
Research Article
Improved Monarch Butterfly Optimization Algorithm Based on
Opposition-Based Learning and Random Local Perturbation

Lin Sun ,1 Suisui Chen ,1 Jiucheng Xu ,1 and Yun Tian 2

1College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
2College of Information Science and Technology, Beijing Normal University, Beijing 100875, China

Correspondence should be addressed to Jiucheng Xu; jiuchxu@gmail.com

Received 4 July 2018; Revised 25 October 2018; Accepted 19 November 2018; Published 10 February 2019

Guest Editor: Yimin Zhou

Copyright © 2019 Lin Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Many optimization problems have become increasingly complex, which promotes researches on the improvement of different
optimization algorithms. The monarch butterfly optimization (MBO) algorithm has proven to be an effective tool to solve various
kinds of optimization problems. However, in the basic MBO algorithm, the search strategy easily falls into local optima, causing
premature convergence and poor performance on many complex optimization problems. To solve the issues, this paper develops a
novelMBO algorithm based on opposition-based learning (OBL) and random local perturbation (RLP). Firstly, the OBLmethod is
introduced to generate the opposition-based population coming from the original population. By comparing the opposition-based
population with the original population, the better individuals are selected and pass to the next generation, and then this process
can efficiently prevent the MBO from falling into a local optimum. Secondly, a new RLP is defined and introduced to improve the
migration operator.This operation shares the information of excellent individuals and is helpful for guiding some poor individuals
toward the optimal solution. A greedy strategy is employed to replace the elitist strategy to eliminate setting the elitist parameter
in the basic MBO, and it can reduce a sorting operation and enhance the computational efficiency. Finally, an OBL and RLP-based
improvedMBO (OPMBO) algorithmwith its complexity analysis is developed, following onwhichmany experiments on a series of
different dimensional benchmark functions are performed and the OPMBO is applied to clustering optimization on several public
data sets. Experimental results demonstrate that the proposed algorithm can achieve the great optimization performance compared
with a few state-of-the-art algorithms in most of the test cases.

1. Introduction

Many real-world tasks, which can be transferred to opti-
mization problems, have become increasingly complex and
are difficult to solve using the traditional optimization algo-
rithms [1]. Recently, a lot of nature-inspired metaheuristic
algorithms have been proposed and applied to deal with
various optimization problems [2]. Then, the researches on
tackling by optimization techniques in many applications
have become a fruitful field of research, especially those inter-
ested in solving global optimization problems. The swarm
intelligence optimization (SIO) algorithm is a kind of bionic
random method inspired by natural phenomena and biolog-
ical behaviors and can deal with certain high-dimensional
complex and variable optimization problems because of its
better computing performance and simple model [3, 4].

Over the past several decades, SIO has become an
attractive research area which leads to the emergence of a
large variety of intelligent optimization algorithms. Kennedy
and Eberhart [5] proposed a particle swarm optimization
(PSO) algorithm derived from the simulation of bird for-
aging behaviors. However, the PSO often faces premature
convergence problem, especially in multimodal problems
as it may get stuck in specific point [6]. Wu and Yang
[7] presented an elitist transposon quantum-based PSO to
solve economic dispatch problems. Eusuff and Lansey [8]
presented a shuffled frog-leaping algorithm (SFLA), which is
inspired from the memetic evolution of frogs seeking food in
a pond. It has been shown to be competitive with PSO, but
the SFLA is good at exploration but poor at exploitation and
easily gets trap in local optima when solving partial complex
multimodal problems. Meanwhile, its convergence speed is

Hindawi
Complexity
Volume 2019, Article ID 4182148, 20 pages
https://doi.org/10.1155/2019/4182148

http://orcid.org/0000-0003-4917-7651
http://orcid.org/0000-0002-5622-3145
http://orcid.org/0000-0002-5459-4268
http://orcid.org/0000-0001-5574-2325
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/4182148

