
On the Effectiveness of Sensor-enhanced Keystroke
Dynamics Against Statistical Attacks

Valeriu - Daniel Stanciu
VU University Amsterdam

The Netherlands
valeriu.stanciu@cti.pub.ro

Riccardo Spolaor
University of Padua

Italy
rspolaor@math.unipd.it

Mauro Conti
University of Padua

Italy
conti@math.unipd.it

Cristiano Giuffrida
VU University Amsterdam

The Netherlands
giuffrida@cs.vu.nl

ABSTRACT
In recent years, simple password-based authentication sys-
tems have increasingly proven ineffective for many classes
of real-world devices. As a result, many researchers have
concentrated their efforts on the design of new biometric
authentication systems. This trend has been further ac-
celerated by the advent of mobile devices, which offer nu-
merous sensors and capabilities to implement a variety of
mobile biometric authentication systems. Along with the
advances in biometric authentication, however, attacks have
also become much more sophisticated and many biometric
techniques have ultimately proven inadequate in face of ad-
vanced attackers in practice.

In this paper, we investigate the effectiveness of sensor-
enhanced keystroke dynamics, a recent mobile biometric au-
thentication mechanism that combines a particularly rich
set of features. In our analysis, we consider different types
of attacks, with a focus on advanced attacks that draw
from general population statistics. Such attacks have al-
ready been proven effective in drastically reducing the accu-
racy of many state-of-the-art biometric authentication sys-
tems. We implemented a statistical attack against sensor-
enhanced keystroke dynamics and evaluated its impact on
detection accuracy. On one hand, our results show that
sensor-enhanced keystroke dynamics are generally robust
against statistical attacks with a marginal equal-error rate
impact (<0.14%). On the other hand, our results show that,
surprisingly, keystroke timing features non-trivially weaken
the security guarantees provided by sensor features alone.
Our findings suggest that sensor dynamics may be a stronger
biometric authentication mechanism against recently pro-
posed practical attacks.
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1. INTRODUCTION
Password-based systems have been the most common form

of authentication for many years. Albeit simple, password-
based authentication is prone to several attacks such as
guessing attacks, dictionary attacks, and shoulder surfing
attacks. With the advent of mobile computing, such attacks
have dramatically increased their effectiveness.

In a mobile context, password-based authentication is even
more problematic due to the peculiar nature of the devices.
Most of such problems relate to the users being unaware
of privacy leakage or exhibiting incautious behavior. In-
deed, users ofter choose passwords that are easy to type and
thus easy to guess. They also tend to leave visible finger
marks on the touchscreen (i.e., smudges), which can lead
to password leaks [1]. Moreover, an unaware user could be
victim of shoulder surfing attacks due to the exposure of
mobile devices [30, 24]. In addition, new increasingly so-
phisticated attacks are rampant. For example, researchers
have demonstrated the proneness of mobile password au-
thentication to automated attacks based on videos captured
by low-end cameras and motion analysis through repeated
reflections [33]. As an another example, more advanced at-
tacks that rely only on hands dynamics [28] can achieve even
50% penetration rate at the first attempt. Given the ever-
growing amount of highly-sensitive information (e.g., credit
card transactions, confidential emails, and personal photos)
stored on mobile devices, there is an increasing demand for
stronger mobile authentication techniques.

To address the emerging threats to password-based mo-
bile authentication, many researchers have recently devised
a number of biometric authentication systems [14] for mo-
bile devices. Biometric authentication identifies users by
relying on their behavioral or physiological characteristics,
such as fingerprints, body geometry, voice, gestures or sig-
nature. Since modern mobile devices offer an increasingly
complex and diverse set of user-driven features, they pro-
vide an ideal platform for capturing and analyzing biomet-
ric traits. Prior research efforts have explored a broad range
of mobile authentication techniques, including authenticat-
ing users based on their walking patterns [17], phone call
gestures [5], touch gestures [23, 6, 7, 18, 27] or keystroke
dynamics [15, 4, 11, 31]. However, most existing biometric
authentication mechanisms either yield insufficient accuracy
for real-world deployment or have recently proven ineffective



against advanced statistical attacks [26, 29, 25]. The re-
cent sensor-enhanced keystroke dynamics [9], in turn, yields
promising accuracy results against zero-effort attack condi-
tions, but its real effectiveness in face of advanced statistical
attacks remains unexplored.

