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In this dissertation, we evaluate the potential of unsolicited Internet traffic, called

Internet Background Radiation (IBR), to provide insights into address space usage and

network conditions. IBR is primarily collected through darknets, which are blocks of

IP addresses dedicated to collecting unsolicited traffic resulting from scans, backscat-

ter, misconfigurations, and bugs. We expect these pervasively sourced components to

yield visibility into networks that are hard to measure (e.g., hosts behind firewalls or

not appearing in logs) with traditional active and passive techniques. Using the largest

collections of IBR available to academic researchers, we test this hypothesis by: (1) iden-
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tifying the phenomena that induce many hosts to send IBR, (2) characterizing the factors

that influence our visibility, including aspects of the traffic itself and measurement in-

frastructure, and (3) extracting insights from 11 diverse case studies, after excluding

obvious cases of sender inauthenticity.

Through IBR, we observe traffic from nearly every country, most ASes with

routable prefixes, and millions of /24 blocks. Misconfigurations and bugs, often involv-

ing P2P networks, result in the widest coverage in terms of visible networks, though

scanning traffic is applicable for in-depth and repeated analysis due to its large volume.

We find, notwithstanding the extraordinary popularity of some IP addresses, similar ob-

servations using IBR collected in different darknets, and a predictable degradation using

smaller darknets. Although the mix of IBR components evolves, our observations are

consistent over time.

Our case studies highlight the versatility of IBR and help establish guidelines

for when researchers should consider using unsolicited traffic for opportunistic net-

work analysis. Based on our experience, IBR may assist in: corroborating inferences

made through other datasets (e.g., DHCP lease durations) supplementing current state-

of-the art techniques (e.g., IPv4 address space utilization), exposing weaknesses in other

datasets (e.g., missing router interfaces), identifying abused resources (e.g., open re-

solvers), testing Internet tools by acting as a diverse traffic sample (e.g., uptime heuris-

tics), and reducing the number of required active probes (e.g., path change inferences).

In nearly every case study, IBR improves our analysis of an Internet-wide behavior. We

expect future studies to reap similar benefits by including IBR.
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Chapter 1

Introduction

Unlike in the natural sciences, where scientists use measurements to test hypothe-

ses about the phenomena governing the universe, researchers and practitioners designed

the forces controlling the Internet. These designs, which are publicly available, ensure

Internet functionality and interoperability between hosts. Thus, the existence of a sub-

field of computer science dedicated to measuring the Internet may seem unnecessary.

However, measuring the Internet — perhaps the most complex man-made system ever

— is imperative for studying its growth, usage and state. While Internet protocols are

well-specified, the users, infrastructure, and their interactions are intricate and dynamic.

Analyses of Internet growth, usage, and state are useful from engineering, eco-

nomic, and scientific perspectives. In each case, measurements can verify the effective-

ness of a large system, and plan for improvements. For example, when deploying a new

technology (e.g., firewall) or protocol (e.g., SPDY), engineers use measurements to get

insight into improvements over existing solutions, the performance in a variety of situ-

ations, and adoption rates. A company may decide where economically to place a data

center based on their current and expanding markets, as well as the frequency in which

failures occur. As computer scientists, we are interested in making similar generaliza-

tions about the Internet as a whole, as such insight can help develop best-practices, new

protocols, and an understanding of online behaviors.

1
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Measurements alone are often not sufficient to draw conclusions about Internet

dynamics. We also need a concrete understanding of the collection processes and a

sound interpretation of the data. For example, it is difficult to glean the number of unique

people visiting a website [57]. Cookies associate a unique identifier with a browser;

however, people may have multiple cookies by using more than one browser or Internet-

connected device, surfing the web in incognito mode, or deleting their cookies.

Internet data analysis becomes even more muddled when we do not have control

over the end points we are measuring. And, many interesting Internet phenomena fall

in this category: the size of a malware-infected population, routing policies across the

Internet, the frequency of service disruptions, etc. For these phenomena, researchers

must decide which measurement technique, possibly developing their own, will yield

the best insight. These techniques fall into two broad classes: active probing and passive

collection.

Active probing consists of the injection of packets into the Internet to elicit a

response. At first glance, the ability to communicate with hosts world-wide, appears to

provide unrestricted insight into all Internet hosts. Unfortunately, this is not the case. Vi-

olations of the end-to-end principle, such as firewalls and Network Address Translation

(NAT), render certain hosts unreachable. Moreover, conscientious probing of measur-

able networks should not induce an excessive load on remote resources; as a result, it is

challenging to design an effective probing strategy.

The alternative to active probing is to passively capture traffic at strategic loca-

tions, such as webservers or Internet Exchange points. The effectiveness of a passive

technique is contingent on vantage point placement. Regrettably, academic researchers

are unlikely to obtain data from strategic locations (e.g., at a popular web site, or an

important transit link) due to laws, expense, as well as privacy and proprietary concerns.

As a result, due limitations in measurement techniques and infrastructure, both
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active and passively collected datasets have inherent biases or provide incomplete views

of the Internet. To overcome these limitations, researchers commonly use multiple

datasets. Corroborated findings across datasets increase the confidence in inference cor-

rectness. Differences in the results can help quantify the limitations of either dataset.

To make these more accurate inferences, researchers may use multiple traditional

datasets, such as scans and web logs. Alternatively, Casado et al. proposed using “spu-

rious” network traffic, such as Internet Background Radiation (IBR) and spam emails,

to illuminate regions of the address space where traditional techniques fail to provide

visibility [39]. The insight is that malicious and inadvertent traffic likely contains infor-

mation relevant to Internet-wide network analysis, though it may require some ingenuity

to tease the data into a usable format. This dissertation rigorously evaluates the poten-

tial for IBR to improve our understanding of address space usage and characterize

the state of networks and hosts on an Internet-wide scale.

IBR is unsolicited Internet traffic, composed of scans (e.g., searching for hosts

running a vulnerable service), misconfigurations (e.g., a typo in the IP address for a

mail server), backscatter (responses to packets with forged source IP addresses, includ-

ing spoofed Denial of Service (DoS) attacks), bugs, etc. Though unsolicited traffic can

be collected in any network, researchers frequently collect it using darknets, regions of

the address space dedicated to collecting IBR (i.e., without any active hosts).1 Histori-

cally, researchers have collected and used IBR to study worms [142, 140, 16, 5], DoS

attacks [141], and scanning activity [54, 62]. IBR has many properties that suggest that

it may be a good Internet-wide data source: it is of considerable volume, incessant, and

originates from a variety of services [156, 217].

Recently, instead of studying malicious activities, researchers have leveraged

IBR to learn about hosts and networks generating unsolicited traffic [112, 56, 55, 180]

1An alternative name for a darknet is a network telescope.
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— a concept proposed by Casado et al. [39]. The pervasively sourced components of

IBR makes a darknet the potential recipient of traffic from all networks connected to the

global Internet. Botnets employ machines worldwide to perform scans; misconfigura-

tions can occur in any network; many networks host services that are potential victims of

DoS attacks. These sources enable constant analysis of networks Internet-wide. More-

over IBR may provide insight beyond traditional measurement techniques, such as when

a censorship event visible through IBR, was not entirely reflected in BGP messages [56].

However, previous uses of IBR for opportunistic network analysis often focused

on isolated events or specific components of the IBR. It is unclear if the same analysis

techniques will work on similar events or with different collections of IBR (e.g., at

different times or across different IBR vantage points). More broadly, these studies do

not provide insight into which properties of IBR are amenable to Internet-wide analysis

and whether the networks themselves must have certain characteristics to allow IBR-

based inferences.

These gaps in previous research guide the first part of this dissertation. Intu-

itively, a data source can provide insight into properties of a network, when it legiti-

mately sends a sufficient volume of relevant information. We then turn our intuition into

a scientific investigation, by eliminating cases of sender inauthenticity, examining which

networks send IBR, identifying components of IBR that enable opportunistic network

inferences, characterizing the frequency and granularity of traffic sources, and analyzing

sensitivity to time of collection and position of the darknet in the address space. We find:

IBR originates from most countries, large ASes and a non-trivial number of prefixes, /24

blocks and IP addresses; the composition of IBR enables Internet-wide measurements

through a variety of traffic types; repeated and long-term measurements are possible

with IBR; and these findings are consistent in time (at least recently) and space.

The second part of this dissertation examines when it is appropriate to use IBR
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Table 1.1. Example inferences with IBR. Inferences made through IBR vary in the
number of observations required and the type of packet-level information used.

Number of Packet Layer
Observations Internet (IP) Transport (TCP/UDP/ICMP) Application

One
Ascertaining IPv4 Utilization †

(through source IP)
Section 6.1

Discovering HTTP Servers† Locating Open Resolvers †
(through TCP ports and flags) (through DNS responses)

Section 6.2 Section 6.2
Finding Routers † Determining Filtering Policy †

(through ICMP codes) (through Conficker)
Section 6.2 Previous work:[180]

Two
Identifying Path Changes ♢ Determining Uptime † Evaluating Patch Efficacy †

(through TTL) (through TCP timestamps) (through Qihoo 360 traffic reduction)
Section 7.1 Section 6.3.1 Section 6.3.3

Many
Deducing Number Packets Sent †

(through IPID)
Apply non-IBR method:[40, 120]

Detecting NAT Usage †
(through TCP options and TTL)

Section 6.4.1

Assessing Software Popularity †
(through BitTorrent client)

Section 6.3.2
Analyzing IP Address Sharing†

(through BitTorrent ID)
Sections 6.4.2 and 6.4.3

Predictable
Detecting Outages ♢ Recognizing Packet-loss ♢ Determining Number of Disks †

(through number sources) (through packets per connection) (through re-seeding of Witty’s PRNG)
Previous work:[56, 55] Section 7.2 Previous work:[112]

† = Address space usage and attributes ♢ = Network state

as an Internet-wide data source. We assess IBR’s applicability in a series of case studies

that illuminate IPv4 address space usage and characterize the state of hosts and net-

works. Table 1.1 shows 15 types of IBR-based inferences, which vary in type of mea-

surement task and along the dimensions of packet-level information (Chapter 4) and

number of required observations of the source (Chapter 5). These inferences include

both previous studies, and novel uses of IBR. While itself not an exhaustive list, Ta-

ble 1.1 suggests the versatility of IBR in terms of the number and range of inferences it

may be able to support.

This dissertation studies the 11 novel inferences. For each inference, we apply

(or extend) the technique to IBR data, examine the results, validate the technique, and

discuss implications in the greater context of using IBR for opportunistic Internet anal-

ysis. We look to demonstrate the versatility of IBR, expose strengths and weakness of

using IBR for opportunistic network analysis, and increase the community’s understand-

ing of macroscopic properties of Internet hosts and networks
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1.1 IBR Datasets

Our primary datasets are collections of IBR. Both UCSD and Merit Network op-

erate large darknets, which we call UCSD-NT [205] and MERIT-NT [138] respectively.

UCSD-NT observes traffic destined to more than 99% of IP addresses in a contiguous

/8 block. MERIT-NT covers about 67% of a different /8 block. With access to traffic

reaching 0.65% of all IPv4 addresses, this dissertation uses the largest collections of

IBR available to academic researchers.

Unless otherwise specified, we study packet traces captured during the time pe-

riods of July 31 to September 2, 2012 and July 23, 2013 to August 25, 2013. We

chose these time periods since they align with the ICMP-ping based census conduced

by ISI [86]. We refer to these 34-day periods as the 2012 census and 2013 census re-

spectively. We label our datasets based on the collection site and the year: UCSD-12,

UCSD-13, MERIT-12, and MERIT-13. To reduce the impact of forged traffic, we sanitize

the IBR datasets using the technique described in Chapter 3.2.

1.2 Contributions

This dissertation provides a rigorous assessment of IBR as a data source for

inferring network properties on an Internet-wide scale. To this end, we further our

knowledge of IBR, develop, test, and refine measurement techniques, and advance our

understanding of the Internet. Specifically, the contributions of this dissertation include:

• A method for removing spoofed traffic from IBR. Using this method, we excluded

traffic from over 10M /24 blocks in UCSD-12.

• A modern characterization of IBR components, which illuminates the complexity

of current networked systems and malicious Internet activities. For example, we
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identify a new DNS-based attack involving 1.5M open resolvers, uncover large-

scale BitTorrent index poisoning attacks that induce hosts in over 2M /24 blocks

to send IBR, and detect a byte-order bug in a Chinese security product associated

with over 100M IP addresses. We characterize IBR along the dimensions relevant

to opportunistic network analysis. In particular, we study the sources and the

frequency in which they send IBR, as opposed to the total volume of traffic.

• A template for assessing a data source’s visibility. Specifically, researchers can

compare IBR to any other data source by performing the series of analyses we

present in Chapter 5.

• New methods for detecting IPv4 address utilization, routers, open DNS resolvers,

Carrier Grade NAT (CGN) and DHCP lease durations. Notably, our new methods:

– Increased the number of known used /24 blocks from 4.59M to 5.30M by

using multiple data sources, including IBR. In particular, the inclusion of

IBR reveals 2.7M /24 blocks primarily used by end users.

– Discovered 71k /24 blocks with router interfaces that did not send ICMP

Destination Unreachable messages in a traceroute dataset.

– Revealed almost 900 ASes with repeated evidence of CGN deployment,

more than two times more than a concurrent Internet-wide study of

CGN [172].

– Corroborated, with beaconing RIPE Atlas probes, the characteristic DHCP

address durations for 9 ASes. This method is potentially extensible to any of

the 27k ASes sending BitTorrent IBR in that dataset.

• Evaluation and refinement of techniques used by popular network analysis tools

to determine system uptime and NAT usage. In both cases, we discover that the
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tool uses heuristics that produce false positives. By refining the uptime heuristic,

we accurately determine the uptime for tens of thousands of hosts in each of our

four 34-day datasets.

• Evidence that using IBR can provide insight into large network events beyond

macroscopic outages [56]. Our IBR-based method of detecting path changes

provides a picture of routing dynamics consistent with traceroute measurements,

without sending any probes. We used our packet loss metric to explore two known

cases of congested links, and one case of packet filtering.

1.3 Organization

This dissertation is organized as follows:

In Chapter 2 we discuss related work, including outcomes of comparing two

datasets, opportunistic measurement with other data sources, and previous uses of IBR.

In Chapter 3 we analyze the effects spoofed traffic within IBR could have on our

IBR-based inferences. We propose and validate a method for removing spoofed traffic

from IBR.

Enumerating all types of IBR-derivable information is a daunting, and probably

impossible task. Instead, we characterize IBR along dimensions relevant to network

measurement. In Chapter 4 we identify the phenomena that induce many sources to

send IBR. In Chapter 5 we ask the questions: who sends IBR? How often do they send

traffic? We also evaluate our characterization’s sensitivity to the time of collection, the

position of the darknet in the IPv4 address space, and the size of the darknet.

Next, we conduct a series of case studies that leverage IBR to infer network

properties of the Internet. We broadly divide our case studies into inferences revealing

information about address space utilization (Chapter 6) and network conditions (Chap-
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ter 7).

Based on our characterization of IBR, and the successes and failures of our case

studies, we arrive at guidelines for when it is prudent to leverage IBR for Internet-wide

inference. In Chapter 8 we summarize these insights and suggest future directions.



Chapter 2

Related work

This dissertation evaluates IBR’s potential as a data source to examine proper-

ties of networks Internet-wide. We build upon previous work in the areas of (1) eva-

lutating and comparing comparing data sources, (2) the “opportunistic” usage of data

sources and (3) understanding Internet Background Radiation. In Section 2.1, we con-

sider previous work that compares multiple data sources, which results in deciding to

use one data source over another, scrutinizing the differences to learn new information,

or leveraging their collective power — all viable options when comparing IBR to other

datasets. In Section 2.2, we examine data sources, other than IBR, which researchers

used to opportunistically measure Internet phenomenon. This section provides insight

into when it is appropriate to use such measurements. Finally, in Section 2.3, we dis-

cuss the relationship between opportunistic usage of IBR and previous work designing

darknets, characterizing IBR composition, and investigating malicious events. Also in

Section 2.3, we summarize previous examples of using IBR to learn network properties.

Our summaries identify gaps in the analysis of IBR’s usage as general data source for

Internet-wide measurement, which we address in this dissertation.

10
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2.1 Outcomes when using or comparing multiple data
sources

In this dissertation, we evaluate IBR’s potential to improve visibility into net-

works. This requires (a) being aware of limitations of other methodologies, and (b)

making recommendations on how to best use IBR for a particular measurement prob-

lem. For each of our case studies, we discuss limitations of existing techniques in their

respective chapters. In this section, we examine the outcomes of other measurement

studies with multiple data sources.

Many previous measurement studies use multiple types of data. For brevity, we

only discuss a handful of approaches. We find that there are three possible outcomes

when analyzing the effectiveness of multiple measurement data sources to answer the

same problem: one data source is superior and it is unnecessary to use other sources, the

differences between results from the data sources provide unique insight, and combining

the data sources provides greater visibility than the individual sources themselves.

2.1.1 Outcome: One data source is superior

Heidemann et al. use active probing to study IPv4 address space utilization [86].

To justify their choice, they determined how many USC IP addresses were observed

through active probing and passive monitoring within the USC network. Active probing

revealed a significant number of used addresses (72% of USC IP addresses inferred as

used by either method). Passive monitoring found more used addresses (93% of USC

IP addresses inferred as used by either method) than active probing, but the passive

technique (measuring USC from USC) was not scalable for the entire Internet — it was

impossible to deploy the monitoring in all networks.

Heidemann et al. also justified their use of ICMP probes over TCP probes. First,
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they inferred more addresses as used through ICMP probes (62% of all known used IP

addresses at USC) than TCP probes (54% of all known used IP addresses at USC). This

result held for 1M randomly selected IPv4 addresses. Additionally, they received thirty

times less complaints from probing surveys conducted with ICMP than TCP.

Heidemann et al. had a limited probing budget and it was unclear how to scale

their passive technique. As a result, they choose ICMP probes because they provided

the best information. In Section 6.1, we use multiple data sources (ICMP, TCP, pas-

sive) to study IPv4 address space utilization. We observe slightly more used addresses

than ICMP probes alone. However, the straightforward method of sending only ICMP

probes resulted a successful on-going effort, with publicly available data dating back to

2003 [95].

2.1.2 Outcome: Interesting differences between the data sources

Dainotti et al. showed that IBR can provide valuable insight into country-wide

outages [56]. Their analysis compared IBR, traceroute data, and BGP announcements.

For a government-induced censorship event in Egypt, all three data sources sig-

naled an outage. This event showed it was possible to use IBR to detect outages, but it

was unclear if there was any advantage to using IBR as opposed to traditional methods.

For similar events in Libya, the data sources painted different pictures. Histor-

ical traceroutes were insufficient: there were not enough traceroutes to Libya to infer

two short outages. Had the authors known there was going to be an outage in Libya,

they could have launched targeted probes. Some outages were visible in both BGP

announcements and IBR. However, one known outage was inferable with IBR but not

visible in BGP. Since BGP messages and IBR provide insight into different aspects of

the Internet (namely, control plane vs. data plane), the authors inferred that this outage

was implemented via packet filtering (which only affects the data plane).



13

The different accounts of the Libyan outages provided valuable information:

namely the censorship technique. In this case, it makes sense to use IBR in addition

to traceroute data and BGP announcements, so that we can scrutinize the differences in

results. Similarly, in Section 6.2.1, the differences in results when actively scanning for

open resolvers and discovering open resolvers via IBR, provide insight into which open

resolvers are actively used by attackers.

2.1.3 Outcome: Combining the data sources yields improved
visibility

Active probing is a natural choice for diagnosing failures, such as path anomalies

or reachability problems. The success of detecting an event is tied to probe frequency.

However, responsible Internet measurement should not place undue stress on remote

networks with excessive probing. At least two works have improved their failure diag-

nosing systems by combining passive and active data sources.

PlanetSeer characterized failures experienced by clients connecting the CoDeeN

Content Distribution Network [223]. Specifically, when a client connected to CoDeeN,

PlanetSeer issued a baseline traceroute. As the client downloaded content, PlanetSeer

passively monitored the TTL field and the number of timeouts. If these metrics indi-

cated an anomaly PlanetSeer sent additional probes to confirm and analyze the event,

including probing the anomalous path from other vantage points. The authors found

that PlanetSeer was very effective at identifying short-lived anomalies. Additionally,

they could further reduce the amount of active probing by using fewer vantage points,

with a small decrease in number of detected events.

Hubble detected black holes across the entire Internet through traceroutes, active

ping monitoring, and passive BGP monitoring [107]. It was not feasible to constantly

send traceroute probes to every BGP-announced prefix, so Hubble updated topology
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maps daily. For constant insight across the Internet, Hubble used pings and BGP mes-

sages. These lightweight components triggered additional analysis, including tracer-

outes from multiple vantage points and reverse path traceroutes. In their analysis of the

system, the authors found that BGP monitoring was not sufficient to detect all black-

holes, but BGP monitoring supplemented active probing. In particular, for short reach-

ability problems affecting only a few active probing sites Hubble often observed the

outage via BGP updates and not ping.

Similarly darknets can help decide when and where to probe for path changes

(Section 7.1). By passively monitoring TTL values, we can determine when a path

change is likely. Traceroute measurements can then potentially pinpoint the location of

the change. This union of data has the potential to greatly reduce the number of probes

required to analyze path change dynamics.

2.2 Opportunistic measurement with other data
sources

Casado et al. considered IBR as one of the many possible sources of spurious

traffic to leverage for opportunistic network measurement [39]. They surmised that

traffic from worms, scanning, email spam, and misconfigurations would also provide

valuable insight into hard-to-measure hosts, citing HTTP traces of Code Red II traffic

collected from many different subnets, a daily Eurasian scan, an IP address located at

the University of Wisconsin hard-coded into NetGear routers, and a heavily spammed

domain as respective examples. In this section, we discuss other non-traditional data

sources used indirectly to extract network properties. The most common drawbacks of

these opportunistic techniques are either limited visibility or the inability to generalize

the findings to the entire Internet — drawbacks they share with IBR.

We restrict our discussion to studies inferring properties of the senders and their
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networks used for Internet connectivity, omitting works that uncover malicious infras-

tructure via spurious traffic [10, 119, 133, 191, 87].

2.2.1 Web traffic

Productive web traffic reveals many insights into Internet properties: NAT,

DHCP, and middle box deployment [38], in-transit modification of web pages (e.g.,

pop-up blockers, advertisements) [169], etc. Another example of leveraging productive

web traffic is in Section 6.1, where we compare observed IPv4 address space utilization

from darknets and an academic network — where web sites are the largest attractor of

used /24 blocks. With web traffic, researchers have the means to attract additional users

to their sites, control the content — and measurements — served, and extract detailed

information from the two-way connection (not possible with IBR), e.g., user agent and

requested page. Web traffic can also contribute to IBR, including scans and requests to

unreachable web servers (as studied though one-way traffic by Glatz and Dimitropou-

los [79]).

Casado et al. detected NAT usage from HTTP traces of Code Red II traffic [39].

They compared the number of packets destined to subnets in 192.0.0.0/8 to packets des-

tined to subnets in other /8 network blocks. Due to Code Red II’s preferential scanning

of nearby networks, NAT’ed hosts using a private IP address in the 192.168.0.0/16 sub-

net were more likely to send packets to subnets in 192.0.0.0/8. This technique worked

because they had visibility into a subnet near 192.168.0.0/16, they were unable to detect

NAT using addresses in the 10.0.0.0/8 and 172.16.0.0/12 subnets since they did not have

access to subnets near these private address ranges. Additionally, they warned that their

results may not generalize to the entire Internet, as it is less likely that hosts behind a

NAT will be infected with Code Red II than hosts using a public IP address. Similarly,

as we show in Section 5.3.1, when using IBR, darknet position in the address space
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influences our capabilities and results.

2.2.2 Spam

Spam is a useful opportunistic data source due to long-lived TCP flows with mail

servers, and insight into hard-to-measure hosts (such as proxies) [39].

Ramachandran and Feamster leveraged spam to understand the network-level be-

haviors of spammers [168]. They reasoned that understanding the ISP, IP address space,

or botnet sending spam is more valuable than analyzing the easily modifiable content of

spam emails. They used spam emails reaching a domain with no legitimate addresses to

characterize several network-level behaviors including the network (IP addresses, ASes,

and countries) of origin and operating system. They cautioned that their traffic may

not be reflective of all Internet spam, but claimed it was still interesting as their dataset

contained all spam emails reaching a domain.

In general, comparing unproductive data to other measurement sources can pro-

vide some confidence that the methodology using unproductive data is sound and pro-

vides insight beyond that provided by either source individually. To determine which

network-level characteristics can filter out spam, Ramachandran and Feamster compared

their spam emails to legitimate emails and BGP measurements [168]. To investigate the

spam traffic originated from the Bobax worm, they hijacked one of the worm’s DNS

servers to identify infected machines [168]. We also evaluate IBR-based techniques by

comparing the results to inferences made through other data sources.

The lessons learned when evaluating spam correspond to advice for evaluating

IBR. We enrich our analysis by examining who sends malicious traffic. We heed warn-

ings about the accuracy of extrapolating our findings to the entire Internet. Finally, we

compare IBR to other datasets to gain additional insight.
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2.2.3 Logs

Logs, though almost universally collected, are seldom used to analyze network

events [202]. The barriers to wide-spread usage of logs include the volume of irrelevant

data, and inability to collect logs at diverse vantage points. However, researchers have

used logs conducted to successful longitudinal, in-depth studies, including the work of

Labovitz et al. [113] and Turner et al. [202] which we describe in this Section.

Labovitz et al. combined routing tables with failure logs of a medium sized

regional network to categorize Internet stability [113]. The proprietary nature of failure

data prevented them from obtaining similar data from other providers. With one vantage

point, their study of intra-domain routing failures was not comprehensive, but provided

valuable insight into the differences between inter-domain routing failures and intra-

domain routing failures.

More recently, Turner et al. collected router configuration files, syslog archives,

and operational mailing list announcements to understand the causes and impacts of net-

work failures in a large regional network over a period of five years [202]. Their logs

contained an abundance of information, but reconstructing events was “painful.” Addi-

tionally, since logs were a lossy data source they recovered instantaneous link state only

90% of the time. Similarly, mailing list announcements contained valuable information,

but were difficult to analyze since a non-deterministic social process generated them.

IBR and logs are similar in that they contain excessive data. We need to filter out

irrelevant IBR before we can leverage the useful components for opportunistic measure-

ment. In some cases, we remove spoofed traffic (Chapter 3); in other cases, we extract a

single class of IBR (e.g., Conficker traffic). Extracting relevant data is one of the biggest

challenges of widespread-usage for both logs and IBR.
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2.2.4 BitTorrent

BitTorrent, while an unconventional data source, provides insight into many

edge networks due to its popularity as a distributed file-sharing application. Since it

is a P2P network, hosts connect to other hosts throughout the world. The main chal-

lenge for BitTorrent-based measurement is attracting many clients to connect (or peer)

with the machine performing measurements. Another challenge is that, some ISPs, like

corporate networks, do not permit P2P applications — a source of potential bias in the

resulting BitTorrent-based inferences.

In 2006, Isdal et al. connected to BitTorrent file-sharing swarms and examined

the large number of visible hosts [100]. They observed ≈500k IP addresses with only

eight BitTorrent vantage points over a span of a week. They extracted upload capacity,

latency, network topology, and bandwidth using standard BitTorrent messages. Their

study covered over 20k BGP prefixes in almost 4k ASes; they note that BitTorrent vis-

ibility into prefixes and ASes was greater than data sources involving (1) an academic

CDN, (2) downloading robots.txt files, and (3) a worm outbreak. Additionally, BitTor-

rent traffic did not trigger Intrusion Detection System alarms.

Isdal et al. found swarms by harvesting popular web sites for statistics on Bit-

Torrent trackers [100]. Since their 2006 study, BitTorrent evolved to use a Distributed

Hash Table (DHT) — a decentralized method of providing “trackerless” torrents [124].

To obtain BitTorrent measurements, researchers at Northwestern created an extension

for the Vuze BitTorrent client, Ono, which contained about 3,000 lines of measurement

related code [42]. As an incentive for end users to install Ono, the extension improved

peer selection — by leveraging its measurements to select the best peers and reducing

cross-ISP traffic (with some tricks involving CDNs).

Over 200k hosts installed Ono and collected DNS redirections, transfer rates,
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path latencies, and traceroute measurements [42]. The resulting dataset was huge: they

observed over 2.3M peers per day, and collected over 1.2M traceroutes per day. Re-

searchers also leveraged Ono to characterize ISPs [32] and analyze outages during natu-

ral disasters [31].

BitTorrent traffic is a major component of IBR, which we leverage to study

IP address space utilization (Section 6.1), as well as NAT and DHCP (Section 6.4.1

and 6.4.2). We rely on erroneous entries in clients’ hash tables (e.g., from index poi-

soning attacks) to obtain IBR with a BitTorrent payload. Consequently, the amount of

BitTorrent traffic observed in a darknet is erratic.

2.2.5 Discussion

In this section we have described a number of unconventional data sources,

which researchers leveraged to learn network characteristics. Many of the challenges

in unproductive HTTP traffic, spam, logs, and BitTorrent also apply to IBR. We are

concerned with: extrapolation of our findings to the entire Internet, validation and com-

parison to other data sources, easy identification of relevant components, and source

diversity. Compared to the other data sources, especially web traffic and logs, IBR is

easily obtainable. Additionally, IBR is an evolving mix of traffic (including several of

these unproductive data sources), while the other sources are more homogeneous.

2.3 Previous studies using IBR

Analyzing malicious Internet activity is crucial to understanding the attack meth-

ods and vulnerable services. Security researchers often collect information about threats

at the end host (e.g., through antivirus software) and the network (e.g., with snort [176]).

However, there are a number of technical and privacy issues with disseminating knowl-

edge of attacks. Differentiating between legitimate and malicious activity (in particu-
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lar, new attacks) requires expertise in computer operations and intimate knowledge of

the monitored network. Additionally, administrators are reluctant to share information

about the success of past attacks, or the extent to which they are vulnerable to future

attacks (e.g., network resources, configurations). Due to these issues, researchers often

lack an Internet-wide view of attack techniques and the scale of malicious activities.

One solution is to use a darknet (also called a network telescope) [144]. A dark-

net is a large collection of routed, but unused regions of the address space. Since there

is no legitimate traffic associated with these regions of the address space, there are rela-

tively few privacy concerns with sharing IBR (although IBR may reveal hosts infected

with malware). Additionally, most traffic reaching a darknet, is malicious in nature:

unsolicited scans, backscatter from Denial-of-Service (DoS) attacks, etc. As a result,

darknets are well-suited to capture many Internet-wide security phenomena (e.g., scan-

ning techniques, the size of an infected Worm population).

Understanding the historical context of darknets and IBR provides insight into

the challenges of using the data source and the potential uses of IBR. We discuss design

decisions in deploying a darknet (Section 2.3.1), the type of traffic observed in a dark-

net (Section 2.3.2), and the success stories of using IBR to characterize Internet-wide

security events (Section 2.3.3); each of these topics have implications for opportunis-

tic studies of IBR. Additionally, we summarize previous work in the area of network

analysis via IBR, noting gaps that this dissertation addresses (Section 2.3.4.

2.3.1 Questions to consider when constructing a darknet

Many parameters affect the traffic a darknet observes. This section addresses

tradeoffs associated with responding to IBR, the number of unused addresses comprising

a darknet (its size), and darknet placement.
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Should we respond to unsolicited traffic?

In this section, we discuss technologies related to darknets. For the purposes of

this dissertation, we consider a darknet to be a purely passive method of collecting unso-

licited traffic. Application-layer responders are custom pieces of software that mimic an

application for the duration of a flow, e.g., they complete a TCP handshake. Honeypots

are a collection of resources (physical or virtual) that exist for the sole purpose of being

infected with malware.

Responding to attack traffic can reveal complex attack methods and malicious ac-

tivities after infection. A number of researchers have built lightweight application-layer

responders to IBR [156, 18, 17, 218]. To be functional, these lightweight responders

needed to make assumptions about IBR. For example, to tame the traffic volume, Pang

et al. assumed all traffic from a source IP address results in the same activity (i.e., there

was no need to respond to traffic destined two darknet IP addresses from the source, as

the source used the same exploit) [156]. To save on storage space, the Internet Motion

Sensor responded only to traffic where the initial payload did not match any previously

observed signature [17].

It is difficult to accurately mimic many applications; as an alternative, re-

searchers set up machines with the expectation that they will be compromised, called

honeypots [163]. Vrable et al. showed, through virtualization, that it is possible to have

both high-quality responses (i.e., they execute the kernel or application code permitting

the researchers to witness the infection and subsequent actions made by the compro-

mised machine) and to track infections [210]. Unfortunately, honeypots are resource

intensive and complex. There is an inherent tradeoff between the quality of responses

and the number of monitored IP addresses. Both the University of California, San Diego

(UCSD) and the Merit Network operate /8 darknets – a factor of 256 more addresses than
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Vrable et al.’s deployment. Thus, choosing to use IBR to analyze security events, is a

choice to study breadth rather than depth.

Outside of the security realm, responding to IBR may provide additional in-

sights. A response may help differentiate between spoofed and non-spoofed traffic

(Chapter 3). Additionally, NATed hosts and hosts behind firewalls are hard to measure

with active probes; however, responding when these hosts send IBR may provide insight

into hard-to-measure networks.

How many IP addresses are required for accurate inference?

Moore et al. found that the size of the darknet (the number of IP addresses used

to collect IBR) influenced its ability to detect network events, as well its precision in

event duration and rate [143]. Specifically, they showed scenarios in which a /8 darknet

has a more accurate view of security events than a /16 darknet, under assumptions of uni-

form selection of IP addresses. For example, a DoS lasting 1 minute at a rate of 500pps

had more than a 95% chance of sending at least 100 packets to a /8 darknet, but only a

36.7% chance of sending one packet to a /16 darknet. With the smaller darknet, it was

difficult to accurately characterize DoS attack magnitude and volume. In a simulation of

a Code-Red-like worm, a /8 darknet observed the true infection rate, while the curve for

a /16 darknet was distorted. Moore et al. also noted some practical limitations of large

darknets, including: overloading the links used to collect IBR, insufficient storage and

processing capacity, routing instabilities, and difficulties differentiating simultaneous

IBR events.

Are some IP addresses more desirable than others?

Location of the darknet within the address space influences the observed traffic.

The Internet Motion Sensor used a collection of darknets in academic networks, enter-

prise networks, tier 1 ISPs, national ISPs, regional ISPs and broadband providers [47,
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17, 18]. A distributed architecture is preferable because the composition and magnitude

of IBR varies across collection points. The darknets used in the Internet Motion Sen-

sor varied in size from many /24 blocks to a single /8 block. The traffic received by

the darknets varied in normalized packet rate, amount of local preference (fraction of

traffic from same /8 network), and top ports. In particular, although a few hosts were

responsible for the majority of traffic volume reaching an individual darknet (10% of IP

addresses were responsible for 90% of packets [18]), the same source IP addresses were

not observed across darknets. The researchers attributed to the targeted nature of attacks

and episodic nature scanning activities.

Hotspots, or deviation from uniform targeting, are one cause of discrepancies

across darknets. Cooke et al. [48] characterized the cause of hotspots as either algo-

rithmic (host-centric, programmatic) or environmental. Analyzing data collected by the

Internet Motion Sensor they found examples of algorithmic discrepancies: botnets using

a hit-list, bad entropy in PRNGs, poorly designed PRNGs; and environmental discrep-

ancies: Network Address Translation (NAT), and filtering by Fortune 100 companies.

Wustrow et al. [217] studied five /8 darknets to determine the effect of general allocation

of unused address space. They found that, in terms of traffic volume, environmental fac-

tors were a significant source of non-uniformity, especially to the 1.0.0.0/8 block. The

environmental factors included traffic to IP address with patterns (1.1.1.1 and 1.2.3.4),

byte order bugs (1.*.168.192), discrepancies between hexadecimal and base 10 num-

bers, and false information about a server on an eMule forum.

How does position relative to live networks influence observed traffic?

There is also a concern that scanners or malware may blacklist darknets once the

region is known to be unused [20]. While this hypothesis has not been fully tested, some

malware binaries have avoided regions of the address space used by researchers [224].
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Additionally, in a 2004 study, Shinoda et al. easily located passive Internet threat mon-

itoring systems that publicly released aggregate statistics [184]. Instead, researchers

may use greynets, or a region of the address space sparsely populated with unused IP

addresses to monitor IBR reaching live networks. Cooke et al. developed a method to

find unused IP addresses for a local network [46].

Previous studies in this area extracted valuable information from greynets. Har-

rop et al. found little difference in inferred scanning activity (Sasser infection as well as

linear scanning) from contiguous dark IP addresses (i.e., the configuration of the previ-

ously mentioned darknets), and distributed IP addresses [85]. Glatz and Dimitropoulos

monitored a regional academic backbone network and inspected all one-way flows, i.e.

traffic without a response [79]. They captured activity commonly found in darknets

(most flows were associated with malicious scanning), as well as traffic associated with

live hosts such as temporary service disruptions, P2P applications attempting to access

unavailable peers, and applications using a separate connections for data transfer and

control. In conclusion, if blacklisting is a legitimate concern, a plausible solution is to

monitor IBR from live regions of the address space.

Are darknets feasible as we transition to IPv6?

Although primarily deployed using IPv4 addresses, the concept of a darknet

easily extends to IPv6. Czyz et al. used covering prefixes (i.e., they announced prefixes

which include used networks, and collected traffic to prefixes without more specific BGP

announcements) that encompassed about 86% of all allocated IPv6 networks outside of

6to4 [51]. They found that the rate of traffic reaching a large IPv6 darknet was about

500 times less than a /8 IPv4 darknet, and that there was little evidence of malicious

activity in IPv6 IBR. As IPv6 deployment grows, we expect IPv6 darknets to collect

larger volumes of IBR, and to provide similar types of insights into Internet phenomena
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as current IPv4 darknets.

Using traditional techniques, scanning the IPv6 address space will take signifi-

cantly longer than scanning the IPv4 address space [43]. Scanners may be able to reduce

the time to scan the address space by exploiting spatial patterns and densities of used

IPv6 addresses [160, 204]. This implies that passive techniques, including IBR analysis,

may provide crucial information for measuring IPv6 networks.

Discussion

Although previous research studied darknet parameters in the context of ana-

lyzing malicious traffic, the parameters also impact our ability to infer network prop-

erties of remote networks. Although, with a large, unresponsive darknet, our analysis

is limited to the initial communication attempts, we expect to be able to broadly and

accurately characterize both malicious traffic and the networks generating IBR. We are

aware of potential differences between our darknet and (1) other darknets due to IBR’s

non-uniformity, as well as (2) live regions of the address space due to their different use

cases and blacklisting. In this dissertation, we use traffic from multiple darknets and

analyze the effect of darknet size and position (Chapter 5).

2.3.2 Previous work characterizing IBR composition

At least three studies examined the composition of IBR as a whole. Studying

this aspect of IBR can lead to the discovery of new attacks and bugs. Understanding the

origins of unsolicited activity is beneficial, not only to the security community, but also

for the insights it provides into the nature of IBR. For example, general studies of IBR

non-uniformity provided operational insight into the placement of darknets to collect

the most worm traffic [47, 48] and the allocation of used IP addresses [217]. More

generally, as a source of measurement data, we are interested in the number of hosts
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associated with an IBR phenomenon, the likelihood that an event continues (permitting

repeated analysis), and the overall diversity in IBR phenomena (e.g., our dependence on

a single activity).

Moreover, the composition of IBR influences the types of opportunistic network

analysis we can perform. For example, backscatter from a DoS attack results in many

packets in a short burst. As a result, it is unlikely that we can conduct long-term analysis

of sources sending only backscatter. Some types of network inferences are application-

level specific. If the application’s usage declines, our ability to apply that application-

level specific inference techniques declines. For example, since the machines infected

with Witty were patched, Kumar et al.’s techniques to analyze infected hosts are no

longer applicable [112]. For other network inferences, the type of traffic is inconsequen-

tial (e.g., In Chapter 7.1, we detect path changes using the TTL field, which is present

in every IP packet). However, even in these cases, IBR composition may influence the

scope, volume, or temporal aspects of the traffic used in opportunistic analysis.

In this section, we describe papers that broadly characterize the make up of IBR.

These papers describe IBR as an evolving, unpredictable data source. We discuss the

current composition of IBR in Chapter 4.

In their seminal 2004 paper, Pang et al. analyzed IBR at three locations, with the

help of application layer responders [156]. Although TCP was the dominant protocol

at all three locations, the authors did not observe a consistent composition in part due

to site-specific scans and filtering. Across locations, they found: known exploits, old

worms, malformed DNS queries, and empty connections; and only a small percentage

of sources contacted both a /8 network and a smaller network at a national laboratory. A

key finding was about the dynamism of IBR: sources sending IBR were unlikely to be

observed the next day or month, due the mix of traffic changing on a near-daily basis.

Wustrow et al. studied IBR in the context of allocating new IP addresses: an
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allocated address should receive a reasonable amount of IBR [217]. In particular, they

examined the number of bytes and packets reaching five /8 darknets over three weeks,

and a single /8 darknet over five years (2006-2010). They found that the amount of

IBR was increasing over time, faster than productive Internet traffic (as compared to

work measuring commercial Internet traffic at diverse vantage points [114]); TCP was

the dominant protocol, except in 2008 due to the Slammer worm; Conficker accounted

for significant non-uniformity; the 1.0.0.0/8 address block received more traffic than

other monitored blocks; scanning accounted for most packets except in 1.0.0.0/8 where

misconfigurations dominated. In some cases, only a few thousand hosts (or less) were

responsible for large discrepancies in IBR volume.

In 2012, Brownlee noted the composition of IBR was evolving such that is dif-

ficult to discern new activities based on packet and byte counts [35]. As a solution, he

proposed iatmon to detect new classes of IBR. iatmon classified traffic by its type (e.g.,

to a single source IP address and port, to many ports on the same IP address, to many

IP addresses on the same port; as well as TCP, UDP, backscatter, etc.) and inter-arrival

time (e.g., three seconds between retransmits, stealthy, DoS). To detect new classes of

IBR, Brownlee aggregated type and inter-arrival statistics over volume and number of

sources. During a period of six months in 2011, the volume of traffic did not change;

however, UDP probes increased while TCP scans of many IP addresses on the same

port decreased. Additionally, over a period of half a month the number of sources de-

creased by about a factor of two. Brownlee’s classification can serve as a starting point

to investigate new types of IBR.

While these studies provide insight into the diversity and persistent nature of

IBR, we require an updated analysis of IBR, with attention to properties relevant to

making opportunistic Internet-wide inferences. Pang et al.’s study is over ten years

old [156]; and since this time the Internet (and IBR) has evolved significantly. Wustrow
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et al.’s study does not provide detailed insight into the sources that send IBR [217]. A

phenomenon generated by a handful of hosts may produce many packets and/or bytes,

but provide little insight into Internet-wide behavior. Brownlee studied how certain

properties of sources change over time, but did not identify the phenomena responsible

for the changes [35]. Moreover, these studies did not address spoofed packets (traffic

where the source IP address is forged), which will likely lead to incorrect inferences of

network properties.

2.3.3 Previous work using IBR to analyze malicious activities

Analysis of IBR has led to a better understanding of DoS attacks, many worms,

and scanning techniques. The benefits, concerns, limitations and assumptions made by

the studies of malicious activity extend to opportunistic network analysis. IBR provides

the ability to study a phenomenon across many networks without deploying measure-

ment infrastructure in each network, and archived IBR permits long-term analysis and

reuse for diverse purposes. To accurately study both malicious activity and infer net-

work properties, we must analyze the effect of darknet size and placement, and be aware

of limitations of darknet infrastructure (e.g., packet-loss during an outbreak of IBR) and

our ability to extract specific traffic components. Furthermore, with IBR we may have

an incomplete picture of network activities; as a result we may require additional data

or make assumptions about our data.

