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Abstract—As elliptic curve cryptography is one of the 

popular ways of constructing an encoding and decoding 

processes, public-key algorithms as its basis provide 

people a comfortable way of exchanging pieces of 

encoded information. As the time goes by, a lot of 

algorithms have emerged, some of them are still in use 

today; some others are still being developed into new 

forms. The main point of algorithm innovation is to 

reduce the number of processed operations during every 

possible step to find maximum efficiency and highest 

speed while performing the calculations. This article 

describes an improved method of the López-Dahab-

Montgomery (LD-Montgomery) scalar point 

multiplication in terms of working with binary elliptic 

curves. It is shown in the article that the possible 

improvement lies in reordering the set of operations 

which is used in LD-Montgomery scalar point 

multiplication algorithm. The algorithm is used to 

compute point multiplication results of the curves over 

binary Galois Fields featuring the following m values:

 32,64,128,256,512,1024,2048,4096m . The article 

also presents the experimental results based on different 

scalars. 

 

Index Term—Elliptic curve cryptography, binary elliptic 

curve, scalar point multiplication, finite field arithmetic, 

López-Dahab, LD-Montgomery scalar point 

multiplication algorithm. 

 

I.  INTRODUCTION 

Nowadays information technologies develop and 

define the world’s progress while we talk about the 

information flow, methods of IT processing and 

managing patterns. As a result, the issues of data security 

are becoming more and more important in aspects of the 

methods of transferring unencrypted data which is unsafe 

and unreliable to use. Thus, we find ourselves in the 

situation where data encryption is not simply a necessary 

option but it is vital, and if one wants his data to be 

transferred securely, he‘d better to use data encryption 

methods more or less [1]. 

One of the efficient data encryption technologies is 

elliptic curve cryptography which is constructed by 

focusing on Galois Fields. One of the most important 

areas of applying elliptic curve over Galois Field 

operations is systems of cryptographic protection of 

information [2]. One of the most costly operations in 

terms of computing in implementing the methods is to 

cryptography data encoding which uses elliptic curves, it 

is multiplication of a point on an elliptic curve by a 

number. That is why the issue of speeding up the scalar 

point multiplication is relevant. 

 

II.  GALOIS FIELD CONCEPTS. BINARY FIELD ARITHMETIC 

Field is an algebraic structure with two operations – 

addition (+) and multiplication (  ), which satisfies the 

following conditions: 

 

 Closeness and associativity of the operations; 

 Unity element existing (for adding the unity 

element is 0, for multiplication – 1); 

 Inverse element existing (for adding the unity 

element is –a, for multiplication a
–1

); 

 Commutative addition law; 

 Commutative multiplication law for non-zero 

elements;
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 Distributive law. 

 

The real numbers, the rational numbers, and the 

complex numbers under addition and multiplication are 

examples of algebraic fields [3]. 

The field is called finite or Galois field if it contains a 

finite number of elements. 

There are two kind of finite fields: 

 

 prime Galois fields, denoted as  GF p ; 

 Galois fields extension, denoted as ( )mGF p . 

 

All the elements of a  GF p  are integer numbers 

from 0 to p – 1. The operations in this field are performed 

modulo p, where p is a prime number. A polynomial 

form representation or normal form representation is 

usually used for building a  mGF p . Let’s take a closer 

look at the polynomial representation. It is followed by 

building a finite field, its elements are the polynomial of 

the power which are not more than m – 1: 

 

   1 2 2
1 2 2 1 0... : {0,1}m m m

m m iGF p a x a x a x a x a a 
       . 

 

Meanwhile, cryptosystems over (2 )mGF are widely 

used. 

The elements of (2 )mGF  are the binary polynomials 

of degree value, the maximum value is m – 1. 

The operations exceeding (2 )mGF are performed by 

modulo irreducible polynomial of power m. 

A field element 
1

0

( )
m

i
i

i

a x a x




  is associated with the 

binary vector ,1 2 1 0( ) ( , , , )m ma x a a a a   of length m. 

Elements addition in terms of  (2 )mGF  is performed by 

bitwise modulo addition of two vectors (bitwise 

exclusive-or A B ), which contains the elements of the 

fields. Elements multiplication in terms of (2 )mGF  is 

performed by modulo irreducible polynomial. 

 

III.  ELLIPTIC CURVE ARITHMETIC 

Cryptographic mechanisms based on elliptic curves 

depend on how we operate the points of the used curve. 

