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Abstract: In this paper, a fault-tolerant control scheme is presented for a class of stochastic distribution
collaborative control systems, which are composed of three subsystems connected in series to
complete the control target. The radial basis function neural network is used to approximate the
output probability density function of the third subsystem, which is also the output of the entire
system. When fault occurs in the first subsystem, an adaptive diagnostic observer is designed to
estimate the value of fault. However, the first subsystem does not have the ability of self-recovery,
minimum rational entropy controllers are designed in the latter subsystems to compensate the
influence of the fault and minimize the entropy of the system output. A numerical simulation is
given to verify the effectiveness of the proposed scheme.

Keywords: stochastic distribution collaborative control systems; fault diagnosis; fault tolerant control;
minimum rational entropy control

1. Introduction

In recent years, fault diagnosis (FD) and fault tolerant control (FTC) of stochastic distribution
systems have received significant attentions. A variety of FD and FTC techniques have been introduced
in [1–8]. However, most of them aim at the single system. With the increasing complexity of modern
engineering system, the majority of systems have multiple collaboration subsystems instead of a single
system, which makes FD and FTC become more difficult. Different from the general system, the control
object of the stochastic distribution control (SDC) systems is the probability density function (PDF) of
the output rather than the output [2]. Thus, SDC systems no longer depend on the assumption that the
variables of the system are subjected to Gaussian distribution, such as molecular weight distribution
of chemical processes [9] and the distribution of the flame in the boiler [10].

In most systems, the noise is assumed to obey Gaussian distribution, which is not satisfied in the
practical application. Therefore, entropy concept [11] is proposed to measure the uncertainty of the
system output in SDC systems. In most of the existing FTC results, the target PDF is pre-specified.
Thus, many tracking control methods can be applied directly. In [12,13], robust model predictive
controller is presented for discrete nonlinear systems and constrained linear systems respectively.
However, the expected output PDF is unknown in many cases. In response to this situation, the
minimum entropy control algorithm can be applied to minimize the randomness or uncertainty of the
system output. Recently, many achievements have been made in minimum entropy control [14,15].
In [16], the entropy has been used to characterize the uncertainty of the tracking error for general
nonlinear and non-Gaussian stochastic systems. However, the fault tolerant control is not considered.

There are many ways to approximate the output PDF. B-spline function approximation is a popular
method [6,7]. However, the parameter selection of radial basis function (RBF) is more flexible than
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B-spline model, which is used to approximate the output PDF in this paper. The form of RBF is
usually used in most approximation processes [17,18]. A FD and model predictive control scheme for
non-Gaussian stochastic distribution control systems based on T-S fuzzy model is proposed in [19],
which the output PDF of SDC systems is approximated by RBF neural network.

Most of the existing literatures focus on the single SDC system and only a few research results
focus on complex systems consisting of multiple subsystems. In [20], FD algorithm is proposed for the
collaborative system composed of two SDC subsystems, iterative learning control is used to design
the fault-tolerant controller so that the output PDF of the SDC systems can track the desired PDF.
In [21,22], When fault occurs in subsystem 1 and subsystem 1 does not have the ability of self-recovery,
a compensation item is added to the controller of subsystem 2, leading to fault tolerant control of
the whole system. In above mentioned literatures the situation where the expected output PDF is
unknown is not taken into account and the way of collaboration is similar.

The actual system is often composed of three or more subsystems. However, there is few research
about the collaborative system consists of more than two subsystems, which will be studied in this
paper. In order to be closer to reality, we study the collaborative system with three subsystems.
The system parameters of the second subsystem are affected by the output PDF of the first system
and the system parameters of the third subsystem are affected by the output PDF of the second
system. Further, the situation where the expected output is unknown is considered. As the
continuous definition of Shannon entropy may not meet the requirements (positive definite) of an
index function [23], so we consider the new rational entropy performance index to carry out the
controller design. When fault occurs in subsystem 1, the minimum rational entropy fault tolerant
controller is designed in subsystem 2 and subsystem 3 respectively to minimize the uncertainty of the
system output.