Contributions
In this paper, we assess the effectiveness of sensor-enhanced
keystroke dynamics against statistical attacks drawing input
data from general population statistics. Sensor-enhanced
keystroke dynamics relies on both mobile devices built-in
sensors (e.g., accelerometer, gyroscope) and keystrokes tim-
ing (e.g., hold time) information for user authentication pur-
poses. This rich set of features can be potentially generalized
to different biometric authentication systems, thereby mo-
tivating our focus in this paper. In order to conduct our
investigation, we implemented a state-of-the-art statistical
attack that forges mobile user inputs based on real popula-
tion statistics. Next, we ran the attack on a pool of 20 users
using our forged input samples. We have assessed the effec-
tiveness of our attack and its impact on the end-to-end accu-
racy of sensor-enhanced keystroke dynamics, also evaluating
its effects on the individual features (i.e., sensor-based and
timing-based). Our experimental results show that sensor-
enhanced keystroke dynamics is resilient to both zero-effort
and advanced statistical attacks in practice. Finally, our re-
sults suggest that timing features are generally detrimental
to detection accuracy in statistical attack scenarios, but they
still achieve a measurable accuracy improvement in face of
zero-effort attacks.

Roadmap
The remainder of the paper is organized as follows. In Sec-
tion 2, we survey related work, provide background informa-
tion on sensor-enhanced keystroke dynamics, and present
modern attacks against biometric authentication systems.
In Section 3, we present the threat model, our attack method-
ology, and implementation. In Section 4, we present experi-
mental results, and discuss our findings. In Section 5, finally,
we draw conclusions and discuss directions for future work.

2. RELATED WORK
In the literature, there have been numerous attempts to

attack biometric authentication systems. In the following,
we first provide background information to adequately intro-
duce the main concepts and then detail prior efforts related
to our work.

2.1 Equal Error Rate
Measuring the accuracy of a biometric identification sys-

tem is a well-studied problem [32]. Briefly, the performance
of a system is characterized by two metrics:
• False Match Rate (FMR), which expresses the number of

impostors accepted as legitimate users;
• False Nonmatch Rate (FNMR), which expresses the num-

ber of legitimate users rejected as impostors.

The parameters of an authentication system can be tuned
according to its specific purpose, that is, facilitating authen-
tication for the average user, but accepting more impostors
(i.e., with a high FMR), or offering better security but con-
straining the user to a more strict authentication behavior
(i.e., with a high FNMR).

In the literature, e.g., [7], [19], [12], the Equal Error Rate
(EER) is a common accuracy metric. The EER reflects the
accuracy of the authentication system when the False Match
Rate and the False Nonmatch Rate are equal. It is expressed
as a single value between 0 and 1, with lower values repre-
senting better accuracy. Following the common approach in
the literature, we rely on the EER to measure accuracy and
compare our results against prior work.

2.2 Sensor-enhanced Keystroke Dynamics
Keystroke dynamics have been widely used as biometrics

for characterizing users’ behavior. From hardware to soft-
ware keyboards, from fixed- to free-text input, from tradi-
tional to mobile devices, keystroke dynamics has successfully
exploited intrinsic typing characteristics for authenticating
interactive users. In detail, keystroke dynamics relies on
timing key-press and key-release events, associating them in
different ways and deriving features such as the key hold
time, inter-key-press time, etc.

With the advent of mobile devices, a fairly large number of
sensors became available for biometric authentication pur-
poses, such as accelerometer, gyroscope, temperature, air
pressure, and many others. In this paper, we specifically fo-
cus on movement sensors, i.e., accelerometer and gyroscope,
which have proven effective for authentication purposes in
the context of sensor-enhanced keystroke dynamics [9].

Sensor-enhanced keystroke dynamics [9] augments key-
stroke timing features borrowed from traditional keystroke
dynamics with sensor-based features derived from real-time
data sampled from movement sensors. Building on this rich
feature set, prior sensor-enhanced keystroke dynamics solu-
tions implemented different detection algorithms, including
the mean and k-nearest neighbors (kNN, with k=1) algo-
rithms based on Euclidean (unweighted, weighted, normed,
normed weighted) and Manhattan (unweighted, weighted,
scaled, scaled weighted) distances. Such detection algo-
rithms have been evaluated against zero-effort attacks, ulti-
mately reporting a 0.08% EER [9].

