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A. Gillmana, M.J.G.H. Roelofsb, K. Matouša, V.G. Kouznetsovab,∗, O. van der Sluisb,c,
M.P.F.H.L. van Marisb

aDepartment of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556,

USA
bDepartment of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB

Eindhoven, The Netherlands
cPhilips Research Laboratories, High Tech Campus 4, 5656 AE, Eindhoven, The Netherlands

Abstract

This paper presents a novel approach for establishing microstructure statistics-property rela-
tions for a silver particle-based thermal interface material (TIM). Several sintered silver TIMs
have been prepared under different processing conditions, generating samples with distinct mi-
crostructures. The 3D microstructure is revealed and visualized using the combination of Fo-
cussed Ion Beam (FIB) milling and Scanning Electron Microscopy (SEM) imaging. Represen-
tative synthetic model microstructures have been generated based on Gaussian random field
models, having well defined analytical description. The statistical characteristics of the samples
and the synthetic models are shown to have a good correspondence, indicating that the linear
effective properties of these complex materials can be predicted based on analytical estimates
available for the synthetic models. This is verified by computing the effective elastic and ther-
mal material properties using the computational homogenisation approach based on the finite
element models of the real samples. The computational homogenisation, providing the reference
solution, and the higher-order statistical estimates for the synthetic models are in very good
agreement. These results can be used in the development of new silver particle-based materials,
whereby the expensive and time consuming effective material property characterization can be
replaced by efficient estimation based on the synthetic random field models.

Keywords: structure-property relations, statistical micromechanics, computational
homogenization, sintered silver, thermal interface material, SEM-FIB

1. Introduction

The next generation of high power electronic devices, such as high power LEDs, require ther-
mal interface materials (TIM) that exhibit excellent heat dissipation properties through high
thermal conductivity in order to control operating temperatures of the electronic devices [1]. In
addition, these materials should have appropriate mechanical properties to prevent reliability
issues during the lifetime cycle. Due to their relatively high thermal conductivity, and low tem-
perature processing, sintered silver pastes are of particular interest. During sintering, a porous
connected silver structure is generated. Evidently, the processing conditions (e.g., sintering tem-
perature, heating rate, holding time) affect the microstructure of the material and, consequently,
the resulting thermal and mechanical properties [2, 3, 4]. A common material development prac-
tice typically involves multiple trial-and-error cycles: application of expert knowledge-based
variations on chemical composition and processing conditions, followed by material inspection
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by cross-sectioning and time consuming and expensive experimental testing at the material, sub-
system and component level. This material development cycle can be significantly shortened by
establishing a fundamental understanding of the microstructure statistics-property relations [5].

Several analytical models have been proposed in the literature to predict the thermal and
mechanical properties of TIMs. The simplest estimate is given by the rule of mixtures, which
is a zeroth-order approximation and includes the volume fraction as the single parameter [1].
This simple approximation can be improved by adding certain idealized assumptions on the
microstructure of the material, e.g. particle or pore shape (usually spherical or ellipsoidal),
distribution, orientation, packing, etc. [6, 7, 8, 9]. Although these models can match the ex-
perimental values, they usually require some fitting and thus do not establish a direct relation
between microstructural variations and the effective properties. Another approach that leads to
very good prediction of the effective properties is based on direct numerical (often finite element)
simulations of either idealized [10], or actual microstructures obtained from micrographs (2D)
[11, 12, 13], or computer tomography (3D) [14]. This is a very powerful and rather accurate
technique, however, demanding from the viewpoint of time and computer resources. Although
directly establishing microstructure statistics-property relations, it does not always provide in-
sight into the relative contribution of the different microstructural features. Effective material
properties can also be obtained using statistical micromechanics theories [15, 16]. If a good
statistical description of the microstructure is known, e.g. size distribution and configuration of
particles, higher-order statistical models can very efficiently and accurately predict the effective
material properties [17, 18, 19]. For complex, interconnected microstructures with non-trivial
3D geometrical features, the choice of an appropriate statistical model is less straightforward.