Backscatter

Moore et al. studied DoS attacks by examining backscatter reaching a dark-

net [141]. With a long-standing collection of IBR collected at UCSD, they analyzed at-

tacks of over four years (2001-2004). They studied the protocols used (mostly TCP), the

attack rate (65% of attacks could overwhelm a server), attack duration (very few attacks
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last more than an hour), victim type (most victims were home users or small businesses),

victim domains (.com and .ro were the most popular “three-letter” and “country-code”

TLDs respectively), and repeat attacks (relatively uncommon). Although they used a /8

darknet to characterize DoS attacks, they observed many of the same attacks in smaller

darknets. This analysis required making assumptions about attack techniques (attack-

ers spoof addresses uniformly), the network (low packet loss), and IBR (unsolicited

responses are from attacks).

Worms

The first worm studied with a darknet was Code Red [142]. Darknet data led to

an analysis of the number of infected hosts, the rate at which machines were patched

or rebooted and characteristics of the infected machines. Similar observations have

been made for other worms, including: Slammer [140], Witty [112], Blaster [16], and

Conficker [5]. The ease and breadth of collection provided numerous analysis benefits.

Since darknets captured IBR over a long period of time, researchers could study the

persistence and origins of infection. In particular, the Blaster worm showed evidence of

infection in over 90k /24 blocks two years after the outbreak [16]. Kumar et al. provided

strong evidence that a certain IP address acted as “Patient Zero” of the Witty worm and

that the target of the attack was a US Military base [112].

There are limitations to using IBR to study worms. Darknets do not respond

to probes, so it may be difficult to identify worm traffic. Wei and Mirkovic noted that

dropped packets, Network Address Translation, non-uniform scanning, short lifetimes

of infectees, and equipment errors may lead to incorrect inferences about worm dynam-

ics [213].

Slammer and Witty use a single UDP packet to spread. Worms using multiple

packets, including worms that spread via TCP, are less straightforward to detect.
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• The Code Red worm spreads over TCP port 80. One analysis considered a host

to be infected if it sent at least two packets to two unique darknet IP addresses

on TCP port 80 [142]. Although seemingly effective in 2001, this technique is

unlikely to differentiate Code Red from other types of TCP port 80 scanning.

Responding to TCP port 80 probes would reveal which are associated with Code

Red infections.

• The Conficker worm spreads via TCP; however, a bug in its pseudorandom num-

ber generator (PRNG) means that only one-quarter of IP addresses in a /8 darknet

are targets [41]. Thus, we can differentiate Conficker from other scans based on

the set of destinations scanned (see Appendix B).

• Some worms, such as certain versions of Code Red [142], preferentially probe

hosts on a local network. But because contiguous darknets do not have active

hosts, local preference is not observed through IBR. (i.e., Moore et al. use a /8

darknet to study Code Red; by definition their darknet not contain any hosts that

preferentially scan the /8 network).

• Researchers used IBR to study extremely fast spreading worms, including the

Slammer worm [140]. Fast spreading worms may congest links on the paths from

infected machines to their destinations, including darknets. As a result of con-

gestion, routers will drop packets and inferences about worm dynamics may be

incorrect. Wei and Mirkovic analyzed worm behaviors correcting for this type of

error [213]. They found that the standard analysis of a /8 darknet (multiplying the

number of scans by the darknet’s size) underestimated the number of scans per

second by a factor of three.
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Scanning

In addition to studying the scanning activity of worms, darknets are well suited

to perform general studies of scanning. Darknets have been used to assess frequently

scanned protocols, ports (in many recent studies Conficker resulted in TCP port 445

having the most packets [217, 62]), as well as attributes of the originating sources and

scan dynamics.

Durumeric et al. studied scans that target a large darknet at a rate of 10 pps or

faster [62]. In particular, they studied the amount of scanning that occurs after major

vulnerability disclosures e.g., announcement of the Heartbleed bug [199]. They found

that scanning often commenced within 48 hours of the announcement; many scans did

not appear to be for research purposes; and large scans originated from bullet-proof

hosting providers, and not botnets.

Dainotti et al. [54] studied a scan from the Sality botnet. Most sources involved

in the scan would not reach Durumeric et al.’s threshold of 10 pps: over a span of 16

days 3M IP addresses scanned 86.6% of a /8 darknet, but sources sent, on average, 6.85

probes each. The scanners in the Sality botnet were stealthy and highly coordinated, as

evidenced by their approach (reverse byte order), coverage, and adaptivity of scan rate.

Researcher also use live networks to conduct scan analysis. One longitudinal

study of scanning used traffic reaching Lawrence Berkeley National Laboratory [9].

Traffic from live networks will capture scans from attackers that blacklist darknets, but

since live networks are typically smaller than darknets, it will be harder to capture scan

dynamics (i.e., the reverse byte order scanning found by Dainotti et al. [54]). Yeg-

neswaran et al. compared port scan behavior collected by 1600 firewall administrators

to scan behavior in a /16 darknet [219]. They found that both datasets captured large

scan dynamics (i.e., traffic from worms), but for smaller scans they observed fewer scans
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and more variability with their darknet. Yegneswaran et al.’s study implies that larger

or distributed darknets are necessary for comprehensive scan analysis.

Discussion

The benefits and challenges of using IBR to study malicious activities often map

directly to benefits and challenges of using IBR to study network properties.

In terms of benefits, IBR can capture traffic from a variety of networks, long-

term behavior, and complex behavior. Moore et al. found that many networks were

victims of DoS attacks [141]; we leverage the variety of networks sending IBR to study

IPv4 address space utilization (Section 6.1). Researchers studied worm persistence via

IBR; by analyzing 8 years worth of IBR, we conclude darknets are a sustainable source

of measurement data (Section 5.1.1). Dainotti et al. explored stealthy, coordinated

scanning behavior in IBR [54]; we investigate complex BitTorrent behavior to study

CGN and DHCP (Sections 6.4.2 and 6.4.3).

In terms of challenges, we may need to: make assumptions about attack tech-

niques (e.g., who are targets of DoS attacks), the network (e.g., amount of packet loss)

and the nature of IBR (e.g., why we receive traffic); adjust models to account for mea-

surement error; and consider how darknet size and position affect our results. Moore

assumed reliable delivery of attack packets to the victim and darknet when studying

DoS attacks [141]; we assume that the network has near constant speed when studying

uptime (Section 6.3.1). Wei and Mirkovic adjusted their model of worm propagation to

account for packet loss [213]; we caveat that we find a lower bound on the total number

of open DNS resolvers (Section 6.2.1). Yegneswaran et al. compared scan findings from

live networks to a /16 darknet [219]; we generally examine darknet placement and size

on our ability to perform opportunistic network inferences with IBR (Section 5.3.1).
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2.3.4 Previous opportunistic uses of IBR

Instead of using IBR to study malicious activity, we can use IBR to study the

machines and networks generating the traffic. Casado et al. [39] formalized this idea in

2005, citing the difficulties in measuring Internet growth in size and complexity due to

NAT and firewalls. They proposed that spurious traffic (IBR and other traffic such as

SPAM emails) could provide insight due to: the large number of sources, diversity in

sources (not just academic), and social acceptability (does not consume large amounts of

bandwidth, and few privacy concerns). In order to use spurious traffic for opportunistic

measurement analysis, they stated as requirements (a) measurement-specific specifica-

tions (e.g., long-term and predictable for path characterization), (b) enough traffic to be

statistically significant, and (c) visible to the researcher. Casado et al. provided exam-

ples of using spurious traffic to infer network properties, but did not fully evaluate the

potential of IBR datasets to meet these specifications.

Casado et al. cited Kumar et al.’s analysis of the Witty worm [112] as an exam-

ple of leveraging IBR to infer network characteristics. Kumar et al. reverse engineered

the Witty worm’s PRNG, which generated a sequence of IP addresses to scan. The

PRNG’s seed was system uptime. As a result, Kumar et al. inferred the system uptime

for infected machines. Witty was a destructive worm that would attempt to overwrite a

randomly chosen disk; if the randomly chosen disk existed, the PRNG was reseeded. As

a result, Kumar et al. inferred the number of disks a machine had based on whether or

not reseeding occurred. Witty used a blocking system call to send packets. As a result,

Kumar et al. inferred the access bandwidth of infected machines based on the timing

between packets. The Witty worm is no longer spreading, so the analysis of uptime,

number of disks, and bandwidth cannot be applied to the current composition of IBR.

A less application-specific use of IBR is to detect outages. Dainotti et al. ana-
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lyzed the number of packets per second from Egypt and Libya during censorship events,

resulting in outages in the respective countries [56]. They found that total volume of IBR

sharply decreased during the outages. By component, only backscatter did not reflect

the outages (although packets revealed DoS attacks on sites belonging to the Egyptian

government). As we discuss in Section 2.1.2, this study showed that IBR can provide

insight into macroscopic events even when more traditional methods fail.

In a follow up study, Dainotti et al. used IBR to analyze the impact geophysical

events on computer networks [55]. They used a metric (ratio of packets received prior

to the event versus after the event) to determine if an earthquake affected an geographic

area (on the order of kilometers). They determined the magnitude (the impact/fraction

of machines affected) and radius (how far away were the effected machines) of the

earthquake. An earthquake of stronger magnitude (Tohoku) on the Richter scale had a

larger impact on computer networks than a smaller earthquake (Christchurch), as shown

by the magnitude and radius metrics. This method showed that IBR is applicable to

smaller portions of the address space than entire countries; however, there are still gaps

in the general applicability of IBR. It is unclear if outage analysis will work for other

countries, smaller networks or geographic areas, or at shorter time scales (e.g., outages

lasting only a few minutes).

Sargent et al. showed that, in conjunction with other data, IBR can provide in-

sight into filtering policies [180]. Specifically, they checked that sources sending traffic

to Conficker sinkholes (domain names registered by researchers because Conficker will

eventually use the domain name as a rendezvous point) are also observed in darknet traf-

fic on TCP port 445. (Conficker spreads by randomly scanning the Internet.) If Sargent

et al. observed at least five sources from an AS in sinkhole data, but none in dark-

net data then they inferred the existence of TCP port 445 filtering; observing a source

in both datasets implied no filtering. Their technique characterized the TCP port 445
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routing policy for 28% of the routed IPv4 address space – much larger than any current

technique. Unfortunately, they did not believe that their technique would extend to other

ports due to a low number of sources.

Discussion

The previous literature used IBR to make a handful of inference types (uptime,

number of disks, bandwidth, outages, filtering). This dissertation increases this list sub-

stantially, and provides a foundation to use IBR-techniques in additional settings.



Chapter 3

Santization: Removing spoofed traffic

IPv4 lacks a mechanism to verify a sender’s authenticity. Specifically, the sender

sets the source address field of every packet. For malicious or inadvertent reasons,

the sender may forge the source IP address. We call this act of IP address forgery

“packet spoofing.” There are a wide range of malicious packet spoofing attacks, includ-

ing: spoofed Denial of Service (DoS) attacks, reflective DoS attacks, TCP connection

spoofing, decoy scans1, idle scans (also called bounce scans)2, and zombie control (the

spoofed packets act as one-way control messages) [196, 127, 129]. Inadvertent reasons

for spoofed packets include bit flips, misdirected malicious attacks, traffic emulations

escaping a local network, and software errors such as byte-order bugs.

The central idea of this dissertation is to convert packets into measurements

of the sender’s network and spoofing can grossly distort our analysis. For example,

when studying IPv4 address space utilization (Section 6.1), spoofed traffic, if not re-

1In a decoy scan, the attacker scans a remote host with both non-spoofed and spoofed packets. It is dif-
ficult for the victim to determine which of the IP addresses is the non-spoofed origin of the packets [127].

2An idle scan can determine if a port is open without sending a packet to the targeted machine with
their own IP address. The method exploits the fact that, on many operating systems, the IPID field in-
creases by one for each connection. An attacker can determine if a port is open by (i) sending a legitimate
packet to a “zombie” machine to get its current IPID; (ii) sending a packet spoofed with the zombie’s
IP address to the targeted machine and port; (iii) sending another legitimate packet to the zombie to get
its IPID. If the IPID increased by one between (i) and (iii), the scanned machine did not respond to the
spoofed packet, and the port is not open; if the IPID increased by two between (i) and (iii), the scanned
machine likely responded to the spoofed packet, implying that the port is open [196, 129].

36
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moved, results in a threefold over-estimation of used /24 blocks. Previously, researchers

sidestepped this problem by selecting only packets exhibiting properties of known non-

spoofed traffic (e.g., in studies to infer filtering policy [180] and outages [56] researchers

selected only Conficker packets). This selective method discards many packets. In our

study of IPv4 address space utilization just using Conficker traffic results in a five-fold

under-estimation of used /24 blocks. Consequently, including all traffic will result in

incorrect inferences, while including only certain types of traffic will underutilize the

signal IBR provides. To fully and accurately utilize the signal provided by IBR, it is

imperative that we selectively remove spoofed traffic from our datasets.

In general, detecting spoofed packets is difficult. A highly motivated attacker

can craft packets to evade spoofing detection by forging many packet headers and us-

ing carefully selected IP addresses. Fortunately, since darknets are not associated with

services and end users, such an attacker is unlikely to send traffic to a darknet. We find

that darknets are rarely the targets of attacks, and that most spoofed packets reach the

darknet inadvertently (i.e., not maliciously). Therefore, our focus is on detecting the

inadvertent spoofing of many IP addresses.

In this chapter, we first discuss related work identifying and removing spoofed

traffic (Section 3.1). The focus of many of these related works is mitigating spoofed

attacks on live networks, and are not directly applicable to IBR. We then propose and

evaluate a new method to remove spoofed packets from IBR (Sections 3.2). Our method

looks for abnormalities in the distribution of IP addresses and is applicable to large,

historical datasets like IBR.

3.1 Related work

Previously, researchers studied spoofed traffic in the context of mitigating the

effects of spoofing attacks [196, 104, 27], understanding threats [218, 151], and creat-
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ing accurate Internet models [21, 222]. This dissertation is most aligned with creating

an accurate Internet model; however, related work in this context requires responding

to traffic [21] or relies on an assumption (that spoofed addresses are uniformly dis-

tributed) [222] that does not appear to hold in IBR (as shown in Section 3.2.5). Another

unique aspect of this dissertation is the use of IBR; most of the related work used traffic

from live networks which are often targets of malicious spoofing. The works that studied

spoofed IBR required responding [218, 21] (we currently do not have an infrastructure

to respond) or small collections of IBR [151].

The remainder of this section discusses these methods and their relevance to the

specific problem of removing inadvertent spoofing from IBR. We taxonomize work in

this domain along two dimensions: the packet fields analyzed and the technique used to

infer spoofing.

3.1.1 Packet fields indicative of spoofing

To identify and remove spoofed traffic we can leverage abnormalities in three

packet fields, including time-to-live (TTL), IP identification (IPID), and source IP ad-

dress. In this section, we explain the behavior of these fields under normal circumstances

and during spoofing episodes.

Time-to-live (TTL) field

A host’s operating system generally sets the time-to-live (TTL) field to a default

value [182]. Each router that forwards the packet decrements the TTL to prevent routing

loops.3 Under the assumption that all packets sent by a host to the darknet take the same

route, the TTL’s final value should remain constant at the receiver. As a result, a TTL

different than previously observed packets from the IP address may indicate spoofing.

3Router drop packets if the TTL is zero.
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There are several circumstances where the TTL value is not a reliable indicator

of spoofing. First, many hosts take the same number of hops to reach a destination. As a

result, it is possible that a spoofing source is the same distance away from the darknet as

the address it forges. Second, multiple hosts, due to Network Address Translation (NAT)

or DHCP, may use a single IP address. As a result, if the hosts use different operating

systems (e.g., Windows hosts Linux hosts use different default TTL values), the TTLs of

packets they send will differ upon entering the global Internet. Alternatively, large NAT

deployments may include hosts that use a varying number of hops to reach the gateway.

Finally, Internet routes are constantly changing and there is no guarantee packets take

the same route (e.g., load balancing paths).

Additionally, TTLs may be set arbitrarily. For example, in IBR, we observe

spoofed traffic where all TTL values appear with the same frequency — likely caused

by the sender uniformly selecting a random initial TTL value. An attacker n hops from a

destination can set the initial TTL such that the TTL at the recipient is any value smaller

than or equal to 255−n.

A similar metric to TTL is the inferred hop count (the number of routers that

forward a packet). To calculate hop count, we first infer the starting TTL (normally

the next highest power of 2). We then set hop count to starting TTL minus observed

TTL. Although inference of the starting TTL can cause some errors, hop count is prefer-

able over TTL when there is some variance in starting TTL, e.g., due to NAT or traffic

generated by multiple applications which use different starting TTLs.

IP identification (IPID) field

The IPID field assists in fragmentation and reassembly of IP packets [201].

Many operating systems implement the IPID field as a counter. As a result, consecu-

tive connections from the same host will have consecutive IPID values. From a remote
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observation point, if we receive two packets from the same host in a short period of time,

we expect the IPID values to be close to each other. For example, when a host randomly

scans the Internet, at a constant rate, the IPID will appear to increase linearly with time.

There are a number of exceptions to this method’s assumptions. Due to NAT,

multiple hosts may use the same IP address, resulting in IPID values that appear non-

linear over time.4 More importantly, some operating systems do not implement the IPID

field as a counter [214]. RFC 6274 states that counter implementation are inappropriate

due to excessive wrapping and security concerns, including idle/bounce scans; many

operating systems follow this guideline [81]. Thus, it is possible to observe non-linear

IPID values for both non-malicious (i.e., non-counter implementations of the IPID field)

and malicious (i.e., to evade spoofing detection) reasons.

Source IP address

IP-address-based methods work best when the source spoofs a significant num-

ber of addresses. More sources increases the likelihood that the spoofed addresses in-

clude ones that should not originate global Internet traffic. It is unlikely that we can

detect small spoofing events with IP address-based methods.

IP address-based methods assume that the process generating the spoofed pack-

ets selects the spoofed IP addresses indiscriminately, e.g., randomly.5 In particular, there

are a number of addresses we should not observe in global Internet traffic:

• reserved addresses [49], including:

– private addresses (e.g., 10.0.0.0/8 used on local area networks)

– loopback addresses (e.g., 127.0.0.1 for this machine)
4In the case of NAT, it is possible to extract linear subcomponents, which may reveal properties of the

hosts sharing the same IP address (e.g., number of hosts) [40].
5With inadvertent spoofing, it is generally a safe to assume indiscriminate selection of spoofed ad-

dresses. In other situations, such as reflective DoS attacks, attackers may pick the spoofed addresses
purposefully.
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– multicast addresses (i.e., 224.0.0.0/4)

– test addresses

– future use addresses

• dark addresses (e.g., from UCSD-NT)

• addresses unannounced in BGP (intermediate routers are unable to route re-

sponses)

Observing these addresses may indicate spoofing. Zander et al. leverage the num-

ber of unexpected addresses to estimate the amount of random spoofing in an entire

dataset [222]. In our method, described in Section 3.2, we use traffic with unexpected

addresses to obtain signatures for spoofed packets.

IP address spoofing may not be random. For example, in our 2012 dataset, we

find a spoofing episode where all the source addresses are from the 88.0.0.0/8 block.

Additionally, it is a best current practice for ISPs to drop outbound packets when the

source address is not in a range they originate [68]. Although this practice is not uni-

versally adopted, many hosts spoof only IP addresses in their local network [28]. Non-

random address generation and filtering can restrict the ranges of addresses visible in

our datasets.

Moreover, not all traffic with an unexpected address is spoofed. A small fraction

of observations result from legitimate packets escaping a private network. Not only do

we observe legitimate packets from IP ranges reserved for private use (e.g., 10.0.0.0/8),

we also observe “IP squatting,” or using non-private IP addresses on a local network [1].

Another potential source of misclassification is partial BGP visibility (we use RIPE’s

suggested threshold to consider a /24 block routed if it is covered by prefixes announced

by at least 10 BGP peers [215]).
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Table 3.1. Summary of techniques to identify spoofed traffic. The methods to iden-
tify spoofed traffic use a variety of packet fields and techniques to obtain reference data.

Method Packet Field Technique
Active Comparative Aggregate

Respond and wait for reply [218, 21] N/A X
Probe and check response TTL [196] TTL X
Probe and check response IPID [196] IPID X
Prove and check response OS [196] multiple X
Respond with TCP window = 0 [196] TCP window X
Respond with invalid ACK [196] ACK Number X
Compare to historical values [196] TTL, OS X
Compare to expected hop count [104, 27] TTL X
Look for abnormal distribution [151] TTL X
Identify linear IPIDs [151] IPID X
Look for many dark sources [222] IP address X
Look for many total/unrouted sources (Section 3.2) IP address X
Look for increase in total/unrouted sources (Section 3.2) IP address X

We use a method based on source IP address to remove spoofed traffic from our

datasets, which we describe in Section 3.2. We believe using addresses unannounced in

BGP is preferable to using only darknet addresses to detect spoofing. First, it is diffi-

cult to know if subnets of darknets are in use, since both used and unused subnets are

announced in BGP (while we can easily extract the networks that are unannounced in

BGP). Assuming uniformly random spoofing, detecting forgery using only a handful

of known dark blocks will, in expectation, require significantly more spoofing than us-

ing all unrouted blocks. For example, Zander et al. [222] restricted their analysis to

six dark /8 blocks — an order of magnitude fewer than the number of unannounced IP

addresses. Additionally, with unannounced addresses we are more likely to catch non-

uniform spoofing, as the addresses are spread throughout the IPv4 space. However, it

seems reasonable to use both unrouted and dark addresses for spoofed traffic identifica-

tion.

3.1.2 Techniques for identifying spoofed traffic

We categorize previous work into three categories: techniques that actively re-

spond to verify a packet’s authenticity, techniques that compare packets to other previ-

ously collected data, and techniques that identify anomalies in large collections of data.
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In general, there is a tradeoff between overhead and our ability to capture targeted spoof-

ing. For example, active techniques require significant infrastructure to respond to all

unsolicited traffic but can potentially identify even a single spoofed packet; aggregate

techniques do not require additional measurement overhead, but can only detect events

with many packets. Table 3.1 summarizes work used by other authors and our proposed

method.

Active techniques

Sustained bidirectional communication implies that the hosts are not forging

packet headers. For example, analysis of traffic at an academic backbone traffic re-

veals that selecting bidirectional TCP flows with at least five packets and an average of

80 bytes/packet is an accurate heuristic for removing spoofed traffic [52]. With IBR, we

can also respond to unsolicited traffic to elicit a response. In this section, we use the

following terminology to discuss the three packets involved in an active technique: (1)

the unsolicited traffic, including IBR which is unsolicited traffic sent to darknet, (2) the

probe we generate to check if the unsolicited traffic is spoofed, and (3) the response to

our probe.

Several projects generated probes from IBR, including the iSink architec-

ture [218]. In particular, using 2004 data, Barford et al. compared the distribution

of sources throughout the IPv4 address space from iSink (spoofed and non-spoofed)

and Dshield (raw data without spoofed traffic identification/removal) [21]. Barford et

al. found that spoofing did not have a significant impact on the density of malicious IP

addresses. However, we show this finding does not hold in more recent collections of

IBR in Section 3.2.5.

A response to our probe ensures that there is a host associated with the IP ad-

dress; however, a response is not sufficient to ensure that the host that sent the unso-
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licited traffic is also the one that responded to the active probe. For example, if we

send a TCP SYN-ACK probe in response to a spoofed TCP SYN packet, the legitimate

host with the spoofed IP address could respond with a TCP RST. Templeton and Levitt

outlined a number of basic checks on the response to the active probe to substantiate

that the same host sent the original packet: (1) the TTL is the same; (2) the IPID is

slightly higher than the initial packet; (3) the packets appear to be from the same operat-

ing system [196]. Additionally, Templeton and Levitt pointed out that the active probe

could induce the remote host to alter the flow, such as (4) setting the TCP window size

to 0 (host should stop sending packets) or (5) setting the ACK-number to a lower value

than expected (forces the host to send a resynchronization ACK). A spoofing source will

not receive the flow-altering packets and will continue uninterrupted, while an authentic

host will respond appropriately to the active probes.

Generating a probe to check IBR’s authenticity can be challenging. While it is

trivial to respond to a single TCP packet sent to a darknet, it is often not straightforward

how to construct responses involving the application layer, including constructing UDP

responses and receiving multiple TCP packets (e.g., to increase our confidence such as

the “five packets and 80 bytes” heuristic in [52]). Pang et al. built software to generate

application-level probes to classify the origins of IBR [156]. However, they note that

building this type of software is “difficult due to the lack of detailed documentation

on services;” their implementation generated probes for 10 ports. In our datasets, a non-

trivial fraction of traffic is unclassified because we are uncertain of the packet’s encoding

(i.e., the application protocol used). Moreover, it is impossible to generate a valid probe

for some types of IBR (e.g., byte-order bugs).

Applicability to IBR: We did not apply active techniques to IBR. First, we cur-

rently do not have the proper infrastructure to respond. Second, we often analyze IBR in

a historical context and the attributes of IPID, TTL, and OS may change between time
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of probing and time of collection. Finally, although responding to IBR seems plausible

(over 10 years ago, iSink responded to 20k connection requests per second [218]), there

is no formal assessment of these techniques’ success.

Comparative techniques

Active techniques generate probes to confirm that a packet is not spoofed.

The next set of techniques seeks confirmation from other sources, including histori-

cal data [196] and models created from previously collected probes [104, 27]. These

techniques are effective with much lower overhead than active techniques, but are less

accurate due to Internet dynamics. In particular, instead of reflecting spoofing, packet

attributes may reflect changes to the Internet that occurred between the time of the refer-

ence data and the time of the data in question. For example, TTL may not be an effective

attribute during path changes that alter the number of hops it takes for authentic packets

to reach a host. Similarly, the OS may be unreliable, as multiple hosts may use an IP

address due to sharing (i.e., NAT) or reassignment (i.e., DHCP).

Templeton and Levitt examined TTL predictability and applicability for spoofed

packet detection [196]. They examined traffic reaching their lab’s network over a pe-

riod of two weeks and calculated the conditional entropy. The conditional entropy was

low (i.e., the TTLs were highly predictable) across many dimensions: protocol, inter-

nal/external, and number of packets per IP address. This suggests high predictability in

TTLs from non-spoofed packets. However, they observed behaviors, besides spoofed

traffic, that resulted in differing TTLs: UDP packets took a different path than TCP and

ICMP packets; traceroute resulted in a source sending packets with varying TTLs.

Jin et al. created an accurate IP-address-to-hop-count mapping [104], i.e., a

list of the number of hops packets from each IP address take to reach a destination.

The basic idea is to mark as spoofed any packet where the hop count, inferred from



46

the TTL, does not match the expected value in the mapping. Jin et al. outlined the

technique’s robustness to a number of attacks (single spoofing source, multiple spoofing

sources, randomly setting the TTL). To obtain the expected hop count value, the authors

suggested using TCP connections with a completed 3-way handshake. Unfortunately,

it is unreasonable to expect an Internet server to receive traffic from all sources. Jin et

al. proposed three methods for estimating the expected hop count of unseen addresses

based on other hop counts in the same /24 block: the same as the minimum observed

hop count, within one or two hops of the minimum observed hop count, and based

on clustering smaller prefixes of the /24 block. The authors extracted a IP-address-to-

hop-count mapping from traceroutes from 47 sites, and evaluated their methods with

randomly selected spoofed and legitimate packets. The clustering approach provided

high coverage with low false positive and false negative rates.

Beverly implemented a machine learning agent, Raskol, that improved upon the

basic IP-address-to-hop-count mapping approach [27]. Instead of using data passively

collected during 3-way handshakes, Beverly obtained training data from responses to

random “pinging” of routable IP addresses. Raskol estimated the hop count of unob-

served addresses by creating a model of the Interent’s complex peering relationships

and the routes packets traverse from real topology measurements. To test Raskol, Bev-

erly varied the amount of legitimate traffic, placement of the sensor detecting spoofed

traffic, and spoofing strategies (e.g., randomly, reflective, worms). Raskol was also im-

plemented in hardware, highlighting its ability to process packets in a real system.

These comparative techniques were designed to mitigate spoofed attacks in real

time on live networks. In live networks, accidentally dropping legitimate connections

because they are believed to be spoofed, will upset users. As a result, comparative tech-

niques should default to permitting packets through a firewall. Thus, the small number

of spoofed packets that have a proper TTL are permissible, and have limited effect on
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communication. Another option is to use a tunable technique, such as Raskol [27],

which allows the application to determine a permissible level of spoofing.

Applicability to IBR: We did not apply comparative techniques to IBR to conduct

opportunistic network analysis. The main reason is a mismatch between the problem

comparative techniques solve and our goals. Comparative techniques make decisions in

real time on a per-packet basis. With IBR, we need to make decisions on historical data

to detect large-scale spoofing. Aggregate techniques (described in the next section) are

more straightforward for offline, large-scale spoofing identification. In the future, we

could apply comparative techniques to IBR to catch additional small-scale spoofing.

Aggregate techniques

Both the active and comparative techniques infer if traffic is spoofed on a per-

packet basis. Aggregate techniques infer if spoofing is present in a set of packets. With

a substantial amount of traffic, these techniques can easily identify large spoofing events

without complex models or the overhead of responsive methods. However, aggregate

techniques require additional processing to isolate and remove the spoofed traffic from

the authentic data. In this section, we summarize the identification and removal steps of

two aggregate techniques [151, 222].

Identification of spoofed traffic: Previous aggregate techniques used the

TTL [151] or the source IP address [222] to identify large-scale spoofing. We discuss

the specifics of the related works and potential sources of error when applying the tech-

niques to IBR.

Ohta et al. examined the TTL field of darknet data for statistical abnormali-

ties [151]. Specifically, based on previous observations, they calculated the expected

number of packets received for each TTL value, as well as the standard deviation. Then,

if the number of packets received with a given TTL value was more than two standard
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deviations away, they investigated the resulting traffic to determine which traffic should

be removed.

We believe there are a few shortcomings of Ohta et al.’s technique. First, the

amount of spoofed traffic must be a significant fraction of the total packets. Secondly,

it is unclear if this approach is applicable when multiple hosts generate spoofed traffic

(the distribution of TTLs may mimic non-spoofed traffic). Finally, fluctuations in IBR

may result in abnormal packet volumes.

Zander et al. [222] examined examined the number of IP addresses in their

datasets from six dark or almost dark /8 blocks to determine the fraction of spoofed

source addresses. They used this fraction to interpolate the expected number of spoofed

addresses in a network block, assuming uniform spoofing. Although their data sup-

ported the uniform-spoofing assumption, we are hesitant to make this assumption due to

our observations of non-uniform source address spoofing, related work that found des-

tination addresses receive varying volumes of IBR [217], and a history of poor random

number generation [48, 5].

Removal of spoofed traffic: Active and comparative techniques operate on a per-

packet basis, which naturally leads to combining the identification and removal steps

(i.e., these techniques remove all packets identified as spoofed). With active techniques,

once we determine that a set of packets contains some spoofed traffic, we must do some

additional work to remove the non-authentic components.

Ohta et al. looked for packets with IPID values that increased linearly over time,

which is indicative of originating from the same machine; if the packets had different

source addresses then they inferred spoofing [151]. They believed, but did not imple-

ment, a progressive probabilistic Hough transform [74] would extract linear compo-

nents. Instead, they relied on visual inspection of IPID values, which is unlikely to scale

to larger darknets. For example, graphing (IPID, timestamp) yields a completely col-
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ored image: in 2015 UCSD-NT typically received over 5M packets per minute, which

means that about 75 packets have the same IPID per minute. Analyzing the relationship

between IPID and timestamp for a given TTL value (the identification step of Otha et

al.’s technique) will yield a sparser graph, but will still be difficult (a) when analyzing

common TTL values or (b) when IPID increases at an unknown or slightly variable rate.

Zander et al. removed spoofed traffic from NetFlow records to estimate the

number of used IPv4 addresses [222]. Their concern was not with the contents of the

spoofed traffic (nor do they have access to the spoofed payloads), but rather the error

on their estimate. Several of their datasets did not contain spoofing (e.g., Wikipedia

edits), which they leveraged to remove traffic from their NetFlow datasets with spoofing.

Specifically, they removed traffic from /24 blocks using the following rules: if the block

was unused in the spoof-free datasets they counted the block as unused; otherwise, they

removed IP addresses from their dataset based on the popularity of the address’ last byte.

Zander et al. did not verify the accuracy of their approach, but found (1) after removing

traffic, the NetFlow datasets captured approximately the same number of /24 blocks as

other datasets, (2) that their estimate of the used number of /24 blocks was similar to

an inference that excluded the NetFlow datasets, while using unfiltered NetFlow data

resulted in a much higher estimate. This technique would decrease the estimate of used

IPv4 addresses when the population of users captured via NetFlow differs from their

other datasets.

Applicability to IBR: We use an aggregate method to identify and remove

spoofed traffic from IBR. We choose this identification approach because it applies to

large and historical datasets. Moreover, we currently do not run the infrastructure to

respond to IBR. Aggregate methods work only on large spoofing events, and err on the

side of excluding traffic — limitations that are acceptable for IBR.
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3.2 Our technique for identifying and removing
spoofed traffic from IBR

To mitigate the effects of spoofing on inferences based on darknet measurements,

we devise a method that aggregates IP addresses to identify abnormal behaviors. We

then build signatures to filter out suspicious components by manually isolating and an-

alyzing anomalous traffic. We focus on spoofed traffic that appears to originate from

many sources (such as randomly spoofed traffic), which we call large-scale spoofing.

We assume that the remainder of spoofing (called small-scale spoofing) is not only diffi-

cult to detect without responding to received packets, but has a much smaller impact on

our inferences, which we confirm at the end of this section.

In search of large-scale spoofing, we look for both bursts of spoofed traffic, and

long-term consistent spoofing. We examine many aspects of the traffic:

1. burstiness in number of unique sources: we find sudden spikes in the number of

unique source IP addresses and unique source /24 blocks;

2. burstiness in number of newly observed sources: we look for a large number of

newly observed source IP addresses (source /24 blocks) per hour;

3. burstiness in number of unrouted networks: we find the same type of bursty events

with only source addresses in unrouted network blocks;

4. long-term consistent observation of unrouted sources by port: we aggregate pack-

ets over the entire measurement window into traffic classes by protocol and port

(when applicable) and investigate classes with many originating unrouted /24

blocks;

5. long-term consistent least significant byte behavior: we aggregate packets over

the entire measurement window based on the least significant byte of the source
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address to look for inconsistencies in address utilization (e.g., Fan and Heidemann

found that IP addresses ending in 1, 129, 65, 33, and 2 respond to ICMP probes

most frequently [66]).

We start our sanitization process by investigating bursty behaviors. We perform

our analysis iteratively. After identifying a class of spoofed packets, we create a filter

and remove the traffic from the entire dataset. We then look for additional bursty behav-

iors. Once our sanitized data no longer exhibits bursty spoofing behavior we examine

our datasets for long-term consistent spoofing behavior.

Our approach is a time-consuming, manual process that requires in-depth knowl-

edge of networking and packet analysis techniques. However, our approach seems to be

an accurate method of removing spoofed IBR. One benefit of manual inspection is the in-

sight into the properties of spoofed traffic. With more automated approaches (e.g., active

techniques, removing traffic based on least significant byte order popularity) we would

need to perform additional analysis to develop filters for common spoofing events.

3.2.1 Identifying bursty spoofing behavior

For bursty traffic, we apply a simple spike-detection algorithm, flagging hour-

long time bins when we observed more than 25% more sources (or unrouted sources)

than the average value observed over the last ten hourly time bins. We tried different

values for the parameters — time-bin duration, spoofed threshold, and time window

— without observing significant changes in what was detected as spoofed, since most

events of interest cause large traffic variations.

Figure 3.1 shows that some bursty spoofing events are not visible when consid-

ering packets from all sources, but they become easily detectable when looking only at

source addresses of unrouted networks. In some cases, this phenomenon is due to the

nonuniform distribution of unrouted networks over the address space, e.g., the tempo-
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rary popularity of some address blocks as source addresses despite little change in total

number of spoofed sources.
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Figure 3.1. Routed and unrouted networks by hour UCSD-13. We observe significant
increases in the number of unrouted source networks for some hours, which we inspect
to discover and exclude spoofed traffic.

In some cases, we find that bursts of routed IP addresses (or /24 blocks) are

due to changes in the composition of IBR. Typically, in these cases, the number of

unrouted IP addresses and never-seen-before /24 blocks is still low. We also examine

the distribution of TTLs and countries to determine if they match the non-bursty periods.

Examples of bursts of non-spoofed routed IP addresses include: an increase in traffic due

to a BitTorrent index poisoning attack, and a misdirected reflective DDoS from Quake

servers (i.e., the Quake servers received spoofed packets, and responded using their

legitimate source address).

Spoofed IBR is often caused by buggy software or simulation traffic escaping a

local network, and is rarely malicious in nature. Our technique is versatile, as it detected

a variety of spoofing types. Examples of bursty spoofing events include:

• UDP packets with payload "zzzzzzzzzz” to darknet IP X.X.X.X where X is
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the /8 network corresponding to UCSD-NT. A likely explanation is that packet-

generating software inadvertently sent these packets on the Internet.

• Packets with protocol 0, and source address A.B.0.0. These packets could be

generated by buggy software that incorrectly writes certain packet fields.

• TCP SYN packets to a single darknet IP address on port 80. This is likely a

misdirected, malicious spoofed denial of service attack.

• BitTorrent traffic with abnormally large TTL values (above 230). A possible ex-

planation is that traffic from a simulation escaped a local network.

• TCP SYN traffic appearing to originate from almost all networks in 88.0.0.0/8 to

several darknet IP addresses on port 44.

3.2.2 Identifying consistent spoofing behavior

To identify consistent spoofing behavior, we aggregated the entire dataset by pro-

tocol and port, and then examined classes of traffic with either more than 10 unrouted

/24s or a percentage of unrouted /24s greater than 0.4% (0.4% was approximately two

orders of magnitude lower than the 39% of /24s that were not announced on BGP during

our measurements). These thresholds are orders of magnitude less than abnormalities

discovered via the bursty spoofing events. Classes with traffic below these thresholds

were difficult to infer as spoofed based on traffic patterns, but these thresholds are suffi-

cient to remove large-scale events.

We also aggregated based on the least-significant byte of the source address. Our

intuition is two-fold: (1) we expect the probability of observing IBR to depend on the

last octet of the IP address [66], and (2) packets with least-significant byte 0 and least-

significant byte 99 were symptomatic of several spoofing spikes. We investigated cases

where a certain value of the least-significant byte rarely occurred in routed networks yet
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Table 3.2. Summary of filtering heuristics used in darknet measurements and
their impact in terms of source /24 blocks. We defined filters that captured general
characteristics of spoofing, but in some cases we eliminated spoofing traffic specific to
our darknets. For each general filter and the aggregate of all the specific filters, we report
the total number of /24 blocks used as sources in packets captured by the darknets, as
well as the number that are unrouted and dark.

Num. /24s Num. Unrouted /24s Num. Dark /24s
UCSD MERIT UCSD UCSD MERIT UCSD UCSD MERIT UCSD

2012 2012 2013 2012 2012 2013 2012 2012 2013

TTL> 200 and not ICMP 10M 9.7M 11M 31k 69k 1.3M 120k 68k 110k
Least significant byte source
address 0

660k 430k 45k 22k 1.7k 7 3.9k 1.0k 540

Least significant byte source
address 255

328k 270k 44k 300 1.3k 6.7k 34 54 1.6k

Non-traditional protocol 61k 61k 57k 16k 17k 2.3k 512 509 720
Same source and destination
address

630 1 96 0 0 0 630 1 96

No TCP flags 3.5k 640 29
UDP without payload 550 110 0
All specific filters 1.9M 980k 11M 530k 290k 1.3M 16k 7.5k 110k

commonly occurred in unrouted networks. For example, we excluded the broadcast ad-

dress (least significant byte of 255) because it is used the second least when the network

is routed; but in routed networks it is the 26th least used (after removing spoofed traffic

identified by spike detection). In this per-least-significant-byte aggregation, we com-

pared the relative popularity of an address’ least-significant byte in routed and unrouted

networks.

We added only two new filters as the result of aggregate analysis. The low

number of new filters added from aggregate analysis implies most large-scale spoofing

traffic is bursty, and does not exhibit not long-term consistent behavior.

3.2.3 Removing spoofed traffic

Each spoofing behavior we identified exhibited distinctive properties, which we

synthesized into a set of filtering heuristics. Our goal is to come up with general heuris-

tics that characterize a spoofing behavior. For example, we found spoofed packets with

a BitTorrent payload. Our options, from least preferential to most are: (1) exclude all
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BitTorrent traffic, (2) exclude BitTorrent traffic for the duration of the spoofing episode,

or (3) look for other aspects of the traffic indicative of spoofing. Many legitimate sources

send BitTorrent traffic, including packets with a similar payload. Fortunately, we found

that the spoofed BitTorrent packets had an abnormal TTL value. We call a filter to ex-

clude abnormal TTL values “general,” while options (1) and (2) are “specific” to our

datasets.

Table 3.2 lists how many /24 blocks (respectively total, unrouted-only, dark-

only) originated traffic matching each heuristic. The first seven lines of Table 3.2 de-

scribe “general” filters, which other researchers can readily apply to other datasets. The

last line of Table 3.2, “All specific filters,” aggregates results for a set of filtering criteria

specifically crafted for abnormal events observed in one of the darknets. They do not

seem generally applicable, so we only report the aggregate effect these filters on our

datasets.

The first heuristic, based on the value of the TTL IP header field, filters out by

far the largest number of /24 blocks. We found 20 spikes (11 in UCSD data and 9 in

MERIT data) where a significant number of UDP packets with unrouted sources had

the same destination port and TTL above 200. Our filter excludes traffic based on the

large TTL since it indicates a general abnormality: most operating systems use a default

TTL of 128 or less [182] (although, several switch to a TTL of 255 when sending ICMP

packets).

Other significant portions of spoofed traffic use uncommon or unassigned pro-

tocols, but such behavior could also be legitimately experimental so we do not exclude

traffic solely for this reason. But when many packets with an uncommon protocol appear

to originate from unrouted addresses, it is more likely they are the result of bit-flips dur-

ing transmission or programming errors when writing packets. Similarly, TCP packets

without flags and UDP packets without a payload indicate that there were errors writing
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Figure 3.2. /24 blocks observed per hour after removing spoofed traffic. The re-
sulting dataset has very few unrouted /24 blocks per hour. Additionally, compared to
Figure 3.1, there is a significant decrease in both routed and unrouted /24 blocks.

or transmitting the packet. We exclude packets with source address ending in .0 or .255

since traffic should not originate from these addresses (when part of a /24 subnet). We

also identified small spoofing events where the source and destination were in the same

darknet.

Our heuristics based on traffic spikes filter out not only the likely spoofed traffic

during the spike, but also traffic matching this filter outside of the spike. We find that

the application of a filter to entire dataset is a necessary step. In Figure 3.2, we plot

the number of routed and unrouted /24 blocks observed in UCSD-12 after applying our

filters. The peak in routed /24 blocks is around 300k per hour for each day throughout

the entire 34-day period; for comparison in Figure 3.1 the daily maximum is about 700k

/24 blocks in a single hour. This is a substantial drop. The fluctuations in Figure 3.2 are

due to changes in IBR composition.

While we believe we could confidently apply the general filters to any traffic

to reduce spoofing, they are not a complete set of rules to exclude spoofed data. In
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Section 3.2.6 we provide evidence that this set of filters removes spoofed traffic for the

time period studied; for a different time period or network, repeating the identification

and removal steps is necessary to exclude data-specific spoofing.

3.2.4 Need for a multi-faceted approach

Our methodology found and removed over 10M /24 blocks. We use a multi-

faceted approach to examine many aspects of traffic. While it is tempting to cut down

analysis time by analyzing only a single aspect of the traffic, we caution that this will

likely lead to incomplete removal of spoofed traffic. The spoofed BitTorrent traffic and

traffic from 88.0.0.0/8 show some potential weaknesses of analyzing a single aspect.