2 Complexity

slower [9]. Tan and Zhu [10] designed a fireworks algorithm
(FWA) for the global optimization of complex functions.
The FWA has powerful global optimization capabilities to
solve classification problems, but there is no direct interaction
among the solutions found during the optimization process
of FWA; its convergence speed is slow and the computational
cost is high [11]. Yin et al. [12] introduced a hybrid FWA-
based parameter optimization into the nonlinear hypersonic
vehicle dynamics control to satisfy the design requirements
with high probability. Gandomi and Alavi [13] developed
a krill herd algorithm (KHA) which mimics the herding
behavior of ocean krill individuals. The herding of the krill
individuals is a multiobjective process, and the position of
an individual krill is time dependent. Unfortunately, the
performance of KHA is degraded by the poor exploitation
capability, and the basic KHA has a low convergence speed
and accuracy [14]. Singh and Khan [15] proposed an artificial
shark optimization (ASO) method to remove the limitation
of existing algorithms for solving the economical operation
problem of microgrid. Mirjalili et al. [16] established a grey
wolf optimizer (GWO) metaheuristic based on grey wolves.
The GWO algorithm is considered for learning method due
to its advantages, including high accuracy, effectiveness, and
competitiveness [17]. The paramount challenge in GWO is
that it is prone to stagnation in local optima [18]. Dif-
ferential evolution (DE) as a popular stochastic optimizer,
proposed by Storn and Price [19], is to exhibit consistent
and reliable performance in nonlinear and multimodal envi-
ronment and has proven to be effective for constrained
optimization problems [20]. Some empirical studies have
shown that DE outperforms PSO [21]. However, setting
different parameters has great impacts on the performances
of DE algorithm when solving various global optimization
problems or even the same problem at different evolutionary
stages [22]. The fruit fly optimization algorithm (FOA) as
a global optimization method was proposed by Pan [23],
who was inspired by the foraging behavior of fruit flies.
The FOA is simple in structure and easy to implement
[24]. However, the basic FOA often derives a local extreme
when solving high-dimensional functions and large-scale
combinational optimization problems [25]. The idea of ant
colony optimization (ACO) is to mimic the way that real
ants find the shortest route between a food source and their
nest. Recently, the ACO algorithm and its versions have been
investigated to tackle combinatorial optimization problems
[26]. But the efficiency of ACO is unsatisfactory since each
ant needs to search for a complete solution, and the runtime
is rather long [27]. Abedinia et al. [28] introduced a shark
smell optimization (SSO) algorithm, which is applied for
the solution of load frequency control problem in electrical
power systems. The monarch butterfly optimization (MBO)
algorithm was first presented by Wang et al. [29], and it
simulates the migration behaviors of monarch butterflies in
nature. Although most of these heuristic techniques have
the ability to provide fast and efficient solution, sometimes
they suffer from discovering global optimal solution, slow
convergence rate, and several parameters tuning [30]. Until
now, the MBO algorithm has become one of the most widely
used SIO algorithms, and it has two important operators, the

migration operator and the butterfly adjusting operator [31].
The former provides a certain local search capability and the
latter gives a global search capability. The search direction of
monarch butterflies is mainly determined by the migration
operator and the butterfly adjusting operator in MBO. Since
the migration operator and the butterfly adjusting operator
can be implemented simultaneously, MBO is ideally suited
for parallel processing and is capable of making trade-offs
between intensification and diversification [32]. In addition,
the MBO algorithm has simple calculation process, requires
less computational parameters, and is easy to implement
by a program. Furthermore, some advantages of MBO are
incomparable to many other intelligent optimization algo-
rithms. Therefore, the MBO algorithm and its versions have
been widely used in many fields, such as dynamic vehicle
routing problem [30], 0-1 knapsack problem [31], neural
network straining [32], optimal power flow problem [33], and
prevention of osteoporosis [34].

In the last few years, in order to improve the performance
of MBO, the scholars have made many improvements. In
the basic MBO algorithm, after implementing the migration
operator, the generated monarch butterfly will be accepted as
a new monarch butterfly in the next generation regardless of
whether it is better or worse. Then, Hu et al. [35] used self-
adaptive and greedy strategies to improve the performance
of the basic MBO. However, it suffers greatly from worse
standard deviations and average fitness on some benchmarks.
Wang et al. [36] developed a different version of MBO
with greedy strategy and self-adaptive crossover operator
(GCMBO), in which the greedy strategy can accelerate
convergent speed and the self-adaptive crossover operator
can significantly improve the diversity of population at later
run phase of the search. Feng et al. [37] proposed a chaotic
MBO algorithm, in which the chaos theory was employed to
enhance its global optimization ability. Feng et al. [38] intro-
duced neighborhood mutation with crowding and Gaussian
perturbation into MBO algorithm, in which the first strategy
enhances the global search ability, while the second strategy
strengthens local search ability and prevents premature con-
vergence during the evolution process. At present, the MBO
is usually combined with other SIO methods to improve the
optimization performance. The main objective is to improve
the balance between the characteristics of exploration and
exploitation in those algorithms in order to address the
issues of trapping in local optimal solution, slow convergence,
and low accuracy in complex optimization problems [39].
Ghanem and Jantan [40] presented ametaheuristic algorithm
that combined artificial bee colony optimization with the
MBO. Ghetas et al. [41] introduced the harmony search
algorithm into MBO to enhance the search ability of MBO,
in which mutation operators were added to the process of
adjusting operator to enhance the exploitation and explo-
ration ability and speed up the convergence rate of MBO.
Strumberger et al. [42] incorporated the searchmechanism of
firefly algorithm (FA) into MBO to overcome this deficiency
that in early iterations exceedingly directs the search process
toward the current best solution in MBO. However, most
of the abovementioned MBO algorithms still easily fall into
local optima and are rather slow in convergence. This inspires

Complexity 3

the authors to investigate new nature-inspired optimization
algorithm about MBO.