The rest of this paper is organized as follows. In Section 2, the system model is given. Section 3
presents a FD algorithm for the faulty subsystem using LMI techniques. A minimum entropy FTC
controller is designed in Section 4. A simulation is given in Section 5.

2. Model Description

Denote the output y(t) of the SDC system as a uniformly bounded stochastic process defined on
a known interval [a, b] at any sampling time t. Denote u(t) as the control input vector. Then the output
y(t) can be represented by its probability density function γ(y, u(t)) as follows

P(a ≤ y(t) < τ|u(t)) =
∫ τ

a
γ(y, u(t))dy

where P(a ≤ y(t) < τ|u(t)) is the probability and the output y(t) is within the interval [a, τ] under the
action of u(t). It is assumed that the range of outputs [a, b] is known and the output PDF is measurable.
The output PDF is approximated by predefined rational square-root radial basis functions which can
be expressed as follows √

γ(y, u(t)) = ∑n
i=1 wici(y)√

∑n
i,j=1 wiwj

∫ b
a ci(y)cj(y)dy

= C(y)v(t)√
vT(t)Σv(t) (1)

where C(y) = [c1(y), c2(y), · · · , cn(y)] are chosen as n radial basis functions and v(t) =

[v1(t), v2(t), · · · , vn(t)] are chosen as the corresponding weights, and Σ =
∫ b

a CT(y)C(y)dy.
The model of subsystem 1 can be described as follows

ẋ1(t) = A1x1(t) + B1u1(t) + H f (t) + Sd(t)
v1(t) = D1x1(t) + E1u1(t)√

γ1(y, u1(t)) =
C(y)v1(t)√
vT

1 (t)Σv1(t)

(2)
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where x1(t) ∈ Rl×1 is the system state vector, u1(t) ∈ Rm×1 is the control input vector, f (t) ∈ Rr×1 is
the fault vector, d(t) ∈ Rr×1 is the disturbance vector. When no fault occurs, f (t) = 0. A1, B1, D1, H, S
are known constant matrices with appropriate dimensions, and v1(t) is the output weight vector.

The model of subsystem 2 can be expressed as

ẋ2(t) = A2(v1(t))x2(t) + B2(v1(t))u2(t) + Sd(t)
v2(t) = D2(v1(t))x2(t) + E2(v1(t))u2(t)√

γ2(y, u2(t)) =
C(y)v2(t)√
vT

2 (t)Σv2(t)

(3)

where x2(t) ∈ Rm×1 is the system state vector, u2(t) ∈ Rm×1 is the control input vector, v2(t) is
the output weight vector, A2(v1(t)), B2(v1(t)), D2(v1(t)) and E2(v1(t)) (A2, B2, D2, E2 for short) are
parameter matrices affected by the weights of subsystem 1. Thus, A2, B2, D2, E2 are time-varying
matrices when the weights of subsystem 1 change.

The model of subsystem 3 can be expressed as

ẋ3(t) = A3(v2(t))x3(t) + B3(v2(t))u3(t) + Sd(t)
v3(t) = D3(v2(t))x3(t) + E3(v2(t))u3(t)√

γ3(y, u3(t)) =
C(y)v3(t)√
vT

3 (t)Σv3(t)

(4)

where x3(t) ∈ Rm×1 is the system state vector, u3(t) ∈ Rm×1 is the control input vector, v3(t) is
the output weight vector, A3(v2(t)), B3(v2(t)), D3(v2(t)) and E3(v2(t)) (A3, B3, D3, E3 for short) are
parameter matrices affected by the weights of subsystem 2. Thus, A3, B3, D3, E3 are time-varying
matrices when the weights of subsystem 2 change.

