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Radio Science

Power allocation for target detection in radar networks based
on low probability of intercept: A cooperative
game theoretical strategy

Chenguang Shi1,2 , Sana Salous2 , Fei Wang1, and Jianjiang Zhou1

1Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and
Astronautics, Nanjing, China, 2School of Engineering and Computing Sciences, Durham University, Durham, UK

Abstract Distributed radar network systems have been shown to have many unique features. Due
to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In
practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve
better detection performance, which may be in contradiction with low probability of intercept (LPI).
Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a
cooperative game-theoretic framework such that the LPI performance can be improved. Taking into
consideration both the transmit power constraints and the minimum signal to interference plus noise
ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based
on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power
allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized
as a metric to evaluate power allocation. Then, with the well-designed network utility function, the
existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative
Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the
cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness
of the proposed algorithm.

1. Introduction
1.1. Background and Motivation
Distributed radar network systems have received contentiously growing attention in a novel class of radar
system and on a path from theory to practical use owing to their advantage of signal and spatial diversities
[Fisher et al., 2006; Haimovich et al., 2008; Li and Stoica, 2009; Pace, 2009], where the term radar networks refer
to the use of multiple-transmit as well as multiple-receive antennas. In recent years, the study of distributed
radar network architectures has received sizeable impetus, which has been extensively studied from various
perspectives [Chen et al., 2013; Fisher et al., 2006; Godrich et al., 2010, 2012; He et al., 2016; Shi et al., 2015,
2016a, 2016c, 2016d]. In Fisher et al. [2006], the authors introduce the concept of distributed multiple-input
multiple-output (MIMO) radar and investigate the inherent performance limitations of both conventional
phased array radars and the newly proposed radars. Niu et al. [2012] develop the localization and tracking
algorithms for noncoherent MIMO radar systems, in which it is demonstrated that the noncoherent MIMO
radar can provide a significant performance improvement over traditional monostatic phased array radar with
high range and azimuth resolutions. The work in Chavali and Nehorai [2012] addresses the problem of sen-
sor scheduling and power allocation in a cognitive radar network for multiple-target tracking. Yan et al. [2015]
extend the previous results in Chavali and Nehorai [2012] and present a performance-driven power alloca-
tion strategy for Doppler-only target tracking in unmodulated continuous wave radar network, where the
Bayesian Cramer-Rao lower bound (CRLB) is derived and utilized as an optimization criterion for the optimal
power allocation scheme. In Nguyen et al. [2015], the authors investigate the problem of target tracking in a
multistatic radar system from the perspective of adaptive waveform selection, in which the transmitted wave-
form parameters are selected to minimize the target tracking covariance matrix. Shi et al. [2016c] study the
problem of joint target position and velocity estimation of a Rician target in orthogonal frequency division
multiplexing (OFDM)-based passive radar networks, and the modified CRLB on the Cartesian coordinates of
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target position and velocity are computed. Overall, the previous studies lay a solid foundation for the problem
of performance optimization in distributed radar network systems.

Game theory is a branch of mathematics traditionally investigated and applied in the areas of economics,
political science, and biology, which has emerged in recent years as an effective tool for radar network systems,
wireless communications, and signal processing [Bacci et al., 2015]. Rashid-Farrokhi et al. [1998] investigate
the game theory-based joint beamforming and optimal power control in wireless networks with antenna
arrays, and an iterative method is proposed to jointly update the beamformer weights and the transmitting
powers so that it converges to the optimum values. In Gogineni and Nehorai [2012], a polarimetric design
algorithm is proposed for distributed MIMO radar target detection from a game-theoretic perspective, which
examines the impact of all possible transmit strategies on the target detection performance with different
target profiles. Song et al. [2014] model the interaction between a smart target and a smart MIMO radar
as a two-person zero-sum game, and unilateral, hierarchical, and symmetric games are investigated based
on the available information set for each player. Moragrega et al. [2013] present a distributed scheme for
power selection in wireless sensor networks with positioning capabilities utilizing the framework provided by
supermodular games. Piezzo et al. [2013] present a noncooperative game code design in radar networks to
maximize the signal to interference plus noise ratio (SINR) of each radar. Lan et al. [2015] present a two-step
water-filling approach for Stackelberg game between MIMO radar and target in the presence of clutter.
Bacci et al. [2012] study the problem of power allocation in radar networks based on game theory for the
first time, which presents a distributed algorithm based on game theory for efficiently allocating the trans-
mit power in radar networks, while controlling the performance of the radar sensor networks in terms of
probability of false alarm and detection at each radar node. In Panoui et al. [2014a], a distributed power allo-
cation scheme is proposed for a multistatic MIMO radar network based on noncooperative game theory,
whose aim is to minimize the total transmission power while maintaining a specific signal-to-disturbance
ratio (SDR). Furthermore, Panoui et al. [2014b] also investigate the performance of the game-theoretic strat-
egy in the presence of estimation error, while Deligiannis et al. [2016a] address a competitive power allocation
game-theoretic problem between a MIMO radar system and multiple jammers. Deligiannis et al. [2016b] also
investigate a game-theoretic method to tackle the problem of joint beamforming and power allocation in a
distributed radar network. Panoui et al. [2016] employ the potential games to investigate the interaction of
MIMO-based clusters of radars within a game-theoretic framework, which maximizes the SDR of the clusters
of radars by selecting the most appropriate waveforms. In Deligiannis and Lambotharan [2017], a Bayesian
game-theoretic SINR maximization and power allocation algorithm is proposed for a multistatic radar network
system, where the primary goal of each radar is to maximize their SINR with the constraint of its maximum
transmitting power.