Based on the above analyses ofMBO, it is clear that falling
into local optima easily is one of the typical disadvantages of
MBO, and there are many ways to improve this drawback.
The OBL method, proposed by Tizhoosh [43], is one of the
most effective methods. It can prevent the algorithm from
falling into local optima to some degree. For example, Shang
et al. [44] introduced OBL, dynamic inertia weight, and a
postprocedure to improve PSO with mutual information as
its fitness function to detect SNP-SNP interactions, in which
OBL enhances the global explorative ability. Since the poor
exploration capabilities of SFLA sometimes get trapped in
local optima, which results in poor convergence, Sharma
and Pant [45] embedded the OBL into the memeplexes
before the frog initiates foraging, which enhances the local
search mechanism of SFLA but also improves the diversity.
Ahandani and Alavi-Rad [46] used new versions of the SFLA
which on the one hand employed the OBL to accelerate the
SFLA without making premature convergence and on the
other hand used the OBL strategy to diversify search moves
of SFLA. Yu et al. [47], inspired by the OBL, improved the
performance of the FA, in which the worst firefly is forced
to escape from the normal path after OBL operation and can
help it to escape from local optima. Yang et al. [48] presented
an improved artificial bee colony algorithm based on OBL
to overcome the shortcomings of the slow convergence rate
and sinking into local optima. Shan et al. [49] embedded the
OBL into the bat algorithm to enhance the diversity and con-
vergence capability. Park and Lee [50] combined differential
evolution with OBL to obtain a high-quality solution with
low-computational effort. Kumar and Sahoo [51] presented a
cat swarm optimization (CSO) algorithm via the OBL, which
can enhance the diversity of the algorithm. Sarkhel et al. [52]
applied OBL to the harmony search algorithm to overcome
slow convergence to the globally optimal solutions. Zhang
et al. [53] merged the OBL into the biogeography-based
optimization algorithm to prevent the algorithm from falling
into the local optima. Zhang et al. [54] added the OBL to the
GWO(OGWO) to prevent the algorithm from falling into the
local optima. In recent years, the OBL has become a widely
used technique in optimization algorithms. It is noted that
theOBL can increase population diversity and enhance global
search ability [55]. If the current best candidate solution falls
into the local optima, it may mislead the other candidate
solutions into the local optima. However, its opposite is often
far from the local optima.Therefore, this paper introduces the
OBL into the initial phase of MBO, effectively avoiding the
algorithm falling into the local optimum. Furthermore, the
opposition-based individuals are generated by the OBL such
that the best individual can be accepted. This operation can
efficiently prevent the algorithm from falling into the local
optima to some extent.

What is more, there exists much insufficiency for MBO
about its solution search mechanism which may bring the
premature convergence and the low search accuracy when
solving complex optimization problems [49].Then, consider-
ing that MBO converges very slowly, a perturbation operator
strategy can be used to ensure the diversity of monarch

butterfly against the premature convergence. For example,
Liu et al. [9] designed a perturbation operator strategy in a
convergence state to help the best frog to jump out of possi-
ble local optima to further increase the performance of SFLA.
Wang et al. [56] proposed an improved FOA using swarm
collaboration and random perturbation strategy to enhance
the performance. Li et al. [57] developed an artificial bee
colony algorithm with random perturbations for numerical
optimization, in which the self-adaptive population pertur-
bation strategy for the current colony is used by random
perturbation to enhance the population diversity. Yu et
al. [58] presented a teaching-learning-based optimization
with a chaotic perturbation mechanism, which produces
many solutions around the current best solution and thereby
enhances the searching ability and global convergence. Li et
al. [59] utilized the uniformity of Anderson chaotic mapping
and performed chaos perturbation to part of particles based
on the information of variance of the population’s fitness to
avoid the untimely aggregation of particle swarm. Based on
the ideas of random perturbation, a novel RLP operator is
proposed to prevent premature convergence in this paper,
and merged into the migration operator. The improved
migration operator with RLP shares the information of excel-
lent individuals, which is conducive to guiding individuals
to approach an optimal solution and accelerate convergence,
and the works are not considered in previous MBO.

The remainder of this paper is organized as follows:
Section 2 reviews some related theory of the MBO algo-
rithm. In Section 3, the OBL method and RLP-based migra-
tion operator are investigated, and the main procedure
of improved MBO and its complexity analysis are given.
Section 4 describes the experimental results and analysis.
Finally, the conclusion is summarized in Section 5.

