
This is a repository copy of Towards fault diagnosis in robot swarms : An online behaviour
characterisation approach.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/120341/

Version: Accepted Version

Proceedings Paper:
O’Keeffe, James, Tarapore, Danesh orcid.org/0000-0002-3226-6861, Millard, Alan G.
orcid.org/0000-0002-4424-5953 et al. (1 more author) (2017) Towards fault diagnosis in
robot swarms : An online behaviour characterisation approach. In: Towards Autonomous
Robotic Systems - 18th Annual Conference, TAROS 2017, Proceedings. 18th Annual
Conference on Towards Autonomous Robotic Systems, TAROS 2017, 19-21 Jul 2017
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) . Springer-Verlag , pp. 393-407.

https://doi.org/10.1007/978-3-319-64107-2_31

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Towards Fault Diagnosis in Robot Swarms: An

Online Behaviour Characterisation Approach

James O’Keeffe1*, Danesh Tarapore2, Alan G. Millard1, and Jon Timmis1

1 Department of Electronic Engineering
University of York, York, UK

jhok500@york.ac.uk*
2 School of Electronics and Computer Science
University of Southampton, Southampton, UK

Abstract. Although robustness has been cited as an inherent advan-
tage of swarm robotics systems, it has been been shown that this is not
always the case. Fault diagnosis will be critical for future swarm robotics
systems if they are to retain their advantages (robustness, flexibility and
scalability). In this paper, existing work on fault detection is used as a
foundation to propose a novel approach for fault diagnosis in swarms
based on a behavioural feature vector approach. Initial results show that
behavioural feature vectors can be used to reliably diagnose common
electro-mechanical fault types in most cases tested.

Keywords: Fault Diagnosis · Feature Vector · Behaviour Characterisa-
tion · Swarm Robotics

1 Introduction

For many years, robustness – the ability of a system to tolerate the presence of
faults or failures – was considered to be an inherent property of swarm robotics
systems [15]. However, investigations by Winfield and Nembrini [18] revealed
that swarm robustness cannot be taken for granted in all scenarios, particularly
those in which partial faults or failures are present.

A further study, conducted by Bjerknes and Winfield [3], demonstrated that
the scalability of a swarm system may also suffer in scenarios where the system is
not robust to the presence of faults. In light of these two supposed advantages of
swarm robotics being lost or severely hindered in the presence of partial failures,
the authors [3] advocate for an active approach to improving the fault tolerance
of swarm systems – specifically Artificial Immune Systems (AIS), which are
defined by De Castro and Timmis [9] as:

“adaptive systems, inspired by theoretical immunology and observed

immune functions, principle and models, which are applied to problem

solving.”

Timmis et al. [17] argue that an AIS can be considered a type of swarm
intelligent system. In the context of the natural immune system, Cohen [8] defines

maintenance as the ability of the immune system to maintain its host despite
the unpredictable blows that it will undoubtedly encounter over the course of
its life. The idea of maintenance in biological systems is comparable to that of
fault tolerance in engineered systems – both pertain to systems that continue
to operate under unusual or unexpected circumstances. Cohen [8] argues that
maintenance comprises three stages:

1. Recognition – distinguishing what is normal from what is abnormal
2. Cognition – making decisions based on available information
3. Action – doing something as a result of any decisions made

Recognition, cognition and action (RCA), taken alone as a three part pro-
gramme, do not do justice to the complexity of the natural immune system.
However, it could be argued that some of the more complex elements of the nat-
ural immune system, such as its ability to seemingly learn and remember, exist
largely to enhance the process of RCA. Therefore, it is proposed that RCA be
considered the core process of an immune response – and that establishing RCA
in swarm robotics systems is a step toward solving the problems outlined in [3].
Cohen’s definitions of recognition, cognition and action [8] map nicely to the
control engineering subfield of fault detection, diagnosis and recovery (FDDR).
If RCA is considered to be the core process in the natural immune response
then, by extension, FDDR may be considered as the foundation of an artificial
immune response in swarm robotics systems.

The first part of any active FDDR approach is fault detection. There are a
number of examples where fault detection in swarm systems, by various methods,
has been successful in simulation (see the work by Millard et al. [11], Khadidos et
al. [10] and Tarapore et al. [16]), and in hardware (see the work by Christensen et
al. [7]). In contrast, there has been limited research on fault diagnosis in robots,
examples include the immune-inspired work by Bi [1] and Bi et al. [2]. However,
these works only consider single-robot systems. To the best of our knowledge,
very little research has been conducted with regard to fault diagnosis in swarm
robotics systems, as defined by Şahin [15].

