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Using Wavelets to Obtain a Consistent
Ordinary Least Squares Estimator of
the Long-memory Parameter

MARK J. JENSEN*

University of Missouri, USA

ABSTRACT

We develop an ordinary least squares estimator of the long-memory
parameter from a fractionally integrated process that is an alternative to
the Geweke and Porter-Hudak (1983) estimator. Using the wavelet
transform from a fractionally integrated process, we establish a log-linear
relationship between the wavelet coe�cients' variance and the scaling
parameter equal to the log-memory parameter. This log-linear relationship
yields a consistent ordinary least squares estimator of the long-memory
parameter when the wavelet coe�cients' population variance is replaced by
their sample variance. We derive the small sample bias and variance of the
ordinary least squares estimator and test it against the GPH estimator and
the McCoy±Walden maximum likelihood wavelet estimator by conducting
a number of Monte Carlo experiments. Based upon the criterion of
choosing the estimator which minimizes the mean squared error, the
wavelet OLS approach was superior to the GPH estimator, but inferior to
the McCoy±Walden wavelet estimator for the processes simulated.
However, given the simplicity of programming and running the wavelet
OLS estimator and its statistical inference of the long-memory parameter
we feel the general practitioner will be attracted to the wavelet OLS
estimator. Copyright # 1999 John Wiley & Sons, Ltd.

KEY WORDS fractionally integrated processes; long-memory, wavelets

INTRODUCTION

Wavelet analysis is a relatively new development in the area of applied mathematics that has
recently received the attention of statisticians (Donoho and Johnstone, 1994, 1995, 1996; Donoho
et al., 1995; Percival, 1995; McCoy and Walden, 1996). The mathematical theory of wavelets has
existed for over half a century, but only recently has its many di�erent strains been pulled
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together and given the name wavelets.1 For our purpose, wavelets were ®rst used in time-series
analysis by seismologists to provide a time dimension to non-stationary seismic signals that
Fourier analysis lacked (Morlet, 1983). The generality and strong results of the wavelet quickly
made it useful in other scienti®c areas, enriching each discipline with its unique combination of
mathematics and applications.

By design the wavelet's strength rests in its ability to simultaneously localize a process in time
and scale. At high scales, the wavelet has a small centralized time support enabling it to focus in
on short-lived time phenomena such as a singularity point. At low scales, the wavelet has a large
time support allowing it to identify long periodic behaviour. By moving from low to high scales,
the wavelet zooms in on a process's behaviour at a point in time, identifying singularities, jumps
and cusps. Alternatively, the wavelet can zoom out to reveal the long, smooth features of a series
(Mallat and Zhong, 1992; Mallat and Hwang, 1991; Wang, 1995).

Scientists in diverse ®elds have observed time series where observations that are far apart
(in time or space) were correlated too strongly to be modelled as independent data or classical
autoregressive, moving average models (ARMA). This concept of long memory has grown
rapidly and can be found in a broad scattering of ®elds such as agronomy, astronomy, chemistry,
engineering, environmental sciences, geosciences, hydrology, mathematics, physics and statistics.
Even in its infancy among economists, long memory has been applied to a number of economic
and ®nancial time series. For example, real gross national product (Sowell, 1992; Diebold and
Rudebusch, 1991), interest rates (Backus and Zin, 1993), consumer and wholesale price indices
(Baillie et al., 1996; Hassler and Wolters, 1995), stock market returns (Ding, et al., 1993), stock
market prices (Lo, 1991), option prices (Baillie and Bollerslev, 1994) and exchange rates
(Cheung, 1993) have all had long memory ideas applied to them.

The empirical presence of long memory is found in the persistence of the autocorrelations. This
slow decay by the autocorrelations is not consistent with either the stationary, short-memory,
ARMA models, nor the non-stationary, unit root models. Instead, long memory falls nicely in
between these two knife-edge approaches. The drawback is the dense covariance matrix it creates,
i.e., a large matrix with few zero elements. This dense matrix makes calculation of the exact
maximum likelihood estimator (MLE) impossible for large data sets since inversion of the long
memory's covariance matrix is an exhaustive task, requiring of the order of cubed numerical
operations.

Using the logarithmic decay of a long-memory process's autocovariance function, we show
that a log-linear relationship exists between the variance of the wavelet coe�cient from the long-
memory process and its scale equal to the long-memory parameter. This log-linear relationship
lends itself nicely to the estimation of the long-memory parameter of a fractional integrated
process known as the fractional di�erencing parameter. We show that the wavelet OLS estimator
yields a consistent estimator of the fractional di�erencing parameter.