In this paper, the microstructure statistics-property relations of silver TIM are established by
the novel link between synthetic microstructures (i.e. Gaussian random field and symmetric-cell
models) with statistical morphological measures and the higher-order statistical micromechan-
ics. The verification of the thermo-mechanical properties is provided by the computational
homogenization of the actual microstructure. This approach opens new pathways for practical
material development, where the expensive experimental testing, microscopic material charac-
terization and numerical simulation cycles can be replaced by less expensive and efficient predic-
tions based on the higher-order statistical estimates. This requires identification of a synthetic
microstructural model that is statistically representative of the TIM morphology, which in this
work has been generated based on Gaussian random field models. We note that the proposed
microstructure statistics-property methodology can be applied to other porous/heterogeneous
thermal interface materials (e.g., transient liquid phase conductive adhesives) with bicontinuous
structures.

The paper is organized as follows. Section 2 summarizes the material processing and 3D
microstructure visualization procedure, as well as the generation of the synthetic microstruc-
tures. The statistical characterization of the real and synthetic microstructures is performed in
Section 3. After a brief summary of the computational homogenization and statistical microme-
chanics approaches for the effective property estimation in Section 4, the results are presented
in Section 5. The paper ends with concluding remarks in Section 6.

2. Material Processing and 3D Microstructure Visualization

The silver-particle based thermal interface material has been provided by Heraeus com-
pany [20] in the form of silver particles/flakes in a polymer solvent. Droplets of the material
were placed on a glass plate and processed in a Carbolite CSF1200 oven. The processing tem-
perature profile is shown in Figure 1. The oven was first pre-heated for one hour to 160◦C to
achieve a homogeneous temperature before placing the samples. The first step in the process-
ing is known as “drying”, during which the solvent evaporates and only silver particles remain.
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Drying was done for 50 minutes at 160◦C for all samples. The second step is the actual sintering
of the silver particles, during which silver particles agglomerate and form a connected structure.
To obtain a distinct variation in the microstructure, three different sintering temperatures were
used, i.e. 230◦C, 280◦C, 330◦C, resulting in three samples, hereafter labeled S1, S2 and S3,
respectively. The sintering time was the same for all the three samples, equal to 60 minutes.
The cool down step was performed inside the oven at a measured rate of 12.5◦C/min.
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Figure 1: Processing temperature profile of the three samples.

For the visualization and subsequent characterization of 3D material structure, the SEM-FIB
technique [21, 22] is applied using the FEI DualBeam system. This imaging technique combines
alternating milling of thin slices (in this work 30 nm) of the material using Focused Ion Beam
(FIB) and Scanning Electron Microscopy (SEM) imaging. These consecutive SEM images can
next be reconstructed to a 3D volume. The SEM-FIB process is illustrated in Figure 2.

Figure 2: Illustration of the SEM-FIB procedure leading to 3D visualization of the microstructure of the material.

The scanned reconstructed cross-sectional images are segmented to distinguish between pixels
representing silver and air. By assigning a thickness to each pixel in the images (corresponding
to the thickness of the FIB removed layer), a 3D voxel data set is generated. Figure 3 shows
the segmented 3D visualizations of all three samples; the corresponding voxel data can be found
in Table 1. These three 3D visualizations were used for the statistical characterization and
effective property estimation as will be discussed in the subsequent sections. Table 1 shows
that the volume fraction of the solid phase increases with increasing processing temperature, i.e.
porosity decreases.
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(a) Sample S1 (b) Sample S2 (c) Sample S3

Figure 3: Segmented 3D visualizations of the three samples obtained by SEM-FIB.