However, in noncooperative game model, rational but selfish players maximize their own individual utilities
in a self-interested manner, which will inevitably increase the mutual interference to other players. The objec-
tive of a noncooperative game is to find an Nash equilibrium (NE) solution, where each player has no chance
to increase its utility unilaterally. Unfortunately, the sum of the individual utilities might not be maximized at
the NE point. Cooperative game theory can provide an expressive and flexible framework for modeling col-
laboration in multiagent systems, in which players are motivated to cooperate with one another to enhance
their own utility functions. In Sun et al. [2014] and Chen et al. [2015], the problem of optimal power alloca-
tion with the goal of maximizing the determinant of Bayesian Fisher information matrix in distributed MIMO
radar networks is studied for target localization and tracking, wherein it is formulated as a cooperative game
and the Shapley value is exploited as the solution for the proposed scheme. Simulation results show the
superior performance of game-theoretic power allocation over other allocations in various scenarios. Chen
et al. [2016] develop two power management games for cooperation localization in both asynchronous and
synchronous networks.

As the notion of low probability of intercept (LPI) design is an essential part of military operations in hos-
tile environments [Pace, 2009], LPI performance optimization is a primary issue that needs to be taken into
account in designing radar network systems, and some of the noteworthy works include Narykov et al. [2013],
Narykov and Yarovoy [2013] Shi et al. [2015, 2016a, 2016b], and Zhang et al. [2015]. Narykov et al. [2013] and
Narykov and Yarovoy [2013] investigate the sensor scheduling algorithm of selecting and assigning sensors
dynamically for target tracking, which can obtain a good tradeoff between the target tracking accuracy and
the LPI performance. Shi et al. [2015, 2016a] address the LPI optimization strategies in radar networks, where
it has been demonstrated that radar network architectures with multiple transmitters and receivers can
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provide remarkable LPI performance advantages over traditional monostatic radar system and has triggered a
resurgence of interest in radar networks. Zhang et al. [2015] propose a novel coordination algorithm of oppor-
tunistic array radars in the networks for target tracking, which not only has excellent target tracking accuracy
in clutter but also provides better LPI performance compared with other approaches. In Shi et al. [2016b], the
problem of LPI-based radar waveform design in signal-dependent clutter for joint radar and cellular com-
munication systems is studied, where three different LPI-based criteria are presented to minimize the total
transmitted power of the radar system by optimizing the OFDM radar waveform with a given SINR constraint
and a minimum required capacity for the wireless communication systems. On the basis of the research men-
tioned above, power allocation problem of distributed radar network systems has been studied nicely with
the framework of a cooperative game-theoretic model [Chen et al., 2015, 2016; Sun et al., 2014], while the prob-
lem of LPI-based power allocation game for cooperative target detection in radar networks, which has not
been considered, needs to be investigated.

1.2. Major Contributions
To be specific, the main contributions of this paper are as follows:

1. We build a framework of adaptive power allocation strategy for cooperative target detection in radar networks.
A novel cooperative Nash bargaining power allocation game (NBPAG) model based on LPI is formulated
subject to the transmit power constraints and the SINR constraint of each radar, which improves the LPI
performance by minimizing the total transmit power in radar networks;

2. We strictly prove the existence and uniqueness of Nash bargaining solution (NBS) and develop an iterative Nash
bargaining algorithm to solve the NBPAG model;

3. Numerical simulations demonstrate the superior LPI performance improvement of the proposed NBPAG strategy
in radar networks compared with the NE solution of the noncooperative game;

4. We reveal the relationships between the power allocation results and the following two factors: target radar cross
section (RCS) and the relative geometry between target and radar networks.

1.3. Outline of the Paper
The rest of this paper is organized as follows. Section 2 describes the system model of radar networks. Section 3
presents the basic framework for the cooperative NBPAG problem based on LPI, including the basic concepts
of the cooperative game, and the well-designed network utility function. An iterative Nash bargaining algo-
rithm is developed for the NBPAG, along with analytical proofs that show the existence and uniqueness of the
NBS. Numerical simulations are provided in section 4, followed by conclusion remarks in section 5.

