the gap between the proba-
bilistic and the variational perspectives. Moreover, the use of
evolutionary optimization algorithms enables its efficient ap-
plication on highly non-linear models as those usually found
in most geosciences. This unique combination of features
represents a clear differentiation from the existing hybrid as-
similation methods in the literature (Bannister, 2016), which
are limited to Gaussian distributions and linear dynamics.

We conducted a set of hydrologic forecasting factorial ex-
periments on two watersheds, the Blue River with 812 state
variables and the Indiantown Run with 33455, at two dis-
tinct modelling resolutions using two different modelling en-
gines: VIC and the DHSVM, respectively. Capitalizing on
the flexible configurations available for OPTIMISTS, these
tests allowed us to determine which individual characteristics
of traditional algorithms prove to be the most advantageous
for forecasting applications. For example, while there is a
general consensus in the literature favouring extended time
steps (4-D) over sequential ones (1-D-3-D), the results from
assimilating streamflow data in our experiments suggest that
there is an ideal duration of the assimilation time step that
is dependent on the case study under consideration, on the
spatiotemporal resolution of the corresponding model appli-
cation, and on the desired forecast length. Sequential time
steps not only required considerably longer computational
times but also produced the worst results — perhaps given
the overwhelming number of degrees of freedom in contrast
with the scarce observations available. Similarly, there was a
drop in the performance of the forecast ensemble when the
algorithm was set to use overly long time steps.

Procuring the consistency of candidate particles, not only
with the observations but also with the state history, led to
significant gains in predictive skill. OPTIMISTS can be con-
figured to both perform Bayesian sampling and find Pareto-
optimal particles that trade off deviations from the observa-
tions and from the prior conditions. This Bayesian and multi-
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objective formulation of the optimization problem was es-
pecially beneficial for the high-resolution watershed applica-
tion, as it allows the model to overcome the risk of overfitting
generated by the enlarged effect of equifinality.

On the other hand, our experiments did not produce
enough evidence to recommend either exploring the state
space with optimization algorithms instead of doing so with
simple probabilistic sampling, the use of a larger number of
particles above the established baseline of 100, or the com-
putationally intensive utilization of full covariance matrices
to encode the dependencies between variables in the kernel-
based state distributions. Nevertheless, strong interactions
between several of these parameters suggest that some spe-
cific combinations could potentially yield strong outcomes.
Together with OPTIMISTS’ observed high level of sensitiv-
ity to the parameters, these results indicate that there could
be promise in the implementation of self-adaptive strategies
(Karafotias et al., 2014) to assist in their selection in the fu-
ture. With these experiments, we were able to configure the
algorithm to consistently improve the forecasting skill of the
models compared to control open-loop runs. Additionally,
comparative tests showed that OPTIMISTS was able to re-
liably produce adequate forecasts that were comparable to
those resulting from assimilating the observations with a par-
ticle filter in the high-resolution application. While not be-
ing able to provide consistent accuracy advantages over the
implemented particle filter, OPTIMISTS does offer consid-
erable gains in computational efficiency given its ability to
analyse multiple model time steps each time.

Moreover, in this article we offered several alternatives
in the implementation of the components of OPTIMISTS
whenever there were tensions between prediction accuracy
and computational efficiency. In the future, we will focus on
incorporating additional successful ideas from diverse assim-
ilation algorithms and on improving components in such a
way that both of these goals are attained with ever-smaller
compromises. For instance, the estimation of initial states
should not be overburdened with the responsibility of com-
pensating for structural and calibration deficiencies in the
model. In this sense, we embrace the vision of a unified
framework for the joint probabilistic estimation of structures,
parameters, and state variables (Liu and Gupta, 2007), where
it is important to address challenges associated with ap-
proaches that would increase the indeterminacy of the prob-
lem by adding unknowns without providing additional infor-
mation or additional means of relating existing variables. We
expect that with continued efforts OPTIMISTS will be a wor-
thy candidate framework to be deployed in operational set-
tings for hydrologic prediction and beyond.

Code and data availability. All the data utilized to construct the
models are publicly available through the internet from their corre-
sponding US government agencies’ websites. The Java implemen-
tation of OPTIMISTS and of the particle filter are available through
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GitHub (2018) (https://github.com/felherc/). These sources include
all the information needed to replicate the experiments in this arti-
cle.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/hess-22-5759-2018-supplement.
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