It can be seen from the state equations of three subsystems that the system parameters of
subsystem 2 are affected by subsystem 1, and the system parameters of subsystem 3 are affected
by subsystem 2. A typical case is molecular weight control in chemical reactions. As shown in Figure 1,
during the chemical reaction, the desired product is often obtained by multi-step chemical reactions.
The monomer and the initiator are reacted in the first reactor and then sent to the second chemical
reactor. The other initiator is added for the second chemical reaction and the product is sent to the
third reactor. Finally, after multi-step reaction to obtain the desired product, the output of the third
reactor is the output of the entire system.

initiatormonomer

heater

reactor1 reactor2 reator3

heater

heater

PDF of molecular weight 

for subsystem (1)

PDF of molecular weight 

for subsystem (2)

PDF of molecular weight 

for subsystem (3)

Figure 1. Fault and fault estimation of subsystem 1.
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3. Fault Diagnosis

When fault occurs in subsystem 1, a FD algorithm is presented to estimate the size of the fault.
An adaptive fault diagnosis observer is constructed as follows

˙̂x1(t) = A1 x̂1(t) + B1u1(t) + H f̂ (t) + Lε(t)
v̂1(t) = D1 x̂1(t) + E1u1(t)√

γ̂1(y, u1(t)) =
C(y)v̂1(t)√
v̂T

1 (t)Σv̂1(t)

ε(t) =
∫ b

a σ(y)(
√

γ1(y, u1(t))−
√

γ̂1(y, u1(t)))dy

(5)

where x̂1(t), v̂1(t) and f̂ (t) are the estimation of state, weight and fault vector, respectively. ε(t)
is the residual signal, L is the gain vector, which will be defined later, σ(y) is a pre-specified
weighting function.

The residual signal can be obtained as

ε(t) =
∫ b

a σ(y)(
√

γ1(y, u1(t))−
√

γ̂1(y, u1(t)))dy
= Λ( v1(t)√

vT
1 (t)Σv1(t)

− v̂1(t)√
v̂T

1 (t)Σv̂1(t)
)

= ΛD1e1√
v̂T

1 (t)Σv̂1(t)
− Λv1(t)√

v̂T
1 (t)Σv̂1(t)

+ Λv1(t)√
vT

1 (t)Σv1(t)

(6)

where Λ =
∫ b

a σ(y)C(y)dy.
Denote

e1(t) = x1(t)− x̂1(t)
f̃ (t) = f (t)− f̂ (t)

Assumption 1. Suppose that ‖ f ‖ ≤ α
2 , where α is a positive constant.

Assumption 2. Suppose that ‖d‖ ≤ θ , where θ is a positive constant.

Lemma 1 [24]. There exists λ(T1 ≤ |λ| ≤ T2, T1 = λmin(Σ)/
√

λmax(Σ), T2 = λmax(Σ)/
√

λmin(Σ)),
such that the following inequality holds√

vT
1 Σv1 −

√
v̂T

1 Σv̂1=λ(
√

vT
1 v1 −

√
v̂T

1 v̂1) (7)

Define L = K
√

v̂TΣv̂, and K is chosen to make the matrix A1 − KΛD1 be a Hurwitz matrix, L is
the time-varying observer gain vector. The observed error dynamic system can be obtained as follows

ė1(t) = A1e1(t) + H f̃ (t)− Lε(t) + Sd(t)
= A1e1(t) + H f̃ (t)− L( ΛD1e1√

v̂T
1 (t)Σv̂1(t)

− Λv1(t)√
v̂T

1 (t)Σv̂1(t)
+ Λv1(t)√

vT
1 (t)Σv1(t)

) + Sd(t)

= (A1 − KΛD1)e1 + H f̃ (t)− KΛv1(t)
λ(‖v1(t)‖−‖v̂1(t)‖)√

vT
1 (t)Σv1(t)

+ Sd(t)
(8)

The adaptive tuning law of f̂ (t) is designed as follows

˙̂f (t) = −Γ
√

v̂T
1 (t)Σv̂1(t)ε(t) (9)

Theorem 1. If there exist Γ and two positive definite symmetric matrices P and Q such that the following
condition is satisfied

(A1 − KΛD1)
T P+P(A1 − KΛD1) =−Q (10)

then the observation error system is stable.
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Proof. A Lyapunov function is selected as follows:

Π = eT
1 Pe1 + f̃ T f̃ (11)

Then the first-order derivative can be obtained as follows

Π̇ = eT
1 [(A1 − KΛD1)

T P+P(A1 − KΛD1)]e1 + 2eT
1 PH f̃

−2eT
1 PKΛv1(t)