Table 1: Voxel data of the visualizations of the three samples

Sample Volume Volume fraction of silver Pixel size
[µm3] [%] [nm]

S1 13.2 × 15.5 × 14.8 71.4 30
S2 13.9 × 15.6 × 13.1 73.9 30
S3 16.9 × 16.5 × 13.9 76.7 30

In addition to these real microstructures, synthetic microstructures having a well defined
analytical description are considered in order to better understand the microstructure statistics-
property relations for these silver interconnects. For this purpose, we consider Gaussian random
field (GRF) models as introduced by other researchers studying porous materials and microemul-
sions [23, 24, 25, 26]. In this study, we found that a one-cut GRF model proposed by Roberts
and Teubner [23] has similar structural characteristics to the porous silver microstructures. In
particular, the field-field correlation function, g(r), denoted as Model III in [23] is considered,
where

g(r) =
3 (sin(µr)− µr cos(µr)− sin(r)− r cos(r))

r3(µ3 − 1)
, (1)

and the corresponding spectral density is given as

ρ(k) =
3

4π(µ3 − 1)
(H(k − µ)−H(k − 1)) . (2)

Here, H is the Heaviside function, µ is a free parameter, and r and k are the real spatial and
transform variables, respectively. Using the definition of the field-field correlation function,
T -periodic Gaussian random fields with a maximum wave number of K = 2πN/T can be
formulated as

y(x) =

N
∑

l=−N

N
∑

m=−N

N
∑

n=−N

clmn exp(iklmn · x), (3)

where i is the imaginary number, and klmn = 2π
T
(li+mj + nk) with k = ||k||. The coefficients

clmn are defined as clmn = almn + iblmn, and almn and blmn are random independent variables
from Gaussian distributions, where 〈a〉 = 〈b〉 = 0 and 〈a〉2 = 〈b〉2 = 1

2
ρ(klmn)(2π/T )

3. See [23]
for more details. Here, microstructures with 5123 voxels are generated with a MATLAB script
while utilizing MATLAB’s fast Fourier transform (FFT) algorithms with µ = 1.5 and T = 8π.
The volume fractions were matched to samples S1-S3 by iteratively selecting the threshold β
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such that all voxels with function values of −∞ ≤ y(x) ≤ β are set to 1 (solid material phase),
and all other voxels equal 0 (void phase). A qualitative comparison is made in Figure 4 for
sample S3. For the remainder of the paper, S#-FIB and S#-GRF will be used to differentiate
between the real and synthetic microstructures, respectively. The pixel size was determined by
minimizing the difference in the two-point probability function, Sqs(r = |Y − Y ′|), of the real
and synthetic microstructures [27]

Π(α) = ||Sss,real(r)− Sss,synthetic(α r)|| . (4)

Here Sss,real(r) is the two-point probability function of the real microstructure (FIB) where
the subscript s represents the solid phase, Sss,synthetic(α r) is the function for the synthetic
GRF microstructure, and α is the pixel size of the synthetic GRF model and the variable
being optimized. This optimization variable results in a horizontal scaling or stretching of
the two-point probability function. Results of the two-point point probability functions are
discussed in further detail in the following section. Note that the pixel size or scale of the
synthetic microstructures is considered here to simply scale the numerically generated structures
for consistent comparison of various statistical morphological measures. It should be noted
that the scaling has no impact on the effective property predictions of materials with linear
constitutive relations. The resulting domain sizes and pixel sizes for the generated synthetic
microstructures are summarized in Table 2. Finally we note, that developing and tuning a
field-field function to match multiple structural characteristics (e.g., second-point correlations,
filament thickness distribution, minimum distance field, etc.) is an active area of research. Thus
microstructure statistics-property relations play an important role for future development of
new field-field functions designed specifically for these materials.

(a) S3-FIB (real) (b) S3-GRF (synthetic)

Figure 4: Comparison of orthoslices for (a) real silver microstructure and (b) synthetic Gaussian random field
(GRF).