2. System Model

Consider a radar network composed of Nt netted radars, as illustrated in Figure 1. The ith radar receives the
echoes from the target due to its transmitted signals as well as the signals from the other radars, both scattered
off the target and through a direct path. We assume that all the radars detect the target in the same frequency
band. The transmitted signals from different radars may be correlated because of various reasons, including
the absence of radar transmission synchronization [Panoui et al., 2016]. Each radar can independently detect
the target and send its received signals to the fusion center which takes a decision once the information
coming from all the radars is collected. In the presence of a target, the received signal at the radar i can be
given by as follows [Deligiannis and Lambotharan, 2017]:

si = 𝛼i

√
pixi +

Nt∑
j=1,j≠i

𝛽i,j
√

pjxj + wi, (1)

where xi = 𝜙iai denotes the transmitted signal from radar i, ai = [1, ej2𝜋fD,i ,… , ej2𝜋(N−1)fD,i ] denotes the
Doppler steering vector of radar i with respect to the target, fD,i is the Doppler shift associated with the radar
i, N is the number of received pulses in the time-on-target, and 𝜙i is the predesigned waveform transmitted
from radar i. 𝛼i represents the channel gain at the direction of the target, pi is the transmit power of radar i,
𝛽i,j stands for the cross gain between radar i and j, and wi denotes a zero-mean white Gaussian noise with
variance 𝜎2. It is assumed that 𝛼i ∼  (0, ht

i,i), 𝛽i,j ∼  (0, ci,j(ht
i,j + hd

i,j)), and wi ∼  (0, 𝜎2), where ht
i,i rep-

resents the variance of the channel gain for the radar i-target-radar i path, ci,jh
t
i,j represents the variance of the

channel gain for the radar i-target-radar j path, ci,jh
d
i,j represents the variance of the channel gain for the direct

radar i-radar j path, and ci,j denotes the cross-correlation coefficient between the ith radar and the jth radar.
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Figure 1. Radar networks system model.

Define the variances of the channel gains for the corresponding paths as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ht
i,i =

Gt Gr𝜎
RCS
i,i 𝜆2

(4𝜋)3R4
i

,

ht
i,j =

Gt Gr𝜎
RCS
i,j 𝜆2

(4𝜋)3R2
i R2

j

,

hd
i,j =

G
′
t G

′
r 𝜆

2

(4𝜋)2d2
i,j

,

(2)

where Gt is the radar main-lobe transmitting antenna gain, Gr is the radar main-lobe receiving antenna gain,
G

′

t is the radar side-lobe transmitting antenna gain, G
′

r is the radar side-lobe receiving antenna gain, 𝜎RCS
i,i is

the radar cross section (RCS) of the target with respect to the ith radar, 𝜎RCS
i,j is the RCS of the target between

the ith radar and jth radar, 𝜆 denotes the wavelength, Ri denotes the distance from the ith radar to the target,
Rj denotes the distance from the jth radar to the target, and di,j denotes the distance between the ith radar
and jth radar. All the variances of channel gains are assumed to be fixed during observation.

Here the generalized likelihood ratio test is used to determine the appropriate detector. The probabilities of
miss detection PMD,i(𝛿i, 𝛾i) and false alarm PFA,i(𝛿i) can be derived from the following equations [Conte et al.,
1995; Gini, 1997]: ⎧⎪⎨⎪⎩

PMD,i(𝛿i, 𝛾i) = 1 −
(

1 + 𝛿i

1−𝛿i
⋅ 1

1+N𝛾i

)1−N
,

PFA,i(𝛿i) = (1 − 𝛿i)N−1,

(3)

where 𝛿i is the detection threshold. 𝛾i denotes the SINR received at the ith radar, which can be given by the
following:

𝛾i =
ht

i,ipi∑Nt
j=1,j≠i ci,j

(
hd

i,jpj + ht
i,jpj

)
+ 𝜎2

. (4)

Equation (4) can equivalently be rewritten as follows:

𝛾i =
ht

i,ipi

I−i
, (5)
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where the total interference and noise received at the ith radar is defined as the following:

I−i =
Nt∑

j=1,j≠i

ci,j

(
hd

i,jpj + ht
i,jpj

)
+ 𝜎2. (6)

Following the analysis of Bacci et al. [2012] and Panoui et al. [2014a], we can obtain the corresponding 𝛿i by
equating PMD,i(𝛿i, 𝛾i) and PFA,i(𝛿i) to the predefined parameters, which can be determined by the required
target detection performance. Then, using the obtained 𝛿i , we can compute the value of 𝛾i for each radar. In
order to examine the interaction among radars and determine the best strategy for each radar, we propose to
optimize the transmit power allocation for radar networks using a cooperative game model. Specifically, the
radar network optimizes power allocation to maximize its utility function for a given SINR requirement. This
competition can be modeled utilizing a cooperative power allocation game as follows.