In a heuristic manner, McCoy and Walden (1996) have shown the existence of this log-linear
relationship between the wavelet coe�cients' variance and its scale, but they show it graphically
with a plot of log2 of the sample variance of the wavelet coe�cients from a long-memory process
against the log2 of the frequency and compare it to the log2 of the process's power spectrum.
McCoy and Walden use this log-linear relationship to calculate the maximum likelihood
estimator of the fractional di�erencing parameter (MW estimator). By using only the wavelet
coe�cients' variance and ignoring their correlation, McCoy and Walden implicitly assume that

1 See Meyer (1993) for a historical perspective of the wavelet.
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the wavelet coe�cients' covariance between scale and time are insigni®cantly di�erent from zero,
i.e., the wavelet coe�cients are independent over time and scale. Hence, the MW estimator
amounts to an approximate maximum likelihood estimator, the precision of which is dependent
on how rapidly the wavelet coe�cients' autocovariance function decays as the di�erence in scale
and time increases.

The estimator of the fractional di�erencing parameter most often used is the Geweke and
Porter-Hudak (1983) (GPH) estimator. The GPH utilizes a non-parametric approach which
regresses the log values of the periodogram on the log Fourier frequencies to estimate the
fractional di�erencing parameter. However, due to the inconsistency of the periodogram as an
estimator of the spectrum (Priestley, 1992, p. 425), and the normalized periodogram being neither
asymptotically independent nor identically distributed (Hurvich and Beltrao, 1993; Robinson,
1995), the GPH estimator has no satisfactory asymptotic properties.

Besides the GPH, the other estimators of the fractional di�erencing parameter that exist
calculate either the exact or approximate maximum likelihood estimator of the fractional
di�erencing parameter. Although the statistical properties of the MLE are well known, their
calculation is computationally intensive, su�ering from the burden of inverting a dense
covariance matrix at each iteration of the numerical optimization algorithm (Deriche and Tew®k,
1993; Li and McLeod, 1986), or are approximations of the likelihood function in frequency space
(McCoy and Walden, 1996; Fox and Taqqu, 1986). An additional problem associated with the
maximum likelihood approaches is their sensitivity to misidenti®ed short-memory parameters
(Schmidt and Tschernig, 1995). Unlike the MLEs, the GPH and wavelet OLS estimator do not
require the inversion of the covariance matrix, nor the parameterization of the short-memory
parameters. Hence, they are easier to implement and take fewer cycles to compute.

In the next section we provide a brief theoretical background of the wavelet.2 In the third
section we de®ne the particular long-memory process in which we are interested. We then
establish in the fourth section the log-linear relationship between the variance of the wavelet
coe�cient and its scale, and provide some of the asymptotic properties of the wavelet OLS
estimator of the long memory parameter. In the ®fth section we conduct a Monte Carlo
simulation to determine the robustness of the wavelet OLS estimator to di�erent values of the
long-memory parameter and signal length, and to compare these results with the GPH and MW
estimators. The sixth section presents results and conclusions are given in the ®nal section.

WAVELET THEORY

A wavelet is de®ned as any function, c, whose collection of dilations, j, and translations, k,

cj;k�t� � 2
j=2c�2j t ÿ k� �1�

where j,k 2 Z� {0,+ 1,+ 2, . . .}, form an orthonormal basis of L2(R). Any continuous function
quali®es if it is well localized around zero (decreases rapidly to zero as t! +1) and oscillates
(
R
c(t) dt� 0). These conditions can be strengthened to include more vanishing moments and/or

2 For those interested in the basic introduction to wavelets see Strang (1993) or Strichartz (1993). For a broader view of
wavelet theory see Daubechies (1988, 1992), Mallat (1989) or Meyer (1993).

Copyright # 1999 John Wiley & Sons, Ltd. J. Forecast. 18, 17±32 (1999)

Estimator of the Long-memory Parameter 19



higher orders of continuous derivatives, i.e.,
R
trc(t) dt� 0 where r� 0, 1, 2, . . ., M7 1, and/or

c(t) 2 Cr, to enable {c}m,n to span other function spaces.
The translated c0,k is a well-localized function in time around k that can be interpreted as a

ideal highpass ®lter with energy concentrated in the intervals [ÿ2p,7 p) [ (p, 2p]. The dilated
cj,0 preserves the shape and oscillation of c, but cj,0's support in time and frequency space is
larger (j5 0) or smaller (j4 0) than c. For this reason j is referred to as the scaling parameter.