Table 2: Domain descriptions for GRF samples with pixel sizes obtained from minimization problem defined in (4)

Sample Volume Volume fraction of silver Pixel size
[µm3] [%] [nm]

S1-GRF 10.7 × 10.7 × 10.7 71.4 20.9
S2-GRF 12.5 × 12.5 × 12.5 73.9 24.5
S3-GRF 12.6 × 12.6 × 12.6 76.7 24.7
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3. Statistical Characterization

Probability functions (n-point), Sqs···t(x1,x2, · · · ,xn), are commonly used statistical descrip-
tors that quantify complex microstructures [16, 27, 17]. These functions represent the probability
of phases q, s, · · · , t existing at points x1,x2, · · · ,xn and are defined as

Sqs···t(x1,x2, · · · ,xn) = χq(x1)χs(x2) · · ·χt(xn). (5)

Here, χq(x) is the indicator function, and the overbar signifies an ensemble average (equivalent
to volume averaging when assuming ergodicity). In this work, the two-point probability function
quantifies the short- and long-range character of these complex porous microstructures and are
computed using our in-house parallel statistical sampling code, Stat3D [27, 17, 18, 19]. The two-
point probability functions, Sss, for the real and synthetic microstructures are shown in Figure 5.
It can be observed that the shape of these functions is similar for both the real and synthetic
microstructures. The similarities suggest that GRF models are suitable for representing the
porous silver interconnect materials. In addition, the functions saturate at rsat = 5 µm, which
suggests a representative cell size 2× rsat. Note that all synthetic and real microstructures have
domain lengths larger than this characteristic size (see Tables 1 and 2).
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S1-GRF
S2-GRF
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Figure 5: Isotropic two-point probability function for the solid phase, Sss.

In order to further quantify the local structures, image processing and analysis have been
performed. In Figure 3, interconnected bicontinuous structures are observed. Therefore, an
image processing pipeline similar to the one described in Shuck et al. [22] is utilized to quantify
the thicknesses of the ligament structures throughout the voxel data set. The software package
AvizoFire (FEI) is employed for image processing. The image processing pipeline is illustrated
for sample S1-FIB in Figure 6. The processing pipeline begins with the thresholded binary
data set (A in Figure 6). A skeletonization algorithm [28] is performed in two steps. First,
a thinning algorithm peels back the surface of the binary data set until a structure with one
voxel thickness remains. Note that the thinning algorithm results in a line of voxels for filament
structures, and a shell remains around fully enclosed holes (see B in Figure 6). Second, the
thinned structure is smoothed until only ligaments of voxels remain (see C in Figure 6). A
chamfer minimum distance map is also computed from the input binary image data (see D in
Figure 6). The chamfer distance field represents the minimum Euclidean distance from a point
within the material to the material/void interface. The resulting distance field is then multiplied
by the binary image of the thinned structure (B × D results in E in Figure 6), and the resulting
dataset represents the half thickness of each point in the skeleton. The image processing pipeline
is performed for all real and synthetic microstructures.
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Figure 6: Overview of the image processing pipeline: Voxel datasets are processed using FEI’s AvizoFire in order
to quantify the structure of the morphology.

Following the image-processing pipeline described above, the distribution of the average
thickness (two times the half thickness distribution) is determined for the real and synthetic
microstructures. The resulting probability density function (pdf) distributions are shown in
Figure 7. The minimum, mean, and maximum thickness are also indicated in these figures.
Comparing the thickness distributions between the three real samples, Figure 7(a,b), it can be
observed that the mean ligament thickness and the width of the ligament thickness distribution
increase between the samples S1 and S2, while the difference between the samples S2 and S3
is very small. The thickness distributions of the real (Figure 7(a,b)) and GRF (Figure 7(c,d))
microstructures are very similar. The synthetic GRF distributions preserve the trend in the
mean, with the mean thickness increasing for microstructures having larger volume fractions
(S1 has lowest volume fraction, and S3 has largest volume fraction), although the difference
between the synthetic S2-GRF and S3-GRF is slightly larger than for the real structures S2-FIB
and S3-FIB.