Meanwhile, curve arithmetic is defined by some field 

(meaning the operations of this field). As the greater 

focus is placed  on the efficiency, the operations of the 

chosen field must be efficient enough [4]. 
Elliptic curve over a field K is a set of points where lie 

in a plane and satisfy the affine equation: 

 
2 3 2

1 3 2 4 6y a xy a y x a x a x a     , 

 

In which, the points are at infinity. 

The number of the curve points is also named by the 

order of the elliptic curve. 

Variables x, y and the coefficients , 1..6ia i   take the 

values which are the elements of the field K. 

Depending on the characteristics of the field K, the 

general equation of an elliptic curve can be expressed in a 

simplified form. 

Let us review the form of the equation of an elliptic 

curve over the (2 )mGF . The characteristic of this field is 

2. Depending on the value of the 1a , we get two types of 

elliptic curves over (2 )mGF : 

 

 if 1 0a  , then we get the equation of a non-super 

singular curve: 2 3 2y xy x ax b   ; 

 if 1 0a  , then we get the equation of a super 

singular curve: 

 
2 3 2

3 2 3, 0y a y x a x b a    . 

 

In cryptography, the usage of super singular curves is 

not recommended. Special properties of these curves 

allow reduce discrete logarithm problem over the elliptic 

curve to the discrete logarithm problem over the finite 

field. This fact causes strength reduction in modern 

cryptosystems built upon such curves [5]. 

Base operation over the points of an elliptic curve are 

point addition and point doubling. 

Let  1 1;P x y  and  2 2; .Q x y  Then 

 3 3;P Q x y  , where 2
3x      , 

 3 31y x    , and 

 

  
1

1 2 1 2

1
1 1 1

, ;

, ;               

y y x x P Q

x y x P Q






    
 

 

 

 

1 2 , ;

, ;               

x x a P Q

a P Q


   
 


  

1 1

2
1

, ;

, .            

x y P Q

x P Q




  
 


 

 

In case P = Q (elliptic curve point doubling), it 

substitute the values of ,  and ,  we get the following 

formula to get 3x :   

2 2 2 1
1 1 1 1 1 1 12 .x y y x x y x a        

An elliptic curve is defined over  (2 ), mGF then 2y1 = 

0. From the elliptic curve equation of  0, x  the value of 

3x  can be obtained as following: 

 
2 3 2 2 2 1 2

2 2 2 1

2 2 2 1 .

y xy x ax b y x yx x a bx

bx y x yx x a

bx y x x yx a

  

  

  

         

     

    

 
2

1 1
3 1 1 1 1 1 1x x y x x y x a 
     
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So 2 2
3 1 1, .x x bx   

Also, all the operations over the coordinates of elliptic 

curves points are performed by the rules of (2 )mGF  

accordingly. 

Sometimes a necessity appears to calculate the point 

which is inverse to the equation  ;P x y . Such 

operation in terms of using a non-super singular curve 

over the field (2 )mGF  is performed by substituting the 

second coordinate’s value to x + y, so the point –P 

locates the following coordinates:  ;x x y . 

 

IV.  EXISTING POINT MULTIPLICATION METHODS 

Presume E presents an elliptic curve defined by

(2 )mGF . Our task is to compute sP, where s is a positive 

integer and P is a point on an elliptic curve E. This 

operation is called point multiplication or scalar 

multiplication, and is widely used in the modern elliptic 

cryptography methods, which is one of the most 

important and costly operations in processing 

encryption/decryption. The core operations in elliptic-

curve cryptography are based specifically on scalar 

multiplication (e.g. single-scalar multiplication

( ,   s )s P P , double-scalar multiplication

( , , ,   )s n P Q sP nQ , etc.) [6]. So far, there have 

been presented a lot of methods for executing this 

operation. In this article, only single-scalar multiplication 

methods are going to be analyzed. Also, only those 

methods that perform sequential point multiplications 

will be reviewed further [7]. 

All the methods of elliptic curve scalar point 

multiplication are based on the analysis of scalar’s binary 

representation. The versions of algorithms which analyze 

each bit (one after another) per step of the algorithm are 

the classic ones.  Depending on the order of the analysis 

of bits (from low to high and vice versa), there are two 

types of algorithms: RL (right-to-left) and LR (left-to-

right). 