Let x(t) be a L2(R) real valued function and suppose that we have observations of x(t) at t� 0,
1, . . ., 2p7 1, where p 2 Z�. De®ne the inner product, h.,.i, by

hx; gi �
Z

x�t�g�t� dt

where g 2 L2(R). The wavelet coe�cient of x(t) is a function of the scale parameter, j, and
translations parameter, k, equal to

wj;k � hx;cj;ki � 2
j=2
Z

x�t�c�2j t ÿ k� dt �2�

The wavelet coe�cient, wj,k , represents how much information is lost (gained) if the series x(t) is
sampled less (more) often. For example, suppose that every two observations of the observed
values of x(t) are averaged together, i.e. y(t/2)� (x(t) � x(t � 1))/2, for t� 0, 2, 4, . . ., 2 p. The
wavelet coe�cients, wp,k , where k� 0, 1, . . ., 2p71, is the amount that would need to be added to
y(t) in order to obtain the original series x(t), i.e. x(t)� y(t) � wp,t . Hence, cj,k has the interpre-
tation of being a highpass ®lter and wj,k is the representation of x(t) at di�erent levels of resolution
and periods of time. This example also illustrates that in the continuous case wj,k involve integrals
of the type found in equation (2), whereas in discrete time the wavelet transform requires matrix
multiplication.

Because of the rapid decay in cj,k , for each j{cj,k :k 2 Z} covers the entire real line by shifting by
an amount equal to cj,0's support. Hence, for a ®nite number of observations, j need only take on
those integer values which keeps cj,k's time support equal to or smaller than the support of
observed data. Since low values of j require fewer translations for cj,k to cover the entire support
of the observed data, whereas high values of j require more translations, for a ®nite series the
number of translation parameters will be a function of j.

Since x(t) is a ®nite series it will have a minimum and maximum scale. The support of cj,k

can be thought of as [k27j, (k � 1)27j ]. If we normalize the time interval of x(t) to the unit
interval, i.e., if T� 2p then t� 0/T, 1/T, . . ., (T7 1)/T, then j 2 J � {0, 1, . . ., p7 1}, and
k 2 K� j� � {0, 1, . . ., 2 j7 1}. A scaling parameter less than zero causes the wavelet's support to
exceed the unit interval and a scaling parameter greater than p7 1 causes the support of cj,k to
land in between x(t7 1) and x(t).

FRACTIONALLY INTEGRATED SERIES

Let x(t) be the fractionally integrated process, I(d ), de®ned by

�1 ÿ L�dx�t� � e�t� �3�
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where e�t� � i:i:d:N�0; s2e �, j d j 5 1/2, and (17L)d is the fractional di�erencing operator
de®ned by the binomial expansion

�1 ÿ L�d �
X1
j�0

G�j ÿ d�
G�j � 1�G�ÿd�L

j

where L denotes the lag operator and G the gamma operator. I(d) is a generalization of an
integrated process, where instead of di�erencing a series as (17L)x(t)� x(t)7 x(t7 1) to
obtain stationarity, the series is dth di�erenced.

For j d j 5 1/2, I(d) has a in®nite moving average representation in which the moving average
coe�cients decay at the rate jd71 and an in®nite autoregressive representation in which the
coe�cients decay at the rate j7d71. Hence x(t) 2 L2 since the moving average (autoregressive)
coe�cients are square summable when 05 d5 1/2 (ÿ1/25 d5 0).

It is well known (Granger and Joyeux, 1980; Hosking, 1981; Brockwell and Davis, 1993; Beran,
1994) that the I(d) process's autocovariance function is

Rx�t; s� � E�x�t�x�s��

� s2eG�1 ÿ 2d�G� j t ÿ s j � d�
G�d�G�1 ÿ d�G� j t ÿ s j � 1 ÿ d� �4�

� j t ÿ s j 2dÿ1 as j t ÿ s j ! 1 �5�

The slow hyperbolic decay of Rx(t,s) satis®es the long-memory de®nition of Resnick (1987).