The structure of the resulting skeletons (see image data C in Figure 6, for example) are
analyzed. The number of nodes (cross-point vertices) and edges (ligaments) in the skeletons is
reported in Figure 8, where the quantities are normalized by the volume V of the data set. Note
that the monotonic decrease of the No. of edges/vertices in samples S1-S3 (increasing volume
fraction) is captured for both the real and synthetic microstructures. However, the density of
the edges/vertices is higher for the GRF samples. This is likely due to the increasing number
of average sized ligaments in the synthetic microstructures, i.e. the probability of the mean
thickness is higher for the synthetic (GRF) microstructures (higher pdf values in Figure 7(d)
compared to pdf values in Figure 7(b).

Based on the statistical analysis presented in this section, it can be concluded that the
generated Gaussian random field synthetic microstructures can be considered statistically rep-
resentative for the sintered silver material. Consequently, the synthetic models can be used for
the prediction of the linear effective material properties of sintered silver interconnect materials,
thus avoiding (or minimizing) the expensive material characterization. This hypothesis will be
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Figure 7: Probability density functions (pdf) for minimum distance field and thickness distribution for (a,b) real
microstructures and (c,d) synthetic GRF microstructures.

verified in the following.

4. Thermo-Mechanical Property Estimates

The thermo-mechanical properties of the silver paste interconnect materials have been com-
puted numerically, based on the computational homogenization approach, providing the refer-
ence solution, and by statistical micromechanics theories.

4.1. Computational Homogenization for Effective Material Properties

Computational homogenization is by now a well established technique for computing the
macroscopic (effective) properties of heterogeneous materials, including non-linear behavior and
evolving microstructures. A general review on the computational homogenization technique and
the implementation details can be found in references [29, 30], among others.

The computational homogenization technique is based on the construction and solution of a
detailed microstructural model. In this work, microstructural models were obtained by cutting
out windows of various sizes from the 3D reconstructed and segmented microstructures, see
Figure 9. These models will be here referred to as Microstructural Volume Elements (MVE). To
create finite element models of these MVEs, each voxel within an MVE has been transformed to a
(hexahedron) finite element. Based on the segmentation, the finite element was assigned material
properties of either silver or “air”, given in Table 3. Note, that for the silver phase, material
properties of bulk silver have been taken, due to the lack of material data for nano-particle
silver. The material properties of “air” have been selected to represent a phase with thermal
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Figure 9: Overview of the numerical analysis: an MVE is created from the 3D segmented microstructure followed
by the thermal or mechanical finite element analyses from which the effective properties are computed.

conductivity and stiffness properties negligibly low compared to the metal phase. The material
properties have been assumed temperature independent in the temperature range relevant for
the application of the interconnect materials (approx. -40◦C to 150◦C).

Table 3: Material properties of silver and “air” used in the numerical simulations.

Phase Thermal conductivity Young’s Modulus Poisson ratio
[W/mK] [MPa] [-]

Silver 419 83000 0.37
“Air” 1×10−5 1×10−5 0

For the computation of the effective thermal conductivity, MVEs were subjected to an over-
all macroscopic temperature gradient, in combination with the periodic boundary conditions,
see [31, 13] for details. Note, that the use of the periodic boundary conditions results in a
non-uniform, but periodic, temperature distribution on the cube faces. This provides less ther-
mal constraints and is known to lead to better estimation of the effective thermal conductivity
compared to fully prescribing temperature on the whole face (giving overestimation of the ef-
fective thermal conductivity) or prescribing the thermal flux (giving underestimation) [32]. In
this work, the temperature gradient in the vertical direction of the images was prescribed; it has
been verified that prescribing a temperature gradient in the other directions did not change the
results within the statistical deviation. Assuming isotropic linear Fourier’s law for both phases,
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the steady state heat conduction problem is solved, resulting in the microscopic temperature and
heat flux distributions within the MVE, Figure 9. The macroscopic effective heat flux is com-
puted as the volume average of the microscopic heat flux. Relating the computed macroscopic
heat flux to the macroscopic prescribed temperature gradient results in the effective thermal
conductivity.