Some of the previous work on fault detection in swarms (such as [7], [10])
opts to omit an attempt at fault diagnosis, and, instead, removes or shuts down
any robot which is detected as faulty. Although such approaches have shown
themselves to be effective in the controlled scenarios in which they are tested,
this is an expensive approach, and one which may not always be justifiable -
particularly in cases where the cost of replacing a faulty part of an individual
robot is significantly less than replacing the whole unit.

It is not unreasonable to assume that, as the field of swarm robotics continues
to expand and develop, so too will the complexity of the tasks they are assigned
to, as well as the complexity of their constituent robots. If this is the case,
omitting fault diagnosis and partial recovery options will become an increasingly
inefficient approach – inhibiting a swarm robotics system’s scalability and their
capability to operate in challenging environments. Furthermore, some emergent
behaviours typically require a minimum number of functional robots in a swarm,

so approaches that simply remove faulty individuals from the collective may
jeopardise long-term autonomy [3].

For the reasons outlined above, the problem addressed in this paper is that of
fault diagnosis in swarm robotics systems. Although fault diagnosis is the focus
of this paper, a complete artificial immune response will include fully-integrated
FDDR. Therefore, when developing a means of fault diagnosis, there should be
some consideration as to how this might bridge the gap between fault detection
(which is a prerequisite to any integrated autonomous diagnosis mechanism) and
fault recovery.

Winfield and Nembrini [18] show that different fault types will cause a robot
to exhibit behaviour that deviates from its expected behaviour in different ways.
The hypothesis of this work is that, if individual robot behaviours can be appro-
priately characterised as a series of features, different fault types will produce
unique patterns of these features – thereby making them classifiable. This paper
therefore proposes a fault diagnosis approach based on behavioural feature vec-
tors (BFV), which encode a robot’s behaviour as a series of binary features. Such
feature vectors have been previously used successfully by Tarapore et al. [16] for
the purpose of fault detection in swarm robotics systems and, as is shown in this
paper, can similarly be used to perform fault diagnosis via the characterisation
of robot behaviour.

The contribution of this paper is to propose a novel approach to combine
proprioceptively sensed and externally sensed features to diagnose fault types.
This is in line with the fault tolerant and swarm robotics perspectives proposed
by Winfield and Nembrini [18] and Şahin [15], respectively.

2 Behaviour Characterisation

The problem now is in defining a BFV that will allow for the reliable classification
of fault types. Given that a swarm robotics system may exhibit a number of
different normal behaviours, this must be taken into account when defining the
BFV and selecting an appropriate classification method.

There are a variety of ways to design a feature vector for an individual robot.
For example, assuming access to the relevant hardware/software documentation,
it should be possible to systematically reduce every possible functionality to a
series of base behaviours. For example, for ground based vehicles, individual
features could relate to whether or not its wheels are turning and, if so, which
wheels and how fast? To do this exhaustively, however, may prove to be a time
consuming process and, in the context of fault classification, may not be neces-
sary as it may not exclusively produce discriminating features. Discriminating
features, which are actively sought, are features that allow a system to distin-
guish different fault types based on their presence, absence, or in more complex
systems, their intensity. By way of example, a complete sensor failure and power
failure would both result in an individual robot becoming unresponsive to its
neighbours. However, a sensor failure would not necessarily prevent the robot

from moving, whereas a power failure would. Hence, a feature describing the
motion of the robot could be considered discriminatory in this case.

It may be possible for a system to develop, and even evolve in real-time,
its own discriminatory BFV using search-based optimisation techniques. How-
ever, the focus in this paper will be on predefined and unchanging BFVs. It is
necessary, if it is to be discriminatory, that a BFV for an individual robot be
designed in sympathy with the behaviour(s) that the robot will exhibit. It is
therefore also necessary for the swarm robotics system to exhibit static user-
defined, or at least user-selected, behaviour(s). It should then be possible for
the user to systematically atomise these behaviours into sub-behaviours. For
example, obstacle/neighbour proximity sensing and linear and angular motion
could be considered sub-behaviours of general obstacle avoidance behaviour. If
the user atomises a known finite number of behaviours into sub-behaviours of an
appropriate granularity (some of which will be common to multiple behaviours)
and assigns a feature to each of these, the resultant repertoire of BFVs should
then be representative of every behaviour the system can exhibit.