2.3 Zero-effort Attacks
Zero-effort attacks [16, 14] are the common setting to eval-

uate the accuracy of biometric authentication systems and
their resilience to attacks. In short, a zero-effort attack refers
to an impostor generating inputs to bypass an authentica-
tion system without any knowledge of other users and their
behavioral characteristics. For our evaluation, this trans-
lates to evaluating the accuracy of our authentication sys-
tem for every user against any other user who participated
in the experiment. This evaluation strategy has been widely
used in prior work in the field [7, 12, 18].

As mentioned earlier, a zero-effort attack setting was also
previously used to evaluate the accuracy of sensor-enhanced
keystroke dynamics [9]. Nevertheless, accuracy measure-
ments solely based on zero-effort attacks are not alone suf-
ficient to thoroughly assess the robustness of biometric au-
thentication systems against modern attacks [22]. In this pa-
per, we thereby consider more sophisticated (statistical) at-
tacks to thoroughly evaluate the accuracy of sensor-enhanced
keystroke dynamics in practice.

2.4 Other Attacks
Many prior efforts have shown that zero-effort attacks

achieve significantly lower EER than more sophisticated non-



zero-effort attacks in practice [22, 2, 8, 13, 20, 21, 3, 26, 29,
25]. In what follows, we discuss the most relevant efforts for
our work and draw appropriate comparison.

Rahman et al. [21] propose a snoop-forge-replay attack
against a keystroke-based continuous verification system.
Their technique is based on snooping keystroke samples from
the user using a keylogger [10] and reuse the samples to
evade detection. Their attack achieves extremely high EERs,
between 43.0% and 96.5%, with average EER increases be-
tween 69.3% and 2,919.3%. Such high EER increases nat-
urally stem from the attack setting, which relies on real
keystrokes “stolen” from the victim to create the forged in-
puts. We assume that, in such an attack setting, the sys-
tem has already been irremediably compromised and we con-
struct our attack only based on external population statistics
(i.e., without any prior knowledge about the victim).

Other researchers [26] have demonstrated practical sta-
tistical attacks against touch-based authentication systems.
Such attacks rely on a“Lego”robot to physically issue forged
inputs based on statistical analysis of the touch patterns of
a population. The authors in [26] have reported EER in-
creases between 339% and 1,004%, with mean EER values
between 30% and 55%. Unlike such attacks, we consider an
ideal (and thus pessimistic) setting with no physical con-
straints for the attacker, providing worst-case results for the
accuracy of sensor-enhanced keystroke dynamics.

Other researchers have proposed statistical attacks to eval-
uate the accuracy of keystroke dynamics [29]. Such attacks,
somewhat closer to our work, also rely on statistically drawn
inputs issued by a physical robot. The attacks presented
in [29], however, are more focused on raising concerns about
synthetic forgery attacks rather than detailing the statistical
attack design and impact in practice. Serwadda et al. [25]
provide a step forward, with a detailed accuracy analysis
of keystroke dynamics against statistical attacks based on
timings drawn from general population statistics. The at-
tack presented in [25] groups keystroke dynamics features in
probability trees and relies on a binning procedure to extract
statistically relevant features from a given population. Our
attack draws from the methodology presented in [25], but
focuses on sensor-enhanced keystroke dynamics and scales
to a much higher number of features and inputs.

3. ATTACK METHODOLOGY
In this section, we present the methodology we followed

to perform the attack. We first introduce the threat model
(Section 3.1), then give details about feature selection (Sec-
tion 3.2) and detection (Section 3.3) algorithms, and finally
discuss how we implemented the attack (Section 3.4).

3.1 Threat Model
We consider an attacker seeking to bypass a sensor-en-

hanced keystroke dynamics authentication system based on
password-based keystroke dynamics combined with accelero-
meter and gyroscope sensor information. If the attacker en-
ters the correct password with the expected typing behavior,
then authentication is successful. Otherwise, authentication
fails, even if the typed password is correct.