WAVELET OLS ESTIMATOR OF d

Let x(t) be a mean zero I(d) process with j d j 5 1/2. Using the autocovariance function of the
I(d) process found in the previous section, we arrive at the following theorem.

Theorem 1 As j! 0, the wavelet coe�cients, wj,k , associated with a mean zero I(d) process with
j d j 5 1/2 are distributed N (0, s2272jd), where s2 is a ®nite constant.

Proof: See Appendix A.
From Theorem 1, the wavelet coe�cients from an I(d) process have a variance that is a function

of the scaling parameter, j, but is independent of the translation parameter, k. Hence, de®ne R( j)
to be the wavelet coe�cient's variance at scale j, i.e. R(j)� s2272jd. Taking the logarithmic
transformation of R(j), we obtain the relationship

ln R� j� � ln s2 ÿ d ln 2
2j �6�

Where ln R(j) is linearly related to ln 272j by the fractional di�erencing parameter, d. Hence, the
unknown d of a fractionally integrated series can be estimated by the ordinary least squares
estimator, dÃ.
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To perform this OLS regression we require an estimator of the wavelet coe�cient's population
variance, R(j). At scale j, de®ne the sample variance of the wavelet coe�cients as

�R� j� � 1

2 j

X2 jÿ1

k�0
w
2
j;k �7�

As we will see, if a large number of wavelet coe�cients are available for scale j, the wavelet
coe�cient's sample variance provides a consistent estimator of the true variance, R(j).

To determine the statistical properties of dÃ, we expand ln �R(a) around ln R(a) in the following
Taylor series:

ln �R�a� � ln R�a� �
�R�a� ÿ R�a�

R�a� ÿ 1

2

� �R�a� ÿ R�a��2
R�a�2

� �
�8�

We require the following theorem showing wj,k to be asymptotically independent.

Theorem 2: If c(t) has M5 1 vanishing moments with support [ÿK1, K2] where K15 0 and
K25 0 and x(t) is I(d) with j d j 5 1/2 then wj,k is asymptotically independent in both time and
scale space since wj,k's correlation decays as O( j k17 k2 j 2(d7M)71) in time space and as
O(22j(d7M)71) in scale space, for all k1 and k2 such that j k17 k2 j 4K1 � K2 .

Proof: See Appendix B.
From Theorem 2, the correlation of the wavelet coe�cients from an I(d) process decay

exponentially over time and scale space since j d j 5 1/2 and M5 1. However, the larger M is,
the wider the wavelet's support and the fewer are the number of wavelet coe�cients that satisfy
the condition, j k17 k2 j 4K1 � K2 . Thus, by choosing a wavelet with a large M, the rate of
decay in wj,k's autocovariances increases, but over a subset of K(j).

In theory the decay of the wavelet correlation should only occur when the di�erence in the
translation parameters are outside the cone, j k17 k2 j 4K1 � K2 . However, simulations studies
have shown the e�ective support of a wavelet to be much smaller than their theoretical support.
Daubechies (1988), Tew®k and Kim (1992), Kaplan and Kuo (1993), and Flandrin (1991) have
all found rapid decay in the wavelet coe�cient's covariance for translations and dilations inside
the cone, j k17 k2 j 4K1 � K2 .

By Theorems 1 and 2, R(j)71/2wj,k � N (0,1) and is asymptotically independent as j!1. It
follows that R�j�ÿ1Skw

2
j;k � w22j , where 2j is the number of degrees of freedom. Hence,

var� �R� j�� � 1

22j
var

X
k2K� j�

w
2
j;k

" #

� 2

22j
�s22ÿj�2dÿ1=2��2

� 2�s22ÿ2j�d�1=4��2

! 0 as j!1

when d4 7 1/4. By Markov's law of large numbers, R(j) will tend in probability to R( j) as
j!1.
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Equation (8) can now be written as

ln �R� j� � ln R� j� � op�1�

Substituting s2272jd for R(j), we ®nd

ln �R� j� � ln s2 ÿ d ln 2
2j � op�1� �9�

In order words, as j!1 the OLS estimate of the log±log relationship's slope provides a
consistent estimate of the fractional di�erencing parameter, d.