Although this makes a number of assumptions regarding swarm systems and
their applications, it is anticipated that, in a vast majority of cases, a swarm
system will have been designed or selected for use with a specific application, or
applications, in mind. It is therefore reasonable to say that, assuming the systems
behaviours are non-evolving, the chosen system will exhibit a finite number of
pre-determined behaviours when performing its task(s).

There has been previous mention of work by several researchers toward fault
detection in swarm robotics systems [12], [7], [10], [16]. In each piece of work,
the fundamental mechanism that enables a fault to be detected can be essen-
tially reduced to the comparison of an individual’s observed behaviour to that
which the swarm or observer expects it to exhibit. We also acknowledge that the
problems associated with endogenous fault detection (fault detection performed
proprioceptively), such as a robot suffering controller software hang being unable
to communicate this to the swarm [6], also applies to fault diagnosis – using the
same example, the faulty robot would report a BFV that did not reflect its true
behaviour, potentially leading to misclassification. Interestingly, the same could
also be said of exogenous approaches (fault detection performed using external
observations) when applied to fault diagnosis; it would be very difficult for an
independent observer to distinguish a robot suffering an onboard software hang
that renders it unresponsive to its neighbours from a common sensor failure, as
both could potentially have the same net effect on robot’s behaviour.

It is proposed that one way in which this problem could be solved is by com-
bining proprioceptively and externally estimated BFVs, producing what can be
thought of as a behavioural feature quasi-matrix. To do this, the proprioceptive
BFV is designed such that it reflects what an individual robot believes its state
is, and the externally estimated BFV such that it reflects what its neighbours
ascertain its state to actually be. It is anticipated that multiple methods of fea-
ture estimation will not only improve the reliability of reported behaviour, but
also represent a useful starting point for a classification process, as some faults

will create discrepancies in features directly relating to the ways in which they
manifest. For example, motor failure will a cause discrepancy in features relating
to motion where one feature reflects the inclination of the robot’s controller and
the other reflects the robot’s true movement.

2.1 Deriving Behavioural Features from Robot Behaviours

For fault diagnosis to be a useful technique in swarm robotics systems, it is
important that any fault classification technique is compatible with the swarm’s
requirement to be flexible, and should therefore be applicable to any range of
behaviours one might expect a given swarm system to exhibit. This paper chooses
to use flocking, aggregation, and dispersion behaviours as a case study (see
Algorithms 1, 2, and 3) based on their widespread use in swarm robotics research.
These three behaviours can each be considered similar at an individual level,
sharing simple and identical functionalities, yet produce significantly different
collective behaviours – satisfying the behavioural conditions for swarm robotics
systems described in [15]. This is therefore a simple, yet representative, starting
point for work towards a fault diagnosis mechanism for swarm systems.

The flocking threshold, k, in Algorithm 1 is a user-defined threshold that indi-
cates the point at which a robot’s desire to be close to the swarm is over-ridden by
its desire to be travelling in the same direction as the swarm (approximately 8cm
from the average neighbour position, after noise). The close-proximity threshold,
C, which appears in Algorithm 1, Algorithm 2 and Algorithm 3 dictates the dis-
tance at which a robot will avert its course to avoid collision (approximately 3cm,
after noise). The precise values of k and C were decided upon with consideration
to the scales of the particular robots and arena used for this work. The values
for both are liable to vary in proportion to the system under consideration.

This work considers every instance in which a robot executes an action, and
then assigns one feature to that action and one feature in sympathy with the con-
ditions that necessitate it. Following this process leads to the following BFV that
is proposed to be sufficiently representative of the aforementioned behaviours.
Following Tarapore et al. [16], the BFV described here is a concatenation of
five individual binary features, where a returned value of 1 or 0 indicates the
presence or absence of the feature, respectively:

F1 = 1 if NR > 0, otherwise F1 = 0 (1)

where NR is the total number of neighbours in sensing range of the robot.

F2 = 1 if NC > 0, otherwise F2 = 0 (2)

where NC is the total number of neighbours at a distance less than the close
proximity threshold, C, to the robot.