λ‖v1(t)‖−‖v̂1(t)‖√
vT

1 (t)Σv1(t)
+2eT

1 PSd1(t)

−2 f̃ TΓΛD1e1 − 2 f̃ TΓΛv1(t)
λ(‖v1(t)‖−‖v̂1(t)‖)√

vT
1 (t)Σv1(t)

≤ −(λmin(Q) + 2 T2‖PKΛD‖√
‖Σ‖

)‖e1‖2 + ‖e1‖ (
∥∥PH − DT

1 ΛTΓ
∥∥

− T2‖ΓΛD‖√
‖Σ‖

)
∥∥ f̃
∥∥+2 ‖e1‖ ‖PS‖ ‖d1‖

(12)

Denote

M1 = λmin(Q) + 2 T2‖PKΛD‖√
‖Σ‖

, M2 =
∥∥PH − DT

1 ΛTΓ
∥∥− T2‖ΓΛD‖√

‖Σ‖
, M3 = 2 ‖PS‖

Then

Π̇ ≤ −M1‖e1‖2 + ‖e1‖ (M2α + M3θ) = −M1(‖e1‖ −
(M2α + M3θ)

2M1
)2 +

(M2α + M3θ)2

4M1

Therefore when ‖e1‖ ≥ M2α+M3θ
M1

holds, it can be obtained that Π̇ ≤ 0. The dynamic observation
error system (8) is stable.

4. Fault Tolerant Control

In this section, the desired PDF is unknown. Minimum rational entropy controllers are designed
in the second and third subsystem respectively.

In subsystem 2, the performance function is selected as follows:

J = −
∫ b

a γ2(y, u2(t)) ln γ2(y,u2(t))
1+γ2(y,u2(t))

dy + (µ2 − µg)2 + uT
2 (t)Ru2(t) (13)

where the first term is the rational entropy of the output variables, the rational entropy reflects the
uncertainty of the system. The second term is the error between the mean µ2 =

∫ b
a yγ2(y, u2(t))dy,

and target mean µg. The third term is a natural quadratic constraint for the control input, where
R = RT > 0. The performance index has certain limitations, mainly because the entropy is a concave
function, and the minimum value is more than one. This in turn leads to a design controller that
cannot predict where it will be stable, or that the target is unpredictable. It is well known that the mean
value indicates the center position of the random variable, so it seems more reasonable at a certain
central position.

The purpose of designing the minimum rational entropy controller is to find the required optimal
control input u(t) to minimize the performance function.

To simplify the calculation, the performance function (13) is divided into two parts

J1 = −
∫ b

a γ2(y, u2(t)) ln γ2(y,u2(t))
1+γ2(y,u2(t))

dy, J2 = (µ2 − µg)
2 (14)

It is known that

γ2(y, u2(t)) =
(C(y)v2(t))

TC(y)v2(t)
vT

2 (t)Σv2(t)
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Denote
N = ∂γ2(y,u2(t))

∂v2(t)

=
2(vT

2 (t)C
T(y))(C(y)(vT

2 (t)Σv2(t))−(C(y)v2(t))(vT
2 (t)Σ))

(vT
2 (t)Σv2(t))

2

From Equation (14), the derivative of J1 and J2 can be obtained as follows

∂J1
∂u2

= −
∫ b

a ( ∂γ2(y,u2(t))
∂v2(t)

∂v2(t)
∂u2(t)

ln γ2(y,u2(t))
1+γ2(y,u2(t))

+ 1
1+γ2(y,u2(t))

∂γ2(y,u2(t))
∂v2(t)

∂v2(t)
∂u2(t)

)dy

= −
∫ b

a

[
ln γ2(y,u2(t))

1+γ2(y,u2(t))
+ 1

1+γ2(y,u2(t))

]
Ndy ∂v2(t)

∂u2(t)

∂J2

∂u2
= 2(µ2 − µg)

∫ b

a
yNdy

∂v2(t)
∂u2(t)

From (3), it can be calculated that
∂v2(t)
∂u2(t)

= E2

Combining the above equations, the derivative of the performance function can be obtained
as follows

∂J
∂u2

= −
∫ b

a

[
ln γ2(y,u2(t))

1+γ2(y,u2(t))
+ 1

1+γ2(y,u2(t))

]
NdyE2 + 2(µ2 − µg)