First-order asymptotic properties of dÃ

Let

yj � ln 2
ÿ2j ÿ 1

p

Xpÿ1
j�0

ln 2
ÿ2j :

The wavelet OLS estimator of the fractional di�erencing parameter is

d̂ �
Xpÿ1
j�0

y
2
j

" #ÿ1 Xpÿ1
j�0

yj ln
�R� j�

" #

Expanding dÃ in a Taylor series around R( j) results in

d̂ �
Xpÿ1
j�0

y
2
j

" #ÿ1 Xpÿ1
j�0

yj ln R�j�
" #

�
Xpÿ1
j�0

y
2
j

" #ÿ1

�
Xpÿ1
j�0

yj
�R� j� ÿ R� j�

R� j�

" #
� Op

var �R� j�
R� j�2

� �
�10�

Substituting s2272jd for the ®rst R(j) in the RHS of equation (10), we ®nd the bias of dÃ to equal

d̂ ÿ d �
Xpÿ1
j�1

y
2
j

" #ÿ1 Xpÿ1
j�0

yj
�R� j� ÿ R� j�

R� j�

" #
� Op

var �R� j�
R� j�2

� �
�11�

Because �R( j) tends to R( j) as j!1 and Sjy
2
j is bounded away from zero, equation (11) shows dÃ

to be a consistent estimate of the fractional di�erencing parameter.
The variance of dÃ can be found by calculating the variance of the ®rst and second terms of

equation (11). Because wj,k is a asymptotically independent, normally distributed random
variable with mean zero and variance s2272jd, and since R(j)� s2272jd, it follows that

var� �R� j��
R� j�2 � 2�s22ÿj�2d�1=2��2

�s22ÿ2jd �2 � 2
1ÿj �12�
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as j!1, and in a similar, but more tedious, manner

var
Xpÿ1
j�1

y
2
j

" #ÿ1 Xpÿ1
j�0

yj
�R� j� ÿ R� j�

R� j�

" #0@ 1A � W2ÿj �13�

where W� W(1, 271, . . ., 217p) is a constant. Combining equations (13), (12) and (11), we arrive at

d̂ ÿ d � W1=22ÿj=2Z � op�2ÿj=2� �14�

where Z is a random variable with unit variance.

SIMULATIONS

To determine the robustness of dÃ to di�erent values of d and T, and to compare its statistical
properties to the GPH and MW estimators, we conducted a Monte Carlo experiment where
1000 arti®cial I(d) processes were generated. Generating a series that exhibits long memory has
been a synthesis problem where many of the known methods require large amounts of computer
memory and were computationally intensive (McLeod and Hipel, 1978; Hosking, 1984). With
this in mind we chose the Davies and Harte (1987) algorithm because of its computational and
memory e�ciencies.3

To ensure that our simulations reported only the statistical properties of dÃ and not how zero-
padding or boundary e�ects adversely a�ects dÃ, the generated I(d) processes had T� 2p

observations, where p� 7, 8, 9, 10, and R(j) was calculated from the Daubechies wavelet with
M� 1, for the scales j� 2,3, . . ., p7 1. With ®nite data it is not always possible to calculate
precisely all the wavelet coe�cients. The more regular (larger M) a wavelet is, the larger
its support. Hence, at lower scales the wavelet straddles the data, resulting in boundary a�ects.
Since the Daubechies wavelet with M� 1 has the smallest possible support, K1� 0, K2� 1, no
boundary a�ects could occur.

RESULTS

Mean-squared error
The simulation results for the wavelet OLS and GPH estimators are graphed in the box-plots of
Figure 1 (wavelet OLS) and Figure 2 (GPH), and tabularized along with the MW estimator in
Table I by their bias and mean square error (MSE). Figure 3 plots the MSE found in Table I for
the wavelet OLS and GPH estimators against d.

For each value of d and T, the relative precision MSE(OLS)/MSE(GPH) was close to 0.2,
suggesting that the small and large sample properties of the wavelet OLS estimator are superior
to the GPH estimators. When d was held constant, both estimators' MSE declined as T increased,

3McCoy andWalden (1996) use the log-linear relationship between the wavelet coe�cients' variance and scale as a means
of e�ciently generating a fractionally integrated process. We chose not to use McCoy and Walden's method so as to
minimize the chance that the generated data would help the wavelet OLS estimator when estimating this relationship.
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Figure 1. Box-plots of the wavelet OLS estimator from 1000 simulated I(d ) processes, where the x-axis is
d and the y-axis dÃ. (a) T� 27, (b) T� 28, (c) T� 29, (d) T� 210

Figure 2. Box-plots of the GPH estimator from 1000 simulated I(d ) processes, where the x-axis is d and the
y-axis dÃ. (a) T� 27, (b) T� 28, (c) T� 29, (d) T� 210
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whereas, for ®xed T the wavelet OLS estimator's MSE was not sensitive to changes in the value of
d, while for T� 27, 28 the GPH MSE was sensitive.