F3 = 1 if |v| >
4

5
|vmax|, otherwise F3 = 0 (3)

where |v | is the magnitude of linear velocity.

Algorithm 1 Flocking

1: while Running do

2: if Distance to object < close-proximity threshold (C) then avoid object

3: if Average neighbour distance < flocking threshold (k) then calculate target
heading from the average bearings of all neighbours in range

4: else Calculate target heading from the average positions of all neighbours in
range

5: if Robot heading not in range target heading ± 15 ◦ then turn toward target
heading

6: else Move forward

Algorithm 2 Aggregation

1: while Running do

2: if Distance to object < close-proximity threshold (C) then avoid object

3: Calculate target heading from the average positions of all neighbours in range
4: if Robot heading not in range target heading ± 15 ◦ then turn toward target

heading
5: else Move forward

F4 = 1 if |v| >
1

5
|vmax|, otherwise F4 = 0 (4)

F5 = 1 if |ω| >
2

5
|ωmax|, otherwise F5 = 0 (5)

where |ω| is the magnitude of the robots angular velocity.
Each feature is updated once per control-cycle (10ms). Because of the nature

of the externally sensed features, this means that F3, F4 and F5 are measured
over a very small window. Exactly how long a period these features should be
measured over is itself an optimisation problem. Measuring them over a longer
period will reduce the effects of noise. However, each time these features change
there will be some resultant discrepancy. This is because proprioceptively sensed
features will update in real-time, whereas the externally sensed features are
only able to update, at best, one tick subsequently. Therefore, increasing the
window over which these features are measured necessarily increases the amount
of time proprioceptive and externally sensed features will be discrepant - possibly
producing undesirable results. This is a problem that may have to be revisited
in the future, however, for the purposes of this work in simulation, updating
features at each control-cycle produced adequate results.

Algorithm 3 Dispersion

1: while Running do

2: if Distance to object < close-proximity threshold (C) then avoid object
3: else Move forward

The proprioceptive BFV is estimated via an individual robot’s sensors (for
features relating to object/neighbour proximity) or its controller (for features re-
lating to a robot’s movement). The externally estimated BFV uses a simulated
overhead sensor to obtain coordinate information for each robot at every time-
step. It is acknowledged that the use of an overhead sensor cannot be considered
traditionally ‘swarm-like’, nor realistic for multi-robot system in various scenar-
ios, and it is not proposed as a long term solution. Rather, it should be thought
of as a virtual sensor, in so far as it provides data that could be obtained locally
but, for ease of experimentation, has been obtained via an overhead sensor with
consideration given to a decentralised system i.e. robots will not be provided
with neighbour information if that neighbour is not in range of a local sensor.
Furthermore, the main objective of this work is not to provide a fully integrable
fault diagnosis mechanism for swarm systems, but to provide evidence that a
feature vector approach has merit in the context of fault diagnosis, and is some-
thing that is worth developing towards a more complete system. Therefore this
work meets the criteria for swarm robotics systems, as described by Şahin [15].

Feature Thresholds The combination of features F3, F4 and F5 allow for a
distinction to be made between a robot that has completely stopped, one that
is turning and one that is moving in a straight line. The thresholds for these
features were chosen with consideration to robot behaviours and system noise.

Given that a normally behaving robots wheels can only be in one of two states
(moving at maximum speed or not moving), a normally behaving robot is either
moving in a straight line at maximum speed, turning (which is approximate to
moving at half speed, albeit not in a straight line), or stationary. It is desirable
that each of these states be distinct from one another.

The threshold for F3 is defined to be 80% of vmax. In a noiseless system it
could have been set to vmax, however, even with noise, there is no scenario in
which a normally behaving robot would ever reach this velocity if it were not
moving in a straight line. Therefore the presence of F3 is the sole indicator for
that particular behavioural state.

The threshold for F4 is defined to be 20% of vmax. Similarly to F3, this
could have been set to 0 in a noiseless system. The purpose of this feature is to
distinguish a robot which has completely stopped. Although a robot with 0 < v

< vmax is obviously not stationary in absolute terms, for this experiment there
is no scenario where a normally behaving robot should ever have a velocity in
this range once its behaviour has stabilised. Therefore, if a robots velocity does
lie in this range, it can be attributed to overhead sensor noise about a stationary
robot. Consequently, the absence of F4 is the sole indicator that a robot has
stopped moving.