3. Game Theoretical Formulation

This section investigates the problem of adaptive power allocation to each netted radar in a distributed fash-
ion, where an LPI-based NBPAG model is developed for radar networks. The objective of such allocation is to
minimize the total transmit power while maintaining a certain target detection requirement in radar network
systems. Cooperative game-theoretic framework is a powerful tool for the resulting problem because of its
distributed nature. First, we define a novel SINR-based network utility function to evaluate power allocation,
which is formulated as a cooperative game. Then, the existence and uniqueness of NBS are proved analyt-
ically. Moreover, an iterative Nash bargaining algorithm is implemented that converges quickly to a Pareto
optimal equilibrium for the cooperative game.

3.1. Game Theory and Utility Function
Noncooperative game theory is an excellent mathematical tool, which is very suitable for modeling interac-
tions between selfish and rational decision makers in distributed networks [Bacci et al., 2012]. A utility function
of a player quantifies its degree of satisfaction as a function of the combination of all players choices [Yang
et al., 2015]. In distributed radar network systems, all the netted radars detect the target in the same frequency
band. All the radars in a game with conflict interests will behave in a selfish and rational manner to maximize
their own utility functions. The objective of noncooperative game is to find an NE point at which none of the
radars desires to change its transmit strategy unilaterally. However, the sum of the individual utility functions
may not be Pareto optimal at the NE point.

In a cooperative game model, the netted radars adjust their transmission strategies to maximize the network
utility function [Liu and Dong, 2014]. The network utility function is selected as the sum of the individual util-
ities of the radars. With the system model described above, the cooperative power allocation game can be
defined as follows:

Π =
[
𝒩 , {pi}N

i=1, {ui(pi,p−i)}N
i=1

]
. (7)

The mathematical structure of a cooperative game model consists of the following three primary components
[Yang et al., 2015]:

1. Player set: In this paper, players are netted radars, which are decision makers that choose a particular power
level to transmit. A finite set of radars is denoted as 𝒩 = {1, 2,… ,Nt}, where Nt is the number of players
in the game.

2. Strategy space: Herein, the strategy space is defined by the transmit power allocation strategy. The ith radar
in a game selects a strategy si from its strategy set S. For each available power level pi ∈ si , the strategy
space of the game is defined as S = ×i∈𝒩 pi .

3. Utility function: The utility function of the ith radar is denoted as ui(pi,p−i), where p−i = [p1, p2,… , pi−1,

pi+1,… , pNt
] is the transmit power vector of all netted radars but radar i. It should be noticed that the ith

radars utility is determined by its strategy vector S = (pi,p−i). Each radar wants to select the appropriate
transmission strategy to maximize the network utility function.

For a cooperative game model, Yang et al. [2010] propose extended Nash theorem that specify the conditions
for reaching Pareto-optimal NBSs, as in Theorem 1.
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Theorem 1 (Extended Nash Theorem): There exists a unique and fair NBS p∗ = [p∗
1,… , p∗

Nt
], which can be

obtained by maximizing a Nash product term as follows:

p∗ = arg max
pi∈S,ui≥ui,min ,∀i

Nt∏
i=1

(ui(p) − ui,min), (8)

where S = ×i∈𝒩 pi is the strategy space of the game, and ui,min is the minimum utility requirement for player i
to satisfy its basic need. Taking advantage of the strictly increasing property of logarithmic function, the opti-
mization problem (8) can equivalently be transformed into the following problem with the objective function

ln

(
Nt∏

i=1
(ui(p) − ui,min)

)
:

p∗ = arg max
pi∈S,ui≥ui,min ,∀i

Nt∑
i=1

ln(ui(p) − ui,min). (9)

However, this game formulation is not ideal and fair, which may lead to inefficient solution as it cannot guar-
antee fairness and the basic requirement of each player. If the radars maximize the network utility function
by increasing their own transmit power, this will inevitably result in the mutual interference between differ-
ent radars and in turn degrade the overall LPI performance of radar networks. Hence, it is of high importance
to select an ideal utility function when utilizing cooperative game theory. Utility function is the foundation
of game theory, which will deduce the iterative algorithm [Li et al., 2011]. As two sides of the cooperative
game, target detection performance and transmission power should be taken into account, which should be
reflected in the utility function. The primary objective of radar networks is to minimize the total transmitted
power while guaranteeing a specified target detection requirement for each radar. In this paper, we utilize
SINR as the target detection performance metric. A novel SINR-based utility function is constructed with the
corresponding channel gain, which characterizes the radar’s preference regarding LPI and fairness. Therefore,
we consider the following LPI-based NBPAG model, which optimizes its transmit power allocation to maximize
the network utility function for a specified SINR threshold, i.e.,

max
{pi ,i∈𝒩 }

Nt∑
i=1

ui(pi,p−i) =
Nt∑

i=1

ht
i,iln(𝛾 − 𝛾

min
th ), (10a)