The box-plots in Figures 1 and 2 are informative in their ability to reveal the precision of the
wavelet OLS estimator. In Figure 1 the upper and lower quartiles of the wavelet OLS estimator
only overlap with the quartiles from d+ 0.1 when T� 27. This is in contrast to the GPH estimator
where, except for the sample T� 210 (Figure 2d), its upper and lower quartiles overlapped with
those from d+ 0.2.

Bias
From the ®nite-sample bias listed in Table 1 four results emerge. First, the bias of the wavelet
OLS is always negative, i.e. d tends to be underestimated by the wavelet OLS estimator, while the
bias of the GPH estimator is most often positive. Second, for ®xed T the bias of the wavelet OLS
estimator decreases as d increases. Under these conditions, the GPH estimator's bias did not
exhibit any consistent pattern. Third, holding d constant, the absolute value of the wavelet OLS
estimator's bias diminished as T increased. Depending on the value of d, the absolute value of the
GPH estimator's bias would either go up or down when T increased by a factor of 2, and then
possibly reversing this trend for the next increase in T.

Figure 3. Mean-squared error as a function of d and T
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Lastly, the absolute value of the wavelet OLS estimator's bias is signi®cantly larger than the
bias of the GPH estimator. This larger bias is acceptable given that the wavelet OLS estimator's
MSE is signi®cantly smaller than the GPH estimators. Because the mean squared error is
composed of the estimator's level of bias and variance, the bias found in the wavelet OLS
estimator is o�set by its lower variance. Each of these points can be seen in the box-plots of
Figures 1 and 2.

Comparison with MW estimator
Before comparing our simulation results with those found for the McCoy and Walden (1996)
approximate wavelet MLE, we expected the MW estimator's mean squared error to be smaller
than the wavelet OLS. In addition to the wavelet coe�cients, the MW estimator includes the
maximum scaling coe�cient (a measure of the signal's average value) with its corresponding
variance in the calculation of the likelihood function. In Table I the MWestimators MSE is three
to four times smaller than the wavelet OLS's. Howmuch of this improvement is dependent on the
inclusion of the scaling coe�cient is unknown. We, however, feel it is unlikely that including the
scaling coe�cient could alone be the reason for the MW estimator's smaller MSE.

Unlike the constant MSE of the wavelet OLS estimator, the MW estimators' MSE did increase
for d� 0.25, 0.35 at each T. TheMWestimators' bias also exhibited this same behaviour, with the
smallest levels of bias occurring when d� 0.05, 0.45.

Table I. Bias and mean-squared error (MSE) of the wavelet OLS, GPH and MW estimators of the
fractional di�erencing parameter, d, from 1000 I(d) processes with T observations

Wavelet OLS GPH MW
T d Bias MSE Bias MSE Bias MSE

27 0.05 ÿ0.0387 0.0164 0.0007 0.0799 0.0169 0.0037
0.15 ÿ0.0332 0.0172 0.0075 0.0789 0.0158 0.0054
0.25 ÿ0.0285 0.0174 ÿ0.0067 0.0708 0.0190 0.0054
0.35 ÿ0.0225 0.0168 0.0095 0.0779 0.0236 0.0045
0.45 ÿ0.0207 0.0163 0.0246 0.0741 0.0060 0.0017

28 0.05 ÿ0.0255 0.0087 ÿ0.0006 0.0486 0.0106 0.0020
0.15 ÿ0.0273 0.0092 0.0062 0.0404 0.0142 0.0029
0.25 ÿ0.0215 0.0092 0.0014 0.0472 0.0232 0.0033
0.35 ÿ0.0186 0.0083 0.0010 0.0419 0.0276 0.0030
0.45 ÿ0.0179 0.0101 0.0042 0.0468 0.0141 0.0012

29 0.05 ÿ0.0239 0.0054 ÿ0.0050 0.0270 0.0065 0.0012
0.15 ÿ0.0172 0.0048 0.0091 0.0297 0.0167 0.0016
0.25 ÿ0.0166 0.0053 0.0045 0.0307 0.0247 0.0019
0.35 ÿ0.0118 0.0051 0.0115 0.0279 0.0314 0.0021
0.45 ÿ0.0126 0.0055 ÿ0.0021 0.0271 0.225 0.0010