A.  Basic binary methods 

Algorithm 1. Implementation of RL-binary method  

Input:  1 1 0 2( , , , ) , (2 )m
ls s s s P E GF   

Output: sP 

1. Q   

2. For i from 0 to l – 1 do 

2.1. If si = 1 then Q Q P   

2.2. 2P P  

3. Return Q 

Algorithm 2. Implementation of LR-binary method  

Input:  1 1 0 2( , , , ) , (2 )m
ls s s s P E GF   

Output: sP 

1. Q   

2. For i from l – 1 downto 0 do 

2.1. 2Q Q  

2.2. If si = 1 then Q Q P   

3. Return Q 

B.  Methods that use a Non-Adjacent Form of a scalar 

A non-adjacent form (NAF) of a positive integer s is 

an expression 
1

0

2
l

i
i

i

s s




 where   10, 1 , 0i ls s    , 

and no two consecutive digits is are nonzero [5]. 

 

Algorithm 3. Implementation of binary NAF RL-method  

Input:  (2 )mP E GF , s 

Output: sP 

1. Compute 

 
1

1

0

NAF( ) 2 , 0; 1 ;  0
l

i
i i l

i

s s s s






     

2. Q   

3. For i from 0 to l – 1 do 

3.1. If si = 1 then Q Q P   

3.2. Else if si = 1  then Q Q P   

3.3. 2P P  

4. Return Q 

Algorithm 4. Implementation of binary NAF LR-method  

Input:  (2 )mP E GF , s 

Output: sP 

1. Compute 

 
1

1

0

NAF( ) 2 , 0; 1 ;  0
l

i
i i l

i

s s s s






     

2. Q   

3. For i from l – 1 downto 0 do 

3.1. 2Q Q  

3.2. If si = 1 then Q Q P   

3.3. Else if si = 1  then Q Q P   

4. Return Q 

C.  Window methods 

The time of Algorithm 3 and 4 can be decreased by 

using a window method which allows us to process w 

digits of s at a time. Yet it requires some extra memory to 

be performed [8]. 

In case 2w  , it is a positive integer. A width-w NAF 

of a positive integer s is expressed by the following 

expression: 
1

0

2
l

i
i

i

s s




 and where each nonzero 

coefficient is  is odd, 
1

12 , 0w
i ls s

  , and at most one 

of any w consecutive digits is nonzero. Let’s also put that 

the width-w NAF (NAFw) has length l [6]. 

NAFw of a positive integer s can be obtained using 

Algorithm 5. 
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Algorithm 5. Computing the width-w NAF of a positive 

integer  

Input: window width w, s 

Output: NAFw(s) 

1. 0i   

2. While 1s  do 

2.1. If s is odd then 

 mod 2 ,  w
i is s s s s    

2.2. Else 0is   

2.3. / 2,  1s s i i    

3. Return ,1 2 1 0( , , , )l ls s s s   

Algorithm 6. Implementation of window NAF LR-

method 

Input:  (2 )mP E GF , window width w, s 

Output: sP 

1. Use Algorithm 5 to compute
1

0

 NAF ( ) 2
l

i
w i

i

s s




  

2. Compute iP iP  for  11,3,5, ,2 1wi    

3. Q   

4. For i from l – 1 downto 0 do 

4.1. 2Q Q  

4.2. If 0is  then 

If 0is   then 
is

Q Q P   

Else 
is

Q Q P   

5. Return Q  

 

Window NAF RL-method construction is inexpedient 

at each step of such algorithm. It is necessary to 

recalculate the table of precomputations which reduces 

the speed of the algorithm. 

 

V.  LÓPEZ-DAHAB COORDINATES 

Besides the affine coordinate system, there also exist 

several coordinate systems of projective types. One of the 

systems is named López-Dahab projective coordinate 

system (LD projective coordinate system), it is very 

popular. In terms of using this coordinate system, point 

addition is performed in mixed coordinates, i.e., one 

point is given in affine coordinates while the other is 

given in projective coordinates [9]. 

In this system, a point (X; Y; Z) is called projective and 

represents points in affine coordinate system: 1x X Z 

2y X Z  . According to this statement, we can get a 

new view for the elliptic curve equation in terms of using 

LD projective coordinates: 

 
2 3 2 2 4.Y X Y Z X Z a X Z Z          

 

Points represented in LD projective coordinates satisfy 

the properties that differ from those that are valid for the 

points in affine coordinate system. Here are two of them: 

1. The point at infinity is represented as the point O 

= (1; 0; 0). And for any point P on the curve is 

true that: P + O = O + P = P. 