The purpose of F5 is to distinguish a robot that is turning. Given that a
normally behaving robot is either turning with maximum angular velocity or
not turning, this threshold could lie anywhere between 0 and ωmax in a noiseless
system. In this work the threshold was set to be as low as possible whilst retaining
a reliable reading.

This is by no means an exhaustive list of discriminatory features for the
given behaviours and, similarly to the use of an overhead sensor, should only be
viewed as a provisional BFV that can provide an adequate proof-of-principle.
Notably, there is not a feature to reflect the presence of a non-neighbour object.
The reason for this is that every feature must be reliably measured internally
by an individual, as well as externally by an observing neighbour. It is not
immediately clear how this feature could be measured by an observing neighbour
in a distributed manner, and so it has been omitted from this particular BFV.

2.2 Fault Types

If a fault or failure occurs in a system that does not cause the system to ex-
hibit a behaviour that deviates from what could be considered normal, then
the system can be said to be tolerant to the failure and thus no further action
is required. Therefore, research into swarm FDDR need only consider faults or
failures that cause disruption to the swarm’s collective behaviour. Exactly what
these faults are will vary from system to system and depend largely on the be-
haviour that particular system is exhibiting at a particular time. More important
at this stage is obtaining a proof-of-concept that different fault types are indeed
distinguishable from one another via the BFVs they produce. Defined below are
a number of representative fault types for a simulated marXbot robot [4], based
on a cross-section of the literature that informs this work.

Motor failure: The study by Winfield and Nembrini [18], in which they reject
the notion of inherent swarm robustness, is among the most significant in
motivating this work. In their study, motor failure is, by far, the most dam-
aging to collective behaviour. It is therefore an obvious choice for inclusion
in this study. Motor failure is split into two parts for this experiment. The
first being a complete failure of an individual’s left motor, the second being
a partial failure of the same motor. For a complete failure the motor will
stop and henceforth become unresponsive to its controller. For a partial fail-
ure the motor will remain responsive, however will only cause its associated
wheel to turn at half speed.

Sensor failure: Sensor failure is another recurring example used in fault tol-
erant swarm research [18] [5]. The exact details of a sensor failure will vary
from robot to robot, depending on their hardware. In this case, it is once
again split into complete sensor failure and partial sensor failure. For a com-
plete sensor failure an individual’s range and bearing (RAB) sensor, as well
its infra-red (IR) proximity sensor, will completely fail and return 0. That
is, the robot will be totally unable to detect the presence of its neighbours or
the walls of the arena. For a partial sensor failure, similar to the definition
used in [11], a robot will only be able to detect the presence of neighbours
within ±45 ◦ of its current heading (but still able to detect the arena walls).

Power failure: Again, a recurring example in work on fault tolerance [18] [5].
A robot that suffers a power failure will completely stop moving and remain
unresponsive to its surroundings. However, other robots in the swarm will

still be able to detect its presence. This assumes that, in a physical system,
each robot will be able to detect the presence of its neighbours independently
of whether or not that neighbour is responsive. This may not be the case
for all systems, however, in cases where robots are unable to communicate
their presence for one reason or another, they will go unacknowledged by the
swarm and essentially become nothing more than objects in an arena. Such
cases have been shown to have little to no detriment to collective swarm
behaviour [18], so are therefore not a priority for FDDR.

Software hang: Software hang is given as an example of a fault that necessi-
tates exogenous, or at least partly exogenous, approaches to fault detection
[6]. For this work, software hang will cause a robot to get stuck perform-
ing whatever action it was performing at the last moment it was normally
functioning. It is worth noting that the robot is allowed to continue broad-
casting its own BFV to the swarm (although this BFV will also be stuck and
unresponsive to changes in the robot’s behaviour from external factors e.g.
encountering a wall). This, again, works on the assumption that robots can
sense their neighbours independently, the justification for which is outlined
in the previous discussion on power failure.

3 Experimental Setup

To design and test this initial method for a BFV-based approach to fault classi-
fication, Autonomous Robots Go Swarming (ARGoS) [13] – a widely-employed
robot swarm simulator – is used. The use of a simulator is only a short-term
solution, and it is used only with the intention of trialling any fault diagno-
sis mechanism in a hardware system at the first reasonable opportunity. Given
that the work presented in this paper is primarily concerned with developing an
approach to fault classification and diagnosis, it is proposed that simulation is
sufficient for this proof-of-principle.