We assume the password to be known to the attacker.
This is a common assumption in biometric authentication,
since the main purpose of the accuracy analysis is to assess
the extra security added by biometric characteristics.

We also assume an ideal attacker able to perfectly forge a
particular typing pattern. In other words, we assume the at-
tacker to be a “perfect machine” able to learn and reproduce
human typing patterns. In particular, in order to obtain
worst-case accuracy results, we assume the attacker is not
limited by any physical constraints. This model matches
the assumptions made in prior sensor-enhanced keystroke
dynamics efforts [9].

Finally, we assume the attacker can draw from general
population statistics (except the victim) to generate impos-
tor samples and try to bypass the authentication system.
This is a common assumption in statistical attack scenar-
ios [25], which normally impose no restrictions on the pop-
ulation data available to the attacker.

3.2 Feature Selection
Sensor-enhanced keystroke dynamics relies on features de-

rived from keystroke timings and sensor data continuously
sampled while typing. In particular, the features we select
from the sensor distributions sampled over time are based on
standard statistical metrics, that is root mean square, min-
imum and maximum value, number of local maxima and
minima, mean delta, sum of positive values, sum of negative
values, mean value, mean value during keystroke events, and
standard deviation. We rely on these statistical metrics to
identify features for both gyroscope and accelerometer sam-
ples. For keystroke dynamics, we rely on two main features:
KHT (Key Hold Time) and KIT (Key Interval Time, or
inter-key-press time), for each key and pair of keys typed,
respectively. Each sample is represented as a vector of F
feature values, where F is the total number of features ac-
cording to the distance metrics considered.

3.3 Detection
To authenticate users and detect impostors, we rely on

standard threshold-based binary classification. Similar to
prior efforts [9], we experimented with two classes of de-
tection algorithms, k-nearest neighbors (kNN, with k = 1),
and the mean algorithm (comparing the test samples against
the mean training sample rather than against all the training
samples). We omitted the SVM and Naive Bayes algorithms
from our analysis, after unsuccessful early attempts. Finally,
we based our detection algorithms on a number of distance
metrics commonly used in the literature [9]: Euclidean, Eu-
clidean normed, Manhattan, Manhattan scaled, and their
weighted versions (weights representing the importance of a
given feature in the feature vectors).

3.4 Attack Design and Implementation
This section presents the design and implementation of

our statistical attack and details the challenges involved.
Figure 1 illustrates a general overview of our attack strategy.

Our statistical attack strategy consists of four main steps:
• Statistically analyze the samples of a given population to

identify common characteristics, that is the most frequent
combinations of feature values.
• Generate forged input samples based on the previously

discovered characteristics.
• Feed the forged samples to the authentication system.
• Analyze the impact of the attack.

To analyze the impact of the attack, we rely on leave-one-
out cross-validation and EER calculations under statistical
attacks, as follows:
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Figure 1: Statistical attack overview.

• For each user in the population, we iteratively “leave one
sample out” and create a training set containing the re-
maining samples.
• Unlike zero-effort attacks, we create a testing set for each

user with inputs statistically generated using the common
characteristics from other users’ samples.
• For each iteration, we calculate the corresponding EER

and acceptance threshold for the given user (based on
the reported False Match and False Nonmatch rates) and
evaluate the effectiveness of our attack.

To identify common characteristics in the population and
generate forged input samples based on statistical analy-
sis, we have devised the procedure depicted in Algorithm 1.
The algorithm receives the following parameters in input:
an array of real-world input samples (realInputs), an ar-
ray of weights (weights) for each feature (calculated across
the population by an SVM classifier), the number of bins
(numberOfBins) each [0; 1] feature value distribution should
be partitioned into, and the number of most relevant bins
(h) to consider to forge input samples.

Input: realInputs[ ]; //Real-world input samples
Input: weights[ ]; //Feature weights
Input: numberOfBins; //Number of bins for each feature
Input: h; //Number of bins for forged input generation
Output: forgedInputs[ ]; //Forged input samples

/* Generate bins sorted by feature weights and occurrences */
binnedInputs[ ] := binInputs(realInputs);
sortBinsByOccurrence(binnedInputs);
sortFeaturesByWeight(binnedInputs, weights);

/* Initialize bin indexes to 0 */
binIndexes[ ] := initBinIndexes();

foreach realInputs do
forgedInput := generateInput(binnedInputs, binIndexes, h);
addForgedInput(forgedInput, forgedInputs);

end

return forgedInputs;

Algorithm 1: Procedure to create forged input samples.