2. If P = (X; Y; Z) is a point on a curve, then the 

point –P = (X; X + Y; Z). This operation is also 

called the inverse of point P.  

 

VI.  LÓPEZ-DAHAB MONTGOMERY SCALAR POINT 

MULTIPLICATION METHOD 

Presume E is a non-super singular elliptic curve over

(2 )mGF , its coordinate satisfies the affine equation

2 3 2 , y xy x ax b    and the equation 

2 3 2 2 4  Y X Y Z X Z a X Z Z         is valid for LD 

projective coordinates. 

Peter Laurence Montgomery introduced a method of 

speeding up performance of the modulo multiplication 

operation for big values of the modulo (more than 128 bit) 

in 1985. Before executing of the multiplication, the 

operands must be converted into Montgomery form. For 

the obtained result, an inverse transformation must be 

made. The last operation is computationally expensive 

because it contains the computation of multiplicative 

inverse [10]. Thus, Montgomery multiplication is used 

only in the algorithms of exponentiation. 

Exponentiation algorithm that contain Montgomery 

arithmetic can be split into three phases [10]: 

 

1. Operand’s conversion is converted into 

Montgomery form. 

2. Classic exponentiation algorithm execution in 

terms of Montgomery forms (a lot of 

multiplications). 

3. Converting the result from Montgomery form. 

 

Further Peter Montgomery in his work that was 

dedicated to speed up the algorithms of factorization of 

the elliptic curves introduced in a new algorithm of scalar 

point multiplication (Algorithm 7) [11]. 

 

Algorithm 7. Implementation of Montgomery point 

multiplication method  

Input: 1 2 1 0 2( , , , , )l ls s s s   with 1 1,ts  

 (2 )mP E GF  

Output: sP 

1. 0 1, 2R P R P   

2. For i from l – 2 downto 0 do 

1 1

2

i i i

i i

s s s

s s

R R R

R R

  


 

3. Return R0 

 

López and Dahab later introduced a modification (also 

for binary curves over (2 )mGF ) that was actually an 

improved Montgomery algorithm [11]. The scientists 

presented the idea that the sum of two points can be 
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evaluated using only the operations that involve the x-

coordinates of the points in procedures of doubling and 

adding per iteration. 

In this algorithm that was called MDouble, the point P 

= (x, y) is represented in the LD-projective form 

 1 2, P X Z Y Z     (Algorithm 8). 

Similarly, the point addition algorithm was called 

MAdd (Algorithm 9). Thus, following the modification 

designed by López and Dahab, we get Algorithm 10 [12, 

13].  

 

Algorithm 8. MDouble operation in López-Dahab 

Montgomery point multiplication method 

Input: (2 )mb GF ,     :  : (2 )mP X Y Z E GF  

Output: 1X Z   is affine x-coordinate of the point 2P 

1. 
2X X  

2. 
2Z Z  

3. 
2T Z  

4. Z Z X   

5. 
2X X  

6. T b T   

7. X X T   

8. Return 1X Z   

Algorithm 9. MAdd operation in López-Dahab 

Montgomery point multiplication method 

Input: 1 1 1 1 2 2 2 2( , ), (  :  : ), (  :  : )P x y P X Y Z P X Y Z  

           (2 )mE GF  

Output: affine x-coordinate 1
1 1  X Z  of the point 1 2 P P  

1. 1 1 2T Z X   

2. 2 2 1T Z X   

3. 1 1 2Z T T   

4. 1 1X x Z   

5. 1 1 2T T T   

6. 1 1 1X X T   

7.   Return 1
1 1X Z   

Algorithm 10. Implementation of López-Dahab 

Montgomery point multiplication method 

Input: 1 2 1 0 2( , , , , )l ls s s s   with 1 1,ts  

 ( , ) (2 )mP x y E GF   

Output: sP 

1. 4 2
1 1 2 2, 1, , X x Z X x b Z x      

2. For i from l – 2 downto 0 do 

2.1. If 1is  , then 

 

1

2

1 1 2 2 1

1 1 1 2 2

T Z

Z X Z X Z MAdd

X xZ X X TZ

 


  


  

 

2

4 4
2 2 2

2 2
2 2

T X

X X bX MDouble

Z T Z

 


  


 

 

2.2. Else 

 

2

2

2 1 2 2 1

2 2 1 2 1

1

4 4
1 1 1

2 2
1 1

T Z

Z X Z X Z MAdd

X xZ X X Z T

T X

X X bZ MDouble

Z T Z

 


  


  

 


  


 

  

3. 
1

3 1 1x X Z   

4.  