s.t. ∶
⎧⎪⎨⎪⎩
𝛾i ≥ 𝛾min

th , i ∈ 𝒩

0 ≤ pi ≤ pmax
i , i ∈ 𝒩∑Nt

i=1 pi ≤ pmax
tot

, (10b)

where 𝛾min
th denotes the predefined SINR threshold, pmax

i denotes the peak transmit power of radar i, and the
total transmit power of radar networks is constrained by a maximum value pmax

tot . The first constraint implies
that the power allocation results should be larger than the given SINR threshold. The second constraint sug-
gests that the transmit power of each radar is limited, while the third one stands that the total transmit power
of radar networks is constrained by a maximum value. It is worth pointing out that ht

i,i is related to the tar-
get’s RCS and the distance between radar i and target. Introducing ht

i,i can well guarantee the fairness among
different radars locating at different places. On the basis of the interference degree, greater power would be
transmitted when the radar is far away from the target with small RCS and the minor one on the contrary
[Yang et al., 2015]. In the simulation part, some numerical examples will be provided to reveal the relationships
between the power allocation results and the following two factors: target RCS and the relative geometry
between target and radar networks. Here it can be noticed from (10a) that the variances of channel gains
{ht

i,i}
N
i=1 are employed to modify the network utility function. The transmitting parameters are adjusted adap-

tively to guarantee the specified SINR requirement, which can improve the LPI performance by reducing the
total transmitted power in radar networks.

3.2. Existence and Uniqueness of NBS
To analyze the outcome of the proposed cooperative NBPAG model, the achievement of an NBS is a
well-known optimality criterion.

Theorem 1 (Existence). There is at least one NBS to the proposed NBPAG in (10) if, for all i ∈ 𝒩 :

1. The transmission power pi is a non-empty, convex and compact subset of some Euclidean space.
2. The utility functions ui(pi,p−i) are continuous and quasi-concave in pi .
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Proof . It is apparent that our proposed NBPAG model satisfies the first condition (1), which is due to the fact
that the transmission power of each radar pi ranges from 0 to pmax

i .

One can observe from (10a) that the utility functions ui(pi,p−i)(∀i ∈ 𝒩 ) are continuous with respect to pi .
Taking the second derivative of ui(pi,p−i) with respect to pi, we can obtain the following:

𝜕ui(pi,p−i)
𝜕pi

=
(
𝛾i

pi

) ht
i,i

𝛾i − 𝛾min
th

> 0, (11)

and

𝜕2ui(pi,p−i)
𝜕p2

i

= −
(
𝛾i

pi

)2 ht
i,i

(𝛾i − 𝛾min
th )2

< 0. (12)

Thus, ui(pi,p−i) is concave in pi . As a result, the utility functions are continuous and quasi-concave. This proves
the existence of NBS in the proposed NBPAG. ◾

Theorem 2 (Uniqueness). The NBS to NBPAG is unique.

Proof . For the uniqueness of the NBS in a cooperative game, it has been established that there is at most
one NBS to the game if and only if the following four conditions are satisfied [Alireza et al., 2009; Kalai and
Smorodinsky, 1975; Yang et al., 2010].

1. Ai = {pi ∈ S, f (pi) = p̄ − pi ≥ 0} is nonempty, where p̄ is the average transmission power.
2. There exists pi ∈ si that satisfies f (pi) ≥ 0.
3. The utility function ui(pi,p−i) of player i is continuous and quasi-concave.
4. The game model is diagonally strictly concave on its strategy set S, that is, for any p(0) ≠ p(1) with p(k) =
[pk

1,… , pk
Nt
] ∈ S for k = 0, 1, and for t = [t1,… , tNt

] ≥ 0, the following inequality holds:

(p(0) − p(1))T d(p(0), t) + (p(1) − p(0))T d(p(1), t) < 0, (13)

where the function d(p, t) is defined as follows:

d(p, t) =

[
t1
𝜕u1

𝜕p1
,… , tNt

𝜕uNt

𝜕pNt

]T

. (14)

Obviously, conditions 1 and 2 could be satisfied as direct results from the strategy space constraint (10b).
Condition 3 has been proved in Theorem 1. For condition 4, we have the following:

(p(0) − p(1))T d(p(0), t) + (p(1) − p(0))T d(p(1), t)
= (p(0) − p(1))T ×

[
d(p(0), t) − d(p(1), t)

]
= (p(0) − p(1))T ×

⎡⎢⎢⎣t1

(
𝜕u1

𝜕p(0)
1

−
𝜕u1

𝜕p(1)
1

)
,… , tNt

⎛⎜⎜⎝
𝜕uNt

𝜕p(0)
Nt

−
𝜕uNt

𝜕p(1)
Nt

⎞⎟⎟⎠
⎤⎥⎥⎦

T

=
Nt∑

i=1

ti(p
(0)
i − p(1)

i )

(
𝜕ui

𝜕p(0)
i

−
𝜕ui

𝜕p(1)
i

)
.