2. Related Work

The theory of the MBO algorithm can be found in [29, 36].
In MBO, all monarch butterfly individuals are idealized and
located in only two lands as follows: the northern United
States and southern Canada (Land1), and Mexico (Land2).
Then, the location of monarch butterflies is updated in
two ways, namely, the migration operator and the butter-
fly adjusting operator. Firstly, the offspring are generated
(location update) through the migration operator. Secondly,
the location of other monarch butterflies is updated by the
butterfly adjusting operator. Thus, the search direction of the
monarch butterfly individual is determined by the migration
operator and the butterfly adjusting operator. Moreover, the
two operators can be performed simultaneously. Therefore,
the MBO algorithm is suitable for parallel processing, and
it has a good balance of strengthening and diversifica-
tion. The MBO algorithm abides by the following ideal
rules:(1) All the monarch butterflies are located only in Land1
and Land2. Namely, the population of the entire monarch
butterflies is composed by the monarch butterflies in Land1
and Land2.(2)The offspring of each monarch butterfly are generated
only by the migration operator in Land1 or Land2.

4 Complexity

(3) To keep the population constant, once a descen-
dant monarch butterfly is produced, a corresponding parent
monarch butterfly will disappear.(4) Monarch butterfly individuals with the best fitness
automatically enter the next generation without any oper-
ation, and then it ensures that the quality of the monarch
butterfly population does not decline as the number of
iterations increases.

The MBO algorithm contains two important operators,
which are described as follows.

The first operator is the migration operator, whose pur-
pose is to update the migration of the monarch butterflies
between Land1 and Land2. The total number of monarch
butterflies is NP, and the numbers of monarch butterflies in
Land1 and Land2 are NP1= ceil (𝑝 × 𝑁𝑃) and 𝑁𝑃2 = 𝑁𝑃 −𝑁𝑃1, respectively, where p is the migration rate of monarch
butterflies with p = 5/12 in MBO, ceil(x) rounds x to the
nearest integer greater than or equal to x, the subpopulation
of Land1 is denoted as Subpopulation1, and the subpopulation
of Land2 is denoted as Subpopulation2. Then, the migration
operator is expressed as

𝑥𝑡+1𝑖,𝑘 = {{{
𝑥𝑡𝑟1,𝑘, 𝑟 ≤ 𝑝
𝑥𝑡𝑟2,𝑘, 𝑟 > 𝑝, (1)

where 𝑥𝑡+1𝑖,𝑘 is the kth element of x𝑖 in generation t + 1;
similarly, 𝑥𝑡𝑟1 ,𝑘 denotes the kth element of 𝑥𝑟1 in generation
t, and 𝑥𝑡𝑟2 ,𝑘 is the kth element of 𝑥𝑟2 in generation t; the
current generation number is t, and the monarch butterflies
r1 and r2 are randomly selected from Subpopulation1 and
Subpopulation2, respectively. Here, r is calculated by 𝑟 =𝑟𝑎𝑛𝑑×𝑝𝑒𝑟𝑖, where peri is themigration period, which is equal
to 1. 2 in MBO and rand is a random number in [0, 1].

The second operator is the butterfly adjusting operator,
which is used to update the position of monarch butterfly in
Subpopulation2. The formula is described as

𝑥𝑡+1𝑗,𝑘
= {{{{{{{{{

𝑥𝑡𝑏𝑒𝑠𝑡,𝑘, 𝑟𝑎𝑛𝑑 ≤ 𝑝
𝑥𝑡𝑟3 ,𝑘, 𝑟𝑎𝑛𝑑 > 𝑝 & 𝑟𝑎𝑛𝑑 ≤ 𝐵𝐴𝑅
𝑥𝑡+1𝑖,𝑘 + 𝛼 × (𝑑𝑥𝑘 − 0.5) , 𝑟𝑎𝑛𝑑 > 𝑝 & 𝑟𝑎𝑛𝑑 > 𝐵𝐴𝑅,

(2)

where𝑥𝑡+1𝑗,𝑘 is the kth element of x𝑗 in generation t+1; similarly𝑥𝑡𝑏𝑒𝑠𝑡,𝑘 is the kth element of 𝑥𝑏𝑒𝑠𝑡 in generation t, which is the
best location for monarch butterflies in Land1 and Land2,𝑥𝑡𝑟3,𝑘 is the kth element of 𝑥𝑟3 in generation t, the monarch
butterfly r3 is randomly selected from Subpopulation2, and
BAR is the adjustment rate. If BAR is less than the random
number rand, the kth element of x𝑗 at t + 1 is updated, where𝛼 is the weighting factor, and 𝛼 = 𝑆max/𝑡2, where S𝑚𝑎𝑥 is the
maximum walk step. In (2), dx is the walk step of butterflies
j that can be calculated by the Levy flight such that dx =
Levy(𝑥𝑡𝑗).