For the mechanical simulations, uniaxial tensile loading was applied on the MVEs. To this
end, displacements have been prescribed in the vertical direction, combined with the periodic
boundary conditions in the three spatial directions. The same remarks as above with respect to
the periodic boundary conditions apply to the mechanical simulations as well. It has again been
verified that prescribing tensile loading in other directions did not change the results. Isotropic
linear elastic Hooke’s law was assumed for both phases. Solving the equilibrium problem results
in the distribution of displacement and stress fields within the MVE, Figure 9. Relating the
prescribed overall axial tensile strain to the reaction force corresponding to the overall uniaxial
stress provides the effective Young’s modulus.

4.2. Statistical Micromechanics

Effective material properties are also computed using statistical micromechanics theories to
illustrate their applicability in accurately determining microstructure statistics-property rela-
tions. Statistical micromechanics theories have been developed over the past half century, and
details of these developments are presented in books by Milton [15] and Torquato [16].

In this work, third-order statistical micromechanics models are utilized for computing the
effective thermal conductivity and elastic constants. These estimates depend on the individual
phase properties (κi, Ki, and Gi being the thermal conductivity, bulk modulus, and shear
modulus of material phase i), the material volume fractions ci, and microstructural parameters ζi
and ηi that are functions of the one-, two-, and three-point probability functions. For the effective
thermal conductivity, the expression obtained through the strong-contrast expansion derived by
Torquato is utilized (See Eq. (20.84) in [16]). This expression is given as (for κ2/κ1 = 0)

κe/κ1 = 1−
d c2

d− c1 − ζ2
. (6)

For the porous microstructures considered here, κ1 is the effective thermal conductivity of the
solid phase and κ2 = 0 (perfectly insulating pore phase), d is the dimension of the structure
(d = 3 in this work), and the microstructural parameter ζ2 is given as

ζ2 =
9

2c2c1

∫

∞

0

∫

∞

0

∫ 1

−1

3cos2θ − 1

2r1r2
S̃222(r1, r2, θ)d(cos θ) dr1 dr2, (7)

where

S̃222(r1, r2, θ) =
S222(r1, r2, θ)− S22(r1)S22(r2)

c2
. (8)

S222(r1, r2, θ) and S22(r) are the three- and two-point probability functions (see Eq. (5)). As
mentioned by Torquato, this expression perturbs about the self-consistent estimate of Brugge-
man [6] and Landauer [33, 34] and is expected to yield an accurate estimate for phase-inversion-
symmetric structures. Phase-inversion-symmetric morphologies, e.g. symmetric cell materials
and certain GRF models, denote structures where microstructural parameters of phase 1 are
equivalent to the microstructural parameters of phase 2 when the volume fraction of phase 1 is
1 − c1. For the effective elastic constants, the strong contrast expansion derived by Torquato
(see Eqs. (4.1)-(4.5) in [35]) is considered. The bulk and shear moduli assuming no stiffness in
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the pore phase (K2 = G2 = 0) are given as

Ke

K1

=
1− c2 −

15K1

9K1 + 8G1

c1ζ2

1 +
3K1

4G1

c2 −
15K1

9K1 + 8G1

c1ζ2

, (9)

and

Ge

G1

=

1− c2 −
3K1

9K1 + 8G1

c1ζ2 − 6

[

3K1 +G1

9K1 + 8G1

]2

c1η2 −
30G1(2K1 + 3G1)

(9K1 + 8G1)2
c1ζ2

1 +
6(K1 + 2G1)

9K1 + 8G1

c2 −
3K1

9K1 + 8G1
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5ζ2
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+
150
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∫

∞

0

∫

∞

0

∫ 1

−1

P4(cosθ)

r1r2
S̃222d(cosθ)dr1dr2. (11)

Here P4(cosθ) is the fourth order Legendre polynomial. In addition, these three-point approxi-
mations are also compared to the commonly used Hashin-Shtrikman bounds (HS) [36, 37]. Note
that the HS bounds are second-order bounds and are only a function of the material volume
fraction and thus cannot differentiate among varying microstructures.