(15)

Let 𝛼i = ti(p
(0)
i − p(1)

i )
(

𝜕ui

𝜕p(0)i

− 𝜕ui

𝜕p(1)i

)
, where ti ≥ 0. From Theorem 1, 𝜕ui

𝜕pi
is monotonically decreasing with

respect to pi , which is because that the utility function is concave. Thus, we can obtain 𝜕ui

𝜕p(0)i

− 𝜕ui

𝜕p(1)i

< 0 for

p(0)
i > p(1)

i , and hence, 𝛼i ≤ 0. Similarly, 𝛼i ≤ 0 holds for p(0)
i < p(1)

i as well. As a consequence, all the required
conditions are met. It can be concluded that our proposed NBPAG model has only one unique NBS, which
completes the NBS uniqueness proof. ◾

3.3. Iterative Nash Bargaining Algorithm
In this section, we present an iterative Nash bargaining algorithm that repeats the power allocation steps until
convergence. Having proved the existence and uniqueness of the NBS, we now solve for this unique equilib-
rium by solving the constrained optimization problem in (10a) utilizing the method of Lagrange multipliers
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[Yang et al., 2010]. Introducing Lagrange multipliers {𝜂i}
Nt
i=1, {𝜙i}

Nt
i=1, {𝜉i}

Nt
i=1 and 𝜓 for the multiple constraints,

the Lagrangian of problem (9) can equivalently be expressed by as follows:

ℒ
(
{ui(pi,p−i)}

Nt
i=1, {𝜂i}

Nt
i=1, {𝜙i}

Nt
i=1, {𝜉i}

Nt
i=1, 𝜓

)
=

Nt∑
i=1

ht
i,iln(𝛾 − 𝛾

min
th ) − 𝜂i(𝛾 − 𝛾min

th ) + 𝜙i(pi − pmax
i ) − 𝜉ipi + 𝜓

(
Nt∑

i=1

pi − pmax
tot

)
.

(16)

In order to obtain the NBS, taking the first derivative of (16) with respect to pi and setting it to zero, we can
observe that

𝜕ℒ
𝜕pi

=
ht

i,i

𝛾i − 𝛾min
th

ht
i,i

I−i
− 𝜂i

ht
i,i

I−i
+ 𝜙i − 𝜉i + 𝜓 = 0. (17)

After basic algebraic manipulations, we can reach the optimal solution p∗
i as a function of the Lagrange

multipliers:

p∗
i =

I−i

ht
i,i

𝛾min
th +

ht
i,i

𝜂i

ht
i,i

I−i
− 𝜙i + 𝜉i − 𝜓

. (18)

In this paper, the fixed-point method is utilized to derive an iterative procedure that updates the power allo-
cation results in radar network system. Obviously, according to (5) and (18), (18) can be used to obtain p∗

i
through iterations as follows:

p(n+1)
i =

⎡⎢⎢⎢⎣
p(n)

i

𝛾
(n)
i

𝛾min
th +

ht
i,i

𝜂
(n)
i

𝛾
(n)
i

p(n)i

− 𝜙(n)
i

+ 𝜉(n)i − 𝜓 (n)

⎤⎥⎥⎥⎦
pmax

i

0

, (19)

where [x]b
a = max {min(x, b), a}, and n denotes the iteration index. The Lagrange multipliers {𝜂(n)i }Nt

i=1,
{𝜙(n)

i }Nt
i=1, {𝜉(n)i }Nt

i=1 and 𝜓 (n) need to carefully be chosen to ensure fast convergence. Here, the subgradient
method is employed to update these multipliers through the following steps:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜂
(n+1)
i =

[
𝜂
(n)
i + st(𝛾i − 𝛾min

th )
]+

0
,

𝜙
(n+1)
i =

[
𝜙
(n)
i + st(pmax

i − pi)
]+

0
,

𝜉
(n+1)
i =

[
𝜉
(n)
i + stpi

]+
0
,

𝜑(n+1) =
[
𝜑(n) + st

(
pmax

tot −
∑Nt

i=1 pi

)]+
0
,

(20)

where [x]+a = x if x> 0, and [x]+a = a if x ≤ 0. st is a small step size, n ∈ {1,… ,Nmax}, and Nmax is the
maximum number of iterations. Apparently, 𝜂(n)i , 𝜙(n)

i and 𝜉(n)i are locally updated, whereas 𝜑(n) is updated
through cooperation. Each netted radar updates its action at each iteration step such that the network utility
function in (10) is maximized. The overall iterative procedure of applying the proposed cooperative NBPAG
model is given in detail as follows:
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Table 1. Radars Positions in Radar Networks

Radar Position (km) Radar Position (km)

1 [0, 0] 3 [50, 50]
2 [50, 0] 4 [0, 50]

Remark 1. In the foregoing procedure, the transmit power iteration function p(n+1)
i can be updated according

to (19), wherein the optimal power allocation results can be decided locally. For the ith radar, compute the
difference of utility function for n + 1 and n iteration. If the difference in allowable error scope 𝜖, the iteration
stops; otherwise, it returns to step 2.