3. Improved MBO Algorithm Based on
OBL and RLP

3.1. Motive of Improving MBO Algorithm. In the MBO
algorithm, the migration operator and the butterfly adjust-
ing operator can ensure the search direction of monarch
butterflies. Furthermore, the migration operator and the
butterfly adjusting operator can be executed simultaneously.
The advantages of MBO algorithm include its simplicity and
easy implementation. However, the drawbacks of MBO algo-
rithm cause poor optimization efficiency in solving complex
optimization problems, which aremainly described from two
aspects as follows: First, from (1), the monarch butterflies
r1 and r2 are randomly selected from Subpopulation1 and
Subpopulation2, respectively. Aworsemonarch butterflymay
be selected to share its features with a better one, leading to
the population degenerating. Second, from the main process
of MBO, when the elitist strategy is adopted, the population
must be sorted twice during each generation, thus causing
high time complexity. Thus, in order to overcome the above
drawbacks and improve the optimization efficiency of MBO,
several creative improvements are developed in this paper.

3.2. Opposition-Based LearningMethod. In the fields of com-
putational intelligence, the OBL is usually used to improve
the convergence rate of many optimization algorithms. Its
main idea is to take into account the current population as
well as its opposite population at the same time and further
obtain better candidate solution [55]. In recent years, the
scholars have applied the OBL method in population-based
optimization technique to enhance the convergence rate. It
can be concluded that an opposite candidate solution has a
better chance to be closer to the global optimum solution
than a random candidate solution [51]. The opposite solution
of OBL is denoted by the mirror point of the solution from
the center of the search space, and then its formula can be
mathematically expressed as

𝑥𝑖,𝑗󸀠 = 𝑎𝑖 + 𝑏𝑖 − 𝑥𝑖,𝑗, (3)

where 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,D) is a feasible solution in a D-
dimensional search space, 𝑥𝑖,𝑗 = [𝑎𝑖, 𝑏𝑗], 𝑗 = 1, 2, . . . , 𝐷, and
its opposition-based solution is 𝑥󸀠𝑖 = (𝑥󸀠𝑖,1, 𝑥󸀠𝑖,2, . . . , 𝑥󸀠𝑖,D).

Note that if the OBL approach is introduced into the
initialization of the MBO algorithm, it can produce the
opposition-based population.Then, the better individuals are
selected to participate in the evolution from the union of the
original populations and the opposition-based populations.
Thus, this operation increases the population diversity and
expands the exploration scope of MBO.

3.3. Random Local Perturbation-Based Migration Operator.
To overcome the shortcoming of the premature convergence
of MBO, a novel RLP is constructed and merged into the
migration operator of the MBO. For this, the RLP strategy
can be defined as

𝑥𝑡+1𝑖,𝑘 = 𝑥𝑡𝑝,𝑑 + 𝑟𝑎𝑛𝑑 × (𝑥𝑡𝑞,𝑑 − 𝑥𝑡𝑝,𝑑) , (4)

Complexity 5

for 𝑖 = 1 to𝑁𝑃1 do
for 𝑘 = 1 to 𝐷 do

R = 0. 5.
Set 𝑟 as a random number in [0, 1].
if 𝑟 < 𝑅 then

Calculate 𝑥𝑡+1𝑖,k by Eq. (4).
else

Calculate 𝑥𝑡+1𝑖,k by Eq. (1).
end if

end for
Calculate 𝑥𝑡+1𝑖,new with greedy strategy by Eq. (5).

end for

Algorithm 1

where 𝑥𝑡𝑝 is an optimal solution in generation t, 𝑥𝑡𝑞 is a
suboptimal solution in generation t, 𝑥𝑡+1𝑖,k is the kth element of
the ith individual in generation t + 1, 𝑥𝑡𝑝,𝑑 is the dth element
of the optimal solution in generation t, 𝑥𝑡𝑞,𝑑 is the dth element
of the suboptimal solution in generation t, and d can be
calculated by 𝑑 = ⌈𝐷 × 𝑟𝑎𝑛𝑑⌉.

Equation (4) shares the information of the optimal
solution and the suboptimal solution, which is conducive to
guiding the current individual to move toward the optimal
solution and the suboptimal solution. Then, the convergence
speed can be effectively accelerated. Meanwhile, to maintain
the diversity of the MBO search, a control parameter R is set
asR= 0. 5, whereR= 0. 5 is determined throughmany experi-
ments, and a randomnumber r from0 to 1 is generated.When
r<R, the locationupdating is performed according to (4); oth-
erwise the location updating is performed according to (1).