 

 

 
 

 

1 1

2 2 1

3 3 1 22

1 2

X xZ

X xZ
y x x xZ Z y

x y

Z Z



   
 
   

   
   
 
  

 

5.   Return 3 3( , )x y  

 

The algorithm is considered to be a faster approach of 

the basic Montgomery method which thanks to a fewer 

numbers of operations to be performed per iteration, it 

secondly contains no inversion which is once used in the 

basic version. 

 

VII.  IMPROVED MDOUBLE 

Let 
12m

c b c b


   , where m is the order of the 

curve. Thus, we can achieve speed-up of the algorithm by 

precomputing c and getting rid of squaring, as we know 

that the following statement is true:  
2 2 2a b a b    for 

(2 )mGF . Using this, we can say that the  
4 4Q X b Z    expression could be reformed as:

 
2

2 2Q X c Z   . 

So, we suggest a new modification of the MDouble 

algorithm (Algorithm 11). 

 

Algorithm 11. Improved MDouble 

Input: (2 )mc GF , where c b , (2 )mb GF ,  

1X Z   is affine x-coordinate of the point 

 (2 )mP E GF  

Output: 1X Z   is affine x-coordinate of the point 2P  

1. 
2X X  

2. 
2Z Z  

3. T c Z   

4. Z Z X 
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5. X X T   

6. 
2X X  

7. Return 1X Z   

 

So, we can see that the number of operations in 

Algorithm 11 is fewer than the number of operations in 

Algorithm 8 (table 1). 

Table 1. Number of operations performed per one doubling 

 Squaring Multiplication Addition 

1. MDouble 4 2 1 

2. Improved MDouble 3 2 1 

 

May we have an elliptic curve E, where: a = z
3
, b = z

3
 

+ 1, c = z
3
 + z + 1, and irreducible polynomial 

z
4
 + z + 1. May the scalar s = 510 = 1012. 

May the point P = {z
3
 + 1 : z

3
 + z

2
 + z + 1 : 1}. 

Let’s compare the results of calculations during the 

doubling of a point of an elliptic curve while using 

Algorithm 8 and Algorithm 9 (table 2, 3). It calculates 

the value of Z-coordinate in step 4 of both algorithms that 

is further used for computing Z
 –1

. It calculates the X 

value in the last step of both algorithms. 

Table 2. The first doubling results during the process of multiplication. 

Pi = ({1 0 0 1} : {0001}) 

Step 
MDouble Improved MDouble 

Var. Value Var. Value 

1 X  {1 1 0 1} X {1 1 0 1} 

2 Z {0 0 0 1} Z {0 0 0 1} 

3 T {0 0 0 1} T {1 0 1 1} 

4 Z {1 1 0 1} Z {1 1 0 1} 

5 X {1 1 1 0} X {0 1 1 0} 

Step Var. Value Var. Value 

6 T {1 0 0 1} X {0 1 1 1} 

7 X {0 1 1 1}  –  

1X Z     
1

2 3 21 1z z z z


         
1

2 3 21 1z z z z


      

Table 3. The second doubling results during the process of 

multiplication. Pi = ({1 1 1 1} : {1 0 0 0}) 

Step 
MDouble Improved MDouble 

Var. Value Var. Value 

1 X {1 0 1 0 } X {1 0 1 0} 

2 Z {1 1 0 0 } Z {1 1 0 0} 

3 T {1 1 1 1 } T {1 1 0 1} 

4 Z {0 0 0 1} Z {0 0 0 1} 

5 X {1 0 0 0 } X {0 1 1 1} 

6 T {1 1 1 0 } X {0 1 1 0} 

7 X {0 1 1 0 }  – 

1X Z      12 1z z


       12 1z z


   

 

 

 

 

 

VIII.  THE EXPERIMENTAL RESEARCH 

The software for performing experimental researches 

was designed in Visual Studio 2017 by using C# 

programming language. The hardware characteristics of 

the program are the following: CPU Intel Core I7-6500U 

@2.5 – 2.6 GHz, random access memory 8 Gb. The 

research was mainly based on comparing the timings of 

elliptic curves points’ multiplication with different 

lengths of scalars and different orders of elliptic curves 

(table 4, 5). 