The spoofed BitTorrent traffic appeared throughout our 2012 datasets, but only

triggered an abnormal event in about 10 hourly bins out of more than 800. We flagged

these hours as abnormal due to the traffic’s fluctuating volume. Specifically, we de-

tected the spoofing at periods of high volume. This suggests the threshold of acceptable

unrouted /24 blocks must be low, and that observing the start of a spoofing event is

important, otherwise the spoofed traffic may become part of the baseline. Without fluc-

tuations, we would detect the BitTorrent traffic with our long-term consistent technique:

the class of traffic using port 65535 appeared to originate from over 10M /24 unrouted

blocks as a result of spoofed BitTorrent traffic.

The traffic from 88.0.0.0/8 did not appear as a spike in unrouted data, but as a

large increase in the number of new /24 blocks. This event shows that processes gen-

erating spoofed traffic may not choose address randomly from the IPv4 address space.

It is possible that the originator of the traffic attempted to spoof the entire IPv4 address

space but egress filtering dropped all packets not in 88.0.0.0/8. This spoofing behavior

suggests that it is beneficial to use ranges throughout the IPv4 address space as spoof-

ing indicators. For instance, most /8 blocks include some unrouted addresses; had the
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forged packets appeared to originate from a different /8 block, it is likely the event would

cause a spike in unrouted networks. More generally, using similar addresses as spoofing

indicators (e.g., from a single ISP) restricts the classes of spoofing that we can detect.

These events also highlight the benefits of using multiple methods to identify

spoofed traffic. In both cases we corroborate that the traffic was spoofed by examining

the TTL (e.g., the technique of [151]). For the spoofed BitTorrent traffic the TTL was

above 230, and for the 88.0.0.0/8 traffic the TTL was either 94 or 95 — a significant

deviation from the expected distribution.

3.2.5 Influence of spoofing on network analysis

Darknets observe so much spoofed traffic that neglecting it would invalidate our

inferences. The influence of spoofing is pronounced in our study of IPv4 address space

utilization, where we classify a /24 blocks as used if it appears in a IBR dataset. An

example of the potential detrimental effects of unmitigated spoofing is the first heuristic

in Table 3.2, which covers approximately 10M /24s, whereas our final estimates of active

/24 blocks are around 3M per darknet. In total, our filters reduce the number of active

/24 blocks by 7.2M /24.

We visually show the pronounced impact of spoofed traffic on our study of IPv4

address space utilization in Figure 3.3. The two Hilbert curves show observed /24 blocks

in our UCSD 2012 dataset: one with the raw data, and the second after removing spoofed

traffic. Visually, it appears as though large network blocks (e.g., /8 blocks) with a large

number of observed /24 blocks before removing spoofed traffic (Figure 3.3a) also have

a large number of observed /24 blocks after removing spoofed traffic (Figure 3.3b). We

find a correlation the number of /24 blocks before and after removing spoofed traffic:

at the /8 granularity the Pearson correlation coefficient is 0.666. However, there are

6The Pearson correlation coefficient varies from -1 (complete negative correlation) to 1 (complete
positive correlation), with 0 representing no correlation.
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(a) Before. (b) After.

Figure 3.3. Influence of spoofing on number of observed /24 blocks. We color /24
blocks observed in the UCSD 2012 dataset before and after applying our algorithm
to remove spoofed traffic. The large reduction in observed blocks shows that spoofed
traffic removal is a necessary step for network analysis with IBR.

exceptions. For example, as shown in Figure 3.3, with the raw data, we receive traffic

from most /24 blocks in both 4.0.0.0/8 and 98.0.0.0/8; but after applying our heuris-

tics 4.0.0.0/8 is almost completely unused, while 98.0.0.0/8 is almost completely used.

Therefore, unlike the previous finding by Barford et al. [21], we find that spoofing can

have a significant impact on the density of observed IP addresses.

The majority of packets are not spoofed (about 3% of packets are spoofed in

UCSD-12; about 4% in UCSD-13). Consequently, we expect spoofing to have less of an

impact on studies that require multiple packets from an IP address or /24 block. For

example, the path change detection case study requires that a host send packets in con-

secutive time bins for analysis. For this inference we frequently use scanning traffic, and

it is unlikely spoofed traffic will meet the requirement of appearing in consecutive time

bins. If in the off chance that spoofed traffic meets the consecutive time bin requirement

then TTL, which we use to infer a path change, is an unreliable indicator.
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Table 3.3. Validation of our technique to remove spoofed traffic. Our filtering in
the darknet datasets dramatically reduces the percentage of /24 blocks originating from
darknets and unused blocks of SWITCH. These blocks originally appear as up to 98.9%
active; filtering lowers their inferred usage to 0.038% or less.

Number of /24 blocks (sources)

M
on

ito
re

d

de
st

in
at

io
n UCSD

MERIT SWITCH-DARK
before filtering 54210 (98.4%) 4522 (98.9%)
after filtering 21 (0.038%) 0 (0%)

MERIT
UCSD SWITCH-DARK

before filtering 57769 (91.5%) 4379 (95.7%)
after filtering 8 (0.013%) 1 (0.022%)

In general, our technique is appropriate for Internet-wide measurement. Addi-

tional small-scale spoofing may exist, but should have a low impact on the number of

networks observed. While it is future work to consider the full extent of small-scale

spoofing, our technique removes traffic that would greatly skew the analysis of Internet-

wide properties we examine in this dissertation.

3.2.6 Validation of our technique

In this section, we validate that our technique removes the majority of spoofed

sources. We analyze sources from dark blocks — routed, but known to be unused ranges.

Our method was not optimized for these ranges.

We examine the portion of the remaining filtered traffic that had source addresses

we have ground truth that they are unused. Specifically, we know this traffic is spoofed

because it originates from (i) UCSD and MERIT darknet IP addresses, or (ii) /24 blocks

monitored at the border of an academic network, SWITCH, from which we never ob-

served a bidirectional flow, which included 4574 /24 blocks out of the 9343 total /24

blocks monitored at SWITCH during the UCSD-12 time period (49%). Since spoofing

may be more likely to forge nearby addresses7, we do not report combinations with

source and destination addresses in the same darknet (e.g., UCSD-to-UCSD); our final

7Many researchers observed local preference in IBR [48, 142]. Additionally, we observe many packets
with the same source and destination IP address.
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algorithm excludes packets with sources from known darknets. Table 3.3 summarizes

this analysis, showing that our filters captured most traffic using source addresses that

we know to be spoofed. The substantial reduction suggests the remaining spoofing is

low.

We could improve our validation in two ways. First, ground truth labeling of

used/unused blocks for additional networks would increase our confidence that we re-

move the majority of spoofed traffic. The ground truth we have obtained involved analyz-

ing traffic exiting SWITCH; repeating this analysis requires cooperation from additional

network administrators. However, since we use different types of networks (completely

dark, and unused portions of a live network), we believe our approach works Internet-

wide. The second way in which we could improve our validation is with packet capture

at a live network. Our technique does not differentiate between a legitimate host send-

ing traffic to the darknet and packets spoofed to have a legitimate host’s IP addresses;

our analysis assumes that processes generating spoofed traffic forge packets indiscrimi-

nately. Obtaining such data is difficult due to privacy concerns.

3.2.7 Conclusion

In this chapter we have argued that removing spoofed traffic is a necessary step of

opportunistic network analysis. We have taxonomized previous work in identifying and

removing spoofed traffic. For our problem, aggregate methods are most appropriate as

we make offline decisions on large collections of data. We have supplied a new method

that utilizes IP addresses, instead of TTL or IPID, the primary packet fields used in prior

work. Our analysis of the method provides insight into the types of spoofing observed

in IBR. Finally, we have validated our technique using real data, which is preferential to

the simulation-based analysis provided by other works [27, 104].
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Chapter 4

IBR Composition: Phenomena respon-
sible for IBR

IBR is a complex mixture of many Internet phenomena. These phenomena in-

fluence our ability to make Internet-wide inferences. Obviously, the success of infer-

ence techniques using only a certain component is directly related to the volume of that

component in IBR. For example, inferences leveraging Witty worm traffic [112] are no

longer applicable. IBR composition also affects inference techniques that aggregate over

all IBR (e.g., inferring IPv4 address space utilization in Section 6.1, or path changes in

Section 7.1), or a sizable portion of IBR (e.g., we leverage TCP’s retransmission behav-

ior to infer packet loss in Section 7.2).

In this chapter we investigate phenomena that induce many sources to send traf-

fic to our darknets. This exercise in analyzing components inspired some of our case

studies: an increase in DNS traffic prompted us to investigate the percentage of open

resolvers that send IBR (Section 6.2.1); we opted to use machine identifiers present the

in large volume of BitTorrent IBR as opposed to machine identifiers from less influ-

ential components to study Carrier Grade NAT deployment (Section 6.4.2) and DHCP

dynamics (Section 6.4.3). More generally, for each extracted component, we are inter-

ested in the long-term usability and the types of well-suited inferences. We evaluate

63



64

the long-term usability of a component by investigating why it reaches the darknet. We

determine applicable inferences by characterizing the traffic.

We use a multi-step approach to characterize IBR. First, we extracting the fol-

lowing well-known classes of IBR: Conficker, Bro Scanner, Encrypted and Backscatter.

Next, we isolate the traffic causing these temporal (Section 5.1.1) and spatial differences

(Section 5.3.1). We derive a packet or flow-level filter matching the traffic responsible

for each anomaly through manual analysis of the protocols, ports, UDP payloads, packet

lengths, TCP flags, and number of packets. We perform this analysis iteratively: once

we identify a component, we remove it from our data and find additional components

causing abnormalities. Our method may not identify all components of IBR, but we find

that the size (in observed /24 blocks) of components causing the abnormality decreased

across iterations. Finally, attributing packets to the process that generated them is non-

trivial. We discuss our methodology and findings in Appendix A. This process reassigns

some traffic from the encrypted class to BitTorrent, Sality, and ZeroAccess.

Table 4.1 shows, using UCSD-13, the results of our manual decomposition and

attribution of IBR. These results highlight the changing, complex composition of IBR.

Scans (Section 4.1) and backscatter (Section 4.2) — the traditional sources of IBR —

contribute more than 80% of packets. However, most sources send IBR as the result of

misconfigurations and bugs (Section 4.3). These misconfigurations are often caused by

complex P2P activity.

4.1 Scanning

Scanning is a preliminary step taken in many network attacks. Unless explic-

itly blacklisted, darknets capture all Internet-wide scanning efforts. Although scanning

methodologies have changed overtime, our darknet continually receives a large volume

of scanning traffic. We can leverage this large traffic volume to make inferences requir-
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Table 4.1. Discovered IBR Components (UCSD-13). Many of the largest IBR compo-
nents in terms of sources are the result of bugs and misconfigurations; these components
do not necessarily contribute the most IBR packets.

Classification Type Subtype /24 blks (%) Packets (%)
Misconfiguration BitTorrent 2,210k (70.2%) 5,480M (5.48%)

KRPC ping 1,720k (54.8%) 187M (0.19%)
KRPC find_node 1,270k (40.4%) 23M (0.02%)
KRPC get_peers 378k (12.0%) 18M (0.02%)
KRPC announce_peer 2k (0.07%) 0.02M (0.00%)
uTP 1,390k (44.0%) 4,630M (4.63%)
TCP 1,320k (41.8%) 615M (0.61%)
Encrypted 589k (18.7%) 5M (0.01%)

Unknown Encrypted 1,340k (42.5%) 318M (0.32%)
length = 96 546k (17.3%) 47M (0.05%)
length = 256 421k (13.4%) 6M (0.01%)
length = 57 353k (11.2%) 13M (0.01%)
length = 41 353k (11.2%) 3M (0.00%)

Bug Qihoo 360 1,340k (42.5%) 2,470M (2.46%)
Misconfiguration eMule 838k (26.6%) 1,380M (1.38%)

UDP 831k (26.4%) 1,380M (1.38%)
TCP/4662 58k (1.85%) 3M (0.00%)

Misconfiguration Encapsulated IPv6 744k (23.6%) 485M (0.48%)
Teredo 570k (18.1%) 327M (0.33%)
6in4 268k (8.50%) 159M (0.16%)

Scan Conficker 579k (18.3%) 27,400M (27.3%)
Backscatter All 392k (12.5%) 25,600M (25.5%)

ICMP 264k (8.38%) 1,700M (1.70%)
TCP 149k (4.72%) 17,700M (17.7%)
UDP source port 53 4k (0.14%) 6,160M (6.15%)

Misconfiguration Steam 341k (10.8%) 96M (0.10%)
Scan Bro Scanner (nonConficker) 197k (6.26%) 30,300M (30.3%)
Misconfiguration Xbox 172k (5.45%) 3M (0.00%)
Misconfiguration qqlive 156k (4.96%) 4M (0.00%)
Misconfiguration Sality 108k (3.43%) 3M (0.00%)
Unknown udp[12:6]=0x000400000000 92k (2.92%) 0.1M (0.00%)
Misconfiguration ZeroAccess 83k (2.65%) 36M (0.04%)

UDP 16k (0.51%) 10M (0.01%)
TCP/22292 40k (1.28%) 16M (0.02%)
TCP/34354 31k (1.00%) 9M (0.01%)

Unknown udp[9:2]=0xe10b 82k (2.69%) 3M (0.00%)
Unknown len=53; |byte3-byte4|=16 76k (2.41%) 1M (0.00%)
Unknown payload=.flv file name 44k (1.42%) 1M (0.00%)
Bug Mythware 16k (0.52%) 31M (0.03%)

Popular Protocols ICMP Echo Requests 218k (6.91%) 195M (2.17%)
Popular Ports Destination TCP/80 523k (16.6%) 333M (0.33%)
Popular Ports Destination UDP/53 406k (12.9%) 624M (0.62%)
Popular Ports Destination TCP/3389 289k (9.18%) 1,110M (1.11%)
Popular Ports Destination UDP/137 180k (5.72%) 32M (0.03%)
Popular Ports Destination TCP/443 93k (2.96%) 48M (0.05%)
Popular Ports Destination TCP/445 70k (2.23%) 210M (0.21%)
Popular Ports Destination TCP/7111 44k (1.41%) 1M (0.00%)
Popular Ports Destination TCP/3128 37k (1.16%) 2M (0.00%)
Popular Ports Destination TCP/29947 35k (1.10%) 0.3M (0.00%)
Popular Ports Destination TCP/1433 32k (1.01%) 1M (0.00%)
Popular Ports Destination TCP/8080 30k (0.96%) 3M (0.00%)
Popular Ports Destination TCP/25 23k (0.74%) 6M (0.01%)
Popular Ports Destination TCP/389 23k (0.72%) 8M (0.01%)
Popular Ports Destination TCP/110 17k (0.52%) 1M (0.00%)
Popular Ports Destination TCP/139 15k (0.49%) 6M (0.01%)
Popular Ports Destination TCP/53 15k (0.47%) 1M (0.00%)

Others 1,460k (46.3%) 3,180M (3.18%)

Total 3,150k 100,000M
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ing multiple observations.

Our analysis focuses on sources meeting Bro’s scanner criteria of traffic sent to

at least 25 different source IP with the same protocol and destination port.1 This crite-

rion misses some stealthy scans, such as botnet scan analyzed by Dainotti et al. [54].

It is out of the scope of this dissertation to fully identify stealthy scans. However, Ta-

ble 4.2, which covers the unclassified traffic to the frequently targeted ports (identified

in Table 4.1), shows that there is probably low-volume scanning missed by the Bro pa-

rameters. First, we remove traffic that is the result of a misconfiguration that induces

at least 250 IP addresses to send traffic to a single darknet address. We then run the

scan detection with the parameters of targeting at least 5 darknet IP over the entire 2013

census time frame. This relaxed criterion shows that there are many scanners sending

ICMP echo requests, TCP/80, TCP/445, or TCP/3389 packets. These misconfigurations

and small scans account for most of the unclassifed activity in UCSD-13.

In the remainder of this section, we discuss the applicability of scanning traffic

to opportunistic network analysis. In Section 4.1.1 we analyze trends in scanning that

suggest that the traffic will continue to provide valuable measurements. While, in Sec-

tion 4.1.2 we discuss when it is appropriate to use scanning traffic to make Internet-wide

inferences.

4.1.1 Properties of scans reaching UCSD-NT

Longitudinally, many sources scan UCSD-NT, and the volume of scanning pack-

ets has increased. While the properties of the scans have changed over time, our findings

suggest that scanning activity will continue to originate from many hosts. Specifically,

there is evidence that scans are split among many machines, and we observe bursts of

1In Table 4.1 we separate out Conficker, the largest scanning component in UCSD-13. We first identify
Conficker sources (sources sending TCP/445 packets to at least four darknet IP addresses in three different
/16 blocks, and at least 95% of scans are to Conficker-targeted IP addresses). Then, we run a scan
detection on the remaining traffic using the Bro parameters.
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Table 4.2. Scale of misconfigurations and small scans in UCSD-13. Of the activity
not captured by other filters, a large portion of traffic to the top ports is due to misconfig-
urations. On some ports (TCP/3389, TCP/80, TCP/445) and with ICMP echo requests,
we observe hosts in over 20k /24 blocks conducting small scans — often collectively
targeting large portions of the address space.

Misconfigurations Small Scans Other
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ot
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s
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IPs (/24s)
ICMP Echo Requests 116 34k 7.6M 272k (74k) 96.6% 160M 100k 32M
Destination TCP/80 26,685 450k 260M 170k (21k) 4.6% 46M 120k 24M
Destination UDP/53 399 390k 570M 3.2k (2.5k) 0.55% 0.50M 26k 58M
Destination TCP/3389 16,899 120k 120M 330k (180k) 99% 990M 88k 1.2M
Destination UDP/137 54 140k 22M 11k (10k) 9.7% 4.9M 32k 5.3M
Destination TCP/443 101 58k 25M 8.1k (6.3k) 1.6% 12M 38k 11M
Destination TCP/445 22,431 49k 50M 110k (54k) 32.3% 150M 260k 7.2M
Destination TCP/7111 1 44k 1.0M 8 (8) - - 840 0.42M
Destination TCP/3128 26 34k 1.1M 250 (229) 0.57% 0.37M 3.3k 0.28M
Destination TCP/29947 12 34k 0.34M 11 (9) - - 630 -
Destination TCP/1433 28 3.0k1 0.32M 530 (390) 0.85% 0.39M 3.8k 0.06M
Destination TCP/8080 17 24k 0.64M 770 (537) 1.9% 1.0M 7.9k 1.5M
Destination TCP/25 26 13k 0.96M 700 (580) 0.44% 1.2M 12k 3.7M
Destination TCP/389 26 6.2k 6.5M 47 (32) 0.09% 0.068M 660 1.4M
Destination TCP/110 13 9.1k 0.40M 8.1k (4.3k) 1.8% 0.91M 1.0k 0.15M
Destination TCP/139 1 600 1.1M 6.7k (5.3k) 4.3% 3.2M 9.9k 1.6M
Destination TCP/53 3 14k 0.44M 59 (39) 0.09% 0.51M 1.0k 0.07M

activity after vulnerability announcements.

As shown in Figure 4.1a, the number of scanning IP addresses per day drastically

increased in late 2008/early 2009 due to activity on TCP/445 (due to Conficker). The

number of scanning IP addresses generally decreased from 2010 to 2014, with two large

increases in sources due to traffic on other ports (many different ports due to the Carna

botnet) and TCP/23. More recently, there is significant activity on TCP/23 — bringing

the number of scanners closer to the number observed in 2010.

As shown in Figure 4.1b, the aggregate number of packets originating from scan-

ners has increased over time. Many previous studies reported that TCP/445 was the most

commonly targeted port in IBR [217, 62], but this is no longer true due to an increase

in TCP/23 traffic. Interestingly, many of the top ports in terms of packets differs from

the top ports in terms of IP addresses. One possible explanation is that distributed ef-



68

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

Jan 2008 Jan 2009 Jan 2010 Jan 2011 Jan 2012 Jan 2013 Jan 2014 Jan 2015 Jan 2016

S
ca

nn
in

g 
IP

s

Other
TCP/80+TCP/8080+TCP/5000

TCP/443
UDP/53413

TCP/210+TCP/23
TCP/445+TCP/139

UDP/137
TCP/3389

ICMP ECHO
TCP/23

TCP/445

(a) Number of Bro scanners per day.

 0

 2x109

 4x109

 6x109

 8x109

 1x1010

 1.2x1010

 1.4x1010

 1.6x1010

 1.8x1010

Jan 2008 Jan 2009 Jan 2010 Jan 2011 Jan 2012 Jan 2013 Jan 2014 Jan 2015 Jan 2016

P
ac

ke
ts

Other
TCP 8080

UDP 53
TCP 1434

TCP 80
TCP 23

ICMP ECHO
TCP 22

TCP 3389
TCP 1433
TCP 445

(b) Number of packets from Bro scanners per day.

Figure 4.1. Frequently scanned ports. From 2009 until 2014, TCP/445, primarily
due to Conficker, dominated the scanning traffic reaching UCSD-NT. However, more
recently there has been an increase in TCP/23 in terms of both sources and packets;
scanning packets destined to non-top 10 ports have also increased.
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Figure 4.2. Distribution of scanning IP addresses by number of scanning packets
sent to UCSD-NT per day.

forts (scans using many IP addresses) target different ports than individual actors (large

scanning events originating from a few addresses).

In addition to the scale of scanning packets, the behavior of individual scanners

is relevant to our evaluation of the traffic’s utility. We examine the number of packets

sent by scanners, as it provides insight into how many measurements we can extract

from a source. We also hypothesize about the processes generating scans, as this can

establish expectations for future scans.

Number of packets per scanner

Our visibility into a source depends on the volume of traffic from that source.

We plot the distribution of number of scanning packets from each scanner, grouped by

powers of 2, in Figure 4.2. This figure compares the fraction of scanners that send few

packets versus those that send many packets.

The recent release of fast scanning software [63, 83] has facilitated the quick

discovery of vulnerable hosts with a single machine. One concern for opportunisitic
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measurements is that this type of software will eliminate the need to distribute the scan

among many machines. This transformation would result in excellent visibility into a

handful of hosts instead of good visibility of many hosts (e.g., from a botnet).

Fortunately, we still observe many smaller scans. Despite a trend towards larger

scans, half of all scanning IP addresses (meeting the Bro detection criterion) send UCSD-

NT less than 2k packets per day. In other words, half of all scanners are sending packets

to UCSD-NT at a rate of about 1.5 packets per minute or less. Collectively, these smaller

scanners account for a non-trivial portion of scanning packets (not shown in Figure 4.2).

In January 2016, about 5% of scanning packets originated from sources sending less

than 2k packets per day; and about 40% of scanning packets originated from scanners

that scanned the equivalent of a /16 block or more per day. Note, relaxing the scan

criteria to include stealthier scans will only increase the influence of small scans.

Processes generating scans

A future direction in IBR research is to fully understand the mechanisms by

which the darknet is scanned. This type of analysis may shed insight into the scale

and number of processes generating scans. Inference methods are more robust when

multiple, diverse process transmit applicable traffic, e.g., we hope to not lose our ability

to make certain types of inferences because one entity stops scanning.

In this section, we provide some evidence that there are distributed efforts to

scan the IPv4 address space. Additionally, we identify cases where scanning appears to

be in response to the discovery of a vulnerability.

Is scanning distributed or conducted by individual actors? While the techniques

for coordinated scan detection [75, 120, 33, 54] could be applied to IBR, it is out of the

scope of this dissertation to determine the full extent of coordination among scans. How-

ever, it is worth providing some preliminary evidence of distributed scanning efforts. In
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particular, recent work suggests that scanning botnets have been replaced by scanning

from bullet-proof hosting providers [62]. While this appears to be true for the largest

scans, it does not seem to hold for smaller scans.

Durumeric et al.’s analysis suggests that scanning is primarily the result of in-

dividual actors [62]. Based on January 2014 data, Durumeric et al. found that 68% of

non-Conficker probes (unique combinations of source IP address, destination IP address,

and destination port ) are the result of scans each targeting 10% of the address space or

more (i.e., not distributed botnets). However, the analysis required that sources send a

significant number of packets (100) to MERIT’s darknet at a moderate scan rate (inter-

polated to 10 packets per second Internet-wide). These thresholds miss many scans that

we consider with the Bro criteria. Additionally, both the Bro criterion and Durumeric et

al.’s criterion miss a known stealthy scan by a botnet [54], when applied to the appropri-

ate time frame.

We developed heuristics for determining a host’s scanning technique, which we

detail in Appendix B. Specifically, we develop heuristics to identify the following tech-

niques:

• Originating from Conficker (Conficker)

• Originating from the Carna botnet (Carna)

• Random scanning of the entire darknet (Random)

• Selecting /24 blocks and randomly scanning most addresses (Random /24)

• Selecting /16 blocks and randomly scanning most addresses (Random /16)

• Selecting the last byte of the address and randomly scanning addresses with that

byte (Random .X)
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Figure 4.3. Scanning strategy heuristics

• Scanning most addresses in a contiguous block (Complete)

• Incrementing a counter and scanning the corresponding address (Incremental),

though increments of 1 are classified as Complete.

We assume that scanners participating in a distributed scan will use the same

technique, during the same period. In 2012 and early 2013, we see evidence of a series

of long-lasting distributed scans: Carna, Incremental (scanning TCP/210 and TCP/23),

and Random .X (scanning TCP/23). Like the Conficker worm, these campaigns account

for a large fraction of IP addresses scanning UCSD-NT. The recent activity on TCP/23

suggests that there are multiple entities scanning this port: one (or more) randomly

scanning the entire address space, and another (or more) using the Random /24 strategy.

To fully investigate coordinated scans, we need to consider the collective coverage and

overlap provided by the scanners.

Consequently, our data provides preliminary evidence that distributed scans are

present in IBR. These distributed scans are useful for making Internet-wide inferences

because many sources send packets at the same time. It is possible that relaxing the
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parameters for scan identification (e.g., to include stealthier scans like [54]), will reveal

additional distributed scans. However, with fewer packets, these scans would provide

less visibility into the sources generating the traffic.

Does scanning increase in response to vulnerability discoveries? In Figure 4.1a,

we notice periods of time of increased activity on TCP/443, TCP/5000 and web ports,

and UDP/53413. Each of these ports likely became popular due to the discovery of a

vulnerability, including: Heartbleed [199], the use of UPnP devices in DDoS attacks [7],

and a backdoor in Netis routers [220]. We expect hackers and researchers to continue

to discover new vulnerabilities, and that UCSD-NT will be scanned in response. These

scans may provide a period of increased visibility into the networks hosting the scanners.

4.1.2 Appropriate inferences with scanning traffic

Scanning is the largest contributor of packets in UCSD-13. The Conficker worm,

whose outbreak occurred in 2008, still accounts for 27.3% of all packets in UCSD-13.

Consequently, scanning is useful for inferences that require a large number of packets.

We use the large number of scanning packets in our uptime (Section 6.3.1) and NAT

(Section 6.4.1) case studies.

Internet-wide scans can take a longtime to complete (e.g., even Zmap takes about

45 minutes [63]). Hosts participating in scans will repeatedly send packets to UCSD-NT.

As a result, scanning is useful for inferences that require repeated observations. We use

repeated measurements from scanning in our path change (Section 7.1) and packet loss

(Section 7.2) case studies.

Scanning is fairly predictable. We know the number of packets sent to each

address, and may be able to infer the next host to be scanned. We leverage the pre-

dictability of scanners in our packet loss (Section 7.2) case studies. Moreover, knowing
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the exact order in which darknet IP addresses are scanned could be leveraged for outage

detection; using similar information, Kumar et al. determined the number of disks on

Witty-infected machines [112].

4.2 Backscatter

Normally, we think of backscatter from spoofed DoS attacks as coming from

a small number of attacked machines or networks. In this section, we show that the

number of sources sending backscatter can actually be large, and therefore suitable for

Internet-wide measurement. The Spamhaus attack [162] targeted Spamhaus’ network,

the networks carrying Spamhaus’ traffic and strategically selected Internet exchange

points. An increase in DNS traffic is caused by responses to spoofed queries — from

many open resolvers simultaneously.

4.2.1 Spamhaus attack

In the basic spoofed DoS attack, the attacker construct a packet with a randomly

spoofed source IP address (possibly in our darknets) and sends the packet to the victim.

However, it is more effective to conduct a reflective DoS attack, that makes use of an

amplifier. In a reflective DoS attack, the attacker sends a forged packet with the victim’s

source address to the amplifier; the amplifier responds by sending a larger packet or

multiple packets to the victim. Notably, in the reflective DoS attack, the darknet does

not receive any traffic.

In March 2013, Spamhaus, a provider of anti-spam filters, experienced one of

the largest known DoS attacks [162]. Although the attack was most effective due to

their usage of DNS amplifiers (not visible in IBR), the attackers used additional DoS

methods (visible in IBR). Once under attack, Spamhaus hired CloudFlare to distribute

Spamhaus’ content using anycast routing. In response to this mitigation, the attackers
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Figure 4.4. Sources from select ASes during Spamhaus attack. One of the largest
DoS known attacks, targeted Spamhaus. Spamhaus used CloudFlare’s anycast routing to
mitigate the attack. In response, the attackers targeted CloudFlare, CloudFlare’s peers,
and Internet exchange points. The switch in the target is visible with IBR.

switched their target, not only to CloudFlare, but CloudFlare’s peers, and Internet ex-

change points. As shown in Figure 4.4, this change in target is visible in the sustained

volume of backscatter packets reaching UCSD-NT from hosts in both Spamhaus and

CloudFlare’s ASes.

Although, there are many services that attackers can use as amplifiers [177],

we still observe traditional spoofed DoS attacks in IBR. The Spamhaus attack, which

used both traditional and amplification techniques, is relevant to Internet-wide infer-

ences with IBR because of the temporary increase in traffic. Since the attack targeted

many ASes, we received traffic from sources all over the Internet.

4.2.2 DNS backscatter

If a darknet receives a DNS response, its most likely cause is a DNS server

responding to a spoofed query. For the purpose of this analysis, we label an IP address

as an open resolver if the Recursion-Available flag is set in an UDP source port 53 packet
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arriving from that source, as it indicates the resolver’s willingness to resolve recursive

queries.2

Starting around February 2014, we observe a sustained increase in DNS re-

sponses. we investigate why we observe this sustained DNS traffic using a dataset,

UCSD-14-DNS, containing all DNS packets received between January 20, 2014 and

March 1, 2014. Our analysis suggests that this traffic is from DoS attacks on author-

itative name servers, i.e., the traffic is backscatter from an attack that inhibits the DNS

lookup of the domains served by an authoritative name server. Van Nice reports on this

type of attack from the perspective of Nominum, a DNS analytics company [208].

Traditional amplification attacks using open resolvers do not result in IBR; con-

sequently, studying the significance of open resolvers is difficult unless you are involved

in attacks (i.e., under attack or running an open resolver). However, this specific type

of attack causes open resolvers to repeatedly send packets to our darknets. We compare

the number open resolvers visible in IBR to an active scanning technique (which finds

open resolvers not used in this attack) in Section 6.2.1. More generally, since this is an

ongoing attack that leverages the same open resolvers, this traffic is useful for inferences

requring multiple packets using the UDP and IP layers.

Attack specifics

It is common for DoS attacks use open resolvers to amplify their effectiveness.

Since the response to a DNS query is typically larger than the query itself, the attacker

queries the open resolver with a packet spoofed with the victim’s IP address. Darknets

do not receive packets in the common attack. Consequently, we want to understand why

this new attack causes many open resolvers to send packets to darknets.

2The IP address may be an open resolver or one that recursively resolves domains on behalf of a
forwarding open DNS server [181]. In other words, the machine we receive a response from may not be
the one that initially received the spoofed packet.
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DNS responses contain the query which they answer (or fail to answer). As a

result, we can examine the domains that were queried to induce the backscatter packets.

If sources in at least 50k /24 blocks send traffic for the same second-level domain to the

darknet, we consider it part of an “attack.” 462 second-level domains met this criteria.

These domains account for most of the DNS behavior in UCSD-14-DNS: less than 1% of

source addresses were not associated with any of these second-level domains. We find

suspicious behaviors associated with the second-level domains:

• baidu.com was the first second-level domain used in the attack, six days prior the

second domain reaching the 50k threshold. This was likely a testing phase.

• Besides baidu.com, the other observed domains likely exist for the purpose of

these attacks. According to WHOIS data, 60% of domains were created less than

6 months prior to the scans.

• Unsurprisingly, the registration contact information is often obviously fake (e.g.,

a phone number of 11111111 and street address of hkjhkjhjkhjk).

• The queried domains are registered through a variety of registrars, most com-

monly: GoDaddy (74 domains), eName (70), eNom (40), HiChina Zhicheng (39).

This may indicate that attackers have multiple resources for obtaining domain

names.

• The 462 second-level domains often share name servers, most commonly:

*.dnspod.net (56 domains), *.dnsabc-[b|d|f|g].com (38), *.iidns.com (37),

*.hichina.com (25), *.zndns.com (24).

In UCSD-14-DNS, many open resolvers sent UCSD-NT packets with errors

(RCODE̸=0). This was not the case for previous collections of IBR or in the responses

of weekly scans of the entire IPv4 address space for open resolvers by the Open Resolver
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Table 4.3. Comparison of number of observed open DNS resolvers across datasets.
DNS responses reaching the darknet with the Recursion-Available bit set indicate an
open resolver. The number of open resolvers sending IBR increased in 2014, allowing us
to infer their existence and provide insight into an attack on authoritative name servers.

Open
UCSD-12 UCSD-13 MERIT-13 UCSD-14-DNS Resolver

Project [152]
Unique IPs 49,111 3,401 834 1,561,324 37,607,402
Recursion-Avail. 42,312 2,298 591 1,518,360 32,917,724
RCODE=0 (OK) 48,746 2,991 329 1,437,310 32,595,867
RCODE=1 (FORMERR) 43 7 5 1,422 841
RCODE=2 (SERVFAIL) 317 148 41 1,445,276 919,899
RCODE=3 (NXDOMAIN) 215 200 518 1,349,092 153,466
RCODE=4 (NOTIMP) 7 8 1 64 166
RCODE=5 (REFUSED) 173 241 34 136,328 4,433,126

Project [152] conducted during the same time period. In particular, compared to the

Open Resolver Project, UCSD-14-DNS observes more sources with SERVFAIL errors,

which indicates that the authoritative name server did not answer the query. Moreover,

many open resolvers in UCSD-14-DNS respond with non-errors and errors for queries for

the same second-level domain, suggesting that authoritative name servers are inundated

with queries — a characteristic of DoS attacks. By contrast, the Open Resolver Project

scans the Internet at a rate sustainable by authoritative name servers.

It is unclear clear why the attack uses open resolvers. If an attacker (with the

ability to send spoofed packets) wanted to perform a DoS attack or poison the cache

of an authoritative name server they could send spoofed queries directly to the author-

itative name server. A likely explanation is that using open resolvers reduces the code

complexity of the malware launching the attack, as writing code to correctly resolve a

domain names is non-trivial [58]. Another hypothesis is that filtering policy may neces-

sitate the use of open resolvers. The networks where the spoofing machines reside may

only permit port 53 packets destined to certain DNS servers to leave their networks. Al-

ternatively, these open resolvers may actually be local DNS servers in networks that use

egress filtering (i.e., the spoofing machine cannot send spoofed packets to the authorita-

tive name server).
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Figure 4.5. DNS backscatter (early 2014). After February 6, 2014, almost every hour,
over a quarter of a million open resolvers send DNS packets to UCSD-NT. The slow
growth in cumulative open resolvers implies that the same open resolvers repeatedly
send this type of backscatter.

Utility of DNS backscatter

Unlike the Spamhaus event, which was a short-lived event, DNS backscatter is

an on-going phenomenon. We are still observing this attack as of May 2016. Conse-

quently, we can use this traffic for sustained insight into open resolvers and their net-

works, with two caveats. First, there are periods of inactivity. Second, we observe the

same open resolvers repeatedly as opposed to all open resolvers.

We illustrate both of these caveats in Figure 4.5, which shows the number of

open resolvers observed per hour, as well as cumulatively. We notice that the number

of open resolvers observed per hour varies, including consecutive hours without traffic.

After an initial spike, the cumulative number of open resolvers grows slowly, despite

observing over 200k open resolvers in many hour bins. We observe only a fraction

known open resolvers: during this time period we capture 1.5M open resolvers through

IBR, while the Open Resolver Project collected responses (with the Recursion-Available
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flag set) from 32.9M IP addresses through their weekly IPv4 scans [152]. As a result,

this behavior indicates reuse, i.e., the phenomenon generating the DNS responses is

repeatedly sending spoofed packets to the same set of open resolvers.

4.2.3 Appropriate inferences with backscatter traffic

Backscatter events provide a period of increased visibility of remote networks,

and it may be advantageous to infer network properties during these events. The increase

in traffic during the Spamhaus attack leads to better coverage in our IPv4 address space

utilization study (Section 6.1). The increase in DNS traffic inspired us to analyze open

resolvers when assessing the ability of IBR to provide insight into server architecture

(Section 6.2.1). This window of opportunity may vary: the Spamhaus attack lasted a

couple days, while DNS backscatter is an on-going phenomenon.

4.3 Bugs and Misconfigurations

The ability to leverage traffic resulting from bugs and misconfigurations depends

on the popularity of the affected software and the nature of the bug. In this section, we

discuss a bug in Qihoo 360, and misconfigurations in BitTorrent that affected millions

of hosts. Both Qihoo 360 and BitTorrent are popular software, but their use of P2P

communications exacerbates the scale of the traffic reaching the darknet. While these

bugs and misconfigurations do not result in a high-volume stream of packets from a host

(e.g., like scanning or backscatter), the traffic originates from many hosts and persists for

a long period of time. Consequently, this traffic provides excellent, though potentially

biased, coverage for inference possible with few packets.
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6:00:00.083796 IP 123.4.253.107.8090 > XX.179.58.115.42501: UDP, length 30
0x0000: 4500 003a df4b 0000 2e11 ---- 7b04 fd6b E..:.K......{..k
0x0010: XXb3 3a73 1f9a a605 0026 c0cf 0000 0000 ..:s.....&......

0x0020: 0000 0000 3100 3d57 0000 0000 0000 0000 ....1.=W........

0x0030: 0000 0000 287e 02c7 0000

Figure 4.6. Example Qihoo 360 packet. Some bytes are fixed, while others appear to
increment or be set based on the connection.

4.3.1 Qihoo 360

Figure 4.6 shows a packet originating from over 100M IP addresses in UCSD-13.

By capturing two-way traffic at a live-network, we determined that this traffic was the

result in a bug in Chinese security software, Qihoo 360. Since this bug persisted for

over five years, the resulting traffic seems useful for longitudinal analysis of many hosts.

However, this traffic has a Chinese bias, and has been nearly eliminated upon reporting

the bug to Qihoo.

Bug specifics

Due to the widespread use of this protocol, we could coordinate with UCSD

CSE researchers monitoring live networks to capture additional traffic from some IP

addresses and ports sending the payload. With bidirectional traffic, we find that a byte

order bug causes the hosts to contact the darknet. As shown in Figure 4.7, external IP

address 113.70.40.122 sent traffic to a UCSD CSE host. The UCSD CSE host then re-

sponded to 122.40.70.113. Therefore, our /8 darknet (X.0.0.0/8) receives packets when-

ever a host responds to a legitimate IP address whose last byte is X (e.g., 1.2.3.X).

The use of P2P technology to update the software [4] explains the magnitude of

this traffic. After contacting an address in the 360.cn domain, a host receives a packet

with a list of peers. The host then contacts all of the peers to attempt to download the

update. Consequently, each host updating triggers many connections and potentially

many packets written in reverse byte order.
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04:40:46.877858 IP 113.70.40.122.5437 > CS.239.95.102.10102: UDP, length 30
0x0000: 4500 003a 6213 0000 2f11 ---- 7146 287a E..:b.../...qF(z
0x0010: CSef 5f66 153d 2776 0026 8a67 0000 0000 .._f.=’v.&.g....
0x0020: a800 0d13 2100 55e1 0149 f488 0134 9733 ....!.U..I...4.3
0x0030: 0038 0000 0005 0006 0000

04:40:46.878016 IP CS.239.95.102.10102 > 122.40.70.113.15637: UDP, length 30
0x0000: 4500 003a 552d 0000 3f11 ---- CSef 5f66 E..:U-..?....._f
0x0010: 7a28 4671 2776 3d15 0026 2c6b 0000 0000 z(Fq’v=..&,k....
0x0020: 0000 0000 3100 55e1 0000 0000 0000 0000 ....1.U.........
0x0030: 0000 0000 42d6 0005 0000 ....B.....

Figure 4.7. Example of Qihoo 360 byte-order bug (captured in a live network:
UCSD CSE) The UCSD CSE machine (CS.239.95.102) receives a packet from IP ad-
dress 113.70.40.122 but due to a byte order bug responds to 122.40.70.113.

Table 4.4. Country of origin for Qihoo 360 traffic. We show the top 10 countries in
terms of IP addresses in UCSD-13. Many IP addresses in China and nearby countries are
associated with Qihoo 360.

IPs % BGP Announced Address Space
China 101,240k 36.26%
Taiwan 505k 1.45%
Malaysia 442k 7.65%
USA 324k 0.03%
Hong Kong 280k 2.75%
Japan 186k 0.11%
Canada 129k 0.26%
Thailand 126k 1.55%
Australia 126k 0.31%
Singapore 116k 2.16%

Usability of traffic originating from Qihoo 360’s byte order bug

Two aspects of Qihoo 360 IBR greatly influence the usability of the traffic: the

large number of Chinese sources, and the nature of repeated contact from individual

clients. According to their website, Qihoo 360 is the top provider of Internet and mo-

bile security products in China [164]. IBR confirms Qihoo’s popularity in China. The

breakdown of IP addresses for the top countries in UCSD-13 is shown in Table 4.4. We

also report the magnitude of the IP addresses as a percentage of BGP space announced

belonging to the country. Nearly a third of all Chinese IP addresses announced in BGP

sent a packet matching our signature. Consequently, this traffic has a significant bias

towards Chinese hosts.

In Section 5.2.2 we examine repeated contact of sources sending IBR. Qihoo
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360 is unique in that, generally, there are few packets associated with each IP address

sending Qihoo 360 traffic but a long time between observations. This is primarily due

to the extreme diurnal patterns: in UCSD-13, the average number of source IP addresses

sending this traffic per hour varies between 165k at 20:00 UTC to 2.31M at 0:00 UTC.

Unfortunately, we do not observe individual IP addresses sending Qihoo 360 traffic at

predictable intervals. Consequently, this traffic is primarily useful in aggregate, or when

for individual machines we do not need many packets or high predictability.

We contacted Qihoo to report the byte order bug. They confirmed the issue, and

planned to deploy fixes around January 12, 2016. About a month later we observed a

substantial decrease in the number of packets reaching the darknet matching our Qihoo

360 filter. Other than our analysis of the time to fix the Qihoo 360 bug (Section 6.3.3),

the Internet-wide inferences made in this dissertation do not appear to be dependent on

the existence of the Qihoo 360 bug. However, this bug fix illustrates how a small change

can drastically change the composition of IBR.

4.3.2 BitTorrent

BitTorrent traffic accounts for a sizable portion of IBR. Hosts in over 2M /24

blocks sent over 8 billion BitTorrent packets in UCSD-12 (we observe similar statistics in

UCSD-13). While voluminous, this traffic may be difficult to leverage for opportunistic

inferences due to its unpredictability, which is likely due to the reason BitTorrent traffic

reached our darknets. We find evidence that this traffic is, in part, due to index poisoning

attacks — the intentional pollution of the Distributed Hash Table (DHT) with erroneous

data.
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Evidence of index poisoning attacks

Since darknets contain no active hosts, all BitTorrent traffic in IBR is the result of

implementation bugs or incorrect information in the DHT. It is difficult to conclusively

determine if BitTorrent packets reach our darknet intentionally or unintentionally, but

we provide evidence that there is systematic falsification of data (and not a bug).