A swarm of 10 marXbots [4] are simulated. These robots collectively perform
one of the three behaviours described previously in an otherwise empty enclosed
arena, representing approximately 16 square metres (see Figure 1). Simulated
Gaussian noise is added to each robot’s sensor (µ=0, σ=1 ◦), as well the overhead
sensor (µ=0, σ= 2% dmax) – where dmax is the maximum distance that a robot
can travel in one tick. The noise on the overhead sensor is applied to the co-
ordinate values for each robot. Therefore 95% of the estimated linear velocity
values of each robot will be within a window equal to 4% of the robots maximum
velocity around it’s true velocity. The BFV of each robot is recorded over five
minutes of simulated time for all behaviour–fault combinations for 10 separate
and independent runs. In each run, swarm behaviour stabilised after 50 seconds.
This was therefore chosen as the point after which one of the six fault types
would be injected into a single robot.

Fig. 1. ARGoS simulation of 10 marXbot robots performing a dispersion behaviour.
Lines connecting pairs of robots represent mutual neighbour acknowledgement via RAB
sensor. Lines protruding from each robot represent IR sensor range.

4 Results and Discussion

To ascertain how useful BFVs are for classifying fault types a set of data is
obtained, consisting of an individual robot’s BFV for each of the 6 fault types
whilst it performs flocking behaviour. This is then used to train a decision tree
[14], after which one can observe how well this tree can classify the same fault
types for different behaviours. The advantage of using a decision tree for this
process over, for example, a neural network, is that a decision tree allows a user
to easily ascertain whether or not a feature is discriminatory. Flocking is used
as the normal behaviour for training data because it is the most complex of
the behaviours. Consideration is not given to the behaviour of non-faulty robots
in the swarm. The reason for this being that significant differences in robot
behaviour were not observed unless the robot was itself faulty. It is acknowledged
that this may not always be the case, as in [18].

Table 1 shows the average true positive rate for the trained decision tree
when it is applied to all three behaviours. These results were obtained by taking
an average over all 10 separate and independent runs of this experiment for each
behaviour–fault combination. Note that both training and test sets of data do
not include the first 50 seconds in which no faults are present. Fault types are
indicated in Table 1 as follows:

Fault type Flocking Aggregation Dispersion

H1 79.5 ±20.4 % 85 ±14.7 % 27.9 ±13.8 %
H2 98.3 ±2.9 % 88.8 ±31.3 % 80.6 ±11.3 %
H3 100% 91.8 ±12.3 % 92.1 ±9 %
H4 86 ±5.8 % 89.3 ±8 % 94 ±3.6 %
H5 100% 100% 100%
H6 43.1 ±39 % 8.1 ±25.6 % 40.4 ±42.6 %

Table 1. Average true positive rate ± std.dev. (σ) % for a trained decision tree over
10 replicates.

– H1 – Complete motor failure
– H2 – Partial motor failure
– H3 – Complete sensor failure
– H4 – Partial sensor failure
– H5 – Power failure
– H6 – Software Hang

The results show that, bar a few notable exceptions, a decision tree is able
to correctly classify fault types with a high average reliability based on their
proprioceptive and externally estimated BFVs. Visualising the trained decision
tree confirmed that all 10 features were used in the classification process, and
were therefore discriminatory (See Figure 2). The bounds used for each decision,
as seen in Figure 2, are all set to 0.5 (∀b = 0.5). This is a result of optimisation,
as 0.5 represents the midpoint between 0 and 1. However, as each feature can
only take on a value of 0 or 1, the decision tree would give an identical output
for 0 < ∀b < 1.

As the decision tree was trained on a swarm exhibiting flocking behaviour, the
best performance is observed when it is applied to a swarm exhibiting flocking
behaviour. Although the performance of the decision tree is generally good when
applied to swarms exhibiting aggregation or dispersion behaviours, it is expected
that the performance observed for each would be even better if the decision tree
used were trained on either of these behaviours, respectively.