∫ b
a yNdyE2+2Ru2(t)

The optimal controller of subsystem 2 can be obtained by solving ∂J
∂u2(t)

= 0

u2(t) = 1
2R

{∫ b
a

[
ln γ2(y,u2(t))

1+γ2(y,u2(t))
+ 1

1+γ2(y,u2(t))

]
NdyE2 − 2(µ2 − µg)

∫ b
a yNdyE2

}
(15)

In a similar way, in subsystem 3, the performance function is selected as follows

Z = −
∫ b

a γ3(y, u3(t)) ln γ3(y,u3(t))
1+γ3(y,u3(t))

dy + (µ3 − µg)2 + uT
3 (t)Ru3(t) (16)

where the first term is the entropy of the output variable, the second term is the error between the
mean µ3 =

∫ b
a yγ3(y, u3(t))dy, and target mean µg, and the third term is a natural quadratic constraint

for the control input, where R = RT > 0.
To simplify the calculation, the performance function (16) is divided into two parts

Z1 = −
∫ b

a γ3(y, u3(t)) ln γ3(y,u3(t))
1+γ3(y,u3(t))

dy, Z2 = (µ3 − µg)
2 (17)

It is known that

γ3(y, u3(t)) =
(C(y)v3(t))

TC(y)v3(t)
vT

3 (t)Σv3(t)

Denote
M = ∂γ3(y,u3(t))

∂v3(t)

=
2(vT

3 (t)C
T(y))(C(y)(vT

3 (t)Σv3(t))−(C(y)v3(t))(vT
3 (t)Σ))

(vT
3 (t)Σv3(t))

2

The Equation (17) can be further formulated as follows

∂Z1
∂u3

= −
∫ b

a ( ∂γ3(y,u3(t))
∂v3(t)

∂v3(t)
∂u3(t)

ln γ3(y,u3(t))
1+γ3(y,u3(t))

+ 1
1+γ3(y,u3(t))

∂γ3(y,u3(t))
∂v3(t)

∂v3(t)
∂u3(t)

)dy

= −
∫ b

a

[
ln γ3(y,u3(t))

1+γ3(y,u3(t))
+ 1

1+γ3(y,u3(t))

]
Mdy ∂v3(t)

∂u3(t)

∂Z2

∂u3
= 2(µ3 − µg)

∫ b

a
yMdy

∂v3(t)
∂u3(t)
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From (4), it can be calculated that
∂v3(t)
∂u3(t)

= E3

The derivative of the performance function can be obtained as follows

∂Z
∂u3

= −
∫ b

a

[
ln γ3(y,u3(t))

1+γ3(y,u3(t))
+ 1

1+γ3(y,u3(t))

]
MdyE3 + 2(µ3 − µg)

∫ b
a yMdyE3+2Ru3(t)

The optimal controller of subsystem 2 can be obtained by solving ∂Z
∂u3(t)

= 0

u3(t) = 1
2R

{∫ b
a

[
ln γ3(y,u3(t))

1+γ3(y,u3(t))
+ 1

1+γ3(y,u3(t))

]
MdyE3 − 2(µ3 − µg)

∫ b
a yMdyE3

}
(18)

To compensate the fault occurred in subsystem 1, the actual controller is as follows

u3(t) = 1
2R (
∫ b

a

[
ln γ3(y,u3(t))

1+γ3(y,u3(t))
+ 1

1+γ3(y,u3(t))

]
Mdy− 2(µ3 − µg)

∫ b
a yMdy)(E3 + H f̂ ) (19)

When the expected output PDF is not known in advance, the minimum entropy control is usually
used to minimum the output uncertainty of the system. For the Shannon entropy performance index,
it may be possible to make the non-negative property of the PDF not be satisfied. There is no such
weakness for the rational entropy performance index.