The purposeful pollution of the DHT with false locations is called an index poi-

soning attack [121]. The goal of this attack is to thwart a user’s ability to download

torrents. In this attack, malicious BitTorrent clients share incorrect torrent locations

(i.e, the IP address and port of a peer), or falsify information about other BitTorrent

clients, claiming they are likely to know the torrent’s location. In particular, the mali-

cious BitTorrent clients may advertise that a darknet IP address has information relevant

to downloading the torrent. Incorrect information will cause a legitimate client to send

excessive packets and lengthen the time to find a target. In theory, if a legitimate client

receives a large amount of false information, it may be impossible to actually obtain the

desired torrent.

In this section, we look for evidence that BitTorrent clients are purposefully

directed to incorrect locations, including our darknets. In our 2012 and 2013 datasets,

the darknet IP address receiving traffic appear to be generated randomly (albeit with a

poor PRNG). Additionally, in this data, we observe a large volume of packets requesting

torrents whose name includes the word“China.”Starting in 2015, traffic to one darknet

IP address resulted in a ten-fold increase in sources sending BitTorrent IBR per minute.

This traffic also has peculiarities that suggest that the false information is generated

programmatically but multiple hosts.

Evidence of random address selection for index poisoning attacks As described in

Section 5.3.1, BitTorrent traffic collected in 2012 and 2013 has a preference for certain
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(a) get_peers (2.1M /24
blocks)

(b) find_node (1.7M /24
blocks)

(c) ping (1.3M /24 blocks)

Figure 4.8. Targeting patterns by BitTorrent packet type in UCSD-12. We shade, on
a linear scale, each /16 in the Hilbert curve of UCSD-NT’s address space. White cor-
responds to zero /24 blocks and dark blue corresponds to the most /24 blocks. Sources
sending get_peers and find_node packets exhibit a preference for certin /13 blocks.

/13 blocks. Specifically, darknet IP addresses (X.B.C.D) satisfying: B & 0x88 = 0x00

and D & 0x09 = 0x01 are likely to receive BitTorrent traffic from many sources. Addi-

tionally, there is an attraction to destination ports satisfying: destination port & 0x2081

= 0x0080. Figure 4.8 shows the preferential targeting on the /16 granularity. The vis-

ible preferential targeting in get_peers and find_node packets is consistent with obtain-

ing erroneous information when traversing the DHT (as is the case with get_peers and

find_node packets), and not when checking if known hosts are still alive (with ping pack-

ets). We observe the same preferential targeting in UCSD-12, UCSD-13, and MERIT-13;

though, the targeting is more pronounced in UCSD-12 than the 2013 datasets.

Our data suggests that the addresses and ports are selected uniformly from the

targeted ranges, as each address and port receives traffic from approximately the same

number of sources. For get_peers packets in UCSD-12, 99.9% of targeted IP addresses

receive traffic from between 35 and 85 /24 blocks; 99.6% of targeted ports receive traf-

fic from between 6,700 and 7,400 /24 blocks. A plausible explanation for the spatial

abnormalities is a bug in a pseudo-random number generator (PRNG) that determines

which addresses and ports to target.
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Table 4.5. Top 10 infohashes (by number of packets) in UCSD-12. Four of the top ten
most requested infohases have “China” in their name, suggesting that certain content is
more likely to be targeted in this index poisoning attack.

Infohash Torrent Packets /24 blocks
48484fab5754055fc530fcb5de5564651c4ef28f Grand Theft Auto - Chinatown Wars 450k 32k
5b5e1ffa9390fff13f4af2aef9f5861c4fbf46eb Modern Family S3E22 398k 30k
d90c1110a5812d9a4bf3c28e279653a5c4f78dd1 CSI S12E22 204k 6.5k
2ecce214e48feca39e32bb50dfcf8151c1b166cc Coldplay Ft. Rhianna Princess of China 187k 18k
79f771ec436f09982fc345015fa1c1d0d8c38b48 - 129k 53k
b9be9fc1db584145407422b0907d6a09b734a206 Parks and Recreation S4E22 127k 7.5k
99a837efde41d35c283e2d9d7e0a1d4a7cd996dd Missing 2012 S1E9 106k 6.6k
7b05b6b6db6c66e7bb8fa5aa70a185c7cfcd3d07 - 104k 44k
c0841cf3196a83d1d08ae4a9eaf10fcfc6c7ba66 Big Trouble Little China 99k 6.1k
99dfae74641d0ca29ef523860713a6270daefc6e 36 China Town 91k 1.5k

Evidence of targeted content in index poisoning attacks Get_peers packets include

a hash of the torrent. We analyze this traffic to determine frequently requested content

for the 2012 and 2013 data. We then search the web for these hashes to determine the

content. As shown in Table 4.5, hashes for content with“China”in the name are among

the most popular in terms of number of packets in UCSD-12. Not shown in the table is a

similar observation in UCSD-13; for example, “Sette Anni in Tibet” is the most requested

torrent in terms of packets. This behavior suggests that certain content is targeted for

index poisoning.

Evidence of a distributed poisoning effort Starting in July 2015 the number of IP

addresses sending BitTorrent traffic increased from about 20k per minute to 200k per

minute. This ten-fold increase, which has lasted for almost one year, is due to one dark-

net IP address, UCSD.235.104.34, on port 37547. Sustained traffic to a single darknet

IP address is unexpected as we expect well-behaving clients to hinder the propagation

of erroneous information.

We examine the BitTorrent clients and requested content to look for evidence

of bugs, misconfigurations or index poisoning. We find a variety of clients. Unlike the

2012 and 2013 data, many web searches for the top infohashes did not return common

torrent names. These findings suggest that there is neither a bug in a particular client
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nor a particular type of content that induces a host to send BitTorrent IBR.

To further investigate why BitTorrent clients send IBR to UCSD.235.104.34 we

installed two versions of BitTorrent on machine a machine in live network: uTorrent and

a LibTorrent client (Deluged). Without requesting any BitTorrent content, we passively

monitored all KRPC packets (uTorrent for 2.5 months, Deluged for 2 months). Both

versions contacted UCSD.235.104.34 multiple times (uTorrent 112 times, Deluged 63

times).

Interestingly, there are patterns in the responses from the 54 nodes we analyzed.

Almost all of these nodes associate UCSD.235.104.34 with different IDs. All but six

nodes map UCSD.235.104.34 to different IDs, but the third byte is always 0x04. Gen-

erally, responses to find_node messages include information about multiple nodes. The

nodes that appear with UCSD.235.104.34 are often the same. For example, we received

125 packets from 27 nodes indicating that 212.246.161.63 is a BitTorrent node where

the third byte of the ID is 0x06. The patterns in the responses suggest a common process

generated the fake IDs.

There are no obvious commonalities in the 54 nodes that included the darknet

IP address in their responses (uTorrent 12 nodes, Deluged 42 nodes). Although the

hosts are primarily in China, one address geolocates to the United States and another to

Russia. The implies that the process generating the bogus information may be geograph-

ically distributed. The 54 nodes are in 18 different ASes. Most of the nodes (36 nodes)

use LibTorrent, with version 1.00 being the most popular (33 nodes). However, we

also observe uTorrent, A0, and packets without client information (i.e., non-LibTorrent

based client). Since most of these clients are not buggy (e.g., our uTorrent client never

propogates the UCSD address as a peer), it is unlikely that a software bug is responsible

for this traffic.
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Figure 4.9. /24 blocks sending BitTorrent traffic per hour (UCSD-12). BitTorrent
traffic is not well-suited to inferences requiring predictability due to its erratic source
behavior.

Utility of BitTorrent traffic

Using BitTorrent traffic for opportunistic inferences is difficult due to its bursty

temporal behavior. As shown in Figure 4.9, the aggregate number of hosts sending Bit-

Torrent packets to the UCSD darknet is sustained but erratic over time. The popularity

of downloaded content or occasional intensification of the attacks likely causes the im-

pulses. The bursty behavior extends to individual BitTorrent clients. In most cases, an

individual darknet IP address/port receives KRPC traffic in a single short burst. This

behavior is consistent with (1) determining that the darknet address is an invalid node

and (2) not propagating or storing the bad mapping. Consequently, this traffic is not

well-suited for inferences requiring predictable traffic.

However, the wide-spread use of BitTorrent makes this traffic extremely useful

in many of our inferences that do not require predictable behaviors. In particular, the

contents of BitTorrent packets contain machine identifiers. With these identifiers we can

associate a machine (and its user) with an IP addresses. We leverage this association
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to study DHCP dynamics and CGN deployments. Additionally, this association could

potentially reveal privacy sensitive information [117].

4.3.3 Appropriate inferences with traffic resulting from bugs or
misconfigurations

Many sources send IBR to our darknets as a result of P2P misconfigurations and

bugs. We can leverage these sources in inferences requiring many sources. In our study

of IPv4 address space utilization in 2013 (Section 6.1), BitTorrent and Qihoo 360 are

two of the top three sources of /24 blocks. New bugs or misconfigurations will likely

improve our coverage. For example, traffic to UCSD.235.104.34 resulted in a ten-fold

increase in sources sending BitTorrent traffic per minute.

If the bugs and processes generating misconfigurations persist, we can receive a

continuous stream of traffic. For example, for more than five years, Qihoo 360 software

sent IBR as a result of a byte-order bug. However, our ability to extract predictable

subcomponents from the continuous stream may be limited. Per host, both Qihoo 360

and BitTorrent traffic are low-volume and unpredictable. This is not a limitation for

some inferences. For example, we leverage BitTorrent identifiers to study DHCP leases

(Section 6.4.3), and Carrier Grade NAT usage (Section 6.4.2).

One downside of leveraging misconfigurations or bugs is bias towards users of

the responsible software. For example, we are unable to accurately assess BitTorrent

client popularity due to uncertainty of the biases associated with BitTorrent traffic (Sec-

tion 6.3.2). This bias is less of an issue when measuring network properties (e.g., DHCP

deployment, CGN usage).
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4.4 Conclusion

The composition of IBR clearly influences the types of traffic available for re-

searchers to leverage. This chapter has shown that the sending patterns of the various

types of IBR make them well-suited for different classes of inferences. Moreover, un-

derstanding the processes that generate IBR has provided insight into the outlook for

long-term studies with IBR.

In terms of the utility of IBR components, we concluded Sections 4.1, 4.2, and

4.3 with discussions about when it is appropriate to use scanning, backscatter, and mis-

configurations/bugs for opportunistic Internet-wide inferences. As a summary: scan-

ning traffic is well-suited for inferences that require many packets, bursts of packets,

or predictable behaviors; backscatter is well-suited for short-term visibility into a phe-

nomenon; misconfigurations and bugs in P2P networks are well-suited for insight into

many hosts, though there may be limited insight into individual hosts. These large

classes of traffic are useful for complementary purposes. Consequently, we can leverage

IBR for a variety of inference types.

The distinct behavior of the IBR components means that, for some application-

agnostic inferences, we may end up using primarily a certain class of traffic. For exam-

ple, our path-change algorithm (Section 7.1) uses information in the IP header when a

source sends packets in consecutive time bins. This requirement on the traffic means that

scanning is well-suited for the task, while P2P bugs and misconfigurations are unlikely

to assist in inferring path changes.

The long-term outlook for IBR-based inferences is encouraging due to the abun-

dance of phenomena we find generating IBR through our manual decomposition of the

traffic (Section 4). The existence of many phenomena implies that inferences using a

variety traffic types will likely continue to be applicable, even as the composition of
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IBR evolves. Moreover, Internet-wide inferences based on information in the IP and

transport layer headers can also leverage unclassified and unknown-origin traffic.

We expect to continue to observe traffic from hosts Internet-wide as a result of

varying scanning methods, complex DoS attacks, and large-scale misconfigurations and

bugs. Our outlook for each class of traffic is as follows:

• Although scanning is one of the first steps in a network attack, there has been

limited research into the evolution of scanning mechanisms. These mechanisms

are relevant to opportunistic inferences because they determine the nature of scan-

ning traffic reaching darknets. Scans conducted by individuals on a handful of

machines provide excellent visibility into the properties of the scanning hosts and

networks. Alternatively, distributed scans (e.g., through a botnet) produce less

packets per host but collectively have wider Internet coverage. We find evidence

of both types of scans in IBR, and expect scanning traffic to continue to reach our

darknet.

• Leveraging amplifiers is an effective technique for conducting reflective DoS at-

tacks. Traditional reflective DoS attacks do not produce IBR; however, we found

two examples of complex DoS attacks that resulted in IBR, and increased visibil-

ity into Internet-hosts. The Spamhaus attack used a multiple DoS techniques over

a few days, while a new type of DoS on authoritative name servers using open

resolvers is ongoing.

• In recent years, there has been an increase in number of sources due to bugs and

misconfigurations in P2P networks (Qihoo 360 and BitTorrent). As a result, the

number of networks we can obtain measurements for is increasing. However,

sources sending P2P traffic generally produce few connection attempts at irregular

intervals, so fine-grained analysis (repeated analysis on a short time scale, e.g.,
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minutes) is difficult for these hosts.
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Chapter 5

IBR Visibility: Factors influencing net-
work measurability

Evaluating IBR’s potential as an Internet-wide opportunistic data source involves

two major questions:

1. What information can I extract from IBR?

2. How many sources (IP address, /24 block, prefix, AS, country) send that type of

information?

With respect to Question 1, enumerating all types of IBR-derivable information

is a daunting, and probably impossible task. In Chapter 4 we characterized the composi-

tion of IBR. This characterization can act as a starting point for formulating IBR-based

inference techniques, or deciding to forgo using IBR. E.g., calculating web site popular-

ity is an unlikely use case as we do not observe HTTP payloads. However, it is probable

that both the evolving composition of IBR and the ingenuity of researchers will both

lead to additional use cases for IBR.

Although we are limited in answering Question 1, we can provide some intuition

for Question 2. To investigate the number of sources for which we can make inferences,

we first consider IBR as a whole and report our overall visibility into networks Internet-

wide (Section 5.1). We use the metric coverage, which we define as the number of

93
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Table 5.1. Number of observed sources in darknet traffic. The number (and percent-
age of announced resources) of IP addresses, /24 blocks, prefixes, ASes, and countries
observed in each dataset is consistent across sites (UCSD-NT vs. MERIT-NT) and years
(2012 vs. 2013).

Announced UCSD-12 UCSD-13 MERIT-13
2012 2013 Partial

IP addresses 2.61B 2.66B 148M (5.7%) 133M (5.0%) 109M (4.1%) 111M (4.2%)
/24 blocks 10.2M 10.4M 3.13M (31%) 3.15M (30%) 2.65M (26%) 2.76M (27%)
Prefixes 410k 452k 198k (48%) 205k (45%) 170k (38%) 175k (39%)
ASes 44k 46k 24.3k (55%) 24.2k (54%) 19.3k (44%) 19.8k (45%)
Countries 245 236 234 (96%) 233 (99%) 231 (98%) 232 (98%)

networks where at least one IP address from the network is captured in IBR. We then

consider factors that would reduce our coverage. Some factors are related to properties

of IBR (Section 5.2): for many IBR-based inferences only certain types of traffic, either

due to payload or the frequency in which we observe it, is useful. Other factors stem

from the collection infrastructure, such as darknet position in the address space, and

darknet size (Section 6.1.6).

5.1 Overall visibility

We investigate how many and what type of networks send IBR. In all our datasets

we observe traffic from a non-trivial number of IP addresses (> 100M), /24 blocks

(> 2.6M) and prefixes (> 170k), and traffic from almost all countries and most large

networks (including non-enterprise ASes). As a result, we can potentially use IBR to

characterize many hosts and /24 blocks, and provide Internet-wide analysis at the AS or

country-code level.

5.1.1 How many sources are observed?

Table 5.1 reports the absolute number of sources (IP addresses, /24 blocks, pre-

fixes, ASes and countries) observed through our datasets. To analyze coverage, we

consider the ASes and prefixes announced in BGP (and number of IP addresses and
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Figure 5.1. Fraction of sources observed per minute, hour and day (UCSD-13). The
longer one observes, the more sources one can observe, especially at the IP address
granularity.

/24 blocks within the announced prefixes). We observe a few IP addresses, more than

a quarter of /24 blocks, and close to half of all prefixes and ASes. We also use Max-

Mind to geolocate the .0 IP address of all observed /24 blocks: we capture almost all

country codes with announced IP addresses. However, a large fraction of address space

announced in BGP may not actually generate traffic on the global Internet, which is of-

ten called “used” [222, 53]. Based on previous literature, we observe about half of the

inferred used /24 blocks: using seven different data sources, Dainotti et al. found 5.3M

actually used /24 blocks in 2013 [53], while Zander et al. estimated that a total of 6.2M

to 6.3M /24 blocks were used in June 2014 [222].

While the numbers in Table 5.1 are consistent across all four, 34-day-long

datasets, we find considerably fewer sources (except at country-level granularity) with

shorter measurement intervals. Figure 5.1 shows statistics on the fraction of sources

observed in a minute, hour, or day for UCSD-13. We omit Figures for UCSD-12,
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partial-UCSD-13 and MERIT-13 since, for each source and time granularity, we cap-

ture approximately the same fraction of the respective dataset total. As expected, by

lengthening the observation period, we capture additional sources. However, due to

repeated contact, the growth in number of sources observed is less than linear. The ex-

act growth rate depends on source granularity (i.e., IP address, /24 block, prefix, AS or

country). For example, we observe over 80% of countries at all time granularities, while,

for IP addresses, increasing the time granularity from an hour to a day results in about

20 times more sources. This result is intuitive. At the IP level, individual machines

may stop transmitting IBR (due to properties of IBR, users turning off the machine, out-

ages, etc.) or use multiple IP addresses (due to DHCP assignment, host portability, etc.)

resulting in intermittent observation of the source. At the other extreme, many hosts

contribute to a country’s visibility, resulting in more frequent observation (e.g., not de-

picted in Figure 5.1 is the statistic that for the median country in UCSD-13, we observe

6,070 IP addresses throughout the entire 34-day period).

The number of observed sources can be highly variable, especially at the IP ad-

dress and /24 block granularities. In Table 5.2, we report the average, standard deviation,

and coefficient of variation [67] for a number of source and time granularities for each

dataset. The coefficient of variation (ratio of standard deviation to mean) is a dimension-

less measure of the fractional increase or decrease relative to the mean that is within a

standard deviation. In UCSD-13, the coefficient of variation across days is large for IPs

(0.19), but smaller for /24 blocks (0.029), prefixes (0.031), ASes (0.034) and country

codes (0.0061). In other words, we can expect (i.e., it is within 1 standard deviation) to

observe a 19% increase or decrease in the number of IP addresses captured in a single

day.

At least two factors — diurnal patterns and the changing composition of IBR —

contribute to variance.
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Table 5.2. Average and standard deviation of number of observed sources in each
dataset. At the IP address and /24 granularities there is considerable variance in the
number of observed sources. The number in parenthesis is the coefficient of variation
(ratio of standard deviation to the mean), which permits us to compare variability across
source granularities.

IP Address /24 Block Prefix AS Country
Time Period Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.
UCSD-12
1 minute 120k 24k (0.20) 100k 20k (0.19) 28k 2.0k (0.072) 5.2k 320 (0.061) 186 3.9 (0.021)
1 hour 1.8M 820k (0.46) 560k 100k (0.18) 62k 6.4k (0.10) 9.0k 700 (0.078) 215 4.0 (0.019)
1 day 27M 4.3M (0.16) 1.6M 210k (0.13) 120k 9.7k (0.081) 14k 950k (0.068) 227 1.6 (0.0069)
Census 148M - 3.14M - 198k - 24.3k - 232 -
UCSD-13
1 minute 100k 22k (0.22) 90k 18k (0.20) 27k 1.7k (0.063) 5.5k 270 (0.050) 194 2.9 (0.015)
1 hour 1.54M 810k (0.53) 500k 98k (0.20) 56k 3.2k (0.058) 9.1k 440 (0.049) 216 2.3 (0.011)
1 day 24M 4.5M (0.19) 1.4M 39k (0.029) 120k 3.6k (0.031) 15k 490 (0.034) 227 1.4 (0.0061)
Census 133M - 3.15M - 205k - 24.2 - 233 -
partial-

UCSD-13
1 minute 62k 9.6k (0.15) 54k 8.4 (0.15) 21k 1.4k (0.067) 4.5k 230 (0.051) 185 3.0 (0.016)
1 hour 690k 340k (0.49) 360k 97k (0.27) 43k 2.3k (0.056) 7.7k 360 (0.046) 208 2.9 (0.014)
1 day 11M 2.4M (0.21) 990k 34k (0.034) 88k 3.3k (0.037) 12k 370 (0.031) 223 1.4 (0.0060)
Census 109M - 2.65M - 170k - 19.3k - 231 -
MERIT-13
1 minute 70k 10k (0.14) 62k 8.8k (0.14) 22k 1.4k (0.063) 4.6k 230 (0.049) 189 3.0 (0.016)
1 hour 730k 350k (0.47) 380k 94k (0.25) 45k 2.3k (0.051) 8.0k 340 (0.043) 211 2.5 (0.012)
1 day 12M 2.4M (0.21) 1.1M 29k (0.027) 94k 2.7 (0.028) 12k 310 (0.025) 224 1.5 (0.0068)
Census 111M - 2.76M - 175k - 19.8k - 232 -

Diurnal patterns

Diurnal patterns in IBR[217] are one cause of variability, especially for small

source granularity (i.e., IP addresses and /24 blocks). As shown in Figure 5.2, with small

source granularity, diurnal differences result in about a six-fold increase in observed IP

addresses per hour and a two-fold increase in observed /24 blocks per hour (based on

the median observation). Previous work showed that diurnal patterns are prevalent; in

particular, China had both a high number of /24 blocks and a high fraction of blocks

exhibiting diurnal activity [166]. Our peak at 12:00 UTC corresponds to 8 PM in China,

and the low point at 20:00 corresponds to 4AM in China. At the IP-address level there is

also an extremely large maximum value from 0:00 UTC to 2:00 UTC – more than twice

all other values during these hours. Traffic associated with a software update caused

the abnormally high values (Section 4.3.1); we believe the vendor pushes updates to all
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Figure 5.2. Diurnal Patterns. Minimum, first quartile, median, third quartile and
maximum number of sources observed for each hour of the day in UCSD-13. Especially
for small source granularity (i.e., IP addresses and /24 blocks), the number of sources
observed depends on the time of day.
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clients during this time. There is less diurnal variation for prefixes, ASes and countries.

The small peaks at the prefix and AS levels occur at a different time of day than for IP

addresses and /24 blocks. This difference is likely due to the non-uniform distribution

of ASes: the United States accounts for almost one-third of observed ASes.1

Temporal differences caused by the changing composition of IBR

Over time, IBR evolves. Not just in terms of its constituent packets and bytes, as

studied by Wustrow et al. [217], but also in terms of the number of sources sending IBR.

The changing composition of IBR contributes to the variance in number of observed

sources on longer time scales.

To identify times when significant changes occurred, we consider: (1) the num-

ber of IP addresses observed per hour for most of 2008–2016 (Figure 5.3); (2) the per-

day contribution of the major components2 over the period of January 2012 to May 2016

1We geolocate an AS to the most common location of /24 blocks in the AS.
2We extract some IBR components with a pcap signature. When operating on flow-level data, we use

heuristics instead. E.g., for BitTorrent traffic we use popular message lengths (with low false positive
rate) instead of examining the payload.
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the 2012 and 2013 census

(Figure 5.4); and (3) the total number of /24 blocks per component during the 2012 and

2013 census. The following events produced large changes in the number of of IBR

sources:

• November 2008: Conficker worm outbreak

• March 2010, July 2015: Significant BitTorrent traffic observed

• October 2010: Start of traffic from Qihoo 360 bug

• March 2013: A spike in Backscatter traffic as the result of a DoS on Spamhaus

• February 2014, June 2014: Increase in backscatter containing responses to DNS

queries

• 2012 census vs 2013 census: Due to activity by the Carna Botnet in 2012, the num-

ber of /24 blocks labeled as Bro Scanners in UCSD-12 is three times the amount in

UCSD-13
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Figure 5.4 shows that the number of observed sources per day is correlated with

the number of BitTorrent sources. This correlation is due to the fact that misconfigura-

tions in BitTorrent’s DHT induce many sources to send IBR to our darknet. Backscatter

events, such as the Spamhaus attack and traffic from open resolvers, can also cause many

sources to send IBR. Qihoo 360 traffic, which is the result a long-lasting bug, has little

effect on the per-day number of sources.

Our ability to make network inferences is influenced by both the trends and

erratic nature of IBR. Some inferences use a specific type of traffic; thus fluctuations of

that specific component will diminish or improve our ability to make the corresponding

inferences. Additionally, inferences that aggregate many traffic components can also be

influenced by changes in an individual components. For example, from Figure 5.4, we

see that BitTorrent traffic was highly variable during the 2012 census compared to the

2013 census. This variance is reflected in Table 5.2 where the coefficient of variation is

large per day at the /24 granularity in UCSD-12 (0.13), but smaller for all 2013 datasets

(about 0.03).

5.1.2 What types of networks are observed?

We analyze which countries and which autonomous systems have at least one

host that sends IBR. Since we find hosts located in almost all countries and most large

autonomous systems there is not an obvious bias in IBR.

Country-level coverage

We use historical MaxMind country-level databases to geolocate the .0 address

of each /24 block in our IBR datasets. Since MaxMind updates the database regularly

(to reflect changes in the address space), we use the databases produced on August 1,

2012 and August 16, 2013 for the 2012 census and 2013 census periods, respectively.
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We observe traffic from diverse locations. During the 2013 census, of the 249

ISO-3166-2 country codes, thirteen do not have an address announced in BGP. 11 are

islands or collections of islands with populations under 7,500. The remaining two of the

country codes are located in Africa: the disputed territory of Western Sahara (population

555k, possibly using addresses that geolocate to Morocco) and South Sudan (population

11.5M, which has an Internet Penetration of 100 users [99]). Of the remaining 236

country codes (those with an IP address announced in BGP), we miss only three with

the UCSD-13 dataset. All three countries are small islands or collections of islands, each

with a population of under 4,000 people [44].

AS-level coverage

We use CAIDA’s Prefix-to-AS mapping dataset (pfx2as) to map IPv4 addresses

to AS numbers [179]. CAIDA extracts this dataset from BGP announcements captured

by Routeviews. Specifically, we use the mapping produced on the first day of the IBR

datasets. To label ASes as transit/access providers, content providers, or enterprise net-

works, we use a dataset provided by CAIDA developed using a scheme similar to that

proposed by Dhamdhere and Dovrolis [59].

Many ASes do not send IBR to our darknets: we observe about half of ASes an-

nounced in BGP. However, most missed ASes are small. Figure 5.5 shows, for UCSD-13,

the distribution of observed ASes in terms of /24 blocks announced. Of the 20.6k unob-

served ASes in UCSD-13, almost half announce a single /24 block, and 90% announce

the equivalent of 8 or fewer /24 blocks. Conversely, we observe 86% of ASes that ad-

vertise the equivalent of at least a /16 block – we call these ASes large. ASes belonging

to the US Department of Defense account for a fifth of unobserved large ASes, which

appears to have many routed but “unused” /24 blocks [53]. In terms of AS type, we miss

26% of large ASes classified as enterprise, and about 4% of the large ASes classified as
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Figure 5.5. Number and percentage of observed ASes by the number of /24 blocks
announced. Although we observe only half of announced ASes in UCSD-13, most
missed ASes announce few /24 blocks.

transit/access or content.

5.1.3 Implications of overall IBR visibility

The number of sources captured by a discussion is dependent on the duration

of observation, the time of day, and the size of the network. Across our datasets, we

consistently observe a significant fraction of the observably “used” IPv4 address space,

and in particular nearly all large transit/access and content ASes. As a result, IBR has

the potential to provide an Internet-wide view.

5.2 Properties of IBR influencing visibility

Most often, only a certain type of traffic (based on the specific information that

its behavior or content brings) is helpful in inferring a property of a network. For ex-

ample, in Section 7.2 we use the retransmission behavior of TCP to infer packet-loss.

To make packet-loss inferences with this methodology, we need certain types of packets
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(TCP) and sending behavior (retransmissions). It is thus important to understand how

the properties of IBR influence potential information content.

We lack control over both what type and how often traffic reaches our darknets.

However, we can measure coverage as a function of common categorizations. In Sec-

tion 5.2.1, we study IBR’s coverage when we restrict our analysis to certain types of

packets; in Section 5.2.2, we study IBR’s coverage when we have requirements on the

frequency in which we observe a source (IP addresses, /24 block, prefix, AS, or country).

5.2.1 Impact of IBR components

In this Section, we look at how IBR components (extracted in Chapter 4) influ-

ence our visibility into remote networks. Our main goal is to determine if IBR’s Internet-

wide coverage is dependent on a single phenomenon the result of a mix of traffic types.

To make this determination, we characterize IBR along two basic dimensions: transport

layer protocol and application, since the information encoded in IBR is a function of

them.

How many sources use TCP vs. UDP?

Figure 5.6 reports the fraction (out of the total observed in the respective dataset)

of IP addresses, /24 blocks, prefixes, ASes, and country codes observed through the most

popular transport layer protocols. We observe most IP addresses via UDP traffic. Both

TCP and UDP packets provide high visibility into /24 blocks and ASes, although neither

provides complete coverage. All transport layer protocols provide excellent coverage of

countries.

Wustrow et al. [217] characterize IBR based on the volume of packets, and not

the number of sources. They find that from 2006–2010 TCP was the dominant protocol

(above 75% of packets) for all years except 2008. Although our datasets are not directly
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Figure 5.6. Top protocols by source granularity and packets. Most IP addresses
send UDP traffic. At the /24 block, prefix, AS and country levels we observe a similar
percentage of sources sending TCP and UDP. TCP accounts for most packets.
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Table 5.3. /24 blocks observed by IBR component. IBR is composed of many differ-
ent types of traffic. File-sharing traffic contributes the highest number of /24 blocks in
all datasets, but there are variations based on time (UCSD-13 vs UCSD-12) and position
(partial-UCSD-13 vs MERIT-13). We observe most /24 blocks through multiple IBR
components, implying that insight into a network is not dependent on a single type of
traffic.

Component UCSD-12 UCSD-13 MERIT-13
Partial

Total Unique Total Unique Total Total Unique ∩ UCSD-13
Bugs & Misconfigurations
File Sharing (BitTorrent, 2,640k 284k 2,490k 344k 1,910k 2,090k 377k 1,980keMule, QQLive) [124, 150, 122]
Qihoo 360 Safe Bug [4] 1,450k 98.5k 1,340k 117k 1,110k 1,110k 138k 1,050k
Encapsulated IPv6 1,080k 9.48k 744k 11.5k 392k 368k 5.94k 312k(6in4, Teredo) [197]
Gaming (Xbox, Steam) [183, 139] 503k 4.50k 490k 14.3k 258k 185k 11.9k 131k
Botnet C&C 551k 17.3k 184k 4.97k 51.7k 51.6k 2.37k 25.7k(ZeroAccess, Sality) [65, 136]
Scanning
Conficker [41] 642k 24.4k 579k 58.1k 573k 568k 96.9k 563k
Bro Scanner [198] 597k 8.48k 197k 4.57k 104k 99.1k 4.06k 91.8k
Backscatter
Backscatter [141] 394k 45.3k 392k 51.6k 247k 246k 21.3k 219k
Unclassified
Encrypted [82] 1,450k 98.5k 1,340k 117k 819k 755k 29.8k 667k
Other 1,980k 73.8k 1,910k 127k 1,440k 1,70k 135k 1,410k
All Components 3,130k 3,150k 2,650k 2,760k 2,670k

comparable (they do not remove spoofed packets), we also find that TCP is the dominant

protocol by number of packets (Figure 5.6f). Since UDP is the dominant protocol in

terms of source IP addresses and TCP is the dominant protocol in terms of packets, the

protocols may have different strengths when inferring network properties: UDP is more

likely to provide wide coverage, while TCP is more likely to support analyses requiring

repeated contact (Section 5.2.2).

Which applications contribute the most sources?

Table 5.3 shows that multiple components contribute a significant number of

source /24 blocks (we included all components contributing over 300k /24 blocks in

a dataset, except classes we derived because they were popular ports or UDP packet

lengths). We aggregate some small components and all unclassified components into

the “Other” category. We group the components based on the reason they appear in
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IBR: accidentally (i.e., due to bugs or misconfigurations), as part of a scan, backscatter

from spoofed traffic (such as DoS attacks), and for unknown reasons. In Section 6.1.6,

we link trends of the individual components to changes in IBR properties over time.

When studying 2010-era IBR reaching four /8 networks, Wustrow et al. find

that scanning accounts for the majority of packets in all but 1.0.0.0/8 [217]. In our

datasets, many well-studied, malicious IBR phenomena— Bro Scanner, Conficker, and

Backscatter—also account for most of the packets (collectively contributing about 83%

of all packets in UCSD-13). But, surprisingly, malicious traffic is not the largest com-

ponent of IBR in terms of sources. Packets with a P2P file-sharing payload contribute

over 1.9M /24 blocks in all datasets, accounting for over two-thirds of all /24 blocks

observed; Qihoo 360 traffic alone contributes about 100M IP addresses.

We observe most /24 blocks through multiple IBR components, implying that

many types of IBR can provide insight into the same networks. In particular, even

without the top IBR components, the “Other” component alone contributes 1.4M /24

blocks. The “Unique” column of Table 5.3 reports the number of /24 blocks observed

through a single IBR component. For each component, the number of unique /24 blocks

is at least an order of magnitude smaller than the total number of /24 blocks observed

through that component. As a result, if the composition of IBR changes slightly we

would still observe many of the same networks.

Moreover, we expect little causality between IBR components: e.g., playing

Xbox games does not result in a Conficker infection. Exceptions to causality include:

many Encapsulated IPv6 (6in4) packets have a BitTorrent payload, and botnets may

coordinate scans of the Internet.
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Implications of IBR components on visibility

Some IBR-based inferences require a certain type of traffic; other network prop-

erties can be inferred regardless of the underlying application, but their success is de-

pendent on the composition of IBR. Fortunately, IBR is made up of many components,

each of which contributes relatively few unique /24 blocks (implying some analyses

may be robust to fluctuations in IBR composition). While most packets are TCP (due

to scanning and backscatter), we observe more IP addresses from UDP traffic (due to

P2P and bugs). IBR is commonly known as malicious traffic. However, we find that the

phenomena that contribute the highest number of sources (over 1M /24 blocks) appear

to be of benign nature.

5.2.2 How often do we receive IBR?

In this section, we consider inferences that require multiple observations of a

given host/network. For example, in Section 7.1, we determine that the path from hosts

in an AS to a darknet changed by observing the behavior of the TTL field. In addi-

tion to looking for changes in given fields, we can leverage the timing between packets

(e.g., to infer uptime [112]) and the predictability of repeated contacts (e.g., to infer

outages [56]).

To study repeated contact from IBR sources, we report (1) how often we observe

a source, (2) the length of time between the first and last observation of a source, and

(3) the timing between contacts. Our approach is to partition our dataset into 1-minute,

1-hour, and 1-day time bins and record the sources sending IBR in each bin. In mathe-

matical notation, let S and T be the set of all sources and time bins at given granularities,

and Is(t) be an indicator function for a source s for a time bin t that is 1 if the source is
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observed, and 0 otherwise. For property (1) we compute, for each s ∈ S:

∑
{t∈T}

Is(t);

for property (2) we determine, for each s ∈ S:

max
t
{t ∈ T |Is(t) = 1}−min

t ′
{t ′ ∈ T |Is(t ′) = 1};

and property (3) can be expressed as a multiset, where we include for each s ∈ S and

{t ∈ T |Is(t) = 1} the value (if it exists)

t −max
t ′

{t ′ ∈ T |Is(t ′) = 1∧ t ′ < t}.

Host contacting the darknet frequently retransmit the packet after the initial

packet fails to elicit a response. These communication attempts could span multiple

time bins, which would lead to inadvertently skewing properties (1), (2) and (3). To

check that our partitioning confines most communication attempts to a single time bin,

we determine the typical number of packets per communication attempt and the timing

between these packets. Table 5.4 reports statistics on communication attempts (packets

with the same {source ip, destination ip, protocol, source port, destination port}) with

hour bins by IBR component from UCSD-13. The number of communication attempts

varies depending on the IBR component, as does the behavior of the hosts sending each

type of traffic (as evidenced by the median number of attempts per source IP address).

However, for all components, the average number of packets per communication attempt

is small. Manual investigation reveals that the timing between packets is also small (e.g.,

3 seconds between retransmission of Conficker packets). As a result, binning does not

significantly skew our calculations in the following sections.
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Table 5.4. Communication attempts by IBR component for UCSD-13. IBR compo-
nents vary in the number of communication attempts made, and the median attempts
made per source IP addresses. But, all components have a low number of packets per
attempt, which suggests binning the data will not result in significant double counting.

Component Communication Avg. Pkts Median Attempts
Attempts per Attempt per Source IP

File Sharing 1,120M 6.13 2
Qihoo 360 1,520M 1.62 11
Encap. IPv6 108M 4.49 2
Gaming 95.4M 1.04 1
Botnet C&C 13.3M 2.95 3
Conficker 13,800M 1.98 109
Bro Scanner 27,400M 1.10 684
Backscatter 20,700M 1.23 6
Encrypted 137M 2.33 1
Other 1,740M 3.33 3
Total 66,700M 1.50 11

How often do sources send IBR?

The frequency with which we can infer properties of a remote network depends

on how often we receive traffic from that network. Figure 5.7 shows the cumulative

distribution function of sources observed using 1-minute, 1-hour, and 1-day time bins

in UCSD-13. We observe frequent contact at coarse source granularities, e.g., countries

and some ASes. The values on the far right of the subfigures in Figure 5.7 indicate

the number of networks that we observed in every time bin of UCSD-13. Figures 5.7a

and 5.7b suggest that inferences requiring near-constant traffic samples are only possible

for ≈80% of countries and ≈20% of ASes. As expected, the CDF curves shift towards

more frequent contact as we move to larger time bins.

Finer source granularities, such as IP addresses, are unsuited for inferences re-

quiring frequent observations. We cannot conduct repeated measurements for approxi-

mately 12% of IP addresses because we observe them in only one 1-minute time bin;

we observe most IP addresses in less than 11 1-minute time bins. But as the size of the

time bin increases to hours or days, the number of contacts per source increases. For

example, we observe traffic from over 75% of IP addresses, /24 blocks, prefixes ASes

and countries in multiple days.
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Figure 5.7. CDF of fraction of sources observed with minute, hour and day time
bin granularities (UCSD-13). To make repeated inferences, we need to observe a
source in multiple time bins. While inferences requiring observations in every time bin
seems possible for countries and some ASes, we observe most sources — even at the IP
address granularity — more than once.
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At the IP address granularity, our results depend on the current composition of

IBR. we observe 50% of IP addresses in more than 6 distinct days. However, Qihoo 360

traffic strongly influences the distribution of IP address over days. Excluding this traffic

component results in 75% of IP addresses appearing only in a single day. Consequently,

after the Qihoo 360 bug is fixed we expect substantially different results. Qihoo 360

does not impact significantly statistics at the other source granularities.

What is the total duration of contact?

To conclude if our observations are the result of a single bursty event, or if

sources are visible throughout our datasets, we investigate the range of times that we

observe a source. We calculate each source’s duration of contact (time of last contact

minus time of first contact). Figure 5.8a shows the CDF of this distribution. The total

duration of contact is long (over 29 days out of 34) for most /24 blocks, prefixes, ASes,

and countries. Despite observing most IP addresses in only a few 1-minute or 1-hour

time bins, the duration of contact is also long for IP addresses (50% IP addresses had a

duration of contact longer than 22.5 days), implying that there is a long time between

consecutive observations of a source IP address.

Figure 5.8b shows, at the IP-address-level, the duration of contact broken down

by IBR component. All components besides Qihoo 360 traffic have relatively short

duration of contact: for each component except Qihoo 360, over 70% of IP addresses

have a duration of contact of less than 1 day. This implies that most scanning events

and misconfigurations are short lived. Although most sources sending backscatter have

short durations of contact, for about 130k IP addresses the contact duration is greater

than 15 days. This is surprising as we generally think of backscatter as a byproduct

of DoS attacks — which are typically short events [141]. We investigate why many IP

addresses sending either backscatter or Qihoo 360 traffic have relatively long contact
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Figure 5.8. CDF of contact duration (UCSD-13). At all source granularities the contact
duration is long, which is desirable for analysis throughout the datasets.



114

durations.

Backscatter: Often packets classified as backscatter reach the darknet for reasons other

than DoS attacks. Only 3,600 of the 130k IP addresses appear to be repeat targets

of DoS attacks as they sent more than 1,000 backscatter packets per hour more than

one day apart. A large number of web servers (61k of the 130k IP addresses on TCP

port 80 and 24k on TCP port 443) appear to repeatedly receive and respond to a low

volume spoofed packets. Similarly, over 38k IP addresses sent a low volume of ICMP

backscatter messages throughout UCSD-13. Additionally, there is a small amount of

packet misclassification. 2,400 IP addresses appear to be conducting stealthy scans of

TCP destination port 3389.3

Qihoo 360: We attribute the long duration of contact at the IP level to Qihoo 360 traffic,

which has a diurnal cycle. Since about 70% of IP addresses send Qihoo 360 traffic in

UCSD-13, it strongly influences the overall duration at the IP address granularity. As

observed in Figure 5.8c, without Qihoo 360 traffic 80% of IP addresses have a contact

duration of less than one day. However, there is only a small influence on the duration

of contact at the /24 block, prefix, AS, and country granularities. The signal for these ag-

gregated granularities is comprised of a mix of traffic components and is not dependent

on Qihoo 360.

This analysis shows the potential to make IBR-based inferences at the /24 blocks,

prefixes, ASes and countries granularities for the duration of the datasets. At the IP-

address granularity, we observe the sources throughout the datasets, but this is mostly

due to Qihoo 360 traffic.
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Figure 5.9. Median time between observations (UCSD-13). Most /24 blocks, prefixes,
ASes, and countries observed multiple times have a short time between observations
(less than 10 minutes), which is desirable for fine-grained analysis. By component,
scanning traffic has the shortest median time between observations.
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Time between communication attempts?

If the time between observations is short, we can pinpoint the precise moment

network changes occur (e.g., the exact moment a path change occurs in Section 7.1).

To evaluate our ability to perform this “fine-grained analysis” with IBR, we study the

time between observations of traffic from a source. Figure 5.9a shows the median time

between all sources that we observe in at least two 1-minute time bins. We observe most

countries all the time: the median time between observations is 1 minute for 92% of

countries. At the /24 block and AS levels, the time between observations is often longer,

although the time between contacts at these granularities is often within 10 minutes.

There is a longer period of time between observations of an IP address: half of IP

addresses have a median inter-observation time of more than 13.7 hours. However,

for some IP addresses the inter-observation time is still short (27% of IP addresses have

a median inter-observation time of less then 1 hour).

Figure 5.9b shows the breakdown of median time between observations for IP

addresses by IBR component. Qihoo 360 traffic heavily influences the overall behavior

of IP addresses: 50% of IP addresses associated with Qihoo 360 have a median time

between observations of greater than 21.2 hours (presumably because they receive

updates about once per day). The median time between observations is substantially

shorter for the other IBR components. As a result, our ability to conduct fine-grained

analysis comes from IBR components other than Qihoo 360. Scanning traffic has the

shortest time between observations: for over 90% of IP addresses the median time

between observations is less than 4 minutes. One type of misconfiguration causes hosts

infected by a botnet to send command and control traffic to the UCSD darknet and wait

3These scanners send SYN packets as well as either SYN-ACK or RST packets to darknet IP ad-
dresses. In general, the scan is conducted at a lower rate than our scan detection parameters (sends TCP
destination port 3389 packets to at least 25 unique darknet IP addresses in a 5 minute period). A handful
of these IP addresses (114) do reach the scan threshold at least once during the 2013 census.
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either 15 minutes or 1 hour between communication attempts. Qihoo 360 traffic does

not heavily influence the time between observations at the /24 block, AS or country

levels.