For the basic MBO, the parameters of the elitist strategy
need to be set. In each generation, the population will be
sorted twice, which brings about much computation com-
plexity. If the greedy selectionmethod is adopted inMBO, the
population at each generation is just sorted once. Thus, the
elitist strategy can be replaced by the greedy selection method
in the SIO algorithms [53]. Hence, during each generation,
the new generated monarch butterflies are compared with
the corresponding old ones, and the better one is selected.
So, this replacement eliminates the elitist parameters, gets rid
of a sorting, and further improves the operation efficiency.
It follows that the greedy strategy is introduced into the
improved migration operator with RLP, and the superior
candidate solution is retained by the principle of survival of
the fittest. Here, the greedy strategy can be expressed as

𝑥𝑡+1𝑖,𝑛𝑒𝑤 = {{{
𝑥𝑡+1𝑖 , 𝑓 (𝑥𝑡+1𝑖) < 𝑓 (𝑥𝑡𝑖)𝑥𝑡𝑖 , otherwise, (5)

where 𝑥𝑡+1𝑖,𝑛𝑒𝑤 is the generation t + 1 of new monarch butterfly
individuals, and𝑓(𝑥𝑡+1𝑖) and𝑓(𝑥𝑡𝑖) represent the fitness values
of two monarch butterflies 𝑥𝑡+1𝑖 and 𝑥𝑡𝑖 , respectively.

The special steps of the improvedmigration operator with
RLP are described in Algorithm 1.

For Algorithm 1, the improved migration operator with
RLP shows that our proposed method with sharing infor-
mation can make full use of the information of the high-
quality individuals in the current population, and improve
the local optimization ability. Moreover, the greedy strategy
only retains individuals who have a better fitness, which
efficiently enhances the convergence rate.

3.4. Main Procedure of Improved MBO Algorithm. All the
above improvements can enhance the optimization perfor-
mance of the MBO algorithm. The main process of OBL
and RLP-based improved MBO (OPMBO) algorithm can
be illustrated in Figure 1. The special steps of the OPMBO
algorithm are provided in Algorithm 2.

3.5. Complexity Analysis. Under the same software and hard-
ware on all systems, the computational complexity of the
optimization algorithm is mainly composed of two parts as
follows: one is the complexity of the objective function, and
the other is the complexity of the algorithm process. In the
comparison experiment, six kinds of SIO algorithms, namely,
the MBO algorithm [29], the GCMBO algorithm [36], the
OPMBO algorithm, the FOA based on hybrid location
information exchange mechanism (HFOA) [60], the GWO
algorithm [16], and theOGWOalgorithm [54], have the same
population number and maximum number of iterations, so
that their maximum function evaluation times are equal.
Thus, the complexity of OPMBO algorithm mainly focuses
on its operation process. For the OPMBOalgorithm, the time
complexity is polynomial. Assume that the maximum num-
ber of iterations of the OPMBO is MaxGen, the population
size is NP, the Subpopulation1 is NP1, the Subpopulation2 is
NP2 with NP2 = NP – NP1, and the dimension is D. In an
effort to avoid confusion and awkward phrasing, MaxGen is
replaced byT,NP is replaced byN, andNP1 is replaced byN1.
According to Figure 1, the time complexity of the algorithm
is mainly determined by each iteration cycle. The detailed
analysis of time complexity forOPMBO is as follows:The first
step is to calculate the fitness value of the monarch butterflies,
and then the time complexity is O(N). The second step is
sorting, and the time complexity of Quicksort algorithm in
[31] is 𝑂(𝑁 log𝑁). The third step is to divide the population
into two subpopulations, and the time complexity is O(N).
The fourth step is to firstly run the improved migration
operator, which has two inner loops, and then the time
complexity is 𝑂(𝑁1 × 𝐷). And secondly for the butterfly
adjusting operator, there are two inner loops, whose time
complexity is 𝑂((𝑁 − 𝑁1) × 𝐷). Therefore, the total time
complexity of OPMBO algorithm is 𝑇(𝑛) = 𝑂(𝑓(𝑛)) =𝑂(𝑇 ×(𝑁 + 𝑁 log𝑁 + 𝑁 + (𝑁1 × 𝐷) + ((𝑁 − 𝑁1) × 𝐷))) = 𝑂(𝑇 ×(2𝑁+𝑁 log𝑁+𝑁×𝐷)) = 𝑂(𝑇 ×𝑁 log𝑁). In the OPMBO
algorithm, since the variable storage space is affected by the
population size N and the variable dimension D, the space
complexity can be calculate by 𝑆(𝑛) = 𝑂(𝑓(𝑛)) = 𝑂(𝑁 × 𝐷).
4. Experimental Results and Analysis

4.1. Experiment Preparation. To verify the optimization per-
formance of OPMBO, a series of experiments are performed

6 Complexity

Start

Sort the population according to monarch butterfly fitness

Divide the monarch butterflies population into two subpopulations

Output the optimal values

End

Update Subpopulation2 according to the
butterfly adjusting operator

Update Subpopulation1 according to the
improved migration operator with RLP

Calculate fitness values according to the
location of each monarch butterfly

Generate the opposition-based population and select
individuals with better fitness to enter the next generation

Set the parameters and initialize the population
t = 1

t = t + 1

Y
N

t ⩽ MaxGen?