5. A Simulation Example

An example of molecular weight control in chemical reactions in Figure 1 is used to prove the
validity of the proposed algorithm. The mathematical model of the first reactor is given as follows

İ1(t) =
I0(t)−I1(t)

θ − Kd I1(t) + Kp sin(t) + KI1u11(t)
Ṁ1(t) =

M0(t)−M1(t)
θ − 2Ki I1(t) + Kp sin(t) + KI2u11(t)− (Kr + Ktrm)M1(t)Ri

where I0 is the initial concentration of initiator (mol ·mL−1); I1 is the initiator concentration (mol·mL−1);
θ = Vθ

Fθ
is the average residence time of the reactants in the reactor (s), Vθ is the volume of the reactor

(mL), Fθ is the inlet material flow (mL·s−1); M0 is the initial concentration of monomer (mol·mL−1);
M1 is the monomer concentration (mol·mL−1); Kd, Ki, Kr, Ktrm are the reaction rate constants; KI1 and
KI2 are the constants related to the control input; Kp is the disturbance parameter; u11 is the control
input which is defined as u11 = FM

FM+FI
, where FM is the flow of monomer (mL·s−1) and FI is the flow

of initiator (mL·s−1). Ri is the concentration of the free radical. When the reaction in the first reactor is
completed, it will be further reacted in the second reactor. The output of the first reactor will affect the
system state of the second reactor, It is same in the third reactor.

Model parameter matrices are as follows

A1 =

[
−0.5 0
−0.5 −1

]
, B1 =

[
0.2
0.3

]
, H =

[
1
2

]
, D1 =

[
1 0
0 1

]
, E1 = S =

[
1
1

]

A2(v1(t)) =

[
−0.5v11(t) 0

1 −0.2v12(t)

]
, B2(v1(t)) =

[
−0.7v11(t)
0.1v12(t)

]
, E2(v1(t)) =

[
1.6v11(t)
2v12(t)

]

A3(v2(t)) =

[
−0.7v21(t) 0

1 −0.2v22(t)

]
, B3(v2(t)) =

[
1.4v21(t)
0.9v22(t)

]
,

D3 = D2 = D1, E3(v2(t)) =

[
v21(t)
v22(t)

]
, d(t) = 0.001 ∗ sin(t)
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Denoting y ∈ [2, 7), three radial basis functions are as follows

c1(y) = exp(−(y− 3.5)2/1.5)
c2(y) = exp(−(y− 5.5)2/1.5)

where the center vector is chosen as µ = [3.5 5.5] and the width is chosen as σ = 1.5. The sampling
time is assumed as 0.1s and the total simulation time is supposed as 100s.

To validate the algorithm, it is assumed that the fault has the following form

f (t) =

{
0 t ≤ 50
0.5 t > 50

The gain of the observer and the FD learning law is chosen as follows

K =

[
0.26
0.36

]
, Γ = −1.93

The result of fault estimation is presented in Figures 2 and 3. It can be seen from Figure 2 that
the fault diagnosis observer can quickly estimate the value of fault when fault occurs in subsystem 1.
The fault estimation error in Figure 3 is small. The mean value and rational entropy of subsystem 2 are
presented in Figure 4. Figure 5 shows the mean and rational entropy of subsystem 3. Fault occurs in
subsystem 1 at 50s, and the rational entropy is affected by the fault. Then rational entropy decreases
under the action of the fault tolerant controller. The output PDF of subsystem 3 is shown in Figure 6.
Figure 7 shows the PDF by a 2D plot. It can be seen that the PDF after the fault tolerance is the same
as the PDF before the fault occurred and the control input drives the system towards the direction of
less randomness.
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Figure 2. Fault and fault estimation of subsystem 1.

Figures 8 and 9 show the mean value and Shannon entropy of subsystem 2 and subsystem 3 with
the minimum Shannon entropy fault tolerant controller. The value of Shannon entropy is lower than
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that of the rational entropy because the type of two entropies is different. Figure 10 shows the PDF
with the minimum Shannon entropy fault tolerant control by a 2D plot. Compared with Figure 7, it can
be seen that with the rational entropy fault tolerant controller, the PDF before and after fault is more
consistent, which means that the rational entropy fault-tolerant controller has better fault tolerance
control effect.
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Figure 3. The response of the residual of subsystem 1.
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Figure 4. The mean value and rational entropy of subsystem 2.
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Figure 5. The mean value and rational entropy of subsystem 3.