Determining the microstructural parameters ζi and ηi in these higher order models is often
difficult for a wide range of microstructures, as analytical expressions of the n-point proba-
bility functions are often lacking. Symmetric-cell and GRF are among the models for which
the probability functions have been formulated analytically, and the microstructural parameters
have been evaluated and presented in the literature [16, 23]. Recently, accurate methods have
been reported for computing these parameters directly from three-dimensional microstructures
[18, 19]. In this work, we compute the third-order effective properties utilizing parameters avail-
able in the literature for symmetric-cell GRF models and compare them to the computational
homogenization results.

5. Results

In this section, we report the microstructure statistics-property relations for both the com-
putational homogenization and statistical micromechanics approaches. Regarding the statistical
micromechanics predictions, the HS upper bound and the third-order estimates for four unique
classes of ideal microstructures are considered. Note that the microstructural parameters for
the symmetric cell material models (spherical, cubical, and needle-like cells) are summarized in
Chapter 22 of [16], and the microstructural data for the Gaussian random field 1-cut model is
presented in Table I and Table IX of [23] (Model III). Figure 10 shows the predictions of the
effective thermal conductivity, κe, normalized by the thermal conductivity of the solid phase,
κs, as a function of the solid material volume fraction. Note that the third-order estimates
deviate at most by 5% for the microstructural models considered in the volume fraction range
of interest. In the previous sections, we have shown that the GRF model captures many of
the relevant structural features of the real sintered microstructures. In contrast, the structural
characteristics of the symmetric cell materials are significantly different despite similar effective
property predictions. Symmetric cell microstructures are generated through subdividing the
volume into cells of a particular shape, followed by random assignment of material phases. The
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cubical symmetric cell material, for example, is composed of tiled cubes where each cube is
randomly chosen to be a solid or a void. Thus, this microstructure results in a saturation of the
two-point probability function at one cell length (see [16]), which is significantly different from
the two-point probability function observed for GRF models and the sintered silver paste mate-
rial. This suggests that GRF models have a longer correlation length. Moreover, while there is
little differentiation in the effective material predictions of the symmetric cell and GRF models
for linear materials, more complex loading regimes and nonlinear irreversible material behavior
are likely to reveal significant differences. The importance of a large correlation length, and thus
large MVE size, has been shown for nonlinear material softening in [38]. For future study of
these materials, we have shown that a GRF material model is a good synthetic microstructure
for representing these sintered silver pastes.
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Figure 10: Second-order bound and third-order estimates for effective thermal conductivity, κe, normalized by the
thermal conductivity of the solid phase, κs, as function of the material volume fraction for porous silver samples.

In addition to the statistical micromechanics estimates, we also consider direct simulation of
the real microstructures. For the real samples, the finite element simulations on 12 MVEs per
sample (S1, S2, and S3) were performed as described in Section 4.1. Each MVE contained 1103

hexahedral elements (1.331M elements). The mean results of the effective thermal conductiv-
ity obtained through the MVE simulations are represented by the three markers (filled circle,
triangle, and diamond for sample S1, S2, and S3, respectively), and the gray shaded ellipses
represent one standard deviation of the distribution of 12 FEM simulations performed for each
sample. This ellipse is determined from the covariance matrix of the effective thermal conductiv-
ity/volume fraction data. Note that these distributions overlap significantly with the idealized
microstructural models, illustrating the good agreement between the two modeling approaches.
The differences in the volume fraction of each sample contributes most to the difference in the
effective properties, while the differences in the microstructural character among the samples
play a secondary role.

