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Design and Analysis of µ-Negative Material Loaded Wideband

Electrically Compact Antenna for WLAN/WiMAX Applications

Upesh Patel* and Trushit Upadhyaya

Abstract—A compact tri-band antenna incorporated with a split ring resonator array is proposed for
Wireless Local Area Network (WLAN) and Worldwide interoperability for microwave access (WiMAX)
applications. The proposed antenna is printed on an FR4 substrate with overall dimensions of
0.25λ×0.29λ at the lowest frequency. Impedance bandwidth of the antenna is optimised by introducing
slots on the top of the patch. The ground plane is engineered by placement of a split ring resonators array
to induce additional resonance due to occurance of magnetic dipole moment. The antenna resonates
at the frequencies of 2.4 GHz, 3.5 GHz & 5.5 GHz having bandwidths of 12.5%, 7.42% and 6.36% with
the gains of 2.25 dBi, 3.72 dBi and 2.71 dBi, respectively which matches well with the fabricated results.
The proposed antenna shows omnidirectional radiation pattern which makes it appropriate for WLAN
and WiMAX applications.

1. INTRODUCTION

With ever increasing demand of wireless communication devices, the need for low profile and multi-
band antennas is significantly rising. Multiband planar antennas have significant importance in wireless
communication systems. From the RF engineer perspective such antennas should have compact size,
high efficiency, and easy fabrication. The antennas should also have application specific sufficient
bandwidth and gain. Patch antennas typically suffer from issue of narrow bandwidth. There are
many bandwidth and gain enhancement techniques proposed in the literature such as introduction of
differently shaped slots [1], multilayer antennas [1, 2], using electromagnetic bandgap materials [3] to
name a few. This paper presents utilization of negative refractive index material in conjunction with
an engineered ground plane to create multiband and wideband resonance of the patch antenna.

Split-ring resonator, a μ-negative block of negative refractive index material, generates strong
magnetic dipole moment under the exposure of time varying field. The frequency dependent
permeability can be given as [4]

μr(ω) = 1 − Fω2

ω2 − ω2
0 − jωγm

(1)

where ω0 is the resonance frequency, F the unit-cell filling factor, and γm the damping coefficient. As
per Lortenz model, the split ring resonator shall produce negative permeability while ω0 < ω < ωpm.
The ωpm is the magnetic resonance frequency.

Effective use of left handed materials, also known as metamaterials, can increase antenna
radiation properties [5, 6]. The dimensions of basic building block of metamaterial should have sub-
wavelength in order of λ/10 or lesser for optimal effect of negative refraction. Negative refractive
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index materials have provided many benefits to antenna community. It has shown significant aid in
antenna miniaturization [7, 8], improvement in cross polarization levels [9], and improvement in radiation
efficiency through impedance matching [10]. Recent research in negative refractive index inspired
antennas has presented attractive finding in terms of electrically compact antennas [11, 12], MIMO
antennas [13, 14], satellite and far field communication antennas [15, 16], beam-tilted antennas [17, 18],
reconfigurable antennas [19–21], wideband antennas [22, 23], body centric antennas [24], and energy
harvesting antenna [25].

2. ANTENNA DESIGN

The proposed antenna geometry along with design parameters is illustrated in Figure 1(a). The proposed
structure got evolved from a traditional patch antenna design with the objectives of achieving electrical
compactness and reasonable antenna bandwidth and gain. The symmetrical slotted rectangular antenna
having area of 32 × 37.2 mm2 was matched at 50 Ω. A cost effective FR-4 substrate of 1.6 mm
having relative permittivity of 4.4 and loss tangent of 0.008 was utilized for the design. Split ring
resonators along with partial ground plane strips are utilized at the antenna bottom face, as illustrated
in Figures 1(c) and 1(d), to improve the antenna radiation characteristics. The engineered antenna
parameters are tabulated in Table 1.

(a) (b)

(c) (d)

Figure 1. Proposed antenna geometry. (a) Top view, (b) side view, (c) bottom view, (d) unit cell.
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Table 1. Antenna physical dimensions. All dimensions are in mm.

PL PW PL1 PL2 PL3 PL4 PW1 = PW2 PW4
32 37.2 22 8 7.1 7.6 4 6.2

S21 = S22 GL = GW PG = G1 S1 = S2 PW3 S11 S13 G2 = G3
2 40 1 14 15.9 10 8 1
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Figure 2. Antenna phasewise evolution.

(a) (b)

Figure 3. Fabricated prototype of proposed antenna. (a) Top view, (b) bottom view.