Figure 1: The main process of the OPMBO algorithm.

Step 1. Set the population quantity 𝑁𝑃, the maximum generation𝑀𝑎𝑥𝐺𝑒𝑛, the dimensions 𝐷, the max walk step size 𝑆𝑚𝑎𝑥,
the adjusting rate 𝐵𝐴𝑅, the migration period 𝑝𝑒𝑟𝑖 and the migration rate 𝑝. Let the current cycle counter 𝑡 = 1.
//Initialization operation

Step 2. Generate the opposition-based population according to OBL. Select the individuals with better fitness to enter
the next generation from the original and opposition-based populations.

Step 3. Calculate their fitness values according to the location of each monarch butterfly. //Fitness evaluation
Step 4. While 𝑡 ≤ 𝑀𝑎𝑥𝐺𝑒𝑛 do

Sort the population according to monarch butterfly fitness using Quicksort algorithm in [31].
Divide the monarch butterfly population into two subpopulations, i.e., Subpopulation1 and Subpopulation2.
for 𝑖 = 1 to𝑁𝑃1 do
Update Subpopulation1 using Algorithm 1.

end for
for 𝑗 = 1 to𝑁𝑃2 do
Update Subpopulation2 by Eq. (2).

end for
Merge two new subpopulations into a new population.
Recalculate the fitness values of each monarch butterfly according to the updated position.
Let 𝑡 = 𝑡 + 1.

Step 5. end while
Step 6. Output the optimal values.

Algorithm 2

Complexity 7

on various benchmark functions. The test of benchmark
functions is a common and popular method to verify the
performance of intelligent algorithms. For example, Wang
et al. [29] introduced 38 benchmark functions to demon-
strate the superior performance of the MBO algorithm,
and the results clearly exhibit the capability of the MBO
toward finding the enhanced function values on most of
the benchmark problems. Wang et al. [36] employed 18
benchmark functions to test the GCMBO algorithm, and
the results indicate that GCMBO significantly outperforms
the basic MBO method on almost all the test cases. Zhang
et al. [53] marked 21 benchmark functions to verify the
efficiency of biogeography-based optimization algorithm.
Zhang et al. [54] used 30 benchmark functions to illustrate
the performance of hybrid algorithm based on biogeography-
based optimization andGWO. In our experiments, the typical
12 benchmark functions are selected from [29, 36, 53, 54] to
test the performance of our OPMBO algorithm, which can
be rigorous to verify the effectiveness of all of the compared
algorithms. The information for 12 benchmark functions is
shown in Table 1, where the F𝑚𝑖𝑛 is the minimum value (ideal
optimal value) of the function. These benchmark functions
can be classified into two different types, unimodal functions
f 1-f 7 and multimodal functions f 8-f 12.

The experiments were performed on a personal com-
puter running Windows 7 with an Intel(R) Core(TM)CPU
operating at 3.10 GHz and 4 GB memory. All the simulation
experiments were implemented in MATLAB R2014a.

4.2. Comparison of OPMBO with MBO and GCMBO on
Different Dimensions. The objective of the following exper-
iments is to show the comparison results of 12 bench-
mark functions on different dimensions. The two state-of-
the-art algorithms, the MBO [29] and the GCMBO [36],
are selected as the comparison algorithms to evaluate the
effectiveness of the OPMBO. Following the experimental
techniques developed by Wang et al. [36] and Zhang et
al. [53], the three dimensions of the functions are set as
follows: the low-dimensional (20 dimensions), the medium-
dimensional (50 dimensions), and the high-dimensional (100
dimensions). As the dimension increases, the difficulty of
the problem increases, which verifies that OPMBO has
the ability to handle the complex optimization problems.
Then, the optimization experiments of the three algorithms
(MBO, GCMBO, and OPMBO) are performed on the three
different dimensions for the 12 benchmark functions to
verify the optimization performance of the OPMBO. The
related parameter values for testing the three algorithms are
shown in Table 2. Following the experimental techniques
designed by Wang et al. [29], the D describes the dimension,
the MaxGen is the maximum number of iterations, the
NP describes the number of monarch butterfly population,
and the Num represents the independent running times of
each optimization problem. It is known that along with
the increase of the dimension of the benchmark function,
the maximum number of iterations MaxGen will increase.
The monarch butterfly population of the three algorithms is
uniformly set to 50, and the other parameters are the same as
in [29, 36]. In order to reduce the random error, each method