Table 4. Lengths of scalars used for multiplication, bits 

128 256 512 1024 2048 4096 

Table 5. Orders of elliptic curves 

32 64 128 256 512 1024 2048 4096 

 

Using these orders enable us to understand if the 

algorithm is viable for cryptography. Further researches 

are presented on the tables which contains the 

comparison of timings of the LD-Montgomery scalar 

point multiplication method and its modification with the 

improved MDouble (tables 6 – 11). 

Table 6. Point multiplication execution time with m = 32 

Scalar length, 

bits 

LD-Montgomery 

method, ms 

LD-Montgomery method with 
improved MDouble, ms 

128 0,95 0,7 

256 1,17 1,04 

512 1,97 1,8 

1024 3,59 3,47 

Scalar length, 

bits 

LD-Montgomery 

method, ms 

LD-Montgomery method with 

improved MDouble, ms 

2048 7,05 6,4 

4096 14,01 13,82 

Table 7. Point multiplication execution time with m = 64 

Scalar length, 

bits 

LD-Montgomery 

method, ms 

LD-Montgomery method with 

improved MDouble, ms 

128 0,77 0,74 

256 1,24 1,15 

512 2,15 2,01 

1024 4,07 3,86 

2048 7,6 7,3 

4096 14,93 14,33 

Table 8. Point multiplication execution time with m = 128 

Scalar length, 

bits 

LD-Montgomery 

method, ms 

LD-Montgomery method with 

improved MDouble, ms 

128 0,93 0,89 

256 1,49 1,32 

512 2,55 2,39 

1024 4,79 4,63 

2048 8,76 8,45 

4096 17,01 16,7 
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Table 9. Point multiplication execution time with m = 256 

Scalar length, 

bits 

LD-Montgomery 

method, ms 

LD-Montgomery method with 

improved MDouble, ms 

128 1,11 1,01 

256 2,35 1,64 

512 3,84 2,94 

1024 6,11 5,9 

2048 5,33 5,19 

4096 10,82 10,58 

Table 10. Point multiplication execution time with m = 512 

Scalar length, 

bits 

LD-Montgomery 

method, ms 

LD-Montgomery method with 

improved MDouble, ms 

128 2,32 1,77 

256 2,9 2,35 

512 4,96 4,3 

1024 8,53 7,82 

2048 14,34 14,19 

4096 29,44 28,29 

Table 11. Point multiplication execution time with m = 1024 

Scalar length, 

bits 

LD-Montgomery 

method, ms 

LD-Montgomery method with 
improved MDouble, ms 

128 2,98 2,64 

256 4,59 4,33 

512 7,27 6,69 

1024 12,14 12,14 

2048 23,11 23,04 

Scalar length, 

bits 

LD-Montgomery 

method, ms 

LD-Montgomery method with 

improved MDouble, ms 

4096 46,78 45,82 

Table 12. Point multiplication execution time with m = 2048 

Scalar length, 
bits 

LD-Montgomery 
method, ms 

LD-Montgomery method with 
improved MDouble, ms 

128 5,57 5,46 

256 11,91 8 

512 22,31 22,06 

1024 21,77 21,28 

2048 40,82 37,77 

4096 76,72 77,39 

Table 13. Point multiplication execution time with m = 4096 

Scalar length, bits 
LD-Montgomery 

method, ms 

LD-Montgomery method with 

improved MDouble, ms 

128 9,8 9,58 

256 26,63 25,52 

512 41,08 38,36 

1024 38,73 37,57 

2048 70,44 68,85 

4096 145,7 142,95 

 

Thus, we can see that speed performance has been 

slightly improved for every scalar length presented here 

and for every order of elliptic curve from what have been 

reviewed. Even more, with the order growth, the delta 

between the time-values slowly rises, it comes up with 

the thought that MDouble-method and the presented 

modification are effective for cryptography purposes [14]. 

 

IX.  СONCLUSIONS 

Considering the methods used to perform point 

multiplication, the most powerful performance statistic is 

the MDouble-method created by López-Dahab through 

modifying the initial Montgomery double-and-add 

method [15].  