Similar to the effective thermal conductivity, the effective Young’s modulus, Ee, is also
computed using both modeling approaches. The HS upper bound, the third-order estimates, and
the FEM computational homogenization results as a function of the material volume fraction are
presented in Figure 11. The trends in predictions of the effective thermal conductivity described
above are similar to the trends in the effective Young’s modulus. However, the third-order
estimates among the four ideal microstructures vary at most by 10% for the volume fraction
range of interest, indicating that the Young’s modulus is more sensitive to morphology for these
types of microstructures. This sensitivity is also reflected in the larger spread in the standard
deviation ellipses of the FEM data.
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Figure 11: Second-order bound and third-order estimates for effective Young’s modulus, Ee, normalized by the
Young’s modulus of the solid phase, Es, as function of the material volume fraction for porous silver samples.

The good agreement between the computational homogenization FEM results, used here as
the reference, and the analytical higher-order statistical micromechanics estimates shows that
the synthetic models can be used for the prediction of the linear effective material properties
of the sintered silver interconnect material in the considered range of volume fractions, thus
reducing the material development efforts. Finally, it is remarked that the model predictions
are in good agreement with the experimentally measured ranges of thermal and mechanical
properties [39], although the experimental data show a significant spread between different
publications [40, 41, 42, 13], which can be attributed to large variations in processing conditions
(bulk material versus an interconnect), the presence of the defects (e.g. large voids) and the
capabilities of measurement techniques to deal with small porous samples.

6. Conclusions

In this paper, a methodology for establishing microstructure statistics-property relations
has been presented and applied to a sintered silver particle-based interconnect material for high
power electronic applications. The novel original feature of this approach is the combination
of the statistical morphological measures of real and synthetic microstructures with the higher-
order statistical micromechanics and direct finite element computational homogenization. The
main steps and conclusions of this contribution can be summarized as follows.

• Three sintered silver samples were produced under different processing conditions, i.e.
sintering temperatures of 230◦C (sample S1), 280◦C (sample S2) and 330◦C (sample S3).
The complex 3D interconnected microstructures of these samples were revealed by the
SEM-FIB technique, i.e. through the reconstruction of 3D structure based on Scanning
Electron (SEM) microscopy images of sample surfaces revealed by sequential Focussed Ion
Beam (FIB) milling.

• The statistical analysis of the microstructural features has revealed that increasing sinter-
ing temperature leads to higher volume fraction of the solid phase (lower porosity). More
interestingly, the mean ligament thickness and the width of ligament thickness distribu-
tion have increased between the samples S1 and S2 and was statistically almost equivalent
between the samples S2 and S3.

• In order to better understand the microstructure statistics-property relations for these
complex morphologies, synthetic microstructures have been generated based on Gaussian
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random field models, having a well defined analytical description. The statistical charac-
teristics of the real samples and the synthetic models have been analysed and shown to
have a good correspondence.

• The effective thermal conductivity and Young’s modulus of the considered sintered silver
materials have been computed using the computational homogenization approach based
on the finite element models of the 3D microstructures. The results show that the effective
thermal conductivity of this 3D interconnected microstructures, in the considered range of
volume fractions, is mostly determined by the volume fraction, with the microstructural
variations playing a secondary role. The Young’s modulus, on the other hand, is more
sensitive to the local microstructural features.

• The computed effective properties have been compared to the predictions based on the
analytical higher-order statistical micromechanics estimates for the synthetic microstruc-
tures, demonstrating very good agreement. This shows that the linear effective properties
of these materials can be predicted based on the analytical estimates for synthetic mor-
phologies.

The results of this work can be used for increasing efficiency of material development of
sintered silver thermal interface materials by (partially) replacing the costly material character-
ization by analytical predictions. In addition, the approach proposed in this work, based on the
combination of statistical micromechanics and computational homogenization, can be applied
for other materials, leading to the identification of suitable synthetic models for establishing
microstructure statistics-property relations.
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