210 0.05 ÿ0.0181 0.0030 0.0069 0.0177 0.0050 0.0010
0.15 ÿ0.0147 0.0031 0.0030 0.0190 0.0157 0.0009
0.25 ÿ0.0110 0.0032 0.0070 0.0188 0.0244 0.0012
0.35 ÿ0.0109 0.0033 0.0032 0.0199 0.0321 0.0017
0.45 ÿ0.0088 0.0034 0.0067 0.0178 a a

The approximate standard error for the bias is given by
��������������������������
6=�1000Tp2�

p
and for the MSEs

�������������������������������
72=�1000T2p4�

p
.

aMW estimator failed to bracket a maximum in each of the simulations.
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Increasing the number of observations did not always lead to a decrease in the bias of the MW
estimator. Other than d� 0.05, the MW estimator showed an increase in its bias (d� 0.25, 0.35,
0.45) as T grew larger, or at least a decrease followed by an increase in its bias. The most apparent
increase in the bias of the MW estimator was d� 0.45. In this case, as T grew so did the level of
bias, until we suspect the bias became so large that at T� 1024 the value of d that maximizes the
likelihood function was greater than 0.5. In order to alleviate this problem an alternative
maximization algorithm to that provided by McCoy and Walden (1996) is needed.

Because the wavelet OLS estimator's bias decreased with larger T, the absolute level of the
wavelet OLS's bias was smaller than the MW estimators in 10 out of the 20 experiments. Six of
these cases came when d and Twere large. This suggests that for large processes with greater long-
memory dynamics (d closer to 0.5) the wavelet OLS estimator is an attractive alternative to
McCoy and Walden's approximate wavelet maximum likelihood estimator.

CONCLUSION

In this paper we have shown that a log-linear relationship exists between the variance of the
wavelet coe�cient and the scaling parameter equal to the fractional di�erencing parameter of
a fractionally integrated process. This log-linear relationship provides a simple least squares
approach to estimating the di�erencing parameter. The wavelet OLS estimator of the fractional
di�erencing parameter is shown to be consistent when the sample variance of the wavelet
coe�cient is used in the regression.

To obtain a consistent estimator of the fractional di�erencing parameter from a simple OLS
regression is a substantial improvement over the popular GPH estimator. The wavelet coe�-
cients' variance is a regularization of the spectrum (Percival, 1995; McCoy and Walden, 1996).
Like the spectrum, which decomposes the variance of a series across di�erent frequencies, the
wavelet coe�cients' variance decomposes the variance of the series across di�erent scales. Those
scales which contribute the most to the series' variance are associated with those wavelet
coe�cients with the largest variance. Hence, the wavelet coe�cients' sample variance provides a
more intuitive parametric estimate of its population variance than the non-parametric periodo-
gram does of the power spectrum. More importantly, whereas the periodogram is an inconsistent
estimator of the spectrum, the wavelet coe�cients' sample variance is a consistent estimator of
the population variance that enables the wavelet OLS estimator to be a consistent estimator of the
fractional di�erencing parameter.

The Monte Carlo simulations bore this out and showed that the wavelet OLS estimator
possesses a smaller mean square error than the GPH estimator for small and large sample sizes
and for di�erent values of d. Our simulations also showed the mean squared error of the wavelet
OLS estimator to be slightly larger than McCoy and Walden's approximate wavelet MLE.
However, the MWestimator's level of bias increased for d� 0.25, 0.35, 0.45 as T grew. This led to
the MW estimator's failure to ®nd the parameter value of d that maximizes the likelihood
function when d� 0.45 and T� 1024. This large bias suggests the maximum likelihood estimator
may be greater than 0.5.

We conclude that given the ease of implementing the wavelet OLS estimator and its non-
numerical nature, many practitioners will be attracted to the wavelet OLS estimator, the most
apparent attraction being the wavelet OLS estimator's substantial improvement over the
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often-used GPH estimator. Furthermore, its small bias and reasonable mean square error with
large data sets also makes it competitive with the MW estimator.