There is a notably high rate of correct classification across all behaviours for
a robot exhibiting power failure. The reason for this is that a robot exhibiting
power failure will produce a feature vector that is not only distinct from that
of any of the other fault types, but also one that will remain largely constant.
The only features that will change once a robot experiences a power failure
will be externally sensed neighbour features. All other features will return 0
for the entire duration of the failure. It can be observed in Figure 2 that a
robot will be classified with a power failure (denoted as ‘PF’) immediately and
exclusively when feature 7 (corresponding to proprioceptively estimated linear
velocity) returns 0. This is a characteristic unique to a power failure fault, as for
all other faults the robot controller will still attempt to keep the robot moving,
making it immediately recognisable.

Fig. 2. Visual representation of the trained decision tree where p and e indicate pro-
prioceptively and externally estimated features, respectively.

Interestingly, there is a high rate of misclassification when a complete motor
failure is present in a swarm performing dispersion, despite the opposite being
true for other behaviours. In these instances, the fault is misclassified as being a
partial motor failure (see Table 2). This occurs because complete motor failure
in flocking behaviour, on which the decision tree is trained, produces generally
different behaviour (robot is static for large periods of time) compared to com-
plete motor failure in dispersion - which far more closely resembles the effects of
partial motor failure in flocking (robot spends large periods of time in circular
motion). Although this is not ideal, for all practical intents and purposes, this
does not pose a significant problem for two reasons:

– Firstly, feature thresholds could be altered in order to distinguish between
partial and complete motor failures more effectively. For example, complete
motor failure would produce circular motion with a smaller diameter than
partial motor failure, essentially making this a calibration problem.

– Secondly, complete and partial motor failures will likely have very similar, if
not identical, associated recovery actions. Therefore discriminating between
the two from a practical perspective may be redundant in many scenarios.

Additionally, there is a persistently high rate of misclassification of software
hang across all behaviours. The reason for this is that software hang can produce

Table 2. Mean classification accuracy for 10 replicates of complete motor failure in
dispersing robotic swarms.

H1 H2 H3 H4 H5 H6

27.9 ±13.8 % 61.7 ±34.6 % 0% 10.2 ±21.8 % 0% 0.2 ±0.4 %

H1 H2 H3 H4 H5 H6

Aggregation 1 ±2.8 % 79.9 ±42.1 % 8 ±25.3 % 3 ±6.6 % 0 % 8.1 ±25.6 %
Dispersion 3.8 ±8.3 % 32.1 ±47.1 % 17 ±36.1 % 6.7±6.8 % 0 % 40.4 ±42.6 %

Table 3. Mean classification accuracy for 10 replicates of software hang failure in
aggregating and dispersing robotic swarms.

entirely different behaviours depending on what the robot was doing at the
point of fault injection. The training data used an example where software hang
was injected whilst the robot was moving in a straight line. However, for many
subsequent examples, particularly where the swarm behaviour was aggregation,
the robot was turning at the point of fault injection - leading to a classification of
partial or complete motor failure. Furthermore, even when the robot was moving
in a straight line, if the robot had no neighbours in sensing range at the point
of fault injection, the subsequent behaviour was indistinguishable from complete
sensor failure (see Table 3).

How an individual fault might produce several different behaviours, depen-
dent on external factors, is a consideration that was absent from the work de-
scribed. However it is one that may be very important, if not essential, to a re-
liable fault diagnosis mechanism. Another absent consideration from this work,
and one that could have decreased misclassification, is how different fault types
may produce distinct time-dependent BFV patterns. Observing software hang
over a period of time would make the fault easily identifiable, as a static propri-
oceptive BFV would be observed for a changing externally estimated BFV.

5 Conclusion

In this work it has been shown that by characterising robot behaviour as a BFV
one is able to diagnose fault types occurring in individuals with a generally high
reliability. Having said that, it is acknowledged that the work, described here,
towards fault diagnosis in swarms is by no means complete. There are still a
number of issues to address, such as how a system can reliably diagnose fault
types which can manifest in different ways, or consideration of how one can
diagnose faults in real-time.

In future work the feature vector approach will be carried forward and devel-
oped, for instance by considering time-based patterns, however there will also be
a move towards an online and largely unsupervised approach to fault diagnosis.
Furthermore, the work will move from simulation to a hardware system. It is
acknowledged that working with the sensor noise observed in a hardware system
will not be the same as working in simulation with controlled noise, and that
the feature vectors described in this paper may not be appropriate for such a
system. It is expected that a reduction in performance will be observed when
making that transition. However, as each feature has an associated user-defined

threshold to determine it’s value, these thresholds (along with other parameters)
should be modifiable for compatibility with a hardware system.