Remark 2. In order to implement Algorithm 1 in a distributed manner, each radar has to collect the variances of
its adjacent channel gains {ci,jh

t
i,j}

Nt
j=1,j≠i and {ci,jh

d
i,j}

Nt
j=1,j≠i . The variances of channel gains {ht

i,i}
Nt
i=1 also need to

be obtained. This can be done by having each radar measures the channel and feed back to the transmitter.
Here the best response of the ith radar p∗

i depends on the strategies of all the other radars, that is, p∗
−i . In

order to obtain this knowledge, each radar has to broadcast its transmission strategy to the other radars. In
the following section, the convergence behavior of the iterative Nash bargaining algorithm will be verified
via numerical simulations.

4. Numerical Simulations and Analysis

In the following, several numerical simulations are dedicated to demonstrate the improvement of the LPI
performance brought by the power allocation strategy and reveal the effects of several factors on the power
allocation results.

4.1. Description
In this paper, we consider a radar network with Nt = 4 spatially diverse radars. The positions of the net-
ted radars are given in Table 1. To evaluate the effect of the relative geometry between the target and the
radar networks on the power allocation, two different target positions with respect to the radar networks are

Figure 2. Power convergence of the proposed NBPAG algorithm in Case 1: (a) Case 1 with
−−−→
𝜎RCS

1 and (b) Case 1 with
−−−→
𝜎RCS

2 .
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Figure 3. Power convergence of the proposed NBPAG algorithm in Case 2: (a) Case 2 with
−−−→
𝜎RCS

1 and (b) Case 2 with
−−−→
𝜎RCS

2 .

chosen. In the first case, we assume that the target is located at [25, 25] km. In the second case, we simulate a
scenario in which the target is located at [80, 60] km. The cross-correlation coefficient between different radars
is ci,j = 0.01(i ≠ j). The system parameters are set as follows: the radar antenna gains are Gt = Gr = 30dB,
G

′

t = G
′

r = −30dB, the wavelength is 𝜆 = 0.03 m, the maximum transmit power of each radar is limited to
pmax

i = 0.5pmax
tot = 5 KW, the number of received pulses is N = 512, PMD,i = 2.7 × 10−3, PFA,i = 10−6. The SINR

can be computed using (2), which is 𝛾i = 10dB for all radars, and the corresponding 𝛿i is equal to 0.0267 for
∀i. The noise power 𝜎2 = 10−18W, 𝜖 = 10−15. We initialize 𝜂(0)i = 10, 𝜙(0)

i = 10, 𝜉(0)i = 10(∀i), and𝜑(0) = 10. The
step size st is 0.001.

Two target RCS models are adopted in this paper. The first model is uniform reflectivity, where
−−−→
𝜎RCS

1 =
[1, 1, 1, 1] m2. On the other hand, in order to evaluate the effect of the target RCS on the power allocation

strategy, we also adopt the second RCS model
−−−→
𝜎RCS

2 = [5, 0.5, 0.1, 3] m2.

4.2. Numerical Results
Figures 2 and 3 testify the transmit power convergence of the proposed algorithm. There are four curves in
all subfigures, which means the power conditions of the four radars. The steady state transmit power values
are relatively ideal, which are much smaller than the maximum value. The difference between them resides
in the target RCS with respect to different radars and their different distances to the target. The convergence
to the equilibrium of the NBPAG model is visible in Figures 2 and 3, and the transmit power of each radar
converges fast to the equilibrium value after 4–8 iterations. Since the equilibrium of the proposed NBPAG
model is unique, the proposed algorithm will converge to it independently of the initial set of transmit power
values that were used. Besides, it is worth pointing out that the choice of the Lagrange multipliers is crucial
to the convergence behavior [Liu and Dong, 2014].

In order to disclose the effects of several factors on the power allocation results, Figures 2 and 3 plot the
power allocation results of the proposed algorithm. In Figure 2b, less transmit power is assigned to Radar 2
and Radar 3, as they are closer to the target. In other words, more power tends to be allocated to the radar
farther from the target. Analyzing the power allocation results given in Figure 2 reveals that the different
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Figure 4. SINR convergence of the proposed NBPAG algorithm in Case 1: (a) Case 1 with
−−−→
𝜎RCS

1 and (b) Case 1 with
−−−→
𝜎RCS

2 .