The method contains two operations, it is obvious that 

improving the operation is working in some way to speed 

up the algorithm overall. Being used in cryptography and 

taking into account the fact that big data encryption is 

widely using multiple processors, a slight performance 

improvement could even lead to big one in general. 

Thus, a modification of the MDouble operation was 

introduced. Increasing performance was achieved by 

using precomputations. The result gave an algorithm 

modification with fewer operations and performance time 

improvements. 

 Review the multiplication results of different orders 

curves (from 32 to 4096) by the scalars of different byte 

length (from 16 to 512), the following results are 

obtained: the average increase value is 4-5% (20 points 

per scalar were used). As mentioned above, considering 

all the processors working at the same time, multi-

processor systems that the encryption technologies based 

on Galois Fields theory will obtain even bigger 

improvements [16]. 

Using improved operations potentially in terms of 

working with polynomials over Galois Field (addition, 

multiplication etc.), operations can be also improved in 

terms of working with scalar point multiplication, a better 

result could be obtained in future. 

REFERENCES 

[1] Omar A. Dawood, Abdul Monem S. Rahma, Abdul 

Mohsen J. Abdul Hossen,"The New Block Cipher Design 

(Tigris Cipher)", IJCNIS, vol.7, no.12, pp.10-18, 

2015.DOI: 10.5815/ijcnis.2015.12.02 

[2] Bardis N.G. Fast implementation zero knowledge 

identification schemes using the Galois Fields arithmetic / 

Bardis N.G., Markovskyi O.P., Doukas N., Drigas F. // 

International Symposium IEEE on Telecommunications, 

Proceeding of IX – 2012 

[3] Ç. K. Koç Cryptographic Engineering // Springer : ISBN 

– 2009 – 75 p. 

[4] Ritu Goyal, Mehak Khurana,"Cryptographic Security 

using Various Encryption and Decryption Method", 

International Journal of Mathematical Sciences and 

Computing(IJMSC), Vol.3, No.3, pp.1-11, 2017.DOI: 

10.5815/ijmsc.2017.03.01 

[5] Henri Cohen Handbook of Elliptic and Hyperelliptic 

Curve Cryptography / Henri Cohen, Gerhard Frey, 

Roberto Avanzi, Christophe Doche, Tanja Lange, Kim 

Nguyen, Frederik Vercauteren // Taylor & Francis Group 

– Pp. 43-44. 

[6] Daniel J. Bernstein, Tanja Lange Faster addition and 

doubling on elliptic curves // Chicago, USA. Eindhoven, 

Netherlands – 2007 – Pp. 26-28. 

[7] Nagaraja Shylashree, Venugopalachar Sridhar,"Hardware 

Realization of Fast Multi-Scalar Elliptic Curve Point 



34 Improved Method of López-Dahab-Montgomery Scalar Point Multiplication in Binary Elliptic Curve Cryptography  

Copyright © 2018 MECS                                                           I.J. Intelligent Systems and Applications, 2018, 12, 27-34 

Multiplication by Reducing the Hamming Weights Over 

GF(p)", IJCNIS, vol.6, no.10, pp.57-63, 2014. DOI: 

10.5815/ijcnis.2014.10.07 

[8] Darrel Hankerson Guide to Elliptic Curve Cryptography / 

Hankerson Darrel, Menezes Alfred, Vanstone Scott // 

Springer-Verlag New York, USA. — 2004. — Pp. 98-99. 

[9] F. Rodríguez-Henríquez Cryptographic Algorithms on 

Reconfigurable Hardware / F. Rodríguez-Henríquez, 

Nazar A. Saqib, A. Díaz-Pérez and Çetin K. Koç // 

Springer; ISBN – 2007 – 84 p. 

[10] Peter l. Montgomery Modular Multiplication Without 

Trial Division // Ameriacn Mathematicl Society – 1985 

[11] Peter L. Montgomery Speeding the Pollard and Elliptic 

Curve Methods of Factorization // American 

Mathematical Society – 1987 – Pp. 243-264.  

[12] J. López, R. Dahab Fast Multiplication on Elliptic Curves 

over GF(2m) without Precomputation // Ontario, Canada. 

Campinas, Brazil – 1999. 