Figure 6. The output probability density function (PDF) of subsystem 3 with the rational Entropy fault
tolerant control.
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Figure 7. The output PDF with the rational Entropy fault tolerant control from 30s to 80s.
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Figure 8. The mean value and Shannon entropy of subsystem 2.
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Figure 9. The mean value and Shannon entropy of subsystem 3.
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Figure 10. The output PDF with the Shannon Entropy fault tolerant control from 30s to 80s.

6. Conclusions

In this paper, a collaborative fault tolerant control scheme is proposed for a class of collaborative
systems. Firstly, a fault diagnosis observer is constructed in the first subsystem. This is followed
by minimum rational entropy control based fault tolerant control scheme in the second subsystem
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and the third subsystem to make the uncertainty of the system output be minimized to compensate
the influences caused by the fault. Finally, the proposed fault diagnosis and fault tolerant control
algorithm has been examined by a simulation example. There are still many issues in this paper that
are not comprehensive enough. The subsystem does not take into account the effects of the modeling
error and the effects of delays which will be addressed in future studies. Only one way of collaboration
mentioned in this paper, and there are many other types of collaboration in the actual system that
needs further research. The number of subsystems in the collaborative system considered in this
paper is small, and fault diagnosis and fault tolerant control of the collaborative system with more
subsystems is also an interesting research direction.

Author Contributions: L.Y. contributed the initial idea; W.W. wrote the paper; W.W. and Y.K. built the model and
performed the numerical simulations; L.L. improved and contributed important ideas to the work.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the financial support received from Chinese NSFC grant
61374128, State Key Laboratory of Synthetical Automation for Process Industries, the Science and Technology
Innovation Talents 14HASTIT040 in Colleges and Universities in Henan Province, China and Excellent Young
Scientist Development Foundation 1421319086 of Zhengzhou University, China.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Yao, L.N.; Lei, C.H. Fault diagnosis and sliding mode fault tolerant control for non-Gaussian stochastic
distribution control systems using T-S fuzzy model. Asian J. Control 2017, 19, 636–646.

2. Wang, H. Bounded Dynamic Stochastic Systems: Modelling and Control; Springer: London, UK, 2000.
3. Bouallegue, W.; Bouslama, S.; Tagina, M. Robust fault detection and isolation in bond graph modelled

processes with Bayesian networks. Int. J. Comput. Appl. Technol. 2017, 55, 46–54. [CrossRef]
4. Zhou, J.L.; Li, G.T.; Wang, H. Robust tracking controller design for non-Gaussian singular uncertainty

stochastic distribution systems. Automatica 2014, 50, 1296–1303. [CrossRef]
5. Yao, L.N.; Yin, Z.Y.; Wang, H. Robust H∞ fault diagnosis for stochastic distribution systems with disturbance

rejection performance. Int. J. Model. Ident. Control 2014, 21, 288–294. [CrossRef]
6. Yao, L.N.; Qin, J.F.; Wang, A.P.; Wang, H. Fault diagnosis and fault-tolerant control for non-Gaussian

non-linear stochastic systems using a rational square-root approximation model. IET Control Theory Appl.
2013, 7, 116–124. [CrossRef]

7. Yao, L.N.; Guan, Y.C.; Wang, A.P. Fault diagnosis and minimum entropy fault tolerant control for
non-Gaussian singular stochastic distributions systems using square-root approximation. Int. J. Model.
Ident. Contr. 2015, 24, 206–215. [CrossRef]

8. Maalej, I.; Abid, D.; Rekik, C. State and fault estimation based on interval type-2 fuzzy inference system
optimised by genetic algorithms. Int. J. Comput. Appl. Technol. 2017, 55, 22–29. [CrossRef]

9. Zhang, J.; Yue, H.; Zhou, J.L. Predictive PDF control in shaping of molecular weight distribution based on
a new modeling algorithm. J. Process Control 2015, 30, 80–89. [CrossRef]

10. Sun, X.B.; Yue, H.; Wang, H. Modelling and control of the flame temperature distribution using probability
density function shaping. Trans. Inst. Meas. Control 2006, 28, 401–428. [CrossRef]

11. Chen, R.H.; Mingori, D.L.; Speye, J.L. Optimal stochastic fault detection filter. Automatica 2003, 39, 377–390.
[CrossRef]