Implications of repeated contact on IBR visibility

We find that many sources repeatedly contact our darknets. We almost always

observe traffic from most countries and many ASes, e.g., we observe them in nearly

all time bins, throughout the entire observation period, and with a short time between

observations. We continually, but not constantly, observe most /24 blocks and prefixes,

e.g., they have a long contact duration but the median time between observations is often

over an hour. At the IP level, a diurnal bug in Qihoo 360 generates traffic that heavily

influences the contact duration and time between intervals. When we exclude the Qihoo

360 traffic, three-quarters of IP addresses have a contact duration of less than one day

(i.e., we observe the source in a single day of our 34-day observation period). As a

result, IBR is not well suited for long-term inferences at the IP address granularity.

5.3 Properties of collection infrastructure influencing
visibility

In this section, we examine the dependence of IBR on the site of data collection.

We discover a number of differences, which can be attributed to the properties of influ-

ential IBR components. These results, in conjunction with Section 4.4, (1) confirm that

the findings presented in the rest of this chapter are representative in terms of number

of IBR sources, the mix of components and visibility, (2) identify aspects of IBR that

limit its ability to make inferences about remote networks, and (3) set expectations for

the performance of other darknets.
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5.3.1 Dependence on position in IPv4 space

In this section we analyze how the IP addresses that collect IBR influence the

number of observed /24 blocks. Specifically, we consider hotspots, darknets in different

/8 blocks (UCSD-NT and MERIT-NT) as well as non-contiguous darknets — similar to

the greynets studied by Harrop et al. [85].

Hotspots

Hotspots are IP addresses or groups of IP addresses that receive traffic from a

disproportionate number of sources. To study IP hotspots, we first determine which IP

addresses are not hotspots because they receive traffic from a typical number of sources.

Figure 5.10 shows the distribution of observed /24 blocks for 99.5% of darknet IP ad-

dresses in UCSD-13. The equivalent graph for the 2012 data exhibits a similar distri-

bution. The graph has three obvious modes. The highest mode consists of addresses

targeted by Conficker. The remainder of darknet IP addresses capture between 1,000

and 2,000 /24 blocks, with a slight increase when the last byte of the darknet IP ad-

dress is less than 128. Not visible in the graph is a small peak corresponding to the IP

addresses in UCSD.175.0.0/16.

We are interested in the remaining 0.5% of darknet IP addresses: those receiving

traffic from the most /24 blocks. In both datasets there were over 75 darknet IP addresses

receiving traffic from over 100k /24 blocks — 60 times more than the median darknet IP.

We show the magnitude of the top 10 IP hotspots in UCSD-12 and UCSD-13 in Table 5.5.4

We also note the number of unique /24 blocks, those block that are only observed (in

that dataset) through the hotspot. The number of unique /24 blocks can help us analyze

a hotspot’s exclusivity. For example, while numerous, Qihoo 360 hotspots produce

4Starting in July 2015, one darknet IP address received BitTorrent traffic from over 3M /24 blocks per
month (Section 4.2.2) — an order of magnitude more than those in Table 5.5.
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Figure 5.10. Distribution of observed /24 blocks by darknet IP addresses
(UCSD-13). The typical darknet IP address receives traffic from 1k to 7k /24 blocks,
depending on address properties. This graph excludes 0.5% of UCSD-NT addresses,
which are IP hotspots.

550 or fewer /24 blocks. That is, hosts sending Qihoo 360 traffic tend to send packets to

multiple darknet IP addresses.

Examining /24 blocks observed over time (both per hour and cumulatively) in-

dicates if hotspots are due to flash events, or ongoing phenomena. Spikes in /24 blocks

indicate a flash event. Examples of spikes include: a temporary misconfiguration where

hosts in 26k /24 blocks sent TCP SYN packets to a single host in a span of 12 hours and

Table 5.5. Top 10 IP hotspots in UCSD-12 and UCSD-13. Due to a variety of reasons,
the top 10 IP hotspots in both datasets receive traffic from over 200k /24 blocks.

UCSD-12 UCSD-13
IP Address /24 blocks (Unique) Payload IP Address /24 blocks (Unique) Payload
X.48.59.58 395k (61) Qihoo360 X.0.0.253 307k (3k) DNS Queries
X.136.65.114 332k (1k) BitTorrent X.28.192.20 291k (1) Qihoo360
X.32.204.14 248k (3) Qihoo360 X.187.203.223 286k (207) Qihoo360
X.238.254.254 247k (8k) ZeroAccess X.0.0.3 283k (753) DNS Queries
X.150.105.113 247k (2) Qihoo360 X.176.120.106 226k (550) Qihoo360

X.200.7.9 236k (1k) Unknown 13 X.15.97.82 211k (8k) eMulebyte encrypted
X.205.184.61 224k (3) Qihoo360 X.197.150.123 211k (134) Qihoo360
X.9.233.27 216k (6) Qihoo360 X.83.230.87 209k (11k) eMule
X.86.0.1 216k (1k) BitTorrent X.195.138.123 204k (73) Qihoo360
X.124.94.218 200k (4) Qihoo360 X.112.177.163 201k (370) Qihoo360
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Table 5.6. Phenomena associated with IP hotspots receiving traffic from 100 /24
blocks in UCSD-12 and UCSD-13. Qihoo 360 and other P2P activity (indicated with a
*) cause many IP hotspots.

Payload UCSD-12 UCSD-13
Qihoo 360* 63 (84%) 98 (90%)
eMule* 3 (4%) 2 (2%)
Unknown 13 Byte Encrypted 3 (4%) 0 (0%)
BitTorrent* 2 (3%) 1 (1%)
DNS Queries 0 (0%) 2 (2%)
Port 80 SYN 0 (0%) 2 (2%)
Sality* 1 (1%) 1 (1%)
ZeroAccess* 1 (1%) 0 (0%)
Port 3906 SYN 1 (1%) 0 (0%)
Steam 0 (0%) 1 (1%)
NetBIOS 0 (0%) 1 (1%)
Multiple 1: Port 51536 SYN, eMule (1%) 1: eMule, Mythware (1%)

a misdirected amplification attack using 20k Quake servers.

Hotspots occur for varying reasons. However, we can attribute the cause of

most hotspots to a single phenomenon, typically a type of P2P activity. We show the

breakdown of IP hotspots attracting over 100k /24 blocks in Table 5.6.

Two IP hotspots in Table 5.6, X.70.0.0 in 2012 and X.0.0.0 in 2013, reached

the list due to multiple IBR components. Both of these addresses correspond to the first

address of a /16 block. This suggests that certain addresses will receive more unsolicited

traffic just by the numeric properties of the address. Several IP hotspots identified by

Wustrow et al. also exhibited patterns (e.g., 1.1.1.1 and 1.2.3.4) [217].

Most hotspots do not persist over a period of year. Only seventeen hotspots

attract over 100k /24 blocks in both the 2012 and 2013 datasets. Sixteen are Qihoo 360

hotspots and the remaining address is a Sality hotspot. Since reversing the bytes of the

Qihoo 360 hotspots reveals another host running Qihoo 360 software (Section 4.3.1), it

is likely that the reversed address is assigned to a host for over a year (e.g., statically

assigned).

We conduct similar analysis for larger aggregations of darknet IP addresses. En-

capsulated IPv6 traffic and BitTorrent traffic cause the largest subnet hotspots; and, as
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shown in Figure 5.10, Conficker does not target IP addresses in UCSD.128.0.0/9. Since

these subnet hotspots are the result of on-going, longterm phenomena, they exhibit slow

growth in cumulative number of /24 blocks observed.

UCSD-NT vs MERIT-NT

Wustrow et al. [217] find significant non-uniformity in the number of bytes and

packets received by four /8 darknets in March 2010. However, we find more uniformity

when considering the number of sources sending non-spoofed traffic to our /8 dark-

nets. Intuitively, filtering out spoofed traffic removes some irregularities, and many IBR

components target UCSD-NT and MERIT-NT with equal probability (e.g., scanning,

backscatter, P2P misconfigurations).

We observe a similar number of /24 blocks through partial-UCSD-13 and

MERIT-13 (2.65M and 2.76M respectively). Table 5.3, in Section 5.2.1, shows that

partial-UCSD-13 and MERIT-13 also have a similar traffic composition. All com-

ponents, except Gaming and Other, contribute approximately the same number of /24

blocks to each dataset. The Gaming difference can be explained by a misconfiguration:

a single UCSD-NT IP observes 115k /24 blocks sending Steam traffic. In the Other cate-

gory, 10 times as many /24 networks send TCP traffic destined to IP addresses matching

{A.B.C.D | A=MERIT & C=13} than {A.B.C.D | A=UCSD & C=13}.

Additionally, many source /24 blocks send traffic to both UCSD-NT and MERIT-

NT. The ∩UCSD-13 column of Table 5.3 shows the overlap—the number of /24 blocks

observed in both MERIT-13 and UCSD-13 accounts for more than 84% of /24 blocks.

We also observe an overlap of at least 49% in individual IBR components (Conficker

produces the highest overlap, 99%) which implies that sources sending IBR likely target

multiple /8 networks. Thus, it is likely that other portions of the address space receive

packets from these sources.
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Figure 5.11. Effect of using non-contiguous darknets. The top graph shows the
distribution of /24 blocks captured through the contiguous /16 darknets in UCSD-13.
The bottom graph shows the distribution of /24 blocks captured from non-contiguous
/16 darknets (constructed by randomly selecting dark /24 subnets of UCSD-NT). The
non-contiguous darknets perform better than the worst-performing contiguous darknets,
but never exceed the best contiguous /16 darknet which received over 2.5M /24 blocks.

However, we cannot examine all /8 darknets to understand the full effect of po-

sition. The non-uniform nature of IBR may cause variance when examining other dark-

nets. Wustrow et al. find that many misconfigurations affect only the 1.0.0.0/8 block

(e.g., traffic to 1.2.3.4) [217]; these misconfigurations may also influence the number

of sources sending traffic to 1.0.0.0/8, in addition to bytes and packets. As we show in

Section 5.3.2 sources often do not target all subnets within a /8 darknet.

Non-contiguous darknets

To test if a more distributed darknet would provide better coverage, we construct

80 non-contiguous /16 darknets by randomly selecting 256 /24 blocks within UCSD-
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NT’s addresses.5,6 These non-contiguous /16 darknets observed an average of 1.36M

/24 blocks, which is more than the average for contiguous /16 block from UCSD-NT

(1.17M /24 blocks). In particular, in our samples, all the non-contiguous /16 blocks

typically had better coverage than the median-performing contiguous /16 blocks.

Figure 5.11 compares the distribution of observed /24 blocks by all contiguous

/16 darknets in UCSD-13 to distribution from the 80 randomly selected non-contiguous

/16 darknets. We see that for contiguous /16 blocks the distribution is multi-modal: one

/16, UCSD.1.0.0/16, is an extreme outlier; targets of Conficker and BitTorrent traffic;

targets of Conficker but not BitTorrent traffic; and targets of neither Conficker nor BitTor-

rent traffic. For the non-contiguous /16 distribution, the number of observed /24 blocks

is almost always at least as much as the second smallest mode in the contiguous distribu-

tion. This mode corresponds to Conficker traffic: because Conficker-infected hosts send

traffic to many networks, we can get similar coverage of the infected hosts with a sub-

set of Conficker-targeted dark /24 blocks. There are five outliers in the non-contiguous

distribution, each capturing over 1.7M /24 blocks; these non-contiguous darknets each

contained at least one of the /24 blocks that caused UCSD.1.0.0/16 to be an extreme out-

lier in the contiguous distribution. The mode corresponding to BitTorrent traffic has a

minimal effect on the non-contiguous distribution because BitTorrent hosts individually

send traffic to only a handful of destinations; consequently, a large number of BitTorrent

targets are required to observe significantly more /24 blocks.
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5.3.2 Dependence on darknet size

With smaller darknets, we expect to observe fewer sources and observe those

sources less frequently. To study the effect of using a smaller darknet, we vary darknet

size, from a /16 to a /8, by considering contiguous subnets of UCSD-NT as their own

mini-darknet. Figure 5.12 reports for each darknet size, the range of source /24 blocks

captured by these contiguous subnets in UCSD-13. We find, due to the non-uniform

nature of IBR, significant differences in the number of sources captured by subnets of

the same size.

Despite these differences, based on median observations, the marginal utility of

a single darknet IP address decreases as the size of the darknet increases (e.g., doubling

the size of the darknet results in fewer than a 2x increase in the number of /24 blocks ob-

served). In the /8 to /16 range, we observe a power-law relationship between the median

number of /24 blocks observed, y, and the number of darknet IP addresses monitored x.

Through linear regression we estimate the parameters to be:

y = 1.84×105 × x0.168. (5.1)

This relationship implies, in the /8 to /16 range of UCSD-NT, reducing darknet size

by a factor of two should yield about 89% of the original /24 blocks. As a result, we

expect small darknets to also observe many /24 blocks. But this power-law relationship

does not hold for all darknet sizes: the median number of /24 blocks observed by an

IP in UCSD-13 is an order of magnitude less than the number implied by the power law

5There are two /16 blocks in UCSD-NT announced by entities other than UCSD, which we exclude in
our non-contiguous experiment. The number of /24 blocks captured through these /16 blocks is non-zero
due to routing properties, e.g., we receive traffic for these blocks when the routes are down.

6We chose 80 non-contiguous /16 blocks using a margin of error calculation [186]. Using the standard
deviation from the contiguous /16 blocks, a sample size of 80 provides 95% confidence that the average
number of /24 blocks observed by all similarly selected non-contiguous /16 darknets (from UCSD-NT’s
address space) is within 50k of the sample average (1.363M).
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relationship projected by Equation 5.1.

For /16 or larger subnets of UCSD-NT, most variations can be attributed to:

(1) the bug in Conficker’s PRNG, (2) BitTorrent’s RPC mechanism, KRPC, and (3)

Encapsulated IPv6 traffic. We show the effect of these phenomena in Figure 5.13, which

reports for each /16 within UCSD-NT the number of /24 blocks captured during 2013

census. Individual IP hotspots are observed as little spikes in Figure 5.13, but create

small discrepancies compared to the differences caused by the Conficker, BitTorrent

and IPv6 components (for /16 or larger darknets).

5.4 Conclusion

In this Chapter, we have looked at the feasibility of using IBR to conduct Internet-

wide opportunistic network inferences. We have found that on a whole, many IP ad-

dresses, /24 blocks, prefixes, ASes, and countries send IBR. Naturally, if we restrict our

analysis to certain subsets of IBR — due either to the type traffic relevant to an inference

or because of properties of the collection infrastructure — we observe fewer sources.

We have examined two aspects of the traffic type: the protocols used and the fre-

quency in which we receive packets from a source. Many protocols comprise IBR, and

each may contribute different types of inferences (e.g., BitTorrent has wide coverage,

while scanning sends many packets). We continually receive IBR, though traffic analy-

ses requiring continual observation seems feasible for large collections of IP addresses,

such as the AS and country granularities.

The collection infrastructure includes which and how many IP addresses com-

prise the darknet. There are few differences in the quality of IBR collected from UCSD-

NT and MERIT-NT’s large network telescopes. Our analysis has shown, with smaller

darknets, e.g., a /16, we still expect to observe many networks. However, there were

considerable differences in coverage across the /16 subnets within UCSD-NT.
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We feel that our data is representative of IBR, and that researchers using other

darknets will experience similar results when using IBR to make Internet-wide infer-

ences. We base this speculation on the minor differences in space when considering

large darknets (partial-UCSD-13 vs MERIT-13), as well as the widespread observa-

tion of the IBR components causing the largest discrepancies in time and space.
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Chapter 6

Inferences with IBR: Using IBR to
learn about address space usage

As discussed in Chapter 5, IBR originates from many hosts and networks. This

bodes well for our goal of inferring network properties on an Internet-wide scale. How-

ever, our actual success depends on both the properties of IBR itself and the inference

type. In Chapter 5, we provided intuition on the properties of IBR that influence our

(in)ability to extract measurements, e.g., the frequency at which source IP addresses

contact our darknets. In this Chapter and Chapter 7, we shift our focus to determining

the types of inferences for which IBR is well-suited to provide insight. In this chap-

ter, we consider inferences that reveal information about IPv4 address space usage. We

break our analysis into four questions:

• Is an IP address or network used? I.e., does a machine use this IP address to

communicate on the global Internet? (Section 6.1)

• How is the IP address or network used? E.g., web server, end host. (Section 6.2)

• What are basic attributes of Internet hosts or networks? E.g., uptime, installed

software. (Section 6.3)

• How is the machine or network configured? E.g., using Network Address Trans-
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lation (NAT). (Section 6.4)

Using many types of Internet data, including IBR, we directly answer the question “Is an

IP address or network used?” [52, 53]. It is difficult to throughly answer the remaining

questions because they are very broad. However, through a series of case studies, we

can extract insight into the usability of IBR in answering these broad questions.

Researchers often use dedicated probing to study IPv4 address space usage [86,

97, 61, 145, 98]. We compare IBR’s coverage to dedicated probing and remark on the

differences between the datasets. Typically IBR provides less coverage, but can provide

more complete results and reveal additional information about the host or network. For

example, in our IPv4 address space utilization case study supplementing active probing

with IBR exposes additional used /24 blocks. Moreover, the networks in the IBR dataset

but not in active probing datasets likely filter unsolicited probes.

We find that it is not always straightforward apply existing techniques to IBR.

There may be subtle differences between IBR and the live traffic used to develop a tech-

nique. For example, we find that SYN retransmits, which are more prevalent in IBR than

live traffic, can induce false positives in p0f’s NAT detection heuristics (Section 6.4.1).

Additionally, some passive techniques are not sufficiently validated. With packets from

hundreds of thousands of hosts, we find that a common method for inferring uptime is

invalid for certain operating systems (Section 6.3.1). We encourage tool developers to

use the large volume of traffic available in IBR to develop and refine passive techniques.

We caution that IBR sources may introduce bias into inferences about Internet-

wide behavior. For example, we are hesitant to make inferences about BitTorrent client

popularity since a 2012 index poisoning attack targeted specific content (Section 4.3.2).

While we could add this information as a caveat to the data — other studies on BitTorrent

client popularity depend on the swarms crawled [207] or which users downloaded a

plugin [154] — we do not fully understand the phenomena resulting in IBR.
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6.1 Inferring IPv4 address space utilization

For decades, researchers and administrators have anticipated that the number

of devices connected to the Internet would be greater than the number of IPv4 ad-

dresses [185]. Despite changes to how IP addresses are allocated [72, 73], efforts to

adopt IPv6 [216], and widespread NAT usage, IPv4 address space exhaustion remains a

concern. Of the Regional Internet Registries (RIRs) that allocate IPv4 addresses, only

AFRINIC has more than one /8 pool of addresses remaining [77]. Consequently, indi-

viduals are forced to acquire new IPv4 addresses through transfer markets [123], or use

addresses designated for other geographic regions [187].

Researchers have extensively studied IPv4 address space exhaustion from the

viewpoint of allocation and BGP-announced prefixes [171, 77, 90, 92, 46]. However,

only one measurement effort, ISI’s longstanding IP census [86], has tackled whether

allocated addresses are actually used to communicate on the global Internet. ISI’s IP

census discovers used addresses by sending ICMP echo requests and analyzing the re-

sponses. Unfortunately, many hosts do not respond to ICMP echo requests [125], likely

due to firewall policies (which may blacklist measurement infrastructure).

In a collaborative effort, we supplemented ISI’s measurements by combining

many different passive and active datasets [52, 53]. We performed our analysis on the

/24 block granularity. We called a /24 block “used” if we observe at least one of its

IP addresses in the header of a packet exchanged on the public Internet. We found

5.3M used /24 blocks by combining multiple datasets, which is 15.6% more than ISI

discovered during the same time period [53].

In this Section, we highlight IBR’s role in improving our understanding of IPv4

address space utilization.
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6.1.1 Related work

Besides the aforementioned work in studying IPv4 address space exhaustion [77,

90, 92, 46, 86], projects with alternative goals have also identified used or unused IPv4

addresses blocks. Internet-wide scanning projects, including malicious scanning, typ-

ically aim to find vulnerable hosts (e.g., [98, 145, 61]), which are in used portions of

the address space. At least two papers studied unused portions of the address space in

the context of building better darknets or honeypots. Cooke et al. identified unused

regions of a local network that could be used for passively monitoring unsolicited traf-

fic [46]. Shinoda et al. evaluated the feasibility of malicious actors avoiding Internet

threat monitoring systems [184].

Of particular relevance is Barford et al.’s work modeling malicious traffic from

IBR [21]. Barford et al. reported the number of IP addresses sending IBR over seven

days in 2004: 450k from the unused portions of two /16 blocks, and 2.4M from a /8

block. Consequently, these numbers are a darknet’s view of IPv4 address space utiliza-

tion in 2004. The authors did not generalize the results to comment on IPv4 address

space utilization. This is an important distinction, as by itself IBR is likely to have bi-

ases (e.g., from malicious hosts). We limit the effect of dataset bias by combining IBR

with multiple, diverse datasets.

Around the same time we published our first results identifying used portions

of the address space, Zander et al. combined serveral passive and active datasets to

estimate the total number of used IPv4 addresses and /24 blocks [222]. Zander et al.

used a capture-recapture model to arrive at their estimate of about 6.2 to 6.3M used /24

blocks, which includes some /24 blocks that were unobserved in any of their datasets.

The magnitude of /24 blocks in their estimate is consistent with our findings of 5.3M

actually used /24 blocks.
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Table 6.1. Census datasets. We infer used /24 blocks from passively collected traffic
(UCSD-NT, SWITCH, IXP, R-ISP) and active probing (ISI, HTTP, ARK-TTL).

Dataset Source type Data format Period

UCSD-NT [205] Traffic: Darknet full packet traces July 23 to Aug. 25, 2013
SWITCH [193] Traffic: Live Academic Net. Netflow logs July 23 to Aug. 25, 2013

IXP [6] Traffic: IXP sFlow packet samples July 8 to July 28, Aug. 12 to Sept. 8, 2013
R-ISP [76] Traffic: Residential ISP Tstat[70] logs July 1 to Sept. 31, 2013

ISI [2] Active Probing: ICMP ping logs July 23 to Aug. 25, 2013
HTTP [145] Active Probing: HTTP GET logs Oct. 29, 2013

ARK-TTL [93] Active Probing: traceroute logs July to Sept., 2013

6.1.2 Methodology

The key insight of our approach is that, on their own, datasets individually pro-

vide partial information on whether or not IP address are used. However, collectively

the datasets yield a more complete view of IPv4 address space utilization. Thus our

methodology is to first identify diverse datasets (Section 6.1.3). Then, we validate that

our methodology distinguishes between used and unused portions of the address space

(Section 6.1.4). Next, we comment on IPv4 address space utilization based on the com-

bined results (Section 6.1.5). Finally, for our passive datasets, we discuss our sensitivity

to properties of the data and the collection methodology (Section 6.1.6).

6.1.3 Dataset selection

We combine diverse passive and active datasets, which we summarize in Ta-

ble 6.1 and describe in detail in the remainder of this section.

Passive Measurements

In addition to traffic collected at UCSD-NT, we discover used /24 blocks with the

following three vantage points. Each vantage points captures traffic data in a different

format and thus requires a different approach of removing spoofed traffic, which we

detail in our collaborative publications [52, 53].
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SWITCH We collected unsampled NetFlow records from all the border routers of a

national academic backbone network serving 46 single-homed universities and research

institutes in Switzerland [193]. The monitored address range of SWITCH contains 2.2

million IP addresses, which correspond to a contiguous block slightly larger than a /11.

R-ISP We collected per-flow logs from a vantage point monitoring traffic of about

25,000 residential ADSL customers of a major European ISP [76]. The vantage point is

instrumented to run Tstat, an open source passive traffic flow analyzer [70] that stores

transport-level statistics of bidirectional flows.

IXP Our final passive vantage point is one of the largest Internet exchange points

(IXPs) in the world, which is located in Europe, interconnects O(100) networks, and

exchanges more than 400 PB monthly [6]. We have access to randomly sampled (1 out

of 16K) packets, capturing the first 128 bytes of each sampled Ethernet frame exchanged

via the public switching infrastructure of this IXP.

Active Measurements

Many measurement projects send probes to the entire IPv4 address space. We

use the results of three different measurement efforts in our analysis.

ISI We used the ISI Internet Census dataset it55w-20130723 [2], obtained by probing

the routed IPv4 address space with ICMP echo requests and retaining only those probes

that received an ICMP echo reply from an address that matched the one probed (as

recommended [96]). Note that the ISI Census experiment was designed to report at a

/32 (host) rather than /24 (subnet) granularity, but we apply the resulting data set to a

/24 granularity analysis.



134

HTTP We extracted IP addresses from logs of Project Sonar’s HTTP (TCP port 80)

scan of the entire IPv4 address space on October 29, 2013 [145].

ARK-TTL We processed ICMP traceroutes performed by CAIDA’s Archipelago

(Ark) to each /24 in the routed IPv4 address space between July and September 2013

[93]. Specifically, we extracted the ICMP Time Exceeded replies sent by hops along the

traceroute path.

6.1.4 Validation

Before conducting an IP census leveraging many different data sources, we

check that we can accurately distinguish between active and inactive areas of the IPv4

address space. From Section 3.2.6, where we validated our technique for removing

spoofed traffic from IBR, we know that we rarely label unused addresses as used. For

our other datasets, we describe our techniques to remove spoofed traffic in other pa-

pers [52, 53]. In this section, we assess our ability to identify used /24 blocks, and we

evaluate the effectiveness of using multiple passive datasets to study IPv4 address space

utilization.

We validate our methodology using datasets collected during the 2012 census:

UCSD-12, MERIT-12 and SWITCH-12. These datasets respectively captured 3.14M,

2.98M, and 3.63M (unspoofed) /24 blocks.

Our assessment of UCSD-12, MERIT-12 and SWITCH-12 is based on limited

ground truth data extracted from BGP and ISI data. We label as “inactive” all un-

routed /24 blocks1 (≈6.5M), assuming they should not appear in (unspoofed) traffic.2

1To establish a set of unrouted IPv4 address blocks, we take a list of BGP prefixes announced and
captured by the route-views2.routeviews.org [206] collector between July 31 and September 2, 2012, and
assume all other address blocks are unrouted.

2Manual analysis of darknet traffic revealed a few unrouted address blocks that seem to be used inter-
nally (but not globally advertised) by some organizations.
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We label as “active” all the /24 blocks found responsive in the it49c-20120731 ISI cen-

sus dataset [3] (≈4.3M). This ground truth dataset accounts for about 60% of all IPv4

addresses. We are limited by our inability to classify hosts that do not respond to ac-

tive probing. Though we compiled a large labeled dataset of several million prefixes,

the inactive prefixes are based on information about unrouted networks, which are not

representative of routed but unused networks in the Internet. Additionally, our active

networks are based on destinations that respond to ISI Census probes, which may in-

clude border routers that respond on behalf of end hosts [52]; these will induce false

positives in the ISI data and our labeled data set, which may induce underestimation of

performance of our method.

With our ground truth data, we can infer for each dataset (UCSD-12, MERIT-12,

SWITCH-12): true positives (t p), false positives ( f p), true negatives (tn) and false nega-

tives ( f n). I.e., a t p is a /24 block observed in a passive dataset which contains a host that

responded to an ISI probe. We evaluate each dataset’s performance using four standard

metrics:

• Precision = t p
t p+ f p : fraction of positives that are true positives.

• Recall = t p
t p+ f n : fraction of “active”-labeled networks correctly reported as active.

• True negative rate = tn
tn+ f p : fraction of “inactive”-labeled networks correctly re-

ported as inactive.3

• Accuracy = t p+tn
t p+tn+ f p+ f n : fraction of correctly classified positives and negatives.

Table 6.2 summarizes our validation results. These results use the ground truth

dataset constructed from BGP and ISI, which only accounts for about 60% of all IPv4

addresses. Our technique performs well in terms of precision, true negative rate, and

3This metric is also known as specificity.
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Table 6.2. Validation of passive census techniques. Using unrouted regions of the
address space (inactive networks) and /24 blocks that responded to ICMP pings (ac-
tive networks) we partially validate that our passive technique accurately differentiates
between used and unused regions of the address space.

Precision Recall True Negative Rate Accuracy

UCSD-12 0.998 0.672 0.999 0.869
MERIT-12 0.999 0.645 0.999 0.859

SWITCH-12 0.999 0.756 0.999 0.903
Total 0.998 0.811 0.999 0.924

accuracy. High precision (the blocks we infer as used are actually used) and high true

negative rate (identifying unrouted networks as unused) are unsurprising given that we

developed our heuristics to remove spoofed traffic based on unrouted networks; how-

ever, it is reassuring that combining the datasets does not diminish the validity of our

results. The lower values for recall show that our techniques do not capture all active

/24 blocks, which is consistent with the fact that each of our measurement sources sees

only a fraction (64.5% - 75.6%) of the labeled positives. Combining measurements from

all three sources increases recall to 0.811. Finally, the last column of Table 6.2 shows

that the overall accuracy, including negative and positive samples, is between 0.859 and

0.903 and improves when combining our three data sources to 0.924. Improved recall

and accuracy with the aggregate data is promising for our method of combining multi-

ple, diverse datasets.

6.1.5 Results of combining multiple datasets

Figure 6.1 shows a taxonomy of the IPv4 address space based on our collabo-

rative effort [53]. We found that nearly a quarter of available addresses are “unrouted

assigned,” meaning that many organizations do not announce assigned prefixes in BGP.

Of the /24 blocks announced in BGP, we find evidence that about half are actually used.

This finding is consistent with Zander et al.’s estimate of 6.3M /24 used blocks [222].

IBR contributes to this study by identifying used /24 blocks. Table 6.3 shows that
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Figure 6.1. IPv4 address space taxonomy [53]. Our datasets, including IBR, help
differentiate between “used” and “routed unused” addresses.

Table 6.3. Contributions to census by dataset. Individually, each of our datasets
provides additional insight into address space utilization when combined with the state
of the art (third column). Moreover, each dataset reveals /24 blocks unobserved through
similar measurements (fourth column) and in all other datasets (fifth column).

Dataset # /24s # /24s not # Unique /24s # Unique /24s
found with state within among active
of the art (ISI) same family + passive

Active
ISI 4,589,213 - 1,319,283 398,334

HTTP 3,161,064 207,578 189,831 76,189
ARK-TTL 1,627,363 58,021 40,284 24,533
All Active 4,837,056
Passive

SWITCH 3,599,380 350,132 147,220 54,905
UCSD-NT 3,149,944 241,676 61,443 24,134

R-ISP 3,797,273 361,539 176,721 59,278
IXP 3,090,645 345,062 195,328 55,155

All Passive 4,468,096
Total 5,306,935
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the number of /24 blocks visible in IBR is less than ISI’s census, but similar to other pas-

sive datasets and the HTTP dataset. If using only a single dataset to supplement the ISI

data, our passive datasets provide more new /24 blocks than other forms of active prob-

ing (second column), highlighting the importance of dataset diversity. For all sources,

most of the observed used /24 blocks are also observed with other datasets. However,

IBR has the most overlap with other passive datasets (other passive datasets capture

98% of IBR-discovered /24 blocks) and collectively (combined, all other datasets cap-

ture 99.23% of IBR-discovered /24 blocks).

6.1.6 Sensitivity analysis

In Chapter 5 we analyzed how properties of IBR and the infrastructure used to

collect IBR influenced our coverage. We conduct a similar analysis for other passive

vantage points to determine the effect on our study of IPv4 address space utilization.

We comment on how IBR compares to other forms of passive analysis.

Traffic characterization

Characterizing traffic at our vantage points assists with two objectives: (i) high-

lighting how the vantage point contributes to the census; and (ii) ensuring that traffic

components specific to a vantage point do not skew our findings or make them not gen-

erally applicable. That is, to legitimately use passive traffic data for a census, we need

to convince ourselves that a given vantage point is not observing a special set of /24

blocks.

In Section 4 we found that many sources send IBR to UCSD-NT due to miscon-

figurations and bugs in P2P software. In Section 5.2.1 we found most components had

a low fraction of /24 blocks visible only through that component. In total, 80% of /24

blocks are visible through multiple IBR components, suggesting that no one component
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Table 6.4. Effect of top attractors at each vantage point. The entries in the Using
Only Top n columns show the percentage of /24 blocks (observed at that vantage point)
that reach the n most popular destinations. The entries in the Excluding Top n columns
show that many of the /24 blocks reaching the n most popular destinations are often
observable by other monitored IPs.

n Using Only Top n Excluding Top n
UCSD SWITCH R-ISP UCSD SWITCH R-ISP

1 9.8% 52.2% 31.2% 99.95% 96.7% 99.98%
10 27.9% 83.8% 63.6% 99.7% 89.7% 99.8%
100 42.8% 91.2% 82.2% 99.0% 84.9% 98.7%
1000 70.3% 96.9% 95.6% 97.5% 69.9% 89.7%
25% 98.9% 99.96% 99.7% 77.3% 13.1% 24.6%
50% 99.3% 99.99% 99.98% 63.6% 3.2% 1.5%
75% 99.9% 99.998% 99.998% 51.9% 0.5% 0.04%

skews our findings.

While HTTP and HTTPS account for 57.7% of the traffic volume, they con-

tribute only 6.8% of the /24 blocks observed at R-ISP. Instead, the largest source of /24

blocks comes from client-to-client communication (e.g., P2P and VoIP). P2P is a key

contributor, as 610k /24 blocks are only observable through P2P traffic. These 610k

/24 blocks account for only 16% of the /24 blocks observed at R-ISP, implying that this

large component is not vital to R-ISP’s contribution.

SWITCH hosts popular services that serve content to many end users, includ-

ing: a website hosting medical information (exchanging traffic with hosts in 1.8M /24

blocks), a SourceForge mirror, PlanetLab nodes, university web pages, and mail servers.

These services attract large varying client populations. Compared to the UCSD-NT and

R-ISP vantage points, SWITCH’s value as a vantage point depends more on popular IP

addresses.

IP addresses receive traffic from a varying number of sources, due to the content

they host and the presence of IP hotspots. Table 6.4 quantifies the influence, per vantage

point, of the n IPs that attract the most traffic (which we call “top attractors”). We

report the percentage of /24 blocks that would be observed (at that vantage point) if we

considered only the top n attractors, as well as the percentage of /24 blocks that would
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be captured if the top n attractors were not part of the census. We find that many of

the /24 blocks observed at the top attractors are also observed elsewhere, e.g., although

the top attractor at SWITCH is sent traffic from 52.2% of all /24 blocks observed at

SWITCH, without this IP, 96.7% of blocks would still be observed via other IP addresses

in SWITCH. For SWITCH, the quick decrease in percentage of /24 blocks observable

when excluding the top n attractors show that we heavily rely on the collection of top

attractors at this vantage point. In the darknet, the slower decrease indicates we are less

dependent on the top n attractors.

Vantage point size

We analyze vantage point size (the number of IP addresses monitored) to deter-

mine the extent to which our census results depend on access to large datasets. Unfortu-

nately, the analysis of vantage point size is not straightforward due to the non-uniform

nature of the monitored address space. Notwithstanding the extraordinary popularity

of some IP addresses, as well as non-uniform assignment of hosts within an address

subnet, we found an interesting correlation: for each vantage point, the median number

of /24 blocks observed is roughly proportional to the log of the number of monitored

IP addresses. Consistent with this observation, the utility of a monitored IP address de-

clines as the size of the vantage point increases. While our census results benefit from

large datasets, halving or doubling the size of our vantage points is unlikely to have a

substantial impact on the number of /24 blocks we infer as used.

Duration of collection

Figure 6.2 shows sublinear but varied growth of the number of /24 blocks col-

lected over time for our four vantage points. For all vantage points, a period of few (e.g.,

10) days is enough to capture a the majority of the sources that are observed at each van-

tage point within the considered time frame. SWITCH, which initially captures the
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Figure 6.2. Cumulative /24 blocks observed. The cumulative number of /24 blocks
observed grows sublinearly at each vantage point.

fewest /24 blocks, has the fastest growth rate; while the R-ISP and IXP vantage points

capture more /24 blocks initially but they grow more slowly. Other factors that can influ-

ence inferences are strong changes in traffic composition, e.g., flash events. Our traffic

datasets all had low (max 2%) standard deviation in the number of /24 blocks observed

per week, with no abnormal events observed. However, when observing measurements

from a broader time frame, we found evidence of flash events and changes in traffic. For

example, in August 2012 (the year preceding our datasets), SWITCH web sites hosting

content about shark protection experienced a sharp increase in visits (and thus observed

/24 blocks); the Discovery Channel’s Shark Week aired that month.

Time of collection

Figure 6.3 shows per-month sample measurements using our methodology over

a period of two years. The SWITCH and IXP vantage points observed a similar number
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Figure 6.3. /24 blocks observed per month. In our data, taken over two years, every
vantage point observed at least 2.6M /24 blocks per month. The fluctations in UCSD-NT
data are the result of changes in the traffic components comprising IBR.

of /24 blocks approximately one year prior to our census. R-ISP consistently observed

between 3.4M and 3.6M /24 blocks for nine consecutive months. At UCSD-NT, changes

in the phenomena responsible for IBR resulted in increases in visible /24 blocks. Specif-

ically, (i) in July 2012, there was an increase in BitTorrent traffic; (ii) in March 2013,

there was a large increase in the darknet’s backscatter category, likely related to the

DDoS attacks on Spamhaus [162]. Such events may increase the number of /24 blocks

inferred as used, but our technique does not appear to significantly depend on one-off

events: in our data, every vantage point observed at least 2.6M /24 blocks per month.

6.1.7 Discussion

This case study has (i) shown that supplementing existing studies with IBR can

improve coverage, and (ii) provided an in-depth of comparison of IBR to other data

sources for the purposes of /24 block visibility.
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Through this case study we have demonstrated that combining multiple data

sources improves our understanding of IPv4 address space utilization over current state

of the art (ICMP echo requests). Each dataset captured /24 blocks unobserved through

other sources. IBR can be used to add diversity to measurement data: compared to using

ICMP echo requests, adding one of our passive datasets would increase the number

of used /24 blocks by at least 240k, whereas other our active datasets would result in

smaller increases. While it was expected that ICMP echo requests would provide an

incomplete view of used /24 blocks [125], it is promising that we can improve visibility

with IBR (and other data sources). We are hopeful that other inferences made through

active measurements can be supplemented with IBR.

We separately collected used /24 blocks from each dataset. However, active ef-

forts to study IPv4 address space utilization can skip probing used /24 blocks identified

through passive techniques. Such an effort would greatly reduce the number of measure-

ment packets. For example, with UCSD-13 the reduction is about 30%: active probing

would only need to send packets to 7.3M /24 blocks instead of 10.4M /24 blocks.

Due to the collaborative nature of this work, we can compare the nature of

UCSD-NT data to other passive data types. For all studied data sources, the benefit

of using a bigger vantage point diminishes as the size of the vantage point increases.

Similarly, for each analyzed data source, the benefit of using longer time periods dimin-

ishes as the duration of observation increases. Like large collections of clients (R-ISP),

IBR observes many sources through P2P traffic; in contrast, SWITCH attracts traffic

from many /24 blocks through its servers. IBR is less dependent on IP hotspots than

SWITCH and R-ISP traffic, implying that, compared to IP addresses in live networks

(where users and services are heterogeneous), IBR uniformly reaches darknet IP ad-

dresses.

Compared to the other datasets, IBR contributed on the low end of number of
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unique /24 blocks during the 2013 census (Table 6.3).4 While this performance may

result in researchers prioritizing other passive datasets over IBR, we believe IBR is still

valuable to studies of address space utilization. IBR captured at least 2.6M /24 blocks

per month over a two-year period, suggesting that IBR is likely to improve IPv4 address

space utilization inferences regardless of the time of observation. Unlike the other data

sources, IBR exhibits large fluctuations in observed /24 blocks over time. As a result,

there are time periods where IBR is more valuable to utilization studies (e.g., if we

repeated this study in July 2015, we would expect better coverage due to the increase in

BitTorrent traffic described in Section 4.3.2).

6.2 Characterizing host functionality

In this section, we use IBR to infer how an IP address or network is used. IBR is a

“one-stop shop.” With IBR we can identify clients, servers, and routers. In comparison,

dedicated probing typically only reveals targeted services or routing infrastructure.

We first compare the scale and quality of IBR results to traditional measurement

techniques for extracting host functionality (Section 6.2.1). As expected, dedicated prob-

ing for servers and routers significantly outperforms IBR-based inferences; although,

IBR can provide insight into which servers are being attacked or used maliciously. Scan-

ning for client machines is more difficult. However, during the 2013 census, passively

collecting P2P traffic a residential ISP revealed a similar number of clients as IBR. As

a result of the clients visible in IBR, we can combine IBR with traditional datasets to

characterize host functionality for large network blocks (Section 6.2.2).

4The number of unique /24 blocks are not directly comparable across datasets due to the varying
durations and times of collection.
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Table 6.5. Number of servers, routers, and clients observed through IBR compared
to other data sets.

Type Traditional dataset Date Traditional /24s IBR /24s Traditional ∩ IBR
HTTP Server (Server) Project Sonar [145] 2013 census 3,160k 52k 50k
Open Resolver (Server) Open Resolver 2013 census 3.4k

Project [152] Jan. 20 – 2,520k 454k 448kMar. 1, 2014
Router ARK-TTL [93] 2013 census 1,630k 133k 71k
P2P Users (Client) R-ISP P2P 2013 census 3,170k 2,490k

July 2015a 3,710k

aBitTorrent traffic only.

6.2.1 Comparison to other data sources

Table 6.5 reports our comparison of the number of /24 blocks hosting HTTP

servers, open DNS resolvers, routers, and P2P users. For servers (HTTP and open

DNS resolvers), we observe significantly fewer /24 blocks, and nearly all the /24 blocks

discovered through IBR are also discovered through dedicated probing. For routers,

dedicated probing reveals an order of magnitude more /24 blocks; however, about half

of the /24 blocks found in IBR were not discovered with active probing. For P2P traffic,

we observe slightly fewer /24 blocks during the 2013 census and slightly more /24 blocks

after a large increase BitTorrent traffic in July 2015 (Section 4.3.2).

Locating HTTP servers

We identify HTTP servers through the backscatter component of IBR. We con-

sider any source that sends UCSD-NT a TCP source port 80 packet with the SYN-ACK

or RST flags set a HTTP server.5 We compare our results to Project Sonar [145], which

sends a HTTP GET request on TCP port 80 to all IPv4 addresses. We consider any host

responding to the HTTP GET request to be a ground-truth HTTP server.

Project Sonar clearly outperforms IBR-based analysis in locating HTTP servers.

Project Sonar data uncovers 60 times more /24 blocks hosting HTTP servers than our

5While ACK scans exist [128], darknets are rarely the target of these scans.
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IBR-based inference; almost all /24 blocks we observe through IBR are also found by

Project Sonar. We suspect the handful of /24 blocks we discover only through IBR are

primarily due to a mismatch in the dates of analysis (we analyzed IBR data collected

between July 23 and August 25, 2013; we used the Project Sonar scan from October

29, 2013). Moreover, IBR does not provide any insight into hosted web content. The

response to the HTTP GET request includes headers such as when the content was

modified and the type of server — information unavailable in IBR.

One benefit of using IBR over active scanning is that IBR may reveal which

HTTP servers that are under attack [141]. Another potential benefit of IBR is its ability

to provide insight in between scans. This benefit is diminishing. Recently, researchers

created an architecture to collect and share frequent Zmap [63] scans of the IPv4 address

space, including TCP port 80 scans [61].

Locating Open DNS Resolvers

As discussed in Section 4.2.2, the darknet receives packets from open DNS re-

solvers on UDP port 53 packets with the recursion-available bit set. Starting around

February 2014, there was a significant increase in the number of open resolvers sending

traffic to UCSD-NT and MERIT-NT. As a result, the number of IBR-visible /24 blocks

with an open resolver increased from 3.4k to 454k.