Given the input parameters, the algorithm runs a bin-
ning procedure that iterates over all the samples and fea-
ture values received in input and, for each feature value
visited, increments the corresponding bin. The bins uni-
formly partition the original [0; 1] feature value intervals in
numberOfBins smaller (and identical) value intervals. Af-
ter running this procedure, the algorithm obtains, for each
feature, an array of bins sorted by number of occurrences
in descending order (see Figure 2). In other words, for each
feature, the first N bins determine the N most common fea-

ture values across the population. In Algorithm 1, all the
sorted per-feature bins are ultimately assembled and sorted
by feature weights in descending order in the binnedInputs
array. Next, the algorithm initializes the binIndexes array
containing, for each feature, the bin to use to generate the
next guess. Initially, all the indexes are set to 0.
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Figure 2: Bin generation example.

The next step is to identify the relevant bins for each fea-
ture and generate forged input samples. To identify the rel-
evant per-feature bins, we simply select the first h bins with
most occurrences. To generate the forged input samples, we
traverse all the features available and generate combinations
of features values associated only to the first h per-feature
bins. A naive strategy, which instead considers all the pos-
sible per-feature bins without discrimination, would face a
prohibitively large guess space and have trouble scaling. In
Algorithm 1, our generation strategy is implemented by the
generateInput subprocedure, which runs realInputs times
to generate as many forged input samples as real-world sam-
ples given in input.

The order in which the combinations are generated is
dictated by the discriminability offered by the our feature
weights (calculated by an SVM classifier). The features with
higher discriminability are considered first, thanks to the
sorting strategy adopted when generating the binnedInputs
array. As an example, suppose we have only three features,
KHT0 (key hold time for keystroke 0), KIT2 (time between
keystroke 2 and keystroke 3), and AvgAccY (average accel-
eration on Y axis), as represented in Figure 2. Also suppose
the value of h is set to 2, AvgAccY has the highest discrim-
inability, and KHT0 has the lowest one. In this example, the
first five combinations generated by the algorithm would be
{V0, V0, V0}, {V0, V0, V1}, {V0, V1, V0}, {V0, V1, V1},
and {V1, V0, V0}.

Algorithm 2 presents the generateInput subprocedure,
which receives our binnedInputs, binnedIndexes, and h pa-
rameters in input, and each time returns a forged input sam-
ple (forgedInput) in output. First, the subprocedure iter-
ates through the features represented in the binnedInputs
array. For each feature, the subprocedure relies on its bin
index to locate the corresponding relevant feature value in
the binnedInputs array and add it to the forged input sam-
ple. Next, the subprocedure updates the binIndexes array
to select a new combination of feature values at the next
subprocedure call. This is done by using a global counter
(guessCounter), which, at each invocation of the subpro-
cedure, is incremented and converted into base h to en-
code the next combination in the binIndexes array. This
allows our search strategy to potentially explore all the pos-
sible h#features combinations, while always prioritizing the
most discriminative features thanks to the sorting strategy
adopted when generating the binnedInputs array. Finally,



the subprocedure returns the generated forged input sample
including all the necessary feature values.

Input: binnedInputs[ ]; //Binned input samples
Input: binIndexes[ ]; //Current indexes
Input: h; //Maximum number of bins to use for each feature
Output: forgedInput; //Forged input sample

/* Initialize an empty forged input sample */
forgedInput[ ] := initForgedInput();

foreach binnedInputs as binnedInput do
/* Retrieve current feature index */
i = getFeatureIndex(binnedInput);

/* Get corresponding relevant feature value */
v = binIndexes[i];

/* Add current feature value to forget input sample */
addFeatureValue(v, forgedInput);

end

/* Update bin indexes */
guessCounter++; //Global variable
currentGuess = guessCounter;

foreach binIndexes as binIndex do
binIndex = currentGuess % h;
currentGuess = currentGuess / h;

end

return forgedInput;

Algorithm 2: Forged input generation subprocedure.