[13] Darrel Hankerson Guide to Elliptic Curve Cryptography / 

Hankerson Darrel, Menezes Alfred, Vanstone Scott // 

Springer-Verlag New York, USA. — 2004. — 103 p. 

[14] G. Seroussi Table of Low-Weight Binary Irreducible 

Polynomials from HP Labs Technical Reports 

http://www.hpl.hp.com/techreports/98/HPL-98-135.pdf // 

1998. 

[15] Zhen Huang,Shuguo Li,"Design and Implementation of a 

Low Power RSA Processor for Smartcard", IJMECS, 

vol.3, no.3, pp.8-14, 2011. 

[16] Shivashankar S., Medha Kudari, Prakash S. Hiremath, " 

Galois Field-based Approach for Rotation and Scale 

Invariant Texture Classification", International Journal of 

Image, Graphics and Signal Processing(IJIGSP), Vol.10, 

No.9, pp. 56-64, 2018.DOI: 10.5815/ijigsp.2018.09.07 

 

 

 

Authors’ Profiles 

 
Zhengbing Hu: Ph.D., Associate Professor 

of School of Educational Information 

Technology, Central China Normal 

University, M.Sc. (2002), Ph.D. (2006) 

from the National Technical University of 

Ukraine “Kyiv Polytechnic Institute”. 

Postdoc (2008), Huazhong University of 

Science and Technology, China. Honorary 

Associate Researcher (2012), Hong Kong University, Hong 

Kong. Major interests: Computer Science and Technology 

Applications, Artificial Intelligence, Network Security, 

Communications, Data Processing, Cloud Computing, 

Education Technology. 

 

 

Ivan Dychka: D.S., Professor, Dean of 

Faculty of Applied Mathematics, National 

Technical University of Ukraine "Igor 

Sikorsky Kyiv Polytechnic Institute", 

Ukraine. Research Interests: Computer 

Systems and Networks Software, 

Automated Control Systems, Intelligence 

and Expert Systems, Databases and 

Knowledge Bases, Information Security Software for Computer 

Systems and Networks. 

 

 

 

 

 

Mykola Onai was born on December 06, 

1986. He received his Bachelor’s Degree in 

Computer Engineering (June 2008) and his 

Master of Science Degree in Computer 

Systems and Networks (June 2010), both 

from the Department of Special Purpose 

Computer Systems at National Technical 

University of Ukraine "Kyiv Polytechnic Institute", Kyiv, 

Ukraine and the PhD degree in Computer Systems and 

Components in February 2018 from the Computer Systems 

Software Department at the National Technical University "Igor 

Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine. He is 

currently an Associate Professor in the Computer Systems 

Software Department at National Technical University of 

Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, 

Ukraine. His main research interests are Finite Field Arithmetic, 

Public Key Cryptography, Elliptic Curve Cryptography, 

Computer Security, Network Security and Hardware 

Algorithms for Cryptography. Mykola Onai has authored and 

co-authored more than 40 scientific publications, and is 

inventor of 4 patents. 

 

 

Mykhailo Ivashchenko was born in Dnipro, 

Ukraine on September 13, 1998. He 

graduated from "Dnipro Lyceum of 

Information Technologies at DNU" in 

Dnipro in June 2015, and is currently 

studying in the National Technical 

University of Ukraine "Igor Sikorsky Kyiv 

Polytechnic Institute" at Kyiv on a Bachelor 

program. The author’s main scientific fields of interest are 

Mathematics and Programming. 

 

 

Su Jun, born in Hubei China, received Ph.D. 

degree in Computer Systems and 

Components from Ternopil National 

Economic University, Ukraine in 2013. He 

is associate professor in school of computer 

science, Hubei University of technology, 

Wuhan, China. He has published more than 

20 papers in the area of Computer Network 

and wireless communication. His research interests include 

Wireless Sensor Network, Self-organizing network technology, 

Wave propagation and electromagnetic interference. Dr. Su is a 

member of IEEE and ACM. 

 

 

 

How to cite this paper: Zhengbing Hu, Ivan Dychka, Mykola 

Onai, Mykhailo Ivaschenko, Su Jun, "Improved Method of 

López-Dahab-Montgomery Scalar Point Multiplication in 

Binary Elliptic Curve Cryptography", International Journal of 

Intelligent Systems and Applications(IJISA), Vol.10, No.12, 

pp.27-34, 2018. DOI: 10.5815/ijisa.2018.12.03 