APPENDIX A: PROOF OF THEOREM 1

Let x(t) be a mean zero I(d ) process with j d j 5 1/2 and s2e � 1. The expected value of wj,k can
easily be shown to equal zero, since

E�wj;k� � 2
j=2
Z

E�x�t��c�2j t ÿ k� dt

The variance of the wavelet coe�cients equals

var�wj;k� � E�w2
j;k�

� 2
j

Z
dt

Z
ds E�x�t�x�s��c�2j t ÿ k�c�2js ÿ k�

Using the fractionally integrated processes' autocovariance function found in equation (4) and by
a change of variables

var�wj;k� � K2
ÿj
Z

dt

Z
ds

G�2ÿj j t ÿ s j � d�
G�2ÿj j t ÿ s j � 1 ÿ d�c�t�c�s� �A1�

Because G(k � a)/G(k � b) is approximated well by ka7b for large k, and for normalization
purposes j 2 J � {0, 1, 2, . . ., p7 1}

var�wj;k� � K2
ÿ2jd

Z
dt

Z
ds j t ÿ s j 2dÿ1c�t�c�s�

as j! 0. By another change of variables

var�wj;k� � K
0
2
ÿ2jd

Z
dt j t j 2dÿ1L�1; t�

whereL(1,t)� Rc(s)c(s7 t) ds is the wavelet transform of the `mother' wavelet. Collecting terms
we ®nd

var�wj;k� � s22ÿ2jd

where s2� K0
R
dt j t j 2d71L(1,t)51, since L(1,t) is ®nite. Thus, wj,k � N (0,s2272jd) as

j! 0. QED
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APPENDIX B: PROOF OF THEOREM 2

Let c(t) have M5 1 vanishing moments and a� 2j(k17 k2). Using the steps found in the proof
of Theorem 1, the corr�wj;k1

; wj;k2
� can be written as

corr�wj;k1
; wj;k2

� �
R

dt
R

ds j t ÿ s � a j 2dÿ1c�t�c�s�R
dt
R

ds j t ÿ s j 2dÿ1c�t�c�s�
� K

0
Z

dt

Z
ds j t � a j 2dÿ1L�1; t�

�B1�

where L(1,t)� R ds c(s7 t)c(s) and K 0 is a ®nite constant. Let j a j 4K1 � K2 , i.e.
a 62 supp(L(1,t)), so that j t � a j 2d71 is continuously di�erentiable. By the binomial theorem

j t � a j 2dÿ1 � j a j 2dÿ1
����1 � t

a

����2dÿ1
� j a j 2dÿ1 1 �

X1
i�1

2d ÿ 1

i

 !
t

a

� �i( )
�B2�

Substituting equation (B2) into equation (B1), the correlation can be written as

corr�wj;k1
; wj;k2

� � K
0 j a j 2dÿ1

Z
dt L�1; t� �

Z
dt
X1
i�1

2d ÿ 1
i

� �
t

a

� �i
L�1; t�

( )
�18�

Since c(t) has M vanishing moments, L(1,t) ®rst 2M moments are zero (see Tew®k and Kim,
1992, for the proof of this result). Hence,

corr�wa;k1
; wa;k2

� � C12
2j�dÿM��1 j k1 ÿ k2 j 2�dÿM�ÿ1 � R2M�1 �B3�

where

C1 � K
0 �2d ÿ 1�!
2M! �2�d ÿM� ÿ 1�!

Z
dt t

Mc�t�
� �2

and

R2M�1 � K
0 j a j 2dÿ1

X1
i�2M�1

2d ÿ 1
i

� �
s ÿ t

a

� �i
c�t�c�s� dt ds

( )
�B4�

Since M5 1 and j d j 5 1/2

jR2M�1
j 4C2 j a j 2dÿ1

X1
i�1

sup
�t;s�2O

���� s ÿ t

a

����2M�i
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where

C2 � K
0
���� 2d ÿ 1

2M

� ����� Z jc�t� dt� �2

and the set O� {(t,s):7K14 t,s4K2}. Since

sup
�t;s�2O

���� s ÿ t

a

����5 1

it then follows that

jR2M�1 j 4C32
2j�dÿM� j k1 ÿ k2 j 2�dÿM� �B5�

Where C3 is a ®nite constant. It follows from equations (B3) and (B5) that

corr�wj;k1
; wj;k2

� � O j k1 ÿ k2 j 2�dÿM�ÿ1
� �

and

corr�wj;k1
; wj;k2

� � O 2
2j�dÿM�ÿ1� �

�B6�

for all k1 and k2 such that j k17 k2 j 4K1 � K2 . QED
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