Although decision tree algorithms can be useful for identifying discriminating
features, they are not envisaged as being a long term solution to a classification
problem on account of their inflexibility. Rather, this work will move towards a
more complex system whereby a previously unseen fault can be associated with
a recovery option via a series of diagnostic tests and a process of trial and error,
after which the BFVs of subsequent faults can be tested for similarities to known
faults. It is proposed that, based on the results previously described, not only
would such a system be possible, but that it could also be built to satisfy the
conditions for swarm robustness, flexibility, and scalability.

References

1. Ran Bi. Immune-inspired fault diagnosis for a robotic system. PhD thesis, Univer-
sity of York, 2012.

2. Ran Bi, Jon Timmis, and Andy Tyrrell. The diagnostic dendritic cell algorithm
for robotic systems. In Evolutionary Computation (CEC), 2010 IEEE Congress
on, pages 1–8. IEEE, 2010.

3. Jan Dyre Bjerknes and Alan F T Winfield. On fault tolerance and scalability of
swarm robotic systems. In Distributed Autonomous Robotic Systems, pages 431–
444. Springer, 2013.

4. Michael Bonani, Valentin Longchamp, Stéphane Magnenat, Philippe Rétornaz,
Daniel Burnier, Gilles Roulet, Florian Vaussard, Hannes Bleuler, and Francesco
Mondada. The marXbot, a miniature mobile robot opening new perspectives for
the collective-robotic research. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 4187–4193. IEEE, 2010.

5. Jennifer Carlson. Analysis of how mobile robots fail in the field. PhD thesis,
University of South Florida, 2004.

6. A. L. Christensen, R. O’Grady, M. Birattari, and M. Dorigo. Fault detection in
autonomous robots based on fault injection and learning. Autonomous Robots,
24(1):49–67, 2008.

7. Anders Lyhne Christensen, Rehan O’Grady, and Marco Dorigo. From fireflies to
fault-tolerant swarms of robots. IEEE Transactions on Evolutionary Computation,
13(4):754–766, 2009.

8. Irun R Cohen. Tending Adam’s Garden: evolving the cognitive immune self. Aca-
demic Press, 2000.

9. Leandro Nunes De Castro and Jonathan Timmis. Artificial immune systems: a new
computational intelligence approach. Springer Science & Business Media, 2002.

10. Adil Khadidos, Richard M Crowder, and Paul H Chappell. Exogenous Fault De-
tection and Recovery for Swarm Robotics. IFAC-PapersOnLine, 48(3):2405–2410,
2015.

11. Alan G Millard. Exogenous Fault Detection in Swarm Robotic Systems. PhD thesis,
University of York, 2016.

12. Alan G Millard, Jon Timmis, and Alan F T Winfield. Run-time detection of
faults in autonomous mobile robots based on the comparison of simulated and real
robot behaviour. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3720–3725. IEEE, 2014.

13. Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy,
Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Freder-
ick Ducatelle, Timothy Stirling, Álvaro Gut́ıerrez, Luca Maria Gambardella, and
Marco Dorigo. ARGoS: a modular, multi-engine simulator for heterogeneous swarm
robotics. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, pages 5027–5034. IEEE, 2011.

14. J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
15. Erol Şahin. Swarm robotics: From sources of inspiration to domains of application.

In International workshop on swarm robotics, pages 10–20. Springer, 2004.
16. Danesh Tarapore, Pedro U. Lima, Jorge Carneiro, and Anders Lyhne Christensen.

To err is robotic, to tolerate immunological: fault detection in multirobot systems.
Bioinspiration & biomimetics, 10(1):16014, 2015.

17. Jon Timmis, Paul Andrews, and Emma Hart. On artificial immune systems and
swarm intelligence. Swarm Intelligence, 4(4):247–273, 2010.

18. Alan F T Winfield and Julien Nembrini. Safety in numbers: fault-tolerance in robot
swarms. International Journal of Modelling, Identification and Control, 1(1):30–37,
2006.

	Towards Fault Diagnosis in Robot Swarms: An Online Behaviour Characterisation Approach