The design evolved in four phases. During the first phase of antenna design, two resonant modes
were achieved and were further tuned by introducing partial ground plane. The ground plane consisted
of rectangular conducting strips adjacent to all sides of the patch. In the second phase, equally spaced
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2× 2 SRR arrays in x-y plane at the antenna ground plane were further inducted to achieve additional
resonant modes. In the third phase of the design, equidistance symmetric slots at the sides of the patch
were created to improve the antenna bandwidth which was further improved by creating center slots in
Phase 4. All four design phases are illustrated in Figure 2. The image of fabricated prototype is shown
in Figure 3.

3. SIMULATED AND MEASURED RESULTS

The phase-wise simulated reflection coefficients of the antenna are shown in Figure 4. The simulation
of antenna is carried out using FEM based High-Frequency Structure Simulator (HFSS). The antenna
has three resonant modes at center frequencies of 2.4 GHz, 3.5 GHz, and 5.5 GHz. This satisfies the
requirement of WLAN and WiMAX frequency bands. The simulated Voltage Standing Wave Ratios
(VSWRs) at 2.4 GHz, 3.5 GHz, and 5.5 GHz are 1.09, 1.02, and 1.36, respectively, which meet the
primary design criteria of the proposed antenna of having VSWR lesser than 1.5. Owing to high Q-
factor of the proposed antenna, bandwidth is restricted at higher two bands. After carrying out multiple
simulation iterations in Phase-4 of the design, higher bandwidth was achieved. The bandwidth is in
order of 12.5% (2220 MHz–2520 MHz), 7.42% (3420 MHz–3680 MHz), and 6.36% (5300 MHz–5650 MHz),
respectively for aforementioned frequency bands.

The simulated and measured resonances are illustrated in Figure 5. Return loss and VSWR are
measured using key sight VNA 9912A. The SMA connector is connected to the radiator through
standard soldering technique. Minor mismatch in these results is due to fabrication inaccuracies
and environmental variations between simulation and actual measurements. The simulated current
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Figure 4. Phase wise antenna resonance.
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Figure 5. Simulated and measured return loss.
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distributions of antenna at three resonances are illustrated in Figure 6. The current is not only present
near the feed line, but also largely distributed on the antenna near the edges. The current density
concentration increases near the slot edges at higher frequencies.

3.1. Current Distribution

(a) (b) (c)

Figure 6. Current distribution at excited modes. (a) 2.4 GHz, (b) 3.5 GHz, (c) 5.5 GHz.

3.2. Parametric Study

An open ended design by use of multiple slots on the radiator provides ample opportunity for antenna
tuning and performance optimization. The optimal dimensions of the proposed antenna were selected
after carrying out rigorous parametric analysis. An increase in antenna width and length causes
reduction in resonance as apparent from Figures 7(a) and 7(b). The decrease in PW1, slot along with
width, causes decrement in fundamental mode resonance; however, the second and third resonances are
increased as visible in Figure 7(c). The increase in PL1, the slot dimensions along the length appearing
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(e)

Figure 7. Noticeable physical variations of antenna. (a) Variation in antenna width, (b) variation in
patch length, (c) variation in slot dimension along the antenna width, (d) variation in slot dimensions
along the antenna length, (e) variations in central triangular slit along the antenna length.
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in Figure 7(d), yields decrease in antenna resonance for both fundamental and higher order resonant
modes. The variations in central slit increase the return loss for all frequencies, and optimal dimensions
are selected for target applications which are illustrated in Figure 7(e).

3.3. Radiation Pattern

Antenna radiation pattern measurement in far field (R � 2D2

λ ) was carried out in an anechoic chamber
as depicted in Figure 8. The E-field and H-field radiation patterns of the proposed antenna at 2.4 GHz,
3.5 GHz, and 5.5 GHz are shown in Figure 9. The antenna exhibits directive patterns. The directivity can
be further improved by employing reflectors. The H-plane radiation pattern is quasi-omnidirectional,
which suits the design requirement. Use of a standard gain horn antenna along with MATLAB based
software simulator was carried out to measure the antenna gain. The gain transfer procedure was used
for calculating the antenna gain. The antenna gain can be given as [2]:

GT = GR =
1
2

[
20 log10

(
4πR

λ

)
+ 10 log10

(
PR

PT

)]
(2)

(a) (b)

Figure 8. Antenna measurement in anechoic chamber. (a) E-plane measurement, (b) H-plane
measurement.