We obtained the results of weekly scans for open resolvers conducted by The

Open Resolver Project (ORP) [152] between January 26 and February 23, 2014. Com-

pared to IBR collected during 2013 census, the ORP data contains a factor of 750 more

/24 blocks with open resolvers.6 With the increase in open resolver traffic reaching

UCSD-NT, ORP discovers 5.5 times the number of /24 blocks with open resolvers than

6In the six months between the 2013 census and January/February 2014 (the date of the ORP data), the
number of open resolvers decreased slightly [153]. Thus there are at least 750 times more open resolvers
discovered through ORP than IBR.



147

IBR. This substantial increase in relative performance from IBR highlights how the

changing composition of IBR can provide periods of increased visibility.

There are 6k /24 blocks visible through open resolver traffic to UCSD-NT that

are unobserved in ORP data. This discrepancy is likely due to the continual monitoring

through IBR versus the once-a-week probing by ORP. Like any Internet service, open

resolvers may experience outages, or change IP addresses. Kührer et al. found that over

50% of open resolvers experience IP address churn in the first week [110]. Another

possibility is that some ORP queries are not resolved: open resolvers may blacklist

probes from ORP; an intermediate router’s filtering policy may discard the ORP queries;

some packets are lost (e.g., due to congestion).

Analysis of IBR reveals about a fifth of all /24 blocks that contain open resolvers.

This is a sizable fraction of open resolvers to discover without scanning infrastructure.

However, the biggest benefit of using darknets to identify open resolvers is the context

of observing a source in IBR. Open resolvers visible through IBR are actively used in

attacks — and should be the focus of clean up efforts (e.g., a campaign to alert admin-

istrators of NTP servers vulnerable to use in amplification attacks was highly success-

ful [110]). Moreover, IBR associated with malicious activity may help researchers better

understand attack vectors.

Locating routers

We observe ICMP messages generated by routers in IBR. ICMP time exceeded

in transit messages appear in IBR in response to spoofed packets destined to live net-

works with small TTL values [161]. When spoofed packets to live networks have a

sufficiently large TTL, but cannot reach the destination (e.g., the host or network is

down, or filtering prohibits the communication), routers may generate a ICMP destina-
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tion unreachable message [161, 34, 19].7 In UCSD-13, we observed 107k /24 blocks as

the result of ICMP host or network unreachable messages, 16k /24 blocks from ICMP

time exceeded in transit messages, 13k /24 blocks because communication was admin-

istratively prohibited, and 2k /24 blocks from large packets reaching gateways.

We compare our results to the ARK-TTL dataset, which consists of routers that

sent ICMP time exceeded messages during Ark’s ICMP traceroute probes to all IPv4

destinations. With IBR, we observe an order of magnitude fewer /24 blocks with routers

than ARK-TTL. Interestingly, only about half of the /24 blocks found in IBR also appear

in the ARK-TTL dataset. There are three possible reasons for this discrepancy: First, the

routers only visible in IBR may appear on paths not covered by Ark’s probing. Second,

some hosts (and presumably routers) will only respond to TCP or UDP probes [125].

Finally, we receive communication administratively prohibited messages whose source

address is the same as the encapsulated packet.8 These packets likely originate from

home routers that share an external IP address with the clients in the home network;

these routers were excluded in the ARK-TTL dataset.

Darknets are not the best source for enumerating IP addresses associated with

routers. However, the ARK-TTL data missed about 50% of /24 blocks with routers

observed in IBR, suggesting that ARK-TTL is also a partial enumeration of router inter-

faces.

Locating P2P users

Scanning the entire Internet for clients is difficult. Clients are often behind fire-

walls, which may prohibit external sources from initiating a connection with a host.

Moreover, many client programs run on arbitrary ports (i.e., we cannot find all BitTor-

rent clients by scanning a single port). As a result, passive datasets are a reasonable

7We exclude ICMP destination unreachable messages with codes sent by hosts [161].
8ICMP encapsulates the packet that induced the transmission of the ICMP message.
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method to discover regions of the address space used by clients.

For P2P traffic specifically, other researchers discovered BitTorrent clients by

connecting to swarms [100], convincing users to install their extension [42], or crawling

the DHT [190]. We also observe significant P2P activity through passive collection of

both residential ISP traffic and IBR. We find a similar number of /24 blocks containing

hosts sending P2P traffic in the R-ISP and UCSD-NT datasets during the 2013 census.9

As the result of an increase in BitTorrent traffic (Section 4.3.2), the number of /24 blocks

originating P2P traffic in IBR increased by almost 50%, and surpasses the number of /24

blocks collected through BitTorrent at the residential ISP in 2013.

We have a list of all /24 blocks visible by the residential ISP, but not a break-

down by component. As a result, we cannot directly determine the /24 blocks discov-

ered via P2P activity in both residential ISP and darknet traffic. However, of the 2.49k

/24 blocks sending P2P traffic in UCSD-13, 2.46k are also visible in residential ISP traf-

fic. This large overlap likely extends to the intersection of P2P activity in IBR and the

residential ISP: of the extracted components from the residential ISP traffic, P2P activity

contributed the most /24 blocks [53].

The magnitude of P2P users found in IBR suggests that darknet traffic is a good

data source for identifying clients.

6.2.2 Combining with other data sources

In the previous section, we found that IBR reveals many /24 blocks used by

clients. In this section, we combine these IBR-inferred client /24 blocks with inferences

from active probing to classify the functionality of large network blocks. This informa-

tion could be used to concentrate scanning efforts to certain types of hosts, and provide

9UCSD-NT data for the 2013 census contains BitTorrent, eMule, and QQLive traffic [124, 150, 122].
BitTorrent traffic contributes the most /24 blocks (2.2M) to the 2013 census. The residential ISP in-
cludes BitTorrent, eMule, ED2K, KAD, PPLive, SopCast, TVAnts, and PPStream traffic as identified by
Tstat [70].
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more specific inputs to scientific studies of Internet phenomena (e.g., it may be easier

to classify ASes based on the roles of their hosts). Over time, this classification could

provide detailed insight into Internet growth. To the best of our knowledge, this is the

first map of the IPv4 address space to identify which regions function as clients.

Classification of /24 blocks

The main classification challenge is that some addresses function as clients,

servers, and routing infrastructure. It is a common configuration to have a home router

act at a NAT gateway for the rest of the home network [78]. In this case, clients share

an external IP address with their router. Furthermore, some home routers are open re-

solvers [88] or host other services.

One option is to consider /24 blocks containing multiple inferred types as “un-

known.” Unfortunately, this method labels as “unknown” more than half of the used /24

blocks in the 2013 census. Instead, we prioritize our inferences in the following order:

clients, servers, routing infrastructure. Our reasoning is that while end users might host

one-off services (or inadvertently have ports open), companies that host web content

(e.g., Akamai, GoDaddy) will not exhibit characteristics of clients. Additionally, we

expect routers to be interspersed with clients and servers (the .1 address of a BGP an-

nounced prefix is often a router [131]). We classify /24 blocks from the 2013 census as

follows:

• unused: We classify as unused: IETF reserved blocks, unrouted blocks, and

routed unused blocks (unobserved by any dataset in our IPv4 utilization study).

• client: We construct a IBR-client dataset consisting of /24 blocks associated with

P2P or Qihoo 360 traffic. These applications primarily run on clients.

• server: We designate any /24 block discovered by Project Sonar as a server. Fu-
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ture versions of our analysis may include non-HTTP servers (mail, FTP, DNS,

etc.). If a /24 block contains both clients and servers, we categorize the block as a

client.

• routing infrastructure: We consider /24 blocks appearing the ARK-TTL dataset

to be infrastructure. If a /24 block in the ARK-TTL contains clients or servers (as

specified by the previous criteria) the client or server inference takes precedence.

• used unclassified: These /24 blocks are any that are found during the 2013 census

but do not appear in the HTTP, ARK-TTL or IBR-client datasets.

Results

Figure 6.4 shows the results of our classification. Certain regions of the address

space are more likely to host clients (e.g., the bottom left quadrant) while other regions

are more likely to host servers (e.g., many /8 blocks between 198.0.0.0/8 to 209.0.0.0/8).

Inspection of several blocks verifies that the classification works as expected. Two of

the most dense regions of servers, 23.0.0.0/8 and 54.0.0.0/8, correspond to Akamai and

Amazon addresses. For a popular ISP, Time Warner Cable, we consider 75% of /24

blocks in its largest announced prefix (76.168.0.0/13) to be clients. Many of the regions

with a high percentage of infrastructure /24 blocks are associated with ISPs (e.g., Cox,

Vidéotron), which likely represent the IP addresses used by these ISPs for transit.

Furthermore, we can inspect how individual ASes use their address space. For

example, the bottom right quadrant of the 98.0.0.0/8 block in Figure 6.4 (98.192.0.0/10)

is a block assigned to Comcast that has many clients. Comcast is also assigned the top

portion of the 50.0.0.0/8 block in Figure 6.4 (50.128.0.0/9), which has many server /24

blocks.10 Many IP addresses in 50.128.0.0/9 have comcastbusiness.net domain names,

while addresses in the 98.192.0.0/10 are comcast.net domain names.
10Comcast is also assigned 73.0.0.0/8, which is only observed as used through ISI data [52].
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Figure 6.4. Hilbert curve of the IPv4 address space showing host functionality.
Light grey indicates unused, dark grey used unclassified, blue client, orange server,
pink routing infrastructure.
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6.2.3 Discussion

This case study: (i) shows that the changing composition of IBR can provide

an opportunity to learn about the Internet; (ii) exposes limitations in IBR’s ability to

determine the existence of network components; (iii) shows that IBR can supplement

active probing techniques by providing additional information.

For finding (i), both the number of open resolvers and P2P users increased as a

result of changes in IBR composition. The phenomena causing these changes in com-

position may cease, in which case IBR coverage of open resolvers or P2P users will

decrease. This variability is partly due to a dependence on a specific application. How-

ever, end-users generate multiple IBR components. We can also use Qihoo 360 and

certain botnet traffic (e.g., if it is known to primarily infect personal computers) to infer

the client attribute.

For finding (ii), IBR is limited in the insight in can provide into servers and

routing infrastructure. Dedicated probing clearly outperforms IBR in these categories.

Moreover, we often obtain less information with IBR than active probing (e.g., we can-

not analyze HTTP headers or web content) and at irregular intervals (e.g., we cannot

determine the precise time a DNS server changes its configuration to no longer be an

open resolver). For historical analysis, IBR could be used to provide information in

the absence of active probing records; however, this scenario seems unlikely given the

community’s interest in continual probing projects [61, 145].

For finding (iii), IBR can supplement active probing in four ways. First, we

capture some traffic from servers that are down during Internet-wide scans; though the

number of such servers seems very low for HTTP servers, and somewhat low for open

DNS servers. Second, observing a host in IBR provides additional context: we know

that open resolvers appearing in IBR are used maliciously. Third, IBR can provide
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hints as to when scans of the address space are not fully enumerating a resource. For

routers, the high fraction of IBR-visible /24 blocks that are unobserved in traceroutes

suggests that additional active probing may be necessary to fully enumerate Internet

routing infrastructure. Finally, active probing is unlikely to enumerate a high number of

clients, that are visible and identifiable in IBR. We used this insight to create a Hilbert

curve of the IPv4 address space that indicates host functionality.

6.3 Extracting host attributes

In addition to determining a host’s function we can also characterize the ma-

chine. For example, Kumar et al. determined the number of disks used by machines

infected with the Witty worm [112]. With the current composition of IBR it is straight-

forward to collect attributes including: uptime (Section 6.3.1), used software (e.g., in

Section 6.3.2 we examine BitTorrent client usage), and if the machine is patched (e.g.,

in Section 6.3.3 we infer the time to fix a software bug in Qihoo 360). Likely, further

analysis of IBR will reveal additional attributes of hosts.

6.3.1 Determining uptime

We use IBR to infer the uptime of end hosts. Studying uptime can help un-

derstand human behavior [166], characterize availability [29], identify unpatched ma-

chines [22], and select resources with better availability (such as BitTorrent peers [36]).

Method

We use TCP timestamps to calculate uptime [134], a technique already imple-

mented in Nmap [130] and p0f [221]. RFC 1323 specifies that TCP timestamps should

be obtained from a clock that is approximately proportional to the real time [101]. Un-

der the assumptions that (1) the OS zeros the counter at boot time, (2) the timestamp has
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Table 6.6. Summary of the uptime validation results. We validate the TCP times-
tamps method for inferring uptime by checking the actual uptime on our machines and
inspecting the distribution of uptimes for abnormalities.

OS (from p0f) # Srcs Verified Distribution Include?
Linux 2.4.x 217,989 Wraps @27 hours no
Windows 7 or 8 102,097 70% up for less than 1 day yes
Linux 3.x 52,200 Longer uptimes less likely yes
iOS iPhone/iPad 48,360 × Most uptimes 3 to 13 days no
Mac OS X 10.x 32,721 × Most uptimes 3 to 13 days no
Linux 2.2.x-3.x 28,034 Wraps @27 hours no
FreeBSD 21,717 Reboots for patch [30] yes
Linux 2.6.x 17,290 Longer uptimes less likely yes
Linux 2.4.x-2.6.x 14,800 Longer uptimes less likely yes

not wrapped, and (3) network speeds are about constant, we can compute the frequency

of the timestamp increments and total uptime. Specifically, for two packets j and k re-

ceived at times r j and rk respectively with TCP timestamps t j and tk, the frequency of

the timestamp increments is f = tk−t j
rk−r j

, and the uptime (when packet k is sent) is tk
f .

For each hour of data, we calculate frequency and uptime for each source IP

sending TCP timestamps, and use p0f to determine the operating system that sent the

packets. We then aggregate over all hours of data, excluding sources when either p0f

reports conflicting OSes, or we determine that the OS violates assumption (1), or we

receive packets that reveal conflicting uptimes (e.g., from two hosts behind a NAT).

Additionally, we verify that the uptime is less than a year and that the frequency is close

to a typically used value (e.g., one-third of IP addresses have a clock rate of 1000Hz)

before including an IP address in our analysis.

Validation

To validate this technique, we analyze the accuracy of assumptions (1) and (2).

Table 6.6 summarizes our findings in ensuring that the TCP timestamp is set to zero

at boot time. First, we verify the accuracy of TCP timestamps on our own machines

using Nmap and p0f. We found inconsistencies for iOS and Mac OS, and exclude IP

addresses with these OSes from analysis. Additionally, we examine the distribution
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Figure 6.5. Wrapping of Linux 2.4.x TCP timestamp. We observe short uptimes for
Linux 2.4.x and Windows 7/8 machines. The abrupt drop for Linux 2.4.x hosts at 27
hours is an artifact of wrapping timestamps. The Windows 7/8 hosts do not exhibit this
behavior, and indicate actual short uptimes.

of uptimes in UCSD-13 for each OS individually. We exclude two OSes, Linux 2.4.x

and Linux 2.2.x-3.x, because the TCP timestamps appear to reset when the counter

reaches 100M (at approximately 27 hours). We include Windows 7/8, which has a

similar distribution from hour 0 to 24; but there is no evidence of a reset, implying that

Windows 7/8 users frequently turn off their machines. Figure 6.5 depicts the difference

in timestamp behavior between Linux 2.4.x and Windows 7/8 machines. It total, the

TCP timestamp method accurately infers uptime for about 40% of the IP addresses we

considered.

Another concern is that the TCP timestamp will wrap once it meets its maximal

value. Less than 2% of timestamps we consider wrap more frequently than every 49

days. Since about 0.1% percent of hosts have an uptime of 49 days, which suggest the

impact of a wrapping timestamp is minimal.

Results

In this section, we analyze the uptimes of machines associated with IP address

that appear to originate from one host using a typical clock frequency and an operat-

ing system that resets the TCP timestamp counter to zero at boot time. In UCSD-12,
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Figure 6.6. Distribution of days IP addresses with TCP timestamps. Most hosts
have an uptime of one day or less. (Note the y axis uses the logarithmic scale.)

UCSD-13, partial-UCSD-13, and MERIT-13, we were able to infer uptimes associated

with 290,697, 208,104, 57,990, and 47,122 IP addresses respectively. While these num-

bers represent less than 20% of IP addresses sending TCP timestamps, IBR still provides

a large sample of uptimes. Both partial-UCSD-13 and MERIT-13 reveal significantly

fewer uptimes than UCSD-12 and UCSD-13, showing the influence of darknet size and

temporal fluctuations (Sections 6.1.6).

Despite the differences in coverage, the datasets provide a consistent picture

of uptime. Figure 6.6 shows that most hosts have short uptimes in all datasets, and

a significant fraction have an uptime of less than 1 day. For the next three weeks, the

fraction of up hosts decays exponentially, consistent with a constant probability of being

turned off or rebooted.

We observe many hosts with an uptime of about 35 days for UCSD-12, caused

by hosts running Linux. This spike in the data suggests that an external event may

have caused a reboot for many Linux machines. Such events are hard to identify with

Figure 6.6, as we are calculating the longest known uptime. Instead, Figure 6.7 shows

the distribution of the reboot date for Linux hosts in UCSD-12 and FreeBSD hosts in
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Figure 6.7. Distribution of reboot date. Spikes in the distribution of reboot date can
be caused by bugs (Linux: July 1, 2012), patches (Linux: July 31, 2012; FreeBSD: July
23, 2013), and individual network behavior (FreeBSD: July 18, 2013).

UCSD-13. The large spikes likely correspond to: the addition of a leap second that

caused many Linux machines to crash [135] (July 1, 2012); a Linux patch requiring a re-

boot [94] (July 31, 2012); FreeBSD machines belonging to a single company (Earthlink)

(July 18, 2013); and a FreeBSD patch requiring a reboot [30] (July 23, 2013).

Discussion

This case study exemplifies the following findings: (i) IBR can provide insights

into host behavior, which are likely unavailable through other data sources, (ii) IBR can

provide a large sample of traffic to test inference techniques; (iii) and techniques using

transport layer information are preferable to application-layer techniques.

The main benefit of using IBR to infer uptime is the diversity in end hosts ana-

lyzed. To the best of our knowledge, this is the first study to provide an Internet-wide

analysis of uptime. Nmap [130] and p0f [221] both use the TCP timestamp technique,

but are limited in the sources they can evaluate. Active probing (Nmap) will not reach

end hosts behind a firewall or NAT, whereas passive observation (p0f) will be biased

based on the population observed.

As discussed in the validation of the technique, some operating systems do not

satisfy the assumptions necessary to apply the TCP timestamp method for inferring
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uptime. The previous method of validation involved asking individuals to confirm the

technique with their own machines [134]. Our method of examining uptime distribution

is both preferable since it uses observations from many machines and easy to repeat

when new operating systems are released.

Kumar et al. examined IBR from the Witty worm to extract host uptimes. How-

ever, since Witty targeted certain network security products, the number of networks

they could analyze was limited (inferring uptime for only about 800 machines) and not

diverse (about a quarter of the machines were from only two institutions) [112]. In-

ferring properties from information extracted at the transport layer of IBR expands our

coverage.

6.3.2 Assessing BitTorrent client popularity

Many BitTorrent clients are erroneously directed to the darknet when attempting

to torrent files. Both uTP [150] and KRPC [124] packets contain client identifying

information. uTP packets indicate the client in the handshake messages. Libtorrent, the

open source implementation of BitTorrent’s DHT, implements an extension where each

KRPC packet includes the client and version [149]; thus, with KRPC get_peers packets,

we can either extract the client or the fact that it is not a Libtorrent-based client. We

compare the breakdown of clients in IBR to previous studies [207, 154] in Table 6.7.

uTorrent is the most popular BitTorrent client in all datasets represented Ta-

ble 6.7. However, we are hesitant to trust the darknet-based inferences. The percentage

of uTorrent clients is much larger in the uTP data compared to previous studies [154,

207]. The inferences with darknet-based KRPC traffic yield a percentage of uTorrent

clients consistent with the previous studies [154, 207], but there is an unknown client

associated with 10.7% of IP addresses sending KRPC packets. One researcher hypoth-

esized that this client could be associated with malware, private torrents, or software
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Table 6.7. Popularity of BitTorrent clients. We show the percentage of source IP
addresses sending handshake messages with the top BitTorrent clients in UCSD-12 and
UCSD-13. We also show results from crawling BitTorrent swarms [207] and as observed
through users of a Vuze plugin [154].

Client Vuze Plugin Crawling BitTorrent UCSD-12 UCSD-13
[154] (2009) Swarms [207] (2011) uTP uTP KRPC

BitComet 5.29% 1.01% 0.0012% 0.0007% N/A
BitTorrent Mainline 9.28% 13.0 % 9.15 % 11.3 % N/A
libtorrent − 1.02% 0.0012% 0.498 % 4.78 %
qBittorrent − − 0.491 % 0.347 % N/A
Transmission 2.68% 7.00% 2.11 % 2.21 % 0.241 %
uTorrent 50.6 % 48.0 % 84.1 % 80.7 % 53.8 %
uTorrent Mac − − 2.86 % 3.32 % 0.0436%
Vuze 22.5 % 22.5 % 1.38 % 0.924 % N/A
Zo (unknown client) − − − − 10.7 %
Non-libtorrent − − − − 32.7 %

using BitTorrent as a P2P discovery system [211].

In Section 4.3.2, we provided evidence that some BitTorrent KRPC messages

resulted from index poisoning attacks. Although uTP packets do not appear to have

the same PRNG bug indicative of the index poisoning attack, they could stem from a

different attack or bug. Consequently, our results may be biased due to the content

targeted in an attack, or the implementation by the client (e.g., how often the client

checks for stale peers). In general, it is hard to get an unbiased sample of BitTorrent

clients. The 2011 study crawled BitTorrent swarms from English language sites [207],

and likely overrepresents English speaking users. The 2009 study analyzed the peers

of users of a Vuze plugin while downloading content [154], and may be biased towards

populations that use Vuze and the plugin.

6.3.3 Time to patch the Qihoo 360 bug

In this case study, we analyze a change in application layer behavior. Specifi-

cally, we study how long it takes for Qihoo to patch a bug described in Section 4.3.1.

We notified Qihoo of a reverse byte-order bug in their P2P update process, which they

verified on January 5, 2016; Qihoo stated that they would start pushing out the fix the fol-

lowing week. In total, it took about one month from when we notified Qihoo to observe
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Figure 6.8. Time to fix Qihoo bug. Qihoo confirmed the byte order bug on January 5,
2015 and said that they would start to push fixes the following week. It took a month
before we observed significantly fewer sources per hour sending Qihoo traffic to UCSD-
NT and MERIT-NT.

a decrease in traffic resulting from this bug.

Unfortunately, Qihoo packets observed in darknets do not have client identify-

ing information. However, we can examine the total number of packets from affected

machines reaching UCSD-NT and MERIT-NT (Figure 6.8).11 We look for a sustained

decrease in packets, since patched machines should not send any traffic to our darknets.

Figure 6.8 shows that after notifying Qihoo there is a large spike in traffic on

January 13, 2016.12 These spikes occur every four to five weeks (on Wednesdays), and

are likely the result of an automatic update pushed to many hosts. However, there is not

a sustained decrease in packets immediately following the spike. So, it is unlikely that

11We look at both UCSD-NT and MERIT-NT to ensure that Qihoo’s update mechanism not result in
an abnormal amount of traffic reaching either darknet. Despite different magnitudes of traffic reaching
UCSD-NT and MERIT-NT the relative number of packets reaching each darknet is the same.

12Although the spike on January 13, 2016 is smaller than the previous two spikes it is about the same
magnitude of other spikes in 2015.
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the update on January 13, 2016 included the bug fix.

The volume of Qihoo packets reaching the darknets per hour is not substantially

smaller until early February 2016. According to Qihoo’s version history, a new version

of the product was released on February 1, 2016 [209]. It is probable that this new

version fixed the byte-order bug. Although, Qihoo updates both automatically and by

prompting the user [4], we hypothesize that an automatic update distributed the patch

(manual updates generally have very slow patch rates [118, 192]). Since the decrease

was not immediate, the patch was likely pushed to a small percentage of Qihoo users

and then propagated via the P2P network.

We could easily extend this case study to examine the time-to-patch for indi-

vidual networks. Though without client identifying information, we cannot study the

host-level patch rate as we cannot quantify the effects of DHCP and NAT.

6.3.4 Discussion

In our experience, extracting host attributes requires intimate knowledge of net-

work protocols and why machines using these network protocols transmit IBR. We gen-

erally understand why Qihoo 360 traffic reaches our darknets; consequently, we could

infer when a large portion of machines start using a patched version of the software. It is

out of the scope of this dissertation to fully understand details of BitTorrent client behav-

ior as well as all index poisoning attacks; consequently, we could not characterize the

biases IBR imposes on our study of BitTorrent client popularity. Even for well-defined

protocols there may be differences in how individual operating systems or clients im-

plement the protocol. For example, a common method to extract uptime only works for

some operating systems as they predictably initalize TCP timestamp variables.

Our dependence on specific network protocols to extract host attributes may in-

troduce bias. Although diverse hosts may send IBR, it is possible that only a subset send
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the information required for our inferences (especially at the application-layer). We in-

fer uptime, but for only certain operating systems; we infer BitTorrent client usage, but

certain clients may be more susceptible to index poisoning attacks that generate IBR;

we infer patching of Qihoo 360 software, but more security-conscious users may have

turned off the feature that causes hosts to send IBR.

6.4 Inferring network configurations

In this section, we use IBR to gain insight on how networks, Internet-wide, are

configured. The following case studies reveal how several ASes share IP addresses

among their subscribers. In Section 6.4.1, we apply p0f’s NAT detector to IBR. Unfor-

tunately, Internet-wide measurement is not p0f’s intended usage, and modifications are

necessary to use this tool at scale. In Section 6.4.2, we focus our attention on a spe-

cific type of NAT, CGN. Although individual client data can be inconsistent with our

expectations for a single machine, we can successfully identify CGN by widespread evi-

dence of IP address sharing throughout an AS. We shift gears in Section 6.4.3, where we

examine DHCP usage and corroborate Padmanabhan et al.’s findings on characteristic

address durations for nine ASes.

6.4.1 Detecting NAT usage

Network address translation (NAT) is a technology that maps IP addresses in

one network to IP addresses in another network. A common configuration is to map

IP addresses in a private network, typically in the ranges defined in RFC 1918 [170],

to globally routable IP addresses. By mapping multiple internal IP addresses to the

same external IP address, a network can provide connectivity for more hosts than the

number of globally routable addresses it owns. NAT provides security benefits (e.g., by

filtering externally initiated connection [188]) and increases the flexibility that operators
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have within their own networks (e.g., internal IPv6 hosts can communicate with external

IPv4 hosts [15]) However, NAT can also be seen as violating the end-to-end principle

and slowing the rate of IPv6 adoption [84].

Research analyzing NAT deployments tries to answer two main questions: (1)

how many users share an IP address?; and (2) how widespread is NAT deployment?

Work by Bellovin, and Beverly analyzed question (1) in an attempt to estimate the num-

ber of Internet hosts [23, 26]. For question (2), Maier et al. determined that, for a single

ISP, 90% of DSL lines use NAT, and at least 10% have multiple hosts that are active

at the same time [132]. Armitage conducted a study of Internet-wide NAT deployment

using traffic reaching Quake servers [13]; however, this study was biased towards popu-

lations using Quake, and is almost 15 years old. Using Javascript to extract an internal

address, Casado et al. discovered nearly 450k networks using NAT, and less than 0.03%

had more than 10 hosts [38]; however this study is biased towards populations down-

loading content in the CoralCDN, and is almost 10 years old.

While there is limited academic research analyzing the extent of NAT Internet-

wide, one freely available tool, p0f [221], includes NAT detection heuristics that can be

used on any passively collected dataset. Each heuristic produces a score based on the

current packet and previous packet from a host. To infer NAT multiple sets of packets

must produce non-zero scores, which eliminates DHCP as a cause of the changes over

short time scales.

Running p0f’s NAT detector on IBR

We were hopeful that we could apply p0f’s NAT detector directly to IBR. How-

ever, to the best of our knowledge, no formal evaluation of p0f’s heuristics exists. Our

examination with IBR finds three heuristics yield false positives. These heuristics gener-

ally produce low scores, but scanning sources can trigger the heuristics at least the 4 to
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17:00:21.031492 IP 79.177.9.244.51317 > XX.246.83.27.21: Flags [S], seq 833462406, win 8192,
options [mss 1360,nop,wscale 8,nop,nop,sackOK], length 0

0x0000: 4500 0034 1ab2 4000 6f06 ---- 4fb1 09f4 E..4..@.o.......
0x0010: XXf6 531b c875 0015 31ad a086 0000 0000 ,.S..u..1.......
0x0020: 8002 2000 daff 0000 0204 0550 0103 0308 ...........P....
0x0030: 0101 0402 ....

17:00:24.035639 IP 79.177.9.244.51317 > XX.246.83.27.21: Flags [S], seq 833462406, win 8192,
options [mss 1360,nop,wscale 8,nop,nop,sackOK], length 0

0x0000: 4500 0034 1ab3 4000 6f06 ---- 4fb1 09f4 E..4..@.o.......
0x0010: XXf6 531b c875 0015 31ad a086 0000 0000 ,.S..u..1.......
0x0020: 8002 2000 daff 0000 0204 0550 0103 0308 ...........P....
0x0030: 0101 0402 ....

17:00:30.036256 IP 79.177.9.244.51317 > XX.246.83.27.21: Flags [S], seq 833462406, win 8192,
options [mss 1360,nop,nop,sackOK], length 0

0x0000: 4500 0030 1ab4 4000 6f06 ---- 4fb1 09f4 E..0..@.o.......
0x0010: XXf6 531b c875 0015 31ad a086 0000 0000 ,.S..u..1.......
0x0020: 7002 2000 ef0e 0000 0204 0550 0101 0402 p..........P....

Figure 6.9. Example of packets stream where second retransmit differs. These pack-
ets appear to come from the same machine: same TCP sequence number, consecutive
IPID values, typical exponential backoff behavior (3 seconds, 6 seconds). However, the
third packet is shorter because it does not have the TCP window scale option.

8 times required to infer NAT. Subtle differences between IBR and live network traffic,

an updated best practice, and incomplete data collected by p0f cause these issues.

In live networks, many communication attempts are successful, whereas in dark-

nets all communication attempts are unsuccessful. As a result, IBR typically captures

a significant number of TCP retransmits. There appears to be a quirk in TCP retrans-

mits for certain Windows machines. As we show in Figure 6.9, the final retransmit

excludes the TCP window scale option producing a smaller packet than first two pack-

ets in the communication attempt. p0f generally runs NAT detection on the first packet

of a communication attempt; however, in packet loss situations, we may receive only

the third packet in the sequence. These differences flag a source as using NAT since the

initial SYN packets differ in their options. We suspect that p0f does not account for this

quirk because it was developed using traffic targeting live networks, without many TCP

retransmits.

p0f flags an IP address as potentially using NAT if the ephemeral (source) port

decreases significantly in consecutive connection attempts. Like the IPID (discussed
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in Section 3.1.1), some OSes select ephemeral ports by incrementing a counter. How-

ever, for security reasons, RFC 6056 recommends that hosts randomize the selection of

ephemeral ports [116]. Furthermore, Linux and several BSD flavors follow this guide-

line for TCP connections [109]. As a result, this heuristic produces false positives.

Analysis of TCP timestamps is a promising technique for detecting NAT. In-

ternet hosts set the TCP timestamps according to an internal counter, which increases

proportionally to wall-time (e.g., 1k Hz). Thus, given two or more packets from a host,

we can determine if a third packet came from the same host. Unfortunately, p0f’s im-

plementation only keeps track of one previous TCP timestamp. With only one stored

TCP timestamp, p0f is unable to determine the rate at which TCP timestamps increase.

Instead, p0f decides if the TCP timestamp is indicative of NAT using an expected clock

rate. Though the expected rate does correctly capture the behavior of most hosts we

find in Section 6.3.1, about 2% of machines send packets at a rate that results in false

positives.

Discussion

Our partial evaluation of p0f’s NAT detection heuristics, revealed that three

heuristics produce false positives. While these false positives may preclude the tool’s

usage for an Internet-wide study of NAT, the heuristics are reasonable suggestions for

which networks are using NAT. It is fairly straightforward to manually determine NAT

usage from a set of flows tagged by p0f. Manual analysis is reasonable for p0f’s com-

mon use cases: “reconnaissance during penetration tests; routine network monitoring;

detection of unauthorized network interconnects in corporate environments; providing

signals for abuse-prevention tools; and miscellanous [sic] forensics [221].” In the fu-

ture, we could use IBR analysis to help modify p0f’s heuristics to produce fewer false

positives.
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6.4.2 Detecting carrier grade NAT (CGN)

In this section, we use IBR to detect a specific type of NAT: carrier grade NAT

(CGN).13 CGN is NAT managed by an ISP, where the subscribers have limited or no

control over the NAT deployment [159]. CGN is one of the biggest hindrances to IPv6

adoption as many users access the Internet using the same external IPv4 address.

Data

Like previous work in NAT detection, a technique to detect CGN must be able

to fingerprint individual machines to discern when many hosts are sharing a IP address.

Though any traffic with unique machine identifiers could be used to detect CGN, we

use BitTorrent traffic. Clients using BitTorrent’s DHT generate a random 160-bit node

ID [124]. Using 160 bits means that there is an extremely high probability that well-

behaved clients will generate unique node IDs.

We analyze our ability to detect CGN in January 2015 and July 2015. Notably, in

July 2015, there was a large increase in BitTorrent traffic (Section 4.3.2), which should

allow us to detect the presence of CGN in more networks. The January and July datasets

contain BitTorrent IDs from clients in 15.6k and 27.3k ASes respectively.

Technique for identifying CGN with IBR

We use the following criteria for detecting CGN with BitTorrent IBR:

1. Many node IDs per IP address

2. Many IP addresses in a /24 block meet the previous criteria

At a minimum, we need to observe many node IDs associated with a single IP

address (Criterion 1). We do not expect every host behind a NAT device to have a

13CGN is also called Large Scale NAT (LSN).
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BitTorrent client that sends IBR. However, BitTorrent is a popular protocol. So, if many

hosts share an external IP address it is probable that multiple hosts will send traffic to

our darknet.

Criterion 1 is not sufficient for detecting CGN for two reasons. First, some

BitTorrent clients do not follow the expected behavior and use multiple IDs (e.g., they

are part of a Sybil attack or frequently changes their node ID14). Second, we need to

differentiate CGN from NAT deployed by the end user.

Criterion 2 helps eliminate one-off behaviors and differentiate between NAT de-

ployed by home users versus the ISP. We assume that an ISP deploying NAT will use a

contiguous block of IP addresses. Although we expect the number of node IDs per IP

address to be much higher for CGNs than home NATs, there may be some individual

hosts that have an abnormally large number of IDs (e.g., a coffee shop); the IP addresses

of these hosts are likely dispersed throughout the AS’s address space. Specifically, we

require that multiple IP address in the same /24 block show evidence of NAT to identify

CGN. This criterion also helps eliminate BitTorrent clients that use multiple IDs, as they

too are likely distributed throughout the AS’s address space.

Validation

To validate our methodology, we gathered a list of networks that deploy CGN,

and a list of networks that do not deploy CGN. We include the results of a CAIDA

survey, email confirmation, online resumès, reverse DNS names, and the results of active

measurements [126]. Table 6.8 summarizes our ground truth data.

We then check that CGN networks have at least one /24 block meeting our cri-

teria. We do not specify an exact number for Criteria 1 and 2 (and what constitutes

“many” depends on the volume of BitTorrent traffic). However, we expect that CGN

14From manual inspection, many of the clients that appear to frequently change their node ID are using
LibTorrent with the DHT security extension [148].
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Table 6.8. CGN ground truth data.

CGN Non-CGN
AS ASN Method AS ASN Method
British Telecommunications 2856 NATRevelio [126] BELWUE 553 CAIDA survey
Malaysia Telecom 4788 Resumè State of Oregon 1798 CAIDA survey
TDS TELECOM 4181 CAIDA survey HUNGRARNET 1955 CAIDA survey
BSkyB 5607 Resumè Orange S.A.a 3215 List Subscribers
Liberty Global Operations 6830 DNS names Sandia National Laboratories 3562 CAIDA survey
Kazakhtelecom JSC 9198 Resumè NYSERNet 4804 Email
Smart Broadband, Inc. 10139 CAIDA survey Microplex PTY LTD 4804 List Subscribers
Viagénie 10566 Resumè Spin SpA 6734 CAIDA survey
Partner Communications 12400 Resumè UC San Diego 7377
T-Mobile USA Inc. 21928 Web search SEI Data 7871 CAIDA survey
PJSC MegaFon 25159 DNS names Brasil Telecom S/A 8167 List Subscribers
Vodafone Omnitel B.V. 30722 NATRevelio [126] Woosh Wireless 9737 Email
JSC MegaFon 31163 DNS names IP-Only Networks 12552 CAIDA survey
TIS Dialog LLC 31214 DNS names City West Cable 18988 CAIDA survey
Etihad Etisalat 34400 Resumè AxisInternet 19104 CAIDA survey
Stofa A/S 39642 DNS names Modesto Irrigation District 19621 CAIDA survey
Tech Mahindra 45432 Resumè Bowdoin College 22847 CAIDA survey
Bharti Airtel Ltd. 45609 Resumè Micronet Broadband (Pvt) 23674 Email
Hutchison CP 45727 Email SafeNZ Networks LTD 24005 CAIDA survey
Triple C 50463 Resumè Meanie 31019 CAIDA survey
Idea Cellular 55644 Resumè
Empresa Brasileira 53128 NATRevelio [126]
Wire and Wireless Co. 131160 Web search

aWe exclude the mobile portion of Orange’s network.

networks will have more IP addresses with a high number of node IDs than non-CGN

networks. Specifically, we consider all possible values of a “high number of node IDs”

and find the /24 block in the non-CGN networks with the most IP addresses meeting

this threshold. In Figure 6.10, we graph the maximum of the non-CGN networks as a

thick solid line. We also graph (with thin dotted lines) the same relationship for each

AS known to deploy CGN. In general, the number of node IDs per IP address is low in

non-CGN networks and high in networks deploying CGN.

Figure 6.10b shows a large separation between the non-CGN threshold and many

CGN networks during a high-volume scenario (July). In total, 17 of the 20 CGN ASes

sending BitTorrent IBR have at least one /24 block that exceeds all non-CGN blocks for

some values of Criteria 1 and 2. Figure 6.10b shows that our success is slightly worse

in the low volume scenario (January). There are 14 ASes known to deploy CGN that

exceed the non-CGN thresholds. All 14 ASes also exceeded the non-CGN thresholds in
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Figure 6.10. Validation of CGN detection method. The x-axis corresponds to Cri-
terion 1, and the y-axis corresponds to Criterion 2. Compared to non-CGN networks,
most networks deploying CGN contain at least one /24 block where many IP addresses
are associated with many BitTorrent node IDs. This is especially in the high volume
scenario (July 2015).
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July.

This method does not find all networks deploying CGN. Three ASes known to

deploy CGN (10566, 45432, 53128) did not send any BitTorrent IBR to UCSD-NT in

either January or July 2015. These ASes likely do not have many BitTorrent users.

Furthermore, three ASes known to deploy CGN (2856, 5607, 4181) did not exceed the

non-CGN threshold in any of our characterizations. All three ASes are large and likely

deploy CGN only in a small portion of their network.

We can further increase our confidence by ensuring that we see interwoven node

IDs, a continual stream of traffic from an IP address, or multiple BitTorrent clients. The

former confidence measure helps eliminate the DHCP case where multiple subsequent

BitTorrent clients using the same IP address; the later two confidence measures help

eliminate the case of short-lived Sybil attacks. However, these confidence measures

work best in high-volume situations. With sparse traffic we are unlikely to observe the

same host multiple times (i.e., interwoven with other hosts) or client diversity (there are

only a handful of popular clients).

In summary, our validation shows that CGN networks generally have a /24 block

where many IP addresses have a large number of node IDs. In a high volume situation,

we can increase our confidence by including additional criteria. Our method did not

discover all of our ground truth networks, probably because they have a small population

of BitTorrent users.

Findings

We find that a considerable number of ASes show evidence of CGN deployment,

even in the low-volume scenario. There were 1,054 ASes in January and 2,930 ASes

in July that exceeded the non-CGN thresholds from our validation step. In general,

ASes behave consistently over the two months: about 85% of ASes above the non-CGN
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thresholds in January were also above the non-CGN thresholds in July.

Interestingly, many of the ASes we find to have a CGN deployment also have

regions of the address space that are unlikely to be part of a CGN deployment. A manual

analysis of some of these regions yields that mobile networks frequently use CGN.

Geographically, many Eastern European ASes deploy CGN. Based on a whois

lookup of the 2,930 ASNs meeting the non-interwoven CGN criteria for July 2015 about

75% (2212) were registered through RIPE NCC, followed by APNIC (418), LACNIC

(115), AFRINIC (95) and ARIN (86). There were over one thousand ASes in Russia

meeting the criteria, followed by Ukraine (531), India (100), Czech Republic (72), China

(63) and the USA (59). The high number of ASes in Russia is partially due to the

company Rostelecom, which had 70 ASes exceed the non-CGN threshold.

Discussion

This case study highlights (i) our ability to infer configuration information

through traffic samples; and (ii) how changes in IBR can improve our ability to make

inferences. Although we do not receive traffic from every Internet host, nor does every

Internet host use BitTorrent, we are still able to infer CGN usage for about 1k-3k ASes.

In particular, we identify many CGN networks in July 2015 due to the large increase in

BitTorrent IBR. In lower traffic volume situations, we can still infer CGN usage, though

our confidence decreases (as the extra criteria is non-applicable). We expect that other

packet fields, less influenced by fluctuations in IBR, (e.g., TCP timestamps or IPID)

could also reveal CGN.

Recently, using active measurements, Richter et al. found 421 ASes deploying

CGN in an Internet-wide study of 3,166 ASes [172]. Although there is probably a lower

confidence associated with the IBR data, IBR has wider visibility (≈15.5k ASes sent

BitTorrent IBR in our low volume month) and yields more ASes deploying CGN. Addi-
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tionally, IBR seems better suited to provide a historical view of CGN deployment.15 IBR

could provide some insight into pooling behavior (i.e., do clients use the same external

IP address in subsequent connections?). However, Richter et al.’s active measurements

provide insight into how the CGN is deployed that seem impossible or difficult to glean

with BitTorrent IBR (e.g., which internal IP addresses they use, port allocation strate-

gies).

6.4.3 Analyzing DHCP lease dynamics

The Dynamic Host Configuration Protocol (DHCP) facilitates the assignment

of IP addresses to hosts. In particular, DHCP supports dynamic allocation where a

host uses an IP address for a limited period of time (or until the host explicitly returns

the address) [60]. This means that over long periods of time a host may use multiple IP

addresses and that multiple hosts may use the same IP address. The use of DHCP makes

it difficult to count the number of machines infected with malware [167, 105], and may

limit the effectiveness of blacklisting.

Despite DHCP’s widespread deployment, very few measurement studies have

analyzed the dynamics of DHCP, including lease duration, and the size addresses pools

from which addresses are assigned. By tracking over 500k clients with HTTP cookies

for a month in 2006, Casado et al. found that 72% of clients used a single IP addresses

for more than two weeks [38]. More recently, Padmanabhan et al. presented preliminary

findings on dynamic address durations using RIPE Atlas probes [155].

The findings in this section are a result of a collaboration with Padmanabhan et

al. to corroborate the RIPE Atlas findings with IBR. RIPE Atlas [174] is an active mea-

surement architecture that has over 9k nodes with a presence in over 3k ASes [80]. The

nodes periodically report the measurements to a central server. The reports include ma-

15Richter et al. analyze 2016 data, which they find to be consistent with late 2015 data.
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chine identifying information. Padmanabhan et al. leverage the pairing of (IP address,

machine ID) to determine when a machine is using a new IP address — typically due to

an expired or relinquished DHCP lease.