Figure 5. SINR convergence of the proposed NBPAG algorithm in Case 2: (a) Case 2 with
−−−→
𝜎RCS

1 and (b) Case 2 with
−−−→
𝜎RCS

2 .
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Figure 6. Comparisons of equilibrium transmit power levels in Case 1 with various power allocation algorithms:

(a) Case 1 with
−−−→
𝜎RCS

1 and (b) Case 1 with
−−−→
𝜎RCS

2 .

deployment of radar networks may lead to different gain in LPI performance. Moreover, the results also show
that in an overdetermined scenario, most of the available total transmit power is allocated to a smaller subset
of radars, while others are kept to a minimal power [Yan et al., 2015]. We then expand the simulation with the
consideration of the losses due to target RCS and provide the power allocation results in Figure 3. The results
illustrate that the radars with smaller RCS are favorable over others, when it comes to power allocation. In
the optimization process, higher transmit power is assigned to the radars with relative weaker propagation
channels. The above results imply that the allocation of transmit power is determined by the following two
factors: radar network deployment and target RCS.

Figures 4 and 5 illustrate the SINR achieved at each radar receiver for each player, utilizing our proposed coop-
erative game-theoretic algorithm for the considered radar network topology. We can clearly notice that the
achieved SINR converges fast to the predetermined threshold after three to five iterations, which can meet
the target detection requirement of each radar, confirming that the NBPAG model can overcome the near-far
effect. As aforementioned, the proposed NBPAG model will converge to its equilibrium independently of the
initial set of transmit power values. Thus, the players will reach the same Nash equilibrium regardless of the
choice of the initial values and employing the publicly known information. Due to the fact that the conver-
gence rate of the proposed algorithm is not slow under current computation conditions, there is no need to
study the acceleration approach of our algorithm, which may be an interesting topic for further research.

To demonstrate the superior advantages of the proposed algorithm further, we compare the LPI-based NBPAG
algorithm with a couple of benchmark algorithms for power allocation: the standard NBS for cooperative
game, Koskie and Gajic’s [2005, hereinafter K-G] algorithm, and the adaptive noncooperative power con-
trol algorithm (ANCPCA) in Yang et al. [2015], as depicted in Figures 6–9. In Figures 6 and 7, we compare
the transmit power levels of four power allocation algorithms with different radars. It turns out that the
ANCPCA transmits the most power due to the radars’ self-interested noncooperative behavior in the game
process, which is consistent with the results in Yang et al. [2015]. To be specific, when one of the netted radars
cannot reach or maintain its minimum SINR, it resorts to the only means of increasing the transmit power to
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Figure 7. Comparisons of equilibrium transmit power levels in Case 2 with various power allocation algorithms:

(a) Case 2 with
−−−→
𝜎RCS

1 and (b) Case 2 with
−−−→
𝜎RCS

2 .

Figure 8. Comparisons of equilibrium SINR values in Case 1 with various power allocation algorithms: (a) Case 1 with−−−→
𝜎RCS

1 and (b) Case 1 with
−−−→
𝜎RCS

2 .
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Figure 9. Comparisons of equilibrium SINR values in Case 2 with various power allocation algorithms: (a) Case 2 with−−−→
𝜎RCS

1 and (b) Case 2 with
−−−→
𝜎RCS

2 .

guarantee the SINR requirement, as do other radars in a similar situation [Yang et al., 2010, 2015]. As a result, the
LPI performance of radar networks degrades. While for the NBPAG algorithm, the netted radars can perceive
the interference environment well and accordingly make the most appropriate transmit power adjustment
decision.

From Figures 8 and 9, it can be seen that the SINR values of the proposed algorithm and ANCPCA can reach
the target SINR threshold. However, the standard NBS method and K-G algorithm are not ideal because they
sacrifice radars’ SINRs, where part of SINR values achieved at radar receivers are below the specified SINR
threshold. Thus, the standard NBS method and K-G algorithm cannot guarantee the fairness among different
radars. As we can observe, the SINR of each radar of the proposed algorithm converges to the SINR threshold,
which shows that the NBPAG algorithm can overcome the near-far effect. Overall, the K-G algorithm consumes
the least power, which cannot meet the radars’ target detection need. However, the NBPAG approach can
accommodate each radar’s transmit power to satisfy its SINR requirement, although it might consume high
transmit power. Generally speaking, those results demonstrate that the NBPAG approach not only guarantees
the SINR requirements of all the netted radars but also improves the LPI performance of radar networks.

5. Conclusion

We have considered an LPI-based distributed power allocation strategy for radar networks in a coopera-
tive game-theoretic framework. In our proposed algorithm, the LPI performance of radar networks can be
improved by optimizing the transmit power allocation for a predefined target detection threshold. A novel
SINR-based network utility function is developed as a metric to evaluate power allocation, which guaran-
tees the existence and uniqueness of the NBS. In addition, an iterative Nash bargaining algorithm with low
complexity and fast convergence is utilized to play the game among the netted radars. Simulation results
demonstrate that compared with the NE solution of the noncooperative game, the NBS of the cooperative
NBPAG can remarkably improve the LPI performance for radar networks. In future work, we will concentrate on
other practical distributed approaches to enhance the LPI performance for distributed radar network systems.
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