(a) (b)
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(c) (d)

(e) (f)

Figure 9. Antenna radiation pattern (simulated (solid line), measured (dashed line)). (a) 2.4 GHz
E-plane, (b) 2.4 GHz H-plane, (c) 3.5 GHz E-plane, (d) 3.5 GHz H-plane, (e) 5.5 GHz E-plane, (f)
5.5 GHz H-plane.
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Figure 10. Simulated (solid) and measured (dashed) antenna gain.
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where GT : Transmitting antenna gain (dB); GR: Receiving antenna gain (dB); PT : Transmitted Power
(Watts), PR: Receiver power (Watts), and R: Distance between transmitting and receiving antenna.
Figure 10 illustrates antenna gain against frequency graph. The gain values at 2.4 GHz, 3.5 GHz, and
5.5 GHz are 2.25 dBi, 3.72 dBi, and 2.71 dBi, respectively. The antenna can be further engineered using
gain enhancement techniques present in the literature.

The antenna was embedded on a Router board as shown in Figure 11 to analyze the possible
degradation in return loss. Figure 12 illustrates that the return loss of mounted antenna is quite lower
than actual test of free standing mode. This is primarily due to the modification in effective relative
permittivity of the substrate and hence subsequent impedance matching when being mounted on the
PCB Board. Further sources of degradation are dielectric casing of router, packaging loss, and extended
coaxial cable loss. The mounted antenna however performs at around 2 : 1 VSWR levels after multiple
iterations of mounting and adequate placement. This meets the design criteria.

(a) (b)

Figure 11. Antenna mounted on router board for return loss measurement. (a) Board bottom view,
(b) board front view.
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Figure 12. Measured return loss when it is free standing (dashed) and when it is installed in router
(solid line).

Table 2 provides the performance comparison of the proposed antenna with other relevant designs
available in the literature. Antenna parameters such as Physical Size, Gain, and Bandwidth for given
dielectric constant of substrate are presented. It is apparent that the proposed antenna has design
superiority over many designs in terms of compactness, gain, and bandwidth for the proposed frequency
bands.
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Table 2. Comparison of proposed antenna with related designs in literature.

Reference

Resonant Center

Frequency

(GHz)

Gain

(dBi)

Bandwidth

(%)

Antenna

Dimensions

(mm3)

Dielectric

Constant

[26] 2.45, 3.6, 5.5 0.76, 0.86, 1.58 4.08, 18.88, 20.18 20 × 24 × 0.635 9.50

[27] 2.4, 3.5, 5 4.5, 4.2, 5.1 12.2, 5.6, 7.6 75 × 75 × 1.6 4.70

[28] 1.78, 4.22, 5.8 −1.8, 2.6, 3.1 0.8, 15.17, 8.33 20 × 20 × 0.508 2.33

[29] 1.57, 1.85, 2.44 −1, 0, 0.2 0.8, 0.5, 0.8 41.1 × 45.5 × 0.8 3.38

[30] 2.4, 3.5, 5.8 2.0, 1.75, 3 13.07, 10.09, 5.09 25 × 22 × 1.6 4.4

[31] 2.4, 3.5, 5.5 3, 2.25, 4.25 12.6, 8, 14.5 40 × 40 × 0.8 4.4

[32] 2.5, 3.5, 5.5 1, 2.25, 3 13.2, 12.57, 15.63 35 × 35 × 1.6 4.4

[33] 2.1, 3.45, 5.2 1.7, 1.85, 5.38 11.2, 5.14, 3.9 40 × 50 × 1.6 4.4

[34] 2.4, 3.5, 5.5 0.77, 1.98, 1.56 6.25, 9.42, 18.72 12 × 23 × 1 4.65

[35] 2.61, 3.5, 5.4 1.85, 2.19, 2.57 11.49, 30, 17.77 38 × 25 × 1.6 4.4

Proposed 2.4, 3.5, 5.5 2.25, 3.72, 2.71 12.5, 7.42, 6.36 32 × 37.2 × 1.6 4.4

4. CONCLUSION

A multiband compact metamaterial inspired slotted antenna for WLAN and WiMAX applications was
designed and developed. The antenna has compact dimensions of 32 × 37.2 × 1.6 mm3. The antenna
was embedded into a communication device for analyzing real-time performance. The frequency-
dependent permeability of the antenna shall permit further miniaturization by modifying the split
ring resonator dimensions; however, predicting antenna resonance due to variations in electromagnetic
coupling between split ring resonators is analytically difficult. The parametric study in the proposed
designs shows that by merely changing the dimensions on the resonator, it is possible to achieve
significant variations in antenna resonance. The design simplicity, return loss, gain, bandwidth, and
radiation pattern make the designed antenna a suitable candidate for target applications.
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