Technique for analyzing DHCP lease dynamics with IBR

Like CGN, we can analyze DHCP leases with any traffic that contains IP ad-

dresses and machine identifiers. We considered using IBR to extract identifiers from

packets containing a BitTorrent payload, originating from the Sality and ZeroAccess

botnets, or having TCP timestamps. We chose BitTorrent traffic due to the large in-

crease in packets of this type starting in July 2015 (Section 4.3.2).

Clients using BitTorrent’s DHT generate a random 160-bit node ID [124]. Using

160 bits means that there is an extremely high probability that well-behaved clients will

generate unique node IDs. The node ID is included in all KRPC packets. Although

clients could change their node ID at any time, they typically select a node ID to use

until they rejoin the DHT (an unlikely event) [146]. The uniqueness and repeated use of

the BitTorrent node ID, as well as the large volume of BitTorrent traffic in IBR, make it

a good candidate for studying DHCP.

Hosts send BitTorrent IBR at irregular intervals. This is problematic as there are

often long periods (e.g., days) in which we do not receive packets from a host. Unlike

the data from RIPE Atlas probes, we cannot calculate the exact duration in which an IP

address is used by a host. However, we can still extract bounds on the address’ duration.

For each sequence of packets with a given node ID we extract two metrics

related to lease duration. We use the following notation for a sequence of packets:

p1, p2, p3, · · · ; and use the functions IP(pi) and TS(pi) to obtain the source IP address

and timestamp of packet pi respectively. Specifically, we are interested in changes in

the IP address associated with a node ID. Let pi be the first packet associated with IP ad-
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dress IP(pi), i.e., IP(pi−1) ̸= IP(pi). Additionally, let j be the maximum value satisfying

IP(p j) = IP(pi)∀ j ≥ i. We calculate the minimum address duration as TS(p j)−TS(pi).

The maximum address duration is TS(p j+1)−TS(pi−1). The minimum address dura-

tion a lower bound on the period of time that an IP address was associated with the node

ID; the maximum address duration is an upper bound on the period of time that an IP

address was associated with the node ID.

In our analysis we use data from July and August 2015. Due to a darknet outage

and a processing error, we are missing data for two days in July and one day in August.

Length of time hosts use IP addresses

We would like to determine the duration for which DHCP assigns an IP address

to a host. However, our data reveals bounds on the length of time an IP address is used by

a host. Since it is possible that a host will relinquish its IP address, the observed duration

of usage may be less than the duration specified by DHCP. We borrow Padmanabhan et

al.’s terminology and call a typical duration that an IP address is used by a single host a

characteristic address duration.

We analyze characteristic address durations for nine ASes, checking that the

IBR-based inferences match the data from the RIPE Atlas probes. In this section, we

only consider minimum address durations with a corresponding maximum address du-

ration.

For all ASes considered in the prior work, we graph the weighted CDF of the

minimum lease duration in Figure 6.11. Specifically, we weight each data point by

its duration; this weighting makes it so that the CDF approximates the probability of

having a lease less than or equal to a given duration. Since we are not guaranteed

to see a BitTorrent packet and the exact beginning and end of the lease, we expect the

minimum address durations to approach but not exceed the characteristic duration. Thus
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Figure 6.11. Weighted CDF of characteristic address duration. For all validation
ASes, we plot a CDF of all minimum address durations with a maximum address dura-
tion. Each data point is weighted by its duration, so this graph approaches the probability
that a DHCP lease is less than or equal to a given duration.

the characteristic durations appear as “elbows” in Figure 6.11.

Our findings for characteristic lease durations echo Padmanabhan et al.’s [155].

For Verizon (ASN 701) and Kable DE (ASN 31334) there are no characteristic lease

durations, implying that the AS does not mandate a maximum lease duration (e.g., hosts

can renew their lease). The remaining ASes have characteristic lease durations, which

are consistent with RIPE Atlas data.

Lease type

Next, we check for regions of the address space where hosts appear to have the

same IP address for long periods of time (e.g., they are statically assigned). We look for

prefixes in the nine ASes examined by Padmanabhan et al. where it is uncommon for

hosts to change addresses. We graph the minimum address duration under two scenarios:

(1) the lease has ended, which we know because there exists a corresponding maximum
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(a) Orange (ASN 3215) — Minimum address du-
ration for expired leases

(b) Orange (ASN 3215) — All minimum address
durations

(c) Verizon (ASN 701) — Minimum address du-
ration for expired leases

(d) Verizon (ASN 701) — All minimum address
durations

Figure 6.12. Expired lease durations versus all lease durations (Orange and Veri-
zon). Comparing minimum address durations for expired leases and all leases reveals
regions of the address space that are likely to be statically assigned, as they only appear
Figure 6.12b or 6.12d.

address duration; and (2) for all leases, even when we have yet to observe the node ID

in a packet with a different IP address.16 Scenario (2) includes statically assigned IP

addresses because we should never associate the node ID with a different IP address.

Scenario (2) may also include hosts that uninstall their BitTorrent client or generate

many BitTorrent IDs (such as in a Sybil attack [189]).

In Figure 6.12 we graph all minimum address durations in scenario (1) and (2)

for two ASes: Orange (ASN 3215) and Verizon (ASN 701). On the x-axis we have each

16To exclude cases of user mobility (e.g., using a laptop at home and school), we only infer maximum
address durations when we observe the node ID with another IP address in the same AS.
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IP address in announced prefixes of the ASN in sorted numeric order.17 This ordering

places IP addresses in the same announced prefix next to each other.

From Figure 6.12, we can infer three types of leases: absolute, static, and re-

newable. The absolute leases never exceed the lease duration in both scenarios; most

of Orange’s address space fits this characterization. Static assignments will only appear

in scenario (2), as they never have a maximum address duration; a few subnets within

Orange and Verizon use this type of assignment. Renewable regions appear in both

scenarios, but still-in-use leases will appear only in scenario (2) as long leases. This

describes Verizon’s behavior, as the 3.7M leases included in Figure 6.12d are typically

longer than the 31k included in Figure 6.12c. Since many Verizon leases approach the

two month mark (the duration of our study), it is probable that Verizon hosts can repeat-

edly renew their leases. Interestingly, these ASes both dynamically and statically assign

IP addresses.

Discussion

BitTorrent IBR reveals interesting information about DHCP lease dynamics: we

can identify the characteristic lease duration, and static regions of the address space.

Based on a preliminary analysis, we expect that IBR will also be a good source to

determine patterns of in when reassignment occurs18, and pools of addresses used in

reassignment19.

We can examine properties of DHCP in any network where hosts use BitTorrent,

including ASes that do not have a RIPE Atlas probe. Compared to the RIPE Atlas

17For an IP address A.B.C.D, we use the number A×224+B×216+C×28+D.
18A preliminary analysis of the number of reassignments in an AS per hour varies across ASes. Often

we observe a diurnal pattern (consistent with Internet usage being higher during waking hours), but, in
a few cases, we observe spikes (possibly due to outages or provider induced events). This analysis will
help infer the causes of reassignments.

19We are interested in the set of possible addresses a host will be assigned after relinquishing their
lease. Such analysis is useful for determining if blacklisting is effective on the /24 or prefix granularity.
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probes, IBR provides less precise insight into DHCP lease durations. There can be

a large difference between the minimum address duration and the maximum address

duration — which causes uncertainty in when reassignment occurred. However, there

are significantly more clients contributing to IBR-based observations than RIPE Atlas-

based observations. There are 121, 68, and 40 RIPE Atlas probes in Orange, Deutsche

Telekom, and Verizon respectively. In our IBR dataset there are 54k, 73k, and 6.8k

unique node IDs with both minimal and maximal address duration values20 in Orange,

Deutsche Telekom, and Verizon respectively.

It is future work to examine DHCP lease dynamics before the large increase in

BitTorrent IBR. We expect fewer hosts to send BitTorrent traffic, and to receive traffic

from those hosts less frequently. If, with lower volume BitTorrent traffic, there is a large

degradation in measurement quality, we could also examine other types of IBR with

machine identifiers (e.g., Sality packets, TCP timestamps).

6.4.4 Discussion

The case studies in this section revealed weaknesses in an existing algorithm

for detecting NAT (Section 6.4.1), and successfully examined CGN (Section 6.4.2) and

DCHP deployments (Section 6.4.3). To the best our knowledge, there have been very

few efforts to conduct Internet-wide measurements of NAT/CGN and DHCP deploy-

ment. These properties are difficult to examine through active measurements, but visible

through passive data that includes machine identifiers. Fortunately, IBR contains multi-

ple types of packets with potential machine identifiers — not just the BitTorrent traffic

we leveraged for CGN and DHCP analysis. For example, Sality and ZeroAccess C&C

packets contain identifiers, and previous research fingerprinted machines based on TCP

20We expect the number of node IDs to be roughly equal to the number of machines running BitTorrent.
However, Sybil attacks or clients that change their node IDs often could distort the one-to-one mapping.
By considering only the node IDs with both minimal and maximal address durations, we select IDs that
are consistently used.
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timestamps or the IPID field [64, 23].

Our success in using IBR to study network configurations is due to (1) heuristics

that are effective on a traffic sample, and (2) an opportunistic increase in traffic volume.

Another work studying Internet-wide configurations used the same two-part formula.

Sargent et al. examined filtering policy by comparing Conficker IBR to DNS sinkhole

traffic [180]; their technique did not capture all TCP/445 packets leaving a network, but

took advantage of the large volume of Conficker packets reaching darknets. IBR seems

well-suited to investigate other types of network configurations assuming they also meet

these criteria. Moreover, even with January 2015 data, which contained less BitTorrent

IBR than June 2015, we classified 60% of ASes known to deploy CGN correctly.

6.5 Conclusion

In this chapter we have considered a series of case studies that revealed infor-

mation about address space utilization, and in particular IPv4 address space exhaustion.

Although all but one RIR has exhausted its IPv4 address pool, many IP addresses are still

unused, as they are not announced in BGP or they do not appear in a number of datasets

(Section 6.1). Administrators appear to deliberately and effectively allocate their used

addresses: large contiguous blocks are often used by the same type of machine: clients,

servers, infrastructure (Section 6.2.2). Additionally, many ASes actually deploy meth-

ods to share IP addresses among subscribers, including CGN (Section 6.4.2) and DHCP

(Section 6.4.3). These methods of sharing IP addresses should be effective since many

machines frequently reboot (Section 6.3.1).

However, the primary goal of this chapter was to evaluate IBR’s utility as an

Internet-wide data source. To this end, we have leveraged IBR for three different types

of tasks: enumerating resources (used machines, HTTP servers, open resolvers, and

clients), testing heuristics (a common uptime calculation, p0f’s NAT detection), and clas-
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sifying behaviors (uptime, BitTorrent client popularity, time to fix a bug, CGN, DHCP).

In terms of enumerating resources, IBR is effective in two scenarios. First, IBR

is useful for identifying servers involved in malicious activity: we identified open DNS

servers used in amplification attacks (Section 6.2.1), and previous work identified vic-

tims of DoS attacks [141]. However, compared to dedicated probing to detect servers,

IBR detects significantly fewer open resolvers, despite a large increase in traffic. Sec-

ond, IBR is useful for client identification. Clients are difficult to measure through ac-

tive probing, but often send IBR, including traffic from worms, and client applications

including Qihoo 360, BitTorrent. We have combined client /24 blocks identified through

IBR with /24 blocks containing HTTP servers and routers to produce a Hilbert curve of

/24 block functionality (Section 6.2.2). Overall, other non-IBR passive datasets were

more effective in supplementing the traditional, ICMP-ping based study of IPv4 address

utilization: each revealed about 100k more new /24 blocks than IBR (Section 6.1).

The volume and availability of IBR makes it a great data source for testing exist-

ing tools and heuristics. We found that a common method for determining uptime with

TCP timestamps is inaccurate for four operating systems: Linux 2.2.x-Linux3.x, Linux

2.4.x, iOS iPhone/iPad and Mac OSX 10.x (Section 6.3.1). Additionally, we found three

quirks in p0f’s NAT detection algorithm that caused false positives (Section 6.4.1). Ob-

viously, developers should not exclusively test their tools with IBR; however, it is a

reasonable expectation that the presence of IBR does induce many false positives when

analyzing one-way traffic.

In terms of classifying behaviors, our case studies suggest one general rule of

thumb: only use IBR when a biased sample is acceptable. In our BitTorrent client

popularity case study (Section 6.3.2), we obtained conflicting results for two different

types of BitTorrent packets. Moreover, one result included a client (associated with

10.7% of IP addresses sending BitTorrent IBR) that was not found in non-IBR studies.
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Because we were uncertain of all the factors resulting in BitTorrent IBR we could not

pinpoint possible causes for our biases. We were more successful at identifying when

Qihoo 360 fixed a byte order bug because we understood the process generating IBR

(Section 6.3.3). However, using the same BitTorrent IBR that was unacceptable for the

client study, we successfully identified networks deploying CGN (Section 6.4.2), and

analyzed DHCP dynamics (Section 6.4.3). For both of these case studies, we inferred

network properties that are not specific to BitTorrent.
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Chapter 7

Inferences with IBR: Using IBR to in-
fer network status

In addition to revealing attributes of Internet hosts and networks, IBR can also

provide valuable insight into the current status of these hosts and networks. That is, we

can use IBR to expose information about network conditions (or changes in conditions)

as experienced by end users. Previously, Dainotti et al. investigated macroscopic out-

ages using IBR [56, 55]. In this chapter, we present techniques that use IBR to examine

two other aspects of network state: when the path used to transmit packets from the

network to the darknet changes (Section 7.1), and when hosts in the network experience

packet loss (Section 7.2). Identifying path changes and packet loss situations can sup-

plement outage investigation by providing symptomatic details of the event; but these

analyses are also interesting on their own.

Determining network state typically involves a comparison between collected

traffic and our expectations of the network. Although IBR is an erratic data source, we

can form expectations by extracting predictable attributes of IBR. In this chapter, we

consider the following, non-exhaustive list of examples:

• Packet header fields that are stable across many types of traffic, such as the TTL

field when analyzing path changes in Section 7.1.

184
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• Individual, reliable components of IBR, such as the retransmission properties of

Conficker-infected machines or the default behavior of Windows machines in Sec-

tion 7.2.

• Large aggregations of traffic, such as when Dainotti et al. examined traffic origi-

nating from an entire country to examine macroscopic outages [56].

We emphasize that there may be alternate ways to infer network status with

IBR. Since IBR is a complex assortment of signals, there are multiple ways to extract

predictable attributes and evaluate network quality. Thus, each of our techniques are

a lower bound on the total number of IBR-analyzable networks. For example, in Sec-

tion 7.3.1, we provide an alternative packet loss metric.

As we describe in Section 7.3.2, using only IBR, it is difficult to pinpoint which

network or link is responsible for a service degradation. For example, we can deter-

mine that packets take a different route to our darknets, but not where the path change

occurred (e.g., traffic exits an autonomous system via a different router). As a result,

IBR-based analysis seems well suited to supplement specialized active probing, as op-

posed to replacing existing measurement methodologies for assessing network quality.

It is easy to conceive of a system that uses IBR to inform when and where to conduct

dedicated probing; compared to purely active techniques, such a system would require

less probes sent to networks under distress — situations where outage detection, path

changes and packet loss analyses are especially interesting.

7.1 Identifying path changes

Detecting and analyzing path changes provides insight into Internet path stabil-

ity [158, 50], and outages [25, 223, 107]. Our goals with this case study are to explore an

inference that: (1) requires successive measurements; (2) has an element of predictabil-
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ity (although IBR composition is erratic, TTL is predictable); and (3) shows how to use

IBR to reduce the active probing required to infer changes (similar to PlanetSeer [223]

and Hubble [107]).

7.1.1 Method of identifying path changes with IBR

Our technique to identify path changes relies on the insight that the TTL of a

received packet reflects the number of hops on the path to the darknet. If the path

is unchanged, all packets from a host will have the same TTL. Since most operating

systems have a starting TTL that is a power of two [182], we calculate the number of

hops by subtracting the TTL from the next highest power of 2 (a technique previously

used by Beverly [26]), excluding any packets with a TTL of three or less, since they

likely originate from traceroute and are not a predictable measure of hop count.1 When

the number of hops from a source to the darknet increases or decreases, we infer a likely

path change (similar to a previous technique for monitoring traffic at a CDN [223]).

Note this method will not detect changes that result in the same-length path but through

different routers.

We divide our datasets into time bins. For each IP address, we calculate for

each time bin, t, maxt and mint , the most and least number of hops taken at time t

respectively. We consider a path to have changed if maxt > maxt−1 or if mint < mint−1.

We expect most path changes to occur within a time bin, and not at time-bin boundaries.

Our requirements capture changes within a time bin as the time bin includes packets

with the old TTL and the new TTL. This method should also account for a change in

load-balancing paths (the whole distribution shifts). The method will have some false

1The first packet received by the darknet during a traceroute probe will have TTL=1, irrespective of
the length of the path to the darknet. To be robust in situations where single routers drop but do not
generate ICMP time exceeded messages, traceroute will send probes with higher TTL values when it fails
to receive responses. As a result, we receive packets with TTL=1, TTL=2, and TTL=3 for each traceroute
to a darknet IP address.
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positives due to NAT (when a new host, with a longer/short path starts transmitting) as

well as false negatives (when all hosts with the longest/shortest path stop transmitting at

the same time as a path change).

To study changes affecting larger source granularities, e.g., a prefix or AS, for

each time bin we also calculate the percentage of IP addresses, p, that sent packets

in both that time bin and the previous one, and also indicated a path change. Using

multiple sources from a prefix or AS increases our confidence that an event occurred.

In particular, we will have better insight into the core of the Internet as many hosts send

packets that traverse its edges.

7.1.2 Number of analyzable networks

The number of path change-inferable networks is a function of time bin duration.

With short time bins, we can determine the precise time of a path change. For example,

if a path change occurs between retransmits of a packet, we can potentially pinpoint

the time of the path change within a few seconds. However, based on our analysis

of repeated contact in Section 5.2.2, only countries and a few ASes send IBR to our

darknets every minute, implying that analysis at the minute granularity is not possible

for many networks.

In most cases, we can increase the number of path change-inferable networks

with longer time bins — at the expense of precision. The intuition is that with longer

time bins more networks are likely to have hosts transmitting IBR in consecutive bins.

With many analyzable hosts, we become more confident that a substantial path change

occurred instead of an event affecting a handful of hosts (or abnormal individual host

behavior such as sending packets with varying initial TTL values). For some networks,

lengthening the time bins does not help. Individual hosts may send in bursts that are

entirely contained in a single long time bin (as opposed to spread out over many shorter
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Table 7.1. Number of sources for which we can analyze path changes. We show
the number of sources for which we can analyze changes throughout the dataset (always
analyzable), and for sources where it is possible to examine traffic for changes in at least
one time bin (ever analyzable). The number of analyzable networks is consistent across
datasets, and increases with larger time bins — at the expense of precision.

UCSD-12 UCSD-13 MERIT-13
Partial

Ever Always Ever Always Ever Always Ever Always

1 minute time bins

IP addresses 87M 249 78M 471 35M 214 40M 163
/24 blocks 2.6M 553 1.9M 314
Prefixes 161k 1.1k 171k 1.3k 147k 777
ASes 20k 695 20k 761 16k 579 17k 595
Countries 230 119 231 126 226 114 230 119

5 minute time bins

IP addresses 81M 2.5k 78M 2.8k 32M 2.4k 38M 2.2k
/24 blocks 2.5M 2.3k 2.5M 2.6k 1.9M 2.1k 2.2M 2.0M
Prefixes 158k 3.3k 167k 3.6k 130k 2.7k 147k 2.9k
ASes 19k 1.6k 16k 1.7k 15k 1.4k 17k 1.4k
Countries 230 146 231 155 227 145 231 148

15 minute time bins

IP addresses 74M 4.1k 66M 6.4k 27M 3.9k 32M 3.7k
/24 blocks 2.5M 3.8k 2.5M 6.0k 1.9M 3.5k 2.1M 3.5k
Prefixes 158k 5.3k 163k 6.5k 129k 4.4k 142k 4.6k
ASes 19k 2.1k 19k 2.5k 15k 1.9k 17k 1.9k
Countries 228 159 230 170 227 160 229 161

time bins). Frequently oscillating paths introduce another possible complication with

large time bins: both the shorter and longer path may be present in every time bin.

We expect that, when using IBR to analyze specific events (e.g., an outage),

researchers will pick a time bin size appropriate to their IBR collection. For the purposes

of our analysis, we consider 1-minute, 5-minute, and 15-minute time bins.

We are interested in paths that we can continually monitor, which we call always

analyzable. For a network to be always analyzable, in every pair of consecutive time

bins, at least one host in the network must send traffic to the darknet in both time bins.

That is, in every time bin, there is a source whose TTL values we can compare to the

previous time bin. From Figure 5.7 in Section 5.2.2, we know most sources do not send

IBR every minute (never mind the stricter criterion involving consecutive time bins).

Table 7.1 confirms that few networks are always analyzable.

We investigate which networks meet the always analyzable criteria using

UCSD-13 (not shown in Table 7.1). Based on the 5-minute granularity, many large
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ASes (announcing a /16 or more) are always analyzable: 29% of IBR-observed large

ASes meet our criterion. However, about half of the always analyzable ASes are small

(announce less than a /16 block). IBR yields the best insight into path changes for tran-

sit/access ASes.

Not shown is the significant overlap of such sources across datasets: with 5-

minute time bins 1300 ASes are always analyzable using both UCSD-13 and MERIT-13,

and 1000 ASes are always analyzable using both UCSD-13 and UCSD-12. This signifi-

cant overlap implies that we can use IBR to conduct long-term studies of route stability

for these ASes.

Special events may provide additional insight into path dynamics. Table 5.2.2

also reports the number of sources that are analyzable at least once which we label

ever analyzable. Specifically, we consider a source ever analyzable if at least one host

from the source sent traffic in at least one pair of consecutive time bins. With 5-minute

time bins, more than a quarter of IBR-observed IP addresses, in three-quarters of IBR-

observed ASes are ever analyzable in each dataset. Since our binning may restrain

bursts of traffic to a single time bin, lengthening time-bin duration decreases the number

of ever analyzable sources.

7.1.3 Validation

Traditionally, researchers analyze path changes through traceroute or BGP up-

dates. Traceroute can find both inter-AS and intra-AS path changes on the forward path

(from the measurement infrastructure to the remote network), but a comprehensive view

requires frequent probes. Analyzing the reverse path (from the remote network to the

measurement infrastructure) is difficult, but possible with a complex reverse traceroute

tool [108]. BGP-based inferences do not inject packets into the Internet, but can only re-

veal inter-AS changes. BGP route collectors gather information about all forward paths
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(from the route collectors to all announced prefixes).

IBR is similar to traceroute in that we flag both inter-AS and intra-AS path

changes. IBR is also similar to BGP updates in that both are collected passively. How-

ever, IBR differs from traditional traceroute and BGP updates in two significant ways:

(1) it is difficult, if not impossible, to locate where the path changed, and (2) IBR pro-

vides insight on the reverse path (from the senders of IBR to the darknet).

Since IBR captures path changes on the reverse path and traditional methods

capture path changes on the forward path, IBR is complementary to existing path-change

analysis tools in that it measures a different set of routes. However, the set of paths we

can learn about with darknets is limited: there are only a handful of large darknets, each

of which are located in a single fixed location.

Additionally, the mismatch in forward/reverse path presents a hurdle for valida-

tion: running traceroute or analyzing BGP announcements collected at UCSD provides

information about the forward (not reverse) path. Nevertheless, we can use existing

measurement infrastructures to partially validate our approach. In particular, Ark [11]

monitors send traceroutes to the darknet and BGP monitors collect information about

when the path from the monitor to the darknet changes.

Validation with traceroute data

We validate our method using historical traceroutes from Ark nodes [11] located

in always-detectable ASes in UCSD-13. The Ark infrastructure uses teams of about 20

nodes to send traceroutes to every routed /24 block over a span of 2-3 days [11]; thus,

we can expect about one traceroute per minute from each Ark node to reach the darknet.

Nine Ark nodes are in 8 always-detectable ASes, including five educational networks,

two large transit providers, and a Regional Internet Registry.

We cannot validate all path changes from the hosts sending IBR, as we do not
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Figure 7.1. Example of path changes identified with IBR. The top portion of each
figure shows our validation data from Ark. The middle portion of each figure shades,
for a sampling of hosts in KIST/Purdue, the periods it inferred a path change. The
bottom portion of each figure shows the percentage of darknet IP addresses signaling a
path change. We identify the start of path change events at KIST, and route-flapping at
Purdue.
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know when these hosts start sharing links with Ark monitors to the darknet. However,

AS-level path changes should be observable in both Ark data and IBR. We find our

analysis of other IBR-transmitting IP addresses frequently corroborates path changes

in traceroute data. That is, both IBR and traceroute data indicate the start of the path

change event. Figure 7.1 reports, for events in KIST (ASN1237) and Purdue (AS17), the

percentage of hosts in the respective AS found in darknet data signaling a path change

with 5-minute time bins (in the bottom portion of each graph), and the periods of time

that a path change was observed from IPs in both darknet and traceroute data. (in the

top portion of each graph, as indicated by a colored time segment).

With both types of data, we infer very few path changes at KIST. Figure 7.1a

includes all traceroute-inferred path changes for KIST, and all but one path IBR-inferred

change in UCSD-13. Most traceroute-inferred path changes occur around the same time

as the darknet-inferred changes. Manual inspection of these traceroutes reveals that the

path change occurred in the core of the network. Further investigation of the KIST

sources suggests that traffic from the darknet sources used multiple paths in the 8:00

to 8:10 time bins (during these time bins the hop count was 16 or 17; outside of the

time bins the hop count was 16). For one of the IP addresses, it is possible to look

at 1-minute time bins. With this granularity all darknet-inferred changes align with

traceroute-inferred changes on August 21, 2013.

Figure 7.1b shows many path changes over a six-day period for Purdue in both

Ark (8.9k changes), and darknet data (1.3k 5-minute bins with changes). Several IP

addresses produce evidence of frequent path changes. Before August 4, 2013, tracer-

outes sent by the Ark monitor to UCSD-NT used the same route out of Purdue, but after

this date, traffic from the Ark node traversed multiple routes out of Purdue’s network.

A likely explanation is that some Purdue sources used stable routes, while others used

flapping routes; on August 4, 2013 the Ark node switched to using the flapping routes.
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At this time, all path change-inferable sources in IBR indicated a change.

The analysis of traceroutes from KIST and Purdue Ark monitors to UCSD-NT

validates our IBR-based method of detecting path changes. The traceroute and IBR-

based methods characterize path change frequency similarly at KIST (rarely) and Purdue

(often). We detected the beginning of path change events in the core of the network

(when leaving KIST). For path changes near the edge (Purdue), only a subset of hosts

in an AS may actually use a new path to reach a the darknet. In this scenario, using data

from multiple hosts is preferable — either from senders of IBR (which is the case for

our 6-day period) or from hosts conducting traceroutes (there is only one Ark monitor

at Purdue).

Validation with BGP data

Path change announcements for the prefix UCSD.0.0.0/8 observed from Route-

views [206] or RIPE RIS [175] peers should be reflected in IBR. There are six Route-

views/RIS peers in always-detectable ASes (at the 5-minute time-bin granularity), all

are transit/access providers. Since path changes within ASes are not visible through

BGP, we only check if we infer a path change in IBR around the same time as a BGP

update (not if path changes we observe through IBR are visible in BGP updates).

The time at which we detect a route change may differ in IBR and BGP. First,

Routeviews provides updates every 15 minutes, and RIS provides updates every 5 min-

utes, and our data was timestamped with the first second of the update. Second, it is

possible that BGP updates lag behind changes routing within an AS [195]. Further-

more, sometimes we observe multiple changes to the AS-level path within a single time

bin (e.g., while BGP converges). For a set of AS-level path changes in a Routeviews/RIS

update, we consider our IBR methodology successful if it detects a path change 5 min-

utes before to 15 minutes after the timestamp of the Routeviews/RIS update. We use
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Table 7.2. Time bins with AS-level path changes detected using IBR. For the 6 al-
ways analyzable networks with Routeviews/RIS peers we report the number of 5-minute
time bins in which an AS-level path changed (total number of AS-level path changes)
and the number of corresponding time bins where we detected a path change in IBR,
using p = 25%.

AS Type BGP (Number) IBR Percent BGP Events Detected with IBR
Telstra (1221) Transit/Access 2 (3) 2 100%
AOL (1668) Transit/Access 2 (2) 0 0%
NTT (2914) Transit/Access 5 (10) 1 20%
Level3 (3549) Transit/Access 5 (6) 0 0%
Bell Canada (6539) Transit/Access 2 (2) 2 100%
OBIT LDT (8492) Transit/Access 34 (58) 30 88%
Total 50 (81) 35 70%

5-minute bins and set p = 25%.2

Table 7.2 shows that we inferred path changes for 70% of the time periods with

BGP updates. However, for two ASes, none of the BGP updates advertised by the AS

were considered path changes by our method. This low coverage is most likely due

to the fact that there are multiple exit points. In particular, a change in routing may

affect only a small portion of hosts within the AS (and Routeview/RIS may not peer

with all exit points to determine if the change should affect all host). For the three

ASes, we detected over 88% of known AS-level path changes. In these cases, it is likely

that a large portion of the AS was affected by the routing change (e.g., the entire AS

switches their single upstream provider) or many IBR-sending hosts use the exit points

announcing the change. We believe our technique would perform better for ASes at the

edge.

7.1.4 Route stability

We use IBR to characterize path change dynamics. Our findings are consistent

with previous studies in route stability between PlanetLab nodes in 1994 and 1995 [158]

and from traceroutes to over 5k ASes in 2009 and 2010 [50]. Specifically, previous work

2We picked p = 25%, since this threshold captures almost all of Ark’s path change activity at KIST
and Purdue in Figure 7.1. Setting p = 33% yields the same results.
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characterized the connectivity between two end points — called a virtual path. The

characterization of a virtual path’s stability included prevalence (the fraction of time the

most common route is used) and persistence (the time between path changes). In terms

of prevalence, Paxson and Cunha et al. both found most virtual paths have a route that

is active most of the time. In terms of persistence, although there are more short-lived

paths, virtual paths spend most of their time in long-lived paths. Paxson noted that a

handful of virtual paths oscillate frequently [158], and, Cunha et al. found that some

virtual paths experienced periods of instability [50].

Without a list of intermediate routers, it is difficult to directly analyze route preva-

lence and persistence with IBR. However, we can use the time between TTL changes to

as a proxy for the duration of time packets traverse the same set of routers. Specifically,

we study virtual paths from always analyzable ASes to UCSD-NT using UCSD-13 with

5-minute granularity. We use p = 25% to determine when a path changed. Our analysis

is an underestimation of path changes, as we miss path changes where the new and old

paths are the same length.

Figure 7.2 reports our findings on AS-level route stability using always analyz-

able ASes in UCSD-13. The top portion of Figure 7.2 shows, for each always analyzable

AS, the longest time between path changes, or the longest known duration that the AS

used a route.3 This metric is a lower bound on path prevalence: a single route was used

for at least the graphed duration, though it is possible that the route was also used in

other shorter time periods. Like Paxson [158] and Cunha et al. [50], we find that most

ASes have a route that is used for multiple days.

The lower portion of Figure 7.2 shows the number of path-changes from each

always analyzable AS to UCSD-NT. Most ASes experience very few path changes (like

3Since UCSD-13 lasts 34 days, we do not know the actual duration of the first and last routes. However,
we do know the first route was used from at least the start of the 2013 census, and the last route was used
at least until the end of the 2013 census. We include these routes, using their longest known duration.
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KIST), and a few ASes in the tail (like Purdue) are responsible for the majority of path

changes. This finding is consistent with previous analysis of path persistence [158, 50].

7.1.5 Discussion

Although IBR is an erratic data source, this example shows that it can provide in-

sight into abnormal events and macroscopic dynamics. Our success with this case study

is partially due to the aspect of IBR we are evaluating: the expectation that the initial

TTL value remains the same is true regardless of the number of sources sending IBR

or the volume of IBR, although increases in either would likely improve our coverage

and accuracy. This path change detection method would work best in conjunction with

other data sources. Like PlanetSeer and Hubble, passive traffic measurements such as

IBR can help inform when and where active measurements would be most useful [223,

107]. IBR also provides features that traceroute and BGP data lack, e.g., no injected

traffic required, and intra-AS visibility, respectively.

7.2 Recognizing Packet loss

In this section, we investigate new IBR-derived metrics that can provide insights

into the causes of macroscopic connectivity disruptions. These metrics can indicate

whether an outage involves packet loss, e.g. due to link congestion. A large fraction of

IBR traffic is composed of TCP SYNs probing the Internet trying to establish connec-

tions to vulnerable (usually Windows) hosts. Because a darknet is completely passive

(it does not respond to any packets), sources sending these SYNs must re-transmit them.

TCP retransmit behavior (such as how many retransmits per connection attempt, and

how much time between them) is typically a function of the host operating system or

application, which means it is consistent across large enough populations of hosts to

constitute a predictable signal. We derive two metrics from two different dimensions of
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this signal: the number of SYN retransmit per TCP flow; and the distribution of inter-

packet times (IPT) between them. We show that both metrics can reflect packet loss,

providing additional insight compared to metrics that only indicate reachability. We

apply this metric to three case studies where either route leaks caused link congestion

for an entire AS (and ultimately a complete outage in one case) or packet filtering that

almost entirely isolated a country from the rest of the Internet.

Traditional passive approaches to inferring packet loss use attributes such as

the sequence number [24, 137] congestion window [102], RTT [102, 103, 71, 137],

and TCP acknowledgments [106] – all of which were developed using bidirectional

communication. In contrast, we: (i) observe unidirectional traffic from a darknet, and

(ii) use retransmitted packets as opportunistic probes that measure large-scale Internet

events. With bidirectional communication retransmitted packets are evidence of packet

loss [103, 137], while with IBR the lack of retransmissions indicates packet loss. We

are not aware of similar studies and we consider this work a first attempt to investigate

this approach.

7.2.1 Data source and signal extraction

We analyze IBR traffic captured at UCSD-NT in 2012. A darknet receives but

does not respond to traffic, so all flows (defined as the traditional 5-tuple) are unidirec-

tional. When an external host attempts to open a TCP connection, the resulting flow

carries only SYN packets, which we call a SYN flow.

To derive IBR metrics that correlate with packet loss, we need attributes that are

normally consistent yet change during connectivity disruptions. The ideal signal would

be strong (statistically significant), stable (low noise), and globally pervasive (seen in

most networks). But IBR includes diverse types of traffic [156, 217], so we selected two

subsets of IBR that have consistent and predictable enough behavior to use as signals
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for packet loss:

• Conficker-like traffic, i.e., SYN flows to TCP port 445, widely publicized during

the Conficker episode in 2008 but a target of scanning activity for years; it con-

stitutes a large percentage of the packets observed at the UCSD telescope (more

than 40%), is globally pervasive, and consistent [203, 5].

• The default configuration of Windows machines is to send at most 3 SYN pack-

ets [194] when attempting to establish a connection, which makes SYN flows

from such machines a consistent signal.

To infer packet loss, we selected two attributes of SYN flows – number of retrans-

missions and IPT – that follow consistent patterns. Since the darknet never responds

with an ACK, the number and timing of SYN retransmits is determined by the applica-

tion or the OS originating such traffic. The consistency of these attributes depends on the

conditions of the path traversed by the packets, so substantial drops in SYN retransmits

or substantial variation in the IPT may reflect network-induced packet loss.

Conficker-like traffic

Figure 7.3 shows the distribution of SYN flows destined to TCP port 445 as

a function of packet size, number of retransmits, and OS (as identified by p0f signa-

tures [221]). Most of these SYN flows contain only two SYN packets, consistent with

the behavior of Conficker-infected hosts [5]. To obtain a strong and stable signal for a

retransmit-based metric, we tried to isolate such behavior (i.e., 2-packet SYN flows) by

selecting only flows from Windows XP and Windows NT (about 89% and 9% of the

total flows in Table 7.3) with packet sizes of either 48 or 52 bytes. The inter-packet

times (IPT) metric is not usable with the Conficker-like traffic since the flows only have

two packets; loss of one of them prevents a valid IPT calculation.
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Table 7.3. Conficker-like SYN flows observed per OS (Jan. 2012).

Operating System Number of Flows
Windows XP 2299144254
Windows NT 229961989
Windows 7 or 8 53445230
Other (Linux, BSD, Solaris, . . . ) 394731
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Table 7.4. Example OS-port combinations used for γ3. The top four OS-port combi-
nation flows of the following categories: at least 25,000 3-packet SYN flows; originating
from 64 or more /8 networks; 3-packet SYN flows comprise more than 75% of the SYN
flows from the specified OS and port. There are 9 listed in the table because of overlap
in the top-four lists. (Jan. 2012)

Port OS %3-Flows Num 3-Flows Num /8
80 Windows 7 or 8 0.850 6107763 184
443 Windows 7 or 8 0.775 2656821 170
443 Windows NT 0.828 2602825 169
1433 Windows XP 0.814 39476702 114
3260 Windows 7 or 8 0.987 293572 85
4661 Windows NT 0.984 183551 97
4899 Windows 7 or 8 0.993 16108965 73
28931 Windows 7 or 8 0.984 25961 71
22292 Windows XP 0.804 11433398 174

Default Windows behavior

To build a second signal usable for packet loss inference, from IBR observed at

the UCSD Network Telescope in January 2012 we selected the port-OS combinations

satisfying all of the following criteria:

• more than 75% of their SYN flows carry 3 packets (aiming at a stable signal);

• more than 25000 3-packet SYN flows (aiming at a strong signal);

• their 3-packet SYN flows originate from more than 25% of the total number of /8

IPv4 networks (aiming at a globally pervasive signal).

We selected 100 port-OS pairs that met these criteria, including 56 “Windows 7 or 8"

ports, 29 “Windows XP", and 15 “Windows NT". Table 7.4 lists the top four port-OS

pairs for each separate criterion.

Although the total number of 3-SYN flows that we select is two orders of mag-

nitude smaller than Conficker-like flows (about 156M vs. 13B in January 2012) and the

number of sources generating 3-pkt SYN flows is smaller by a factor of 7 (an average

of 14K hosts/hour compared to 100K Conficker hosts/hour in January), having a second

traffic signal is still useful, especially to validate findings. Also, the 3-SYN flows met-
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rics are not malware-specific, which is especially important as machines are upgraded

and patched, limiting the spread of the Conficker-like traffic. The 3-SYN flows are also

amenable to IPT calculations when one of the packets is lost, unlike the Conficker-like

(mostly two-packet) flows.

7.2.2 Definition of metrics

We define two metrics that we extract from the IBR signals.

Number of packets per SYN flow: γ

We first considered simply the average number of packets per SYN flow from

the selected traffic (either Conficker-like or 3-pkt SYN flows). When considering flows

sent by only a subset of source IPs, such as the AS-level interpretation (that is, com-

puting such metric only for IBR originating from a specific AS), this value could be

significantly skewed as a result of the increased influence of a single host or flow. For

example, when a single host conducts a horizontal scan by sending one packet to ev-

ery IP address in the darknet, the AS-level average is approximately 1 packet per flow

regardless of other host activity from that AS. Similarly, a single flow consisting of a

large number of SYN packets significantly increases the overall average. The following

improvements reduce the impact of such anomalies:

• we exclude all the SYN flows with more than a given number of packets since

we definitively know Conficker-infected or Windows machines did not generate

them: we set a threshold of three for Conficker-like SYN flows (97% of SYN

flows had three or fewer packets in our reference dataset of January 2012); four

for the Default Windows SYN flows;

• we calculate the average number of packets per SYN flow for each distinct source

IP, and then take the average (mean) of this distribution, thus limiting the influence
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of a single source IP sending packets to the darknet.

If the set of all source IPs is S, Fs denotes the set of flows matching our criteria with

source IP s, and the function packets( f ) returns the number of packets in a flow f then

our metric is

γ =
1
|S|∑s∈S

∑ f∈Fs packets( f )
|Fs|

(7.1)

If there are no sources matching our criteria, then γ is undefined. We call the metric γC

for the Conficker-like traffic and γ3 for the flows that are expected to have three packets

per SYN flow. We do not combine the two metrics γC and γ3, as the ratio of hosts

contributing to each metric is not constant.

Figure 7.4 shows this metric across all ASes for January 2012, calculated in

hourly bins. The number of source IPs and γ approximately follow a sinusoidal pattern

with a phase of one day. The value of γC is always between 1.98 and 2.02. The value of

γ3 is always between 2.59 and 2.78. The large drop in γ3 seems to be related to traffic

on BitTorrent and HTTPS ports.

Outages are likely to affect only a subset of the Internet hosts. Grouping by AS

provides a natural way to divide the IP address space. We used CAIDA’s Prefix to AS

Mapping Dataset and RouteViews BGP data [206]. Figure 7.5 shows γC calculated for

three ASes of different size. As expected, when calculating γC for a single AS, there is

higher variance for ASes with fewer infected hosts, typically proportional to their size.

Increasing the size of the time bins would reduce such measurement variance, but at the

expense of precision in when inferring a connectivity disruption occurred.

Inter-packet times: η

Hosts following RFC 6298 [157] should wait at least one second before retrans-

mitting the initial SYN packet; subsequent retransmission timeouts (RTOs) should back
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off exponentially by a factor of two. The convention is to use 3 seconds as the initial

RTO (i.e., the RTOs are normally 3, 6, 12, 24, . . . seconds).4 The average of the first IPT

can be used to verify the findings of the γ metric. In flows with three packets, if a single

packet is lost, the first IPT is either (approximately) 6, 9, or 3 seconds corresponding

to loss of the first, second, or third packet, respectively. We can only calculate η on

expected 3-pkt SYN flows.

As in the calculation of γ , we consider the possibility of skew from a few deviant

hosts. Thus we do not take the average of all first IPT, but the average first IPT value

over all sources with analyzable traffic. Specifically, if Fs denotes the set of flows with

source IP s that are expected to have 3 packets and have at least 2 packets, S = {s ∈

seen source IPs|Fs ̸= /0}, and the function IPT( f ) returns the first IPT of a flow f , then

our metric is

η =
1
|S|∑s∈S

∑ f∈Fs IPT( f )
|Fs|

(7.2)

If |S|= 0, then η is undefined.

η is a less precise metric than γ , since it uses fewer flows during connectivity

disruptions, thus being more susceptible to skew. However, the combination of η and

γ allows for strong inference. A decrease in γ may also mean that fewer packets than

expected are actually being sent for a traffic class instead of being lost along the path,

but η can help us distinguish between the two cases (i.e., assuming RFC-compliant

behavior, η can distinguish between sending only two packets and a random loss of one

of three packets). Figure 7.4 shows η calculated across all ASes for January 2012: the

metric is slightly higher than the expected value of 3 for the entire period, with slight

deviations corresponding to deviations in γ3.

4Although RFC 6298, states that the RTO should be 1 second, we observe in the darknet that the RTO
is still ∼3 seconds for more than 99% of flows from Windows hosts. If an RTO of 1 second is more
widely adopted, we can identify the RTO typically used by each source and normalize the metric.
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7.2.3 Packet loss case studies

In this section, we evaluate our metric using three different service-disruption

case studies. The first two outages – the “Dodo-Telstra” and the “Bell-Dery” case – had

network-induced packet loss as a result of BGP route leaks [89, 200]. The third one –

the Libyan Internet blackout – was the result of packet filtering. If effective, our metrics

will reflect packet loss in the first two case studies but not in the last.

For each of the case studies, we only use metrics which were stable throughout

the entire month preceding the outage.