12. Teng, L.; Wang, Y.Y.; Cai, W.J.; Li, H. Robust model predictive control of discrete nonlinear systems with
time delays and disturbances via T-S fuzzy approach. J. Process Control 2017, 53, 70–79. [CrossRef]

13. Mayne, D.Q.; Seron, M.M.; Rakovic, S.V. Robust model predictive control of constrained linear systems with
bounded disturbances. Automatica 2004, 41, 219–224. [CrossRef]

14. Yao, L.N.; Guan, Y.C. Minimum entropy fault diagnosis and fault tolerant control for the non-Gaussian
stochastic system. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA,
6–8 July 2016; pp. 6863–6868.

15. Li, G.; Zhao, Q. Minimum entropy deconvolution optimized sinusoidal synthesis and its application to
vibration based fault detection. J. Sound Vib. 2017, 390, 218–231. [CrossRef]

http://dx.doi.org/10.1504/IJCAT.2017.082261
http://dx.doi.org/10.1016/j.automatica.2014.02.032
http://dx.doi.org/10.1504/IJMIC.2014.060732
http://dx.doi.org/10.1049/iet-cta.2012.0466
http://dx.doi.org/10.1504/IJMIC.2015.072620
http://dx.doi.org/10.1504/IJCAT.2017.082262
http://dx.doi.org/10.1016/j.jprocont.2014.12.009
http://dx.doi.org/10.1177/0142331206073124
http://dx.doi.org/10.1016/S0005-1098(02)00245-5
http://dx.doi.org/10.1016/j.jprocont.2016.11.012
http://dx.doi.org/10.1016/j.automatica.2004.08.019
http://dx.doi.org/10.1016/j.jsv.2016.11.033


Entropy 2018, 20, 820 14 of 14

16. Yue, H.; Wang, H. Minimum Entropy Control of Closed-Loop Tracking Errors for Dynamic Stochastic
Systems. IEEE Trans. Automat. Control 2003, 48, 118–122.

17. Skaf, Z.; Wang, H.; Guo, L. Fault tolerant control based on stochastic distribution via RBF neural networks.
J. Syst. Eng. Electron. 2001, 22, 63–69. [CrossRef]

18. Qu, Y.; Li, Z.M.; Li, E.C. Fault detection and diagnosis for non-Gaussian stochastic distribution systems with
time delays via RBF neural networks. ISA Trans. 2012, 51, 786–791.

19. Zakwan, S.; Ahamd, B.A.; Wang, H. Fault detection and diagnosis for general discrete-time stochastic systems
using output probability density estimation. In Proceedings of the 50th IEEE Conference on Decision and
Control and European Control Conference, Orlando, FL, USA, 1215 December 2011; pp. 2094–2099.

20. Ren, Y.W.; Wang, A.P.; Wang, H. Fault diagnosis and tolerant control for discrete stochastic distribution
collaborative control systems. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 462–471. [CrossRef]

21. Yao, L.N.; Wang, H. A fault tolerant control scheme for collaborative two sub-systems. In Proceedings of the
2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent
Control, Limassol, Cyprus, 27–29 June 2005; pp. 1591–1596.

22. Ren, Y.W.; Wang, H. Fault tolerant control for sequentially connected stochastic distribution continuous
systems. In Proceedings of the 2010 International Conference on Modelling, Identification and Control,
Okayama, Japan, 17–19 July 2010; pp. 471–476.

23. Zhou, J.L.; Zhu, H.J.; Wang, J. Minimum Entropy Control? In Proceedings of the 31th Chinese Control
Conference, Hefei, China, 25–27 July 2012; pp. 1590–1595.

24. Yao, L.N.; Wang, H. Fault diagnosis and tolerant Control for non-Gaussian stochastic distribution control
Systems based on the rational square-root appriximation model. IET Control Theory Appl. 2006, 23, 561–569.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3969/j.issn.1004-4132.2011.01.007
http://dx.doi.org/10.1109/TSMC.2014.2358635
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model Description
	Fault Diagnosis
	Fault Tolerant Control
	A Simulation Example
	Conclusions
	References