4. EVALUATION
We evaluated our statistical attack against all the de-

tectors considered, that is, combinations of detection algo-
rithms and distance metrics. Moreover, we experimented
with all the combinations of features, namely keystrokes-
only (i.e., keystroke dynamics), sensors-only (i.e., sensor dy-
namics), and keystrokes and sensors (i.e., sensor-enhanced
keystroke dynamics).

To reproduce the experimental setting from prior work [9],
we based our analysis on a dataset generated by 20 different
test subjects (students in our department). The test sub-
jects were asked to type 20 different samples of 2 passwords
negotiated with our test subjects in advance, i.e., “internet”
and “satellite” (easy to type in a mobile setting, yet suffi-
ciently long to provide adequate protection). We gathered
keystroke and sensor samples in a controlled environment,
on a Samsung Nexus S with a soft keyboard in landscape
mode. We sampled sensor value distributions at a frequency
of 17 Hz. To obtain targeted results, we focused our attack
and accuracy analysis on whole words rather than n-graphs.

For each detector, we ran the experiments while varying
the number of bins between 25 and 300, with a step size of
25 (using less than 25 bins would have severely lowered accu-
racy in statistics, while using more than 300 bins would have
generated overly specific results, given that we had about
350 samples to statistically group). To highlight the cases
in which the attack was most damaging, we first report only
the highest EERs across all the bin configurations. We also
experimented with different values of h, but we ultimately
resorted to h = 3 for all the configurations. Given the large
feature space, increasing h (beyond 3) did not significantly
affect the results. Table 1 summarizes our results.

We first mounted our attack against our keystroke dynam-
ics configuration. As shown in Figure 4a, our experiment
reported EER increases between 210.09% (using the “mean,

Table 1: EER increases and ranges under our attack.

Min. EER
increase

Max. EER
increase

Min.
EER

Max.
EER

Keystroke
Dynamics 210.09% 452.92% 31.47% 50.56%

Sensor
Dynamics 28.29% 1368.14% 0.22% 3.89%

Sensor-
Enhanced
Keystroke
Dynamics

148.1% 3143.36% 0.22% 14.91%

euclidean normed weighted” combination) and 452.92% (us-
ing the “kNN (k=1), euclidean normed” combination)—i.e.,
mean EER values between 31.47% and 50.56% for the input
combination with the highest impact. In contrast, Serwadda
et al. [25] reported EER increases of between 28.6% and
84.4% for statistical attacks against keystroke dynamics.

We believe the discrepancy with previous results [25] to
be caused by the following reasons:
1. We relied only on the most probable combinations gen-

erated by our algorithms, while Serwadda et al. [25] also
used forged inputs randomly sampled throughout the en-
tire guess space.

2. For each user, we generated a much larger number of
forged input samples (around 350, rather than 50 [25]).

3. We considered a different environment, focusing on mo-
bile rather than traditional [25] devices.

Despite the discrepancies, our results confirm and even
provide stronger evidence that keystroke dynamics is vul-
nerable to statistical attacks. Next, we mounted our at-
tack against our sensor-based configurations. Our results
show that both configurations, that is sensors dynamics and
sensor-enhanced keystroke dynamics, provide strong resis-
tance against statistical attacks. While we did observe EER
increases due to statistical attacks in our experiments, such
increases were small, resulting in fairly limited impact in
practice as detailed below.

In the sensor-only configuration (see Figure 4b), we re-
ported EER increases between 28.29% and 1368.14% and
EER values between 0.22% and 3.89% (numberOfBins =
200, h = 3). Our best performer, the “kNN (k=1), euclidean
weighted” combination, reported EERs of 0.22% under our
statistical attack and 0.09% under zero-effort attacks, con-
firming the sensor-only configuration to be robust against
statistical attacks and appropriate for adoption.