“Dodo-Telstra” routing leakage

On February 23, 2012, around 2:40 UTC, the multi-homed network operator

Dodo announced internal BGP routes to its provider Telstra, a major ISP in Australia,

which erroneously accepted them. As a result, Telstra sent all of its traffic to the small

network, Dodo, instead of a large transit provider, inducing a bottleneck leading to a

complete outage [89]. The effect was massive: most Australians were left without Inter-

net connectivity for about half an hour [91].

Figure 7.6 plots our metrics for IBR traffic originating from AS1221 (Telstra)

calculated in 5-minute bins. The figure shows significant drops of both γC and γ3 during

the first phase (20 minutes) of the episode, meaning that far fewer packets per flow were

reaching the darknet than normal. However, when γC and γ3 first drop, η increases from

about 3 to 5 seconds, which corroborates packet loss (assuming individual hosts did

not change their retransmission patterns). This spike was calculated using the 7 distinct

source IPs observed from this region at the darknet. In the following three 5-minute time

bins the number of sources (0, 1, 2 respectively) contributing to the calculation of η was

not statistically significant. Such a significant drop in γC and γ3 and the increase in η

are a direct consequence of congestion on the affected links. Routers started dropping
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Figure 7.6. Our packet-loss metrics plotted in 5-minute bins for traffic originating
from AS1221 during the Dodo-Telstra routing leak in February 2012. The arrow
points at the first phase (20 minutes) of the outage, where the metric values indicate a
bottleneck, i.e., packet loss: γC and γ3 decreased, and η increased. The number of IPs
sending Conficker traffic remained the same, while the number of IPs sending 3-SYN
flows decreased – an artifact of the frequency at which each type of host contacts the
darknet. In the second phase, no flows were observed in the darknet traffic, implying a
complete outage.

packets, including some of the SYN packets destined to the darknet. Eventually, this

congestion deteriorated to a complete outage (lasting another 20 minutes), during which

the telescope did not observe any sources sending SYN packets from Telstra (so our

metrics cannot be calculated).

“Bell-Dery” routing leakage

On August 8, 2012, at 17:27 UTC, dual-homed provider Dery Telecom started to

leak a full BGP table to the major Canadian ISP Bell. These routes were accepted and

propagated to Bell’s peers [200]. Our analysis shows that the biggest disruption lasted

about half an hour.

Figure 7.7 plots our metrics calculated for traffic coming from AS577 (Bell)
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Figure 7.7. Metrics during uring the Bell-Dery routing leak of August 2012. we
observed traffic from AS577 during every 5-minute bin. The number of Conficker and
3-SYN source IPs dropped drastically. Two of our metrics, γ3 and η indicated packet
loss, but the γC metric did not, which we later discovered was because one network was
unaffected by the BGP leak.

surrounding the outage. The Bell network never was completely offline, but the plot

indicates a severe disruption (∼17:30-17:45) followed by slight improvement (∼17:45-

17:55) before restoration. During this time period, the total number of Conficker and

3-SYN source IPs dropped from about 12 and 20 to 2 and 6, respectively. Both γ3 and

η indicate significant packet loss during this time period. Strangely, γC stayed close to

2 during the worst part of the disruption, decreasing slightly when conditions appeared

to improve (number of Conficker sources rose from 2 to 11).

To determine the reason behind the differences in γC and the other two metrics,

we broke down the traffic from AS577 by network prefix and inspected the TTL header

fields in the collected packets. In the 90 minutes surrounding the outage, packets from

AS577 originated from 63 distinct /16 prefixes, of which 38 sent traffic in at least 9 of

18 5-minute time bins, and all but one experienced a considerable volume drop. Upon

further inspection, two IP addresses in this prefix continued to transmit Conficker-like
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Figure 7.8. SYN traffic volume by prefix during Bell-Dery routing leak. One prefix
(U) did not experience loss during the outage. Each point represents, for the given prefix,
the fraction of packets sent during a 5-minute bin normalized to the time bin with the
most packets. We show only prefixes observably active during all 18 time bins.

traffic at their pre-outage rate, depicted in Figure 7.8.

Since the Bell-Dery event was caused by a route leak, it is possible to observe

changes in the way packets were routed by looking at the TTL value, reflecting a dif-

ferent number of hops in the path to the telescope. We discovered that the only two IP

addresses whose packet rate at the telescope was not affected by the disruption were also

the only two IP addresses whose packets carried a constant TTL both outside and during

the disruption (one such IP address depicted in top graph of Figure 7.9). We suspect that

traffic from this prefix was re-routed through a different path that was unaffected by the

route leak.

Libyan Internet blackout

Our third case study applies our metrics to the Libyan Internet blackout hap-

pened in February and March 2011, when the Libyan government used BGP disconnec-

tion and later packet filtering to implement nationwide censorship [56]. There were

three outages, lasting approximately 7 hours (the first two) and 3.7 days (the last one).
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Figure 7.10. γC during a censorship event in Libya, which was induced by packet
filtering. Libya’s second 2011 outage used packet filtering as a method of censorship.
Although there were fewer source IPs during the censorship, the hosts that did send
Conficker-like flows sent approximately the same number of packets per flow as prior
to the outage, indicated by the similar values of γC (calculated in 5 minute time bins).
γ3 and η are excluded as there were not enough hosts (2 or less) to accurately make
inferences.

We examine the second one, when the state telecom (AS21003) isolated most of the

country through packet filtering [56]. This case study illustrates that our metrics effec-

tively distinguish large-scale outages that are characterized by some packet loss from

those that are not.

Figure 7.10 shows that when a subset of hosts can communicate through the

filtering system, γC remains near pre-censorship values, despite fewer sources sending

traffic. Thus we can infer that the outage was not caused by an event inducing network

packet loss. We excluded γ3 and η from this measurement, since there were not enough

hosts sending 3-packet SYN flows to accurately infer anything from these metrics.

Utility of metrics

In all three case studies, the metrics γ and η provided insight into the nature of

the outages. In the “Dodo-Telstra” case study, network congestion preceded the com-

plete outage. In response to congestion, the network dropped packets, decreasing the
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number of packets per flow, which reduced the values of γC and γ3 and increased η .

In the “Bell-Dery” case study, the metrics extracted from the Conficker signal implied

network-induced packet loss (e.g congestion). However, γC initially painted a different

picture of packet loss: sources able to send Conficker-like traffic were unaffected. A

deeper exploration of traffic volume by prefix and TTLs revealed that the connectivity

disruption was more severe for some subnets than others. This result demonstrated that

multiple data classes and metrics can strengthen the quality of inferences and provide

a starting point for further investigation. In the Libyan Internet Blackout example, al-

though the traffic volume was smaller, γC remained at pre-censorship levels whenever

Conficker-like traffic was observed. This behavior is consistent with filtering packets by

IP address or subnet: the number of traffic sources decreases but per-flow characteristics

will not change.

7.2.4 Discussion

To augment the binary signal of presence or absence of traffic flows from a par-

ticular network, we explored IBR-derived metrics that help characterize connectivity

disruptions that induce packet loss, e.g., link congestion. Our metrics are based on SYN

retransmits in unsolicited Internet background radiation, visible from passive darknet

instrumentation. Because these retransmits typically follow consistent patterns that are

a function of operating system or application implementation, we can infer packet loss

if some retransmits are not observed by the darknet.

We used three case studies to demonstrate that our γ and η metrics can distin-

guish a transit bottleneck-induced outage from an intentional nation-wide disconnection

caused by packet filtering. One unexpected finding was that in the Bell-Dery route leak

incident, different parts of the affected AS reacted differently to the route leak, con-

firmed by examination of TTL values on a per-prefix level. This analysis provided hints
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on how to group parts of a specific AS into finer-grained units that may be affected

differently by a disruption.

Our method has several limitations: it only measures packet loss between a given

source and our darknet. It also relies on the presence of Conficker-like or IBR TCP

traffic in general. But our simple metrics applied to a large darknet traffic segment

enable us to continually monitor one aspect of network connectivity (i.e., reachability to

our darknet) from all over the world.

Our method is complementary to techniques using active probes to discover out-

ages. For example, research have detected outage by sending probes to highly respon-

sive /24 blocks [165]; but, from our IPv4 address space utilization study, IBR includes

some /24 blocks missed through active probing. Alternatively, a combination of ping

and BGP data covers 89% of the Internet’s edge address space but the focus is on fail-

ures lasting longer than 15 minutes [107].

Although we did not conduct a coverage analysis, this metric seems suitable for

other connectivity scenarios and other darknet traffic.

7.3 Limitations of using IBR to analyze Internet status

In our path change and packet loss case studies, we discussed a number of limita-

tions of IBR. In this section, we discuss two inherent limitations of using IBR to assess

the status of hosts and networks on an Internet-wide scale. First, one of the main goals

of this dissertation is to determine our ability to make Internet-wide inferences with

IBR. While we can determine the coverage (number of analyzable networks) of our

techniques, we cannot assess the coverage provided by IBR as a whole. Our coverage

analyses are technique dependent, and, as we describe in Section 7.3.1, lower bounds

on the insight IBR can provide. Second, we typically associate inferred information

with a source address (or its corresponding network) originating the traffic. However,
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the inferred information may reflect the status of a transit network routing the traffic (as

opposed to the originating network). We discuss difficulties in pinpointing where an

event occurred in Section 7.3.2.

7.3.1 Results are lower bounds

We show that our path change methodology permits continual analysis for about

1.5k ASes; although we did not perform a coverage analysis of our technique for analyz-

ing packet loss, our technique intuitively applies to any network sending Conficker-like

or 3-SYN packets. However, it is important to note that these coverage findings are for

our techniques and are a lower bound on the number of IBR-analyzable networks. Our

reasoning is two-fold. First, researchers are ingenious. We expect other researchers to

develop better IBR-based techniques to assess network status. Second, when analyzing

a particular event, we should pick parameters appropriate for the associated time period

and network. For example, when identifying path changes, if few sources in a network

send IBR, it is reasonable to increase the size of the time bin from 5 minutes to 10

minutes.

To further illustrate that a technique’s coverage is a lower bound, we propose

alternative method for detecting packet loss with IBR using Carna Botnet traffic. As

we describe in Section 4.1, the Carna botnet [98] used an incremental scanning strategy.

With this knowledge, we can infer for each machine in the botnet (1) the next IP address

that will receive a packet (the previously scanned IP address + 70465) and (2) the time

at which the next IP will receive a packet (based on the observed scanning rate). When

these expected packets fail to reach our darknets, we can infer packet loss along the

path.5

In USCD-12, we receive Carna botnet traffic from host in 5.1k ASes. Of these
5We could apply a similar method to any predictable scan. For example, if we know a host scans entire

/24 blocks, we can check that we receive packets destined to every IP address in the block.
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ASes, 1.9k did not have a Conficker host. Conversely, 3.5k ASes were visible with

Conficker traffic but not Carna botnet traffic. Thus, there are cases where will are unable

to apply our γC metric, but the alternative Carna-based method may reveal packet loss,

and vice versa.6

This example illustrates that there are multiple ways to extract a predictable sig-

nal from IBR, and these signals may provide insight into different sets of networks. It

may make sense to analyze both signals (e.g., increase our confidence that packet loss

occurred) or select a single signal (e.g., there is no Carna botnet traffic in UCSD-13, so

Conficker traffic is preferable for longterm analysis). This finding applies generally to

IBR-based inferences of network status: each technique provides a lower bound on the

potential insight IBR can provide.

7.3.2 Difficulty pinpointing location of change

As discussed in Section 7.1, our TTL-based inference indicates that a path

change occurred but not where the on the route the change happened. This inability

to pinpoint where a change occurred applies to other IBR-based inferences about net-

work conditions.

Supplemented with a topology map, we may be able to hypothesize where a

change occurred. If only one AS exhibits signs of a change then it is likely that the

change occurred within the AS. If two ASes whose traffic eventually traverses the same

link to reach the darknet both experience changes, it is likely that the common link is

at fault. However, it is also possible that two independent changes occurred. For ex-

ample, macroscopic outages caused by earthquakes affected all ASes with a geographic

area [55].

One example where we cannot attribute packet loss to an individual link is during

6In addition to observing Conficker or Carna botnet traffic from an AS, to accurately apply our metrics,
we need sufficient traffic volume and diversity of hosts.
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the Conficker outbreak. Figure 7.11 shows the average packets per flow per day for

each source IP address sending traffic on TCP port 445, which is related to our metric

γC in Section 7.2. Since Conficker causes most sources to send TCP port 445 traffic,

we expect the average packets per flow to be close to (but not exceed) 2. However, at

the start of the Conficker outbreak in early 2009, this metric is between 1 and 1.75 for

most sources, indicating packet loss. It is unclear, from this data, if this loss is due to

an inability to capture all the traffic at UCSD-NT, or if many networks throughout the

Internet experienced packet loss. Because of the sudden shift to approximately 2 packets

per flow, and a corresponding increase in total sources, a link near UCSD-NT is a likely

culprit.7

7.4 Conclusion

In this chapter we have applied IBR to two problems: detecting path changes and

packet loss. These are valuable tools for assessing the status of networks throughout the

Internet. In particular, IBR may provide historical insight into macroscopic events.

Many researchers already study Internet-wide outages [86, 95, 107], topology

(including path changes) [11, 206, 175] and, to a lesser extent, packet loss. Our current

IBR techniques do not outperform these efforts. However, combining IBR with other

data sources should yield improved visibility. For path changes, we gain insight on the

reverse path — which is difficult to measure with traditional techniques. For packet loss,

existing metrics use bidirectional traffic; IBR can isolate the reverse path. Additionally,

some sources sending IBR are in networks that do not host measurement devices (e.g.,

an Ark node or Routeviews BGP peer).

IBR alone is unlikely to provide insight into the location of an event. But we

7A CAIDA network administrator informed us that they imposed rate-limits on IBR until April 14,
2009.
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could use dedicated probing to further investigate abnormalities detected with IBR. Re-

active probing to passively detected events has yielded better analysis of outages [107].

In particular, combining active and passive measurements could reduce the number of ac-

tive probes required to analyze macroscopic events, which generally involve distressed

networks that are unlikely to welcome excessive probing by the measurement commu-

nity. CAIDA is working on a system to combine signals from IBR, BGP updates, and

Ark probes to detect large-scale outages [37].
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Chapter 8

Conclusion

This dissertation rigorously evaluated the potential for IBR to improve our un-

derstanding of network utilization and conditions on an Internet-wide scale. First, since

spoofed packets can cause IBR-based approaches to yield incorrect inferences, we devel-

oped and validated a method to remove these packets from IBR datasets. We analyzed

IBR to discover phenomena suitable for Internet-wide measurement, that is phenom-

ena generated by a large number of sources; often, bugs and misconfigurations produce

these phenomena, instead of malicious traffic. Next, we investigated factors that influ-

ence our visibility into networks Internet-wide, including properties of IBR itself (e.g.,

who sends IBR? how often do they send IBR?) and the collection infrastructure (e.g.,

size of darknet, time of collection). With this knowledge, we finally inferred properties

of networks and hosts generating IBR. Through our analysis of IBR and 11 case studies,

we provide the following intuition on when researchers should (or should not) consider

using IBR for opportunistic network analysis:

• To improve findings. In the field of Internet measurement, it is always advisable

to use multiple data sources to improve findings. By using multiple data sources,

including IBR, we increased the number of known used /24 blocks from 4.59M

to 5.30M. Due to the assortment of traffic in IBR, it has the potential to contribute

219
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to many different types of inferences. In general, additional data sources should

be picked based on the diversity they provide. IBR may not be the best choice:

other passively collected datasets outperformed IBR, in terms of the quantity of

additional used /24 blocks, in our IPv4 address space utilization study. However,

improvements in quality provided by IBR may trump any deficiencies in quantity

(e.g., although we observe fewer open DNS resolvers with IBR than weekly scans

by the Open Resolver Project, we frequently capture traffic from the DNS servers

that send IBR).

• To investigate differences. Even in enumeration tasks where other data sources

greatly outperform IBR’s coverage, the differences in findings may reveal inter-

esting insights. We were surprised to find router interfaces in our IBR dataset

that were not in a traceroute dataset; this finding suggests that the traceroute data,

while discovering router interfaces in more than 10 times the number of /24 blocks

than IBR, is also incomplete. Moreover, a source’s presence in IBR can provide

additional context. For example, the open resolvers observed through IBR were

part of a new type of attack on authoritative name servers.

• To study networks with end users. Darknets capture traffic from clients, servers

and machines supporting the Internet’s infrastructure. Dedicated probing for

servers and infrastructure yields much better coverage, but is unlikely to identify

IP addresses associated with end users. With IBR, we captured a similar num-

ber of client /24 blocks — as indicated by sending a BitTorrent payload — as

passively monitoring traffic at a major European ISP. This large number of client

blocks allowed us to infer uptime, patch effectiveness, DHCP dynamics, and CGN

deployments.

• To test Internet tools. IBR can act as a diverse traffic sample for testing Internet
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tools. We expected to be able to apply existing uptime and NAT heuristics directly

to IBR. However, for both case studies we found inaccuracies in the tools’ output.

This information could be used to improve the tools, or alert users of instances

where the tools are inaccurate. Such enhancements will increase the accuracy of

the tool when applied to IBR, as well as, productive Internet traffic.

• To measure properties unrelated to traffic payload. IBR has many underlying bi-

ases (e.g., a large fraction of hosts sending IBR are infected with malware). With-

out a full understanding of these biases, it is difficult to accurately comment on the

processes generating the traffic. For example, we are not able to assess BitTorrent

client popularity because we cannot distinguish between the organic installations

of each client, client-specific implementation quirks that produce additional IBR,

and the victims of targeted attacks.

We produce more accurate Internet-wide assessments when we infer properties

unrelated to the traffic payload. For example, network configurations are unlikely

to be correlated with BitTorrent usage. As a result, the same BitTorrent traffic that

was unacceptable for analyzing client popularity yields significant insight into

DHCP dynamics and CGN deployment. In general, using the IP or transport layer

of the packet means correlation with IBR’s underlying biases is less likely than

analysis using application-layer information: we are able to infer uptime via TCP

timestamps for two orders of magnitude more hosts than previous work leveraging

the Witty worm’s payload.

We make a similar conclusion for inferences that require a degree of predictability

in the observations. Our efforts are widely applicable when the predictable at-

tributes are unrelated to the phenomena generating IBR. Since all IP packets have

a TTL, we can apply our path change heuristic to any IBR traffic. In contrast,
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as an alternative packet loss metric, we proposed a method that exploits patterns

in Carna botnet scans. Since the Carna botnet is no longer scanning the Internet,

this precise technique is no longer applicable. We could develop similar methods,

that also infer scanning strategy, but those too will need to differentiate between

service disruptions and other external factors (e.g., a botnet halts its Internet-wide

scan). Our original packet-loss heuristic in Section 7.2 falls in between these two

examples, as it is applicable to any traffic expected to send a fixed number of

packets. However, when analyzing connections with two packets per connection

attempt, we only consider Conficker, which has been decreasing in volume since

2009.

• To reduce measurement overhead. IBR should be able to reduce the number of

active probes required to conduct enumeration and monitoring tasks. If we can in-

fer the existence of a resource, or the state of a remote network with IBR, probing

becomes redundant. Eliminating redundant probes will lighten machine and net-

work loads, will is especially important when a remote network is under distress

(e.g., during an outage).

Moreover, there are inherent limitations to using IBR to infer network state: we

only observe packets traversing paths to the darknet, and it is difficult to pinpoint

where changes occur. For these reasons, it is unlikely that researchers would

conduct in-depth analysis of network conditions exclusively through IBR. It seems

more plausible to use IBR to continually monitor networks, but trigger additional

active measurements based on IBR observations. This scenario would allow for

equivalent coverage with less frequent active probing.

• When benefits of using IBR outweigh the effort required to exclude spoofed traffic.

Excluding spoofed traffic is necessary for accurate analysis with IBR. Often, this
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is as simple as extracting a specific type of traffic. However, for inferences that

leverage as many packets as possible it is a non-trivial amount of work to remove

spoofed packets using our sanitization technique.

8.1 Future directions

A natural extension of this work is to make additional inferences with IBR. We

see potential in three main areas: leveraging an increased understanding of IBR phenom-

ena, inferring network configurations, and combining active measurements with IBR.

First, a better understanding of IBR phenomena will produce more specific inferences:

identification of scanning techniques will produce better metrics for inferences requir-

ing predictability; the ability to recognize packets originating from mobile users will

produce a more detailed characterization of IPv4 utilization. Second, for network con-

figurations, we can improve our understanding of IP address sharing and firewalls. For

IP address sharing we can extend our DHCP and CGN work to: extract DHCP pools;

differentiate between arbitrary and paired CGN deployments1; track users as they move

between networks; and use IBR components other than BitTorrent to corroborate our

findings and increase coverage. We may also be able to use IBR to infer firewall poli-

cies by: inspecting ICMP destination unreachable messages to deduce the hosts behind

a firewall, and correlating spikes in spoofed traffic with networks experiencing extreme

packet loss to identify networks that do not implement egress filtering. Finally, we are

hopeful that IBR will be used in measurement pipelines: previous studies successfully

triggered active probing from passive observations, resulting in better insight into ser-

vice disruptions [107, 223].

1There are two ways in which internal addresses are mapped to external addresses: arbitrary and
paired [14]. In the arbitrary case, an internal IP address may map to multiple external addresses at the
same time. In the paired case, the same external address is used for all sessions associated with the internal
address. For proper UDP functionality, RFC 4787 requires paired address pooling.
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We expect that the ingenuity of other researchers will yield applications of IBR

beyond the ones presented in this dissertation. The changing composition of IBR can

serve as an inspiration. For example, we looked for open DNS resolvers in IBR after

an increase in DNS traffic reaching our darknets. In particular, some future studies may

not be possible with the current composition of IBR.

Beyond additional applications of IBR, this dissertation provides a framework

for analyzing the utility of a data source for Internet-wide network analysis. It is future

work to apply these metrics to other types of data (e.g., ping datasets, data passively

collected from live networks). Such an analysis would permit researchers to compare

multiple types of data, and make informed decisions based on their measurement needs.

8.2 Final thoughts

Often when speaking about this dissertation, people comment on the extrava-

gance of using such a large portion of the address space for academic research. The

main argument is that relinquishing our darknets could ease some of the difficulties in

obtaining publicly routable IP addresses: ARIN’s waiting list of organizations with an

unmet need of IPv4 addresses could be fulfilled with a single /12 block [12] — 1
64 of

UCSD-NT. This sentiment is worth consideration: does the research stemming from

IBR justify difficulties experienced in the productive Internet? In our opinion, contin-

ued operation of darknets, including the infrastructure to capture, process, store, and

visualize “pollution” is a worthwhile endeavor.

First, switching to IPv6 — not relinquishing our darknet — is the long-term

answer to the growing number of Internet devices. In the meantime, operators have

deployed technologies to extend IPv4’s lifetime: our analysis has shown wide adoption

CGN and DHCP. Additionally, Internet registries should attempt to reacquire prefixes

unannounced in BGP before darknets. Though, any solution that returns IPv4 addresses
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to the Region Internet Registries pools, is only delaying the inevitable exhaustion.

Furthermore, darknets provide an opportunity to study new attacks and their vic-

tims: botnets still scan darknets [54], and some DDoS attacks still use TCP-SYN packets

with spoofed darknet IP addresses [162]. However, compared to worm outbreaks, pop-

ular a decade ago, many popular attacks do not produce IBR, and the attacks that do

produce IBR may be difficult to identify. In our experience, the attacks appearing in

IBR are complex and novel (e.g., attacks on authoritative DNS servers, and BitTorrent

index poisoning attacks).

However, the biggest benefit of collecting IBR is our ability to use the traffic for

a variety of measurement tasks. This dissertation has shown that we gain considerable

insight into address space utilization and network conditions with IBR. Our case studies

are extremely varied: ranging from locating open resolvers to determining if a network

deploys CGN to detecting packet-loss. We are unaware of a publicly available data

source that provides more versatile, Internet-wide insight. We hope our work encourages

others to leverage IBR in their measurement studies, and we are excited to see IBR’s

continued contribution to Internet-wide studies.



Appendix A

Attributing IBR to responsible Internet
phenomena

Throughout this dissertation we refer to a number of IBR phenomena, including

a breakdown of the top components in Section 4. However, isolating and attributing

traffic to an individual IBR phenomenon can be nontrivial. Unlike Pang et al. who

responded to unsolicited traffic [156], we passively collect IBR, which limits the amount

of information we have to classify this traffic. Moreover, we show in Section A.1 that

port-based analysis, used in previous characterizations of IBR [217], is insufficient to

attribute traffic to a particular phenomenon.

In this appendix, we outline our effort at classifying IBR into components (that

is, classes of phenomena responsible for different traffic) based on observations of initial

communication attempts. We summarize our approach of isolating traffic and attributing

it to a phenomenon in Section A.2.

A.1 Evidence that port-based techniques are insuffi-
cient

We examine the top TCP and UDP destination ports from the UCSD-13 dataset

(in terms of number of source IP addresses). The top TCP ports corresponding to many

226
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Table A.1. Top TCP destination ports in UCSD-13. TCP/445, used by Conficker, is
the top TCP port. Most of the other top TCP ports are associated with popular services,
botnet, and P2P activity. One port, TCP/7111, is the result of traffic to a single UCSD-
NT address.

TCP Destination Port UCSD-13
IPs /24s ASes Countries

445 6,438,158 633,410 7,513 202
80 1,984,799 530,324 11,396 217
3389 761,305 289,006 5,677 191
6881 413,169 119,915 5,449 161
443 204,433 98,779 4,043 183
7111 77,155 48,673 1,647 128
4662 75,577 63,461 1,839 128
6882 74,041 28,383 2,557 129
23 72,891 47,222 3,018 160
22292 71,996 45,125 2,080 163

common services, but we need to perform additional analysis to determine why traffic

from this port reaches a darknet. For UDP, It is difficult to make sense of the top ports

as none correspond to well-known services. However, examining the payload reveals

that one application, Qihoo 360, is responsible for the entire top-10 list. As a result,

with port-based analysis alone we cannot provide significant insight into the phenomena

responsible for IBR.

A.1.1 Top TCP ports

Analyzing TCP-based IBR inherently requires a flow-based technique since the

packets do not contain application-layer payloads. However, just using TCP port infor-

mation is not enough to attribute flows to the process that generated them. Destination

ports do not provide information as to whether or not traffic is the result of a scan or a

widespread misconfiguration. Similarly, source ports do not provide information as to

whether or not traffic is the result of a DoS attack or low-volume backscatter.

Even when we know which process generates the majority of the traffic asso-

ciated with the port, analyzing ports alone does not immediately reveal the process’
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growth or decline. Port 445 tops the list of TCP destination ports (Table A.1) with 6.4M

associated IP addresses. This port, used by Conficker, was an influential component

in previous characterizations of IBR [217, 156]; though the volume has decreased sig-

nificantly from 72.5% of total packets in 2010 [217] to 27.8% of non-spoofed total in

UCSD-13. This decease is not sufficient to conclude that Conficker declined substantially

during this time period.1 In particular, in UCSD-13, 258k IP addresses send TCP/445

packets to ranges not targeted by Conficker. Similar analysis from 2010 is necessary to

comment on Conficker’s decline.

Unfortunately, a TCP port’s popularity may not reflect the amount of gen-

eral interest in the port from the live Internet (e.g., the likelihood of a port being

scanned, attacked, or hosting a service). Popular services (TCP/445, TCP/80, TCP/443,

TCP/3389, TCP/23), P2P activity (TCP/6881, TCP/4662, TCP/6882), and botnets

(TCP/22292 [147]) do account for most of the top TCP destination ports in Table A.1.

However, a one-off behavior can influence the ordering of the top ports. A single dark-

net address, UCSD.202.190.88, receives traffic from over 70k source IP addresses on

TCP/7111 — a port that is not associated with common applications.

Collectively, the IP addresses in Table A.1 account for 63% of the 15.6M IP

addresses sending TCP IBR in UCSD-13. TCP backscatter contributes another 366k IP

addresses. As a result, this port-based analysis covers less than two-thirds of sources

sending TCP traffic.

A.1.2 Top UDP ports

For each of the top-10 UDP destination ports in UCSD-13, most traffic results

from a bug in Qihoo 360 software, which we describe in Chapter 4.3.1. In UCSD-13, we

observe over 46M IP address as a result of the top UDP port, UDP/39455. Other work

1Additional analysis, in Section 4.1, reveals that Conficker declined significantly from 2010 to 2013.
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Table A.2. Top UDP destination ports in UCSD-13. All of the top 10 UDP ports are
the result of Qihoo 360 traffic.

UDP Destination Port UCSD-13
IPs /24s ASes Countries

39455 46,723,695 650,429 3,568 205
29991 23,546,302 636,511 4,066 217
29735 22,829,491 640,798 4,255 215
30247 21,990,060 623,568 4,017 214
15399 19,966,580 568,302 2,985 202
30503 14,048,207 570,823 3,383 210
4647 13,931,780 513,987 2,443 190
4903 11,890,457 496,654 2,238 186
30759 10,073,382 539,718 3,150 207
5159 9,015,693 488,792 2,162 188

included this port as a top contributor of IBR traffic [51, 177]. As a result, the analysis

of top UDP ports only reveals the scale of the Qihoo 360 bug.

A.2 Our approach to traffic attribution

Fortunately, our darknets collect packets with application-layer payloads. These

packets contain a variety of information — beyond ports — that is useful for the classi-

fication of IBR. Still, attributing traffic to a phenomenon responsible for the abnormally

high number of sources can be challenging. We do not have control over the hosts that

send IBR; in particular, we cannot check which software is installed. The analysis is also

difficult since IBR researchers do not publicly share signatures for known phenomena.

In some cases, the packets use common protocols. For example, from Sec-

tion 5.3.1, two IP hotspots in UCSD-13 are due to traffic on UDP port 53; further in-

spection revealed that they were DNS queries, as expected. Similarly, many TCP SYN

packets sent to a single darknet IP indicate that a darknet IP address is mistaken for a

server. In some cases, we can conjecture about the type of service (e.g., TCP/80 is likely

a webserver), but we are uncertain regarding some ports like TCP/3906.
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Responding to the traffic may reveal more information about an abnormality. For

example, sending TCP SYN-ACK packets in response to traffic on to port 80 hotspots

could expose which web sites the sources contacting the darknet are attempting to ac-

cess. But this technique only works when we know the application-layer protocol used

(and we often cannot identify the application-layer protocol). Additionally, we analyze

historical data. Sources sending traffic may no longer generate IBR at the time of analy-

sis.

The remainder of the section outlines additional tools and techniques we use

when we are uncertain of the payload associated with IBR.

A.2.1 Existing protocol identification tools

Libprotoident [8], from the University of Waikto, analyzes header information

and the first four bytes of a packet (for traffic in live networks, it analyzes both di-

rections). They currently have signatures for over 250 applications. Similarly, Wire-

shark [45] has built in support for dissecting many protocols. With Wireshark, we man-

ually decode packets [115] and check that there are no errors for the suspected protocol.

For example, we identify traffic reaching more than 5 IP hotspots as eMule by running

Libprotoident. We examine the eMule specification [111] to confirm the packets’ori-

gin. Additionally, we create filters to capture all eMule traffic — not just traffic to the

IP hotspots.

A.2.2 Literature on well-studied protocols

Security companies often release white papers on major Internet threats. We

leverage these existing analyses to attribute IBR to the malware that generated it. In

Section 4.1, we determine which packets are associated with Conficker from its scan-

ning patterns [41]. In Section A.2.7, we determine which packets are associated with
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the ZeroAccess and Sality botnets from analysis of the botnets’ command and control

channels [136, 65] — despite the packets appearing to have an encrypted payload.

One interesting piece of literature is about the Carna Botnet [98], where the bot

master released details of their own botnet and the data it discovered from scans. We

determine which packets originate from the Carna Botnet in Appendix B.

A.2.3 Web search for common text

Often traffic contains common strings, which we can query in a search en-

gine. For example, traffic whose payload includes “Tsource Engine Query”is due

to Steam [183].

Searching is often an iterative process. A number of packets to X.0.0.0 start

with the string “SRNT.”A Google search for “SRNT udp packet”returns a larger

packet trace [173]. From this packet trace we extract additional starting bytes such as

“ANNO”and “NANC.”A Google search for “’SRNT’‘ANNO’‘NANC’”

returns a Chinese message board where students are trying to figure out how to bypass

by monitoring software [225]. The forum mentions StudentMain.exe, an executable

associated with Classroom Management by Mythware [69].

A.2.4 Analysis of other traffic to a hotspot

The majority of packets to BitTorrent hotspots use the DHT or uTP protocols

over UDP. However, there is also considerable TCP SYN traffic and encrypted UDP

traffic to the same addresses. These TCP SYN and encrypted UDP packets often use the

same ports as the DHT or uTP traffic. This traffic is likely due to older clients that do not

support uTP (and still use TCP for downloading torrents) or clients that use BitTorrent’s

encryption protocol. Looking at all traffic reaching a hotspot allowed us to attribute

flows that would be unclassified if analyzed in isolation.
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A.2.5 Running software

We can run software suspected of sending IBR for additional analysis. For ex-

ample, to check if Mythware products send the“SRNT”packets, we installed and ran

the trial version of the product in a virtual machine. Running suspected software can

also help determine why we receive traffic — not just what type of software sends the

packets. In particular, we may be able to determine if we receive traffic due to software

bugs or attacks.

A.2.6 Analysis of hosts sending traffic

One payload signature originates from over 1M /24 blocks in UCSD-13,

UCSD-12, and MERIT-13. It is a non-encrypted 30 bytes of payload. We could not iden-

tify the protocol associated with the packets using the previously mentioned methods.

However, through the analysis of the sources sending the traffic we attribute packets to

Qihoo 360. We give a detailed explanation in Section 4.3.1. At a high-level, we identi-

fied IP addresses sending the traffic in the address space monitored by other researchers;

we then analyzed bidirectional traffic from these hosts.

A.2.7 Differentiating between encryption and obfuscation

We can test if the traffic appears to be random bytes — a characteristic of en-

crypted messages. A simple test is to calculate the entropy of the message payload and

check that it is close to log2(|payload|). While this test is not precise for a single small

packet [82], we can still get a sense of whether the traffic appears random with many

samples.

Often, a seemingly random payload is obfuscated, not encrypted. For example,

we found that one hotspot receives seemingly random payloads on port UDP/16464, a

port associated with ZeroAccess command and control [147]. Analysis of the botnet
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16:00:33.000064 IP 189.191.46.255.63057 > X.238.254.254.16464: UDP, length 16
0x0000: 4500 002c 0b28 0000 7111 XXXX bdbf 2eff E..,.(..q.%.....
0x0010: XXee fefe f651 4050 0018 1270 3b30 1e00 ,....Q@P...p;0..
0x0020: 2894 8dab c9c0 d199 7eee 7447 (.......~.tG

Figure A.1. ZeroAccess command and control packet. The payload of this packet
is obfuscated. We can check that the boxed bytes, with swapped byte order, satisfy:
0xAB8D9428 ∧ (0x66747032 ≪ 1) = 0x6765744c (“getL” in ASCII). .

16:00:06.000065 IP 111.248.55.49.51956 > X.16.56.246.7605: UDP, length 19
0x0000: 4500 002f 6c48 0000 7011 XXXX 6ff8 3731 E../lH..p..Fo.71
0x0010: XX10 38f6 caf4 1db5 001b 8298 7133 0f00 ,.8.........q3..
0x0020: 643e c2d4 2cf5 42b5 810f 7f01 5344 1e d>..,.B.....SD.

Figure A.2. Sality command and control packet. The boxed bytes act as an RC4 key
to obfuscate the remainder of the payload. After using the RC4 key, the first 6 bytes
are “0x038200000003,” which correspond to: Version 0x03, URL Pack Sequence ID
0x82000000, and Command 0x03 (Pack Exchange).

reveals that the payload is obfuscated using an XOR scheme [136]. Using this scheme,

we check that the fourth to eighth bytes of the deobfuscated are the bytes“getL.”We

show an example in Figure A.1. We compute the XOR and the “getL”test on all

UDP packets and find additional traffic — not on port 16464 — that also appear to be

ZeroAccess command and control packets.

We use a similar methodology to identify Sality command and control packets.

For one hotspot, the third byte of the UDP payloads is twelve less than the UDP length.

The format of a Sality command and control message is: [2 bytes hash] [2 bytes length]

[RC4 encrypted data] [65]. The hash and length of the data also double as the 4-byte

RC4 key for the encrypted data. When deobfuscated the packets have a deterministic

payload. We show a sample Sality packet in Figure A.2.

This method requires manual processing and investigation. Even when we find

a pattern that describes most of the traffic, it is difficult to find the responsible protocol.

For example, there are two IP hotspots that receive UDP packets that have 13 bytes

of seemingly random payload, and the first byte is normally 0x02. Figure A.3 shows

a sample of packet of unknown origin. However, we do not know the process that
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16:00:00.007271 IP 209.13.97.34.6294 > X.255.66.92.47890: UDP, length 13
0x0000: 4500 0029 0676 0000 6611 XXXX d10d 6122 E..).v..f.....a’’
0x0010: XXff 425c 1896 bb12 0015 03aa 0262 7037 ,.B.̇.......bp7
0x0020: b62b 5ec9 fd16 e340 1f .+^....@...

Figure A.3. Encrypted packet of unknown origin.

generates these packets.

Closely related is work on generating IDS signatures for C&C encryption [178].

In this work, the authors come up with probabilistic vector signatures for encrypted

traffic. We could apply the technique to darknet IP hotspots to characterize random

payloads. Then, we could look for similar payloads destined to other darknet addresses.

However, since probabilistic vector signatures are not publicly avaialble, we still cannot

attribute the traffic to a protocol.

A.3 Discussion

One of the contributions of this dissertation is a modern classification of IBR.

Attribution of IBR to the generating phenomena enriches this classification. Attribution

provides insight into why we observe the traffic. Automated methods, such as the one

used by Brownlee [35], could isolate and characterize new classes of IBR. However,

determining which software generates IBR, remains a challenge in IBR research.
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Scanning strategy heuristics

In Section 4.1 we commented on Internet-wide scanning campaigns. We as-

sumed that all hosts participating in the campagin use the same technique. To identify

such hosts, we developed flow-level heuristics for scanning strategies and applied the

heuristics to eight years of IBR (Figure 4.3). In this appendix, we specificy these heuris-

tics.

Our heuristics work as follows. For each IP address we tag as a scanner, we call

IPs the set of all darknet IP addresses scanned, i.e., IPs ={UCSD.B.C.D | UCSD.B.C.D

is scanned}. Based on this set, we then report:

• The size of the range of addresses scanned: δ =max({B×216+ C×28+ D |

UCSD.B.C.D ∈ IPs}) - min({B×216+ C×28+ D | UCSD.B.C.D ∈ IPs})

• The number of /16 network scanned: B =
∣∣{B| UCSD.B.C.D ∈ IPs}

∣∣
• The number of unique “C” values: C =

∣∣{C| UCSD.B.C.D ∈ IPs}
∣∣

• The number of unique “D” values: D =
∣∣{D| UCSD.B.C.D ∈ IPs}

∣∣
• The number of Conficker destinations: C=

∣∣{UCSD.B.C.D| UCSD.B.C.D ∈ IPs

∧ B < 128 ∧ D < 128}
∣∣
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With these statistics we identify the following classes of scanning strategies: sequential,

reverse-byte order, Conficker, and Random.

B.1 Sequential strategies

For the “Complete” and “Incremental” scanning strategies we use δ , the differ-

ence between the maximum and minimum address scanned. We infer “Complete” when

δ is about the same as the |IPs|. We infer “Incremental” when δ modulo |IPs|= 0.

An Incremental scanner may cycle through the address space more than once.

For popular increments, we develop additional increment-specific heuristics. For ex-

ample, most of the scanners to both TCP/23 and TCP/210 use a stepwidth of 134218,

137574 or 140929. When a host scanned TCP/23 or TCP/210 we check that |IPs| and δ

are consistent with cycling through the address space five or fewer times.

Another special use case is the Carna botnet [98] that used an increment of 70465

to scan many ports. For each hour, if we determine a port is being scanned with a

stepwidth of 70465, we mark all other unclassified scans of the same port as “Carna.”

B.2 Reverse-byte order strategy

We did not find very many reverse-byte order scans in our longitudial analysis

in Section 4.1; however, a stealthy /0 scan used this strategy [54]. Our heuristic for this

scan is D ≈ |IPs|
256×256

, C ≈ min(
|IPs|
256

, 256) and B ≈ min(|IPs|, 256)

B.3 Conficker

In the past, researchers exploited the fact that most TCP/445 traffic captured

in a darknet originated for Conficker-infected machines. For example, Dainotti et al.

consider all TCP/445 traffic with certain packet lengths to be Conficker-like [56]; in
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Section 7.2.1 we use all TCP/445 traffic with certain packet lengths and from certain

operating systems. As Conficker declines, we expect these methods to become less

reliable. There is nothing inherent about 48-byte packets and Conficker: we can receive

length 48 packets from arbitrary applications and operating systems.

Fortunately, Conficker has a quirk, which we can leverage to identify the traffic

it originates. There is a“bug”in Conficker’s pseudorandom number generator.1 When

scanning non-locally (the mode used to scan /8 darknets), Conficker only sends packets

to IP addresses A.B.C.D where B < 128 and D < 128 [41].

Sargent et al. consider packets to be “Likely Conficker”if it is a TCP/445

SYN to an address Conficker targets [180]. However, this method overcounts the Con-

ficker population: one quarter of the packets from a scan of the entire darknet are to

Conficker ranges. A basic improvement to this method is to also exclude packets that

come from hosts that also target non-Conficker ranges. This still overcounts, because

small complete (e.g., to UCSD.0.0.0/25) or incremental scans (e.g., of the .1 addresses

in UCSD.0.0.0/9) never target non-Conficker ranges.

Instead, we check if scanning strategy is consistent with randomly scanning the

Conficker ranges. If we want high confidence that traffic is sent by Conficker we choose

traffic where (1) only Conficker destinations are targets (C = |IPs|), (2) |IPs| is large

enough and (3) B, C , D are appropriate values given |IPs|. With a 95% probability,

Conficker hosts sending packets to at least 34 darknet IP addresses will target at least

one value B (and by the same argument D) twice, i.e, B < |IPs|. We use this criteria in

Figure 4.3 to capture Conficker’s decline over recent years.

Interestingly, with this heuristics, we find a host scanning with a Conficker strat-

egy starting on August 9, 2008 — two and a half months before the discovery of Con-

1Conficker has other quirks that we could also leverage. For example, Conficker sends only one re-
transmission packet (most Windows machines send two), probably due to an abnormally short timeout [5].
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ficker. The first two hosts geolocate to the Guangdong province in China. It is possible

the creators of Conficker used these addresses to test the worm before releasing it.

However, with the high confidence heursitics, decribed above, we miss a large

portion of Conficker traffic. First, some Conficker infected machines are behind NAT

devices. In this scenario, there may be a mix of Conficker and non-Conficker traffic on

TCP port 445.2 Second, many Conficker infected machines send less than 34 packets per

hour (the time granularity we analyze). For Table 4.1, we relax the criteria: we consider

all sources where |IPs| ≥ 4, at least 95% of scans are to Conficker-targets, and B ≥ 3.

This relaxed criteria results in almost no difference in observed /24 blocks on TCP port

445 between UCSD.0.0.0/9 and UCSD.128.0.0/9 while excluding small sequential and

“Random” scans.

B.4 Random strategies

For strategies involving (seemingly) random selections, we extend the intution

of the Conficker heuristic. By choosing appropriate values of B, C , and D , checking

for the various types of random scanning is a generalized form of the birthday problem.

Specifically, when determining if a scan is “Random”, we ask, given |IPs| scans that

target 256 possible values (i.e., birthdays) for each B, C , and D , how many unique

values can we expect?

2Note that our technique to identify Conficker traffic does not estimate the number of infected ma-
chines. Due NAT and DHCP, the number of IP addresses sending malicious traffic is not equivalent to
the number of infected machines [167, 105]. However, Weaver used Lévy’s form of the Central Limit
Theorem to estimate the size of the Conficker population [212].
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