In the sensor-enhanced keystroke dynamics configuration
(see Figure 4c), the smallest EER under our statistical at-
tack was the same as in the previous sensors-only configura-
tion (i.e., 0.22% for“kNN (k=1), euclidean weighted”). How-
ever, other detectors reported much higher EER increases
than in the sensors-only configuration. As an example, for
“kNN (k=1), euclidean”, the EER increase reaches 14.92%
from the original 0.46% under zero-effort attacks. This sug-
gests that adding keystroke timing features to even robust
sensor features can significantly degrade the performance of
some (but not all) detectors under statistical attacks.

To validate our results, we tried several more combina-
tions of values for h and numberOfBins. Significantly in-
creasing h results in the most important features being con-
sistently assigned the same feature values for all the forged
input samples, potentially biasing the results. When gradu-
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Figure 3: EER rate vs. number of bins used in our statistical attack.
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(c) Sensor-Enhanced keystroke dynamics.

Figure 4: Comparison between EERs obtained by zero-effort attacks and our statistical attack.

ally increasing h (up to 300), we observed EER variations of
5-10% (compared to our previous results) for our keystroke
dynamics configuration. However, we observed no notice-
able EER variations for our sensors-only or sensor-enhanced
keystroke dynamics configurations.

When gradually increasing the numberOfBins (between
25 and 300, with increments of 25), in turn, we observed
that the optimal number of bins depends on the number
of features and on the detector used. In particular, in our
keystroke dynamics configuration, we obtained optimal re-

sults for a small number of bins (less than 100). In our
sensor-based configurations, in contrast, we obtained opti-
mal results for a much larger number of bins (higher than
200). We believe this behavior to stem from the different
number and discrimination power of the features used. For
example, keystroke dynamics has more limited features, so
the calculated thresholds are generally wider. As a result,
having wider bins (smaller number of bins) can provide bet-
ter spread for the attack. With 25 bins (0.04 interval size
per bin), traversing the features for h = 3 covers 12% of



the most probable values. On the other hand, having 70-80
different unique features, with more discriminative power,
provides tighter thresholds. Hence, it is more complicated
for a forged input sample based on wide bins to fit into the
thresholds (i.e., succesfully authenticate), translating to the
need for more than 200 tighter bins.

Another finding that emerges from Figure 3 is that, on av-
erage, the attack is more effective against mean-based rather
than kNN-based detectors. This means that, on average,
kNN-based detectors are more resistant against statistical
attacks. In addition, in most of the cases, weighted detec-
tors offer better accuracy than unweighted detectors in face
of statistical attacks. Weighted detectors also tend to pro-
vide better results for a large number of bins. We believe
this is due to weighted detectors being able to achieve tighter
thresholds and better raise the bar for the attacker, similar
to the behavior observed earlier for sensor-based features.

5. CONCLUSION
In this paper, we analyzed the behavior of state-of-the-art

biometric authentication systems based on sensor-enhanced
keystroke dynamics under statistical attacks. Our goal was
to establish whether the combination of keystroke timings
and mobile sensor-based features offers a sufficiently robust
authentication mechanism against sophisticated attacks.

For our purposes, we designed and implemented a statisti-
cal attack against sensor-enhanced keystroke dynamics. Our
approach is to forge statistically relevant inputs by drawing
from the characteristics of a given population and attempt
to evade detection. We attacked sensor-enhanced keystroke
dynamics for all the three combinations of features used in
prior work [9]. Our results confirm that basic keystroke-
dynamics authentication is very prone to statistical attacks,
with the best classifier available yielding an EER of 28.83%
and an EER increase of 184% compared to the zero-effort
attack. When sensors are considered, in turn, we obtained
much more promising results. The best classifier reported
an EER of 0.22% for both sensors-only and sensor-enhanced
keystroke dynamics, with EER increases of 123.28% and
148.09% (respectively). The effective percentage increase in
these cases is 0.12-0.13%. Our results show that the effec-
tiveness of statistical attacks against these two mechanisms
is low, demonstrating their robustness in practice. More-
over, our results suggest that sensor dynamics alone is a
stronger mobile biometric authentication mechanism against
statistical attacks, since it proved robust for all the classi-
fiers we considered (not only the weighted ones) while full
sensor-enhanced keystroke dynamics performed poorly for
unweighted classifiers.

To conclude, we have shown that, by using sensor-based
biometric features, it is possible to build highly accurate
mobile authentication systems, robust against both human
and modern statistical attacks.
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