is run 30 times independently for each optimization problem,
and the results are the average value of 30 time evaluations.
The experimental results for different dimensions (20, 50,
and 100 dimensions) on 12 benchmark functions are listed
in Tables 3–5, respectively, where the best values are in bold
font. Following the experimental techniques designed in [29,
36, 53, 54, 60, 61], the optimal value as Best, the worst value as
Worst, the mean value as Mean, and the standard deviation
as Std of the fitness values of benchmark functions for the
30 independent experimental results are employed to test the
MBO, GCMBO, and OPMBO algorithms. Here, Zhang et al.
[53] and Wang et al. [36] declared that the lower Mean and
Std values indicate a better algorithm with respect to search
ability and stability in their experimental analysis.

The first part of this experiment is conducted on the 20
dimensions, and the results are illustrated in Table 3. It can be
seen from Table 3 that on f 1-f 4, f 8-f 10, and f 12, the OPMBO
algorithm achieves the best optimization results on the Best,
Worst, Mean, and Std values. In particular, the theoretical
optimal value is obtained by OPMBO on f 12 . On f 5 and f 7 ,
although the Best value of OPMBO is not the best, it has
achieved the best optimization results on the Worst, Mean,
and Std values. The Best value of GCMBO is the same as
that of OPMBO, but OPMBO achieves the best results for the
other values on f 11. On f 6, the three algorithms achieve the
best value, but theMean and Std values of OPMBO are better.
Therefore, the experimental results on the 20-dimensional
benchmark function show that the performance of OPMBO
is excellent for the low-dimensional functions.

In what follows, this portion of our experiment is to
be performed on the 50 dimensions, and the results are
shown in Table 4. The values of OPMBO are not as well
as that of GCMBO on f 1 . However, the OPMBO algorithm
achieves the best results on f 2-f 4, f 8 , and f 9. Both the Mean
and Std values of OPMBO are optimal on f 5 and f 10-f 12.
As the dimensions increase, the optimization performances
of MBO and GCMBO decrease severely, whereas OPMBO
does not decrease on f 6. To more intuitively demonstrate the
convergence speed and the local and global search ability
of the three algorithms, the convergence curves of the three
algorithms of the experimental results on the 50-dimensional
functions in Table 4 are shown in Figure 2.

Figure 2 shows that for f 1, the convergence rate of
OPMBO is better than those of MBO and GCMBO in the
initial iterations, whereas the convergence of OPMBO is
slower than that of GCMBO in later iterations. Overall, both
GCMBO and OPMBO have a much better effect than MBO
on f 1. The convergence speed of OPMBO is clearly faster
than those of MBO and GCMBO on f 2-f 11. For f 2 , when
iterating to 200 times, the MBO and GCMBO algorithms
have stopped, but the OPMBO has been updating the search.
So, the convergence of OPMBO is faster. For f 3, although the
convergence rate of GCMBO is the best at the beginning, the
convergence of OPMBO gradually shows an optimal trend
as the iteration progresses. For f 4 , the convergence curves of
MBO and GCMBO are basically the same, but the curve of
OPMBO shows obviously a faster convergence speed. For f 5 ,
from the iteration of 100 times, both MBO and GCMBO are
caught in the search stagnation, but the OPMBO gradually

8 Complexity

Ta
bl
e
1:
O
ve
rv
ie
w
of

12
be
nc
hm

ar
k
fu
nc
tio

ns
.

Fu
nc
tio

n
Fo

rm
ul
a

Se
ar
ch

ra
ng
e

𝐹 𝑚𝑖𝑛
Sp
he
re

𝑓 1(𝑥
)=
𝑑 ∑ 𝑖=1𝑥 𝑖2

[−5.1
2,5.1

2]D
0

Q
ua
rt
ic

𝑓 2(𝑥
)=
𝑑 ∑ 𝑖=1𝑖𝑥4 𝑖+

ra
nd

om
[0,1)

[−1.2
8,1.2

8]D
0

Sc
hw

ef
el
1.2

𝑓 3(𝑥
)=
𝑛 ∑ 𝑖=1(𝑖 ∑ 𝑗=1𝑥 𝑗)2

[−10
0,10

0]D
0

Sc
hw

ef
el
2.
21

𝑓 4(𝑥
)=m

ax 𝑖
(|𝑥 𝑖|,

1≤𝑖
≤𝑑)

[−10
0,10

0]D
0

Sc
hw

ef
el
2.
22

𝑓 5(𝑥
)=
𝑑 ∑ 𝑖=1󵄨 󵄨 󵄨 󵄨𝑥 𝑖󵄨 󵄨 󵄨 󵄨+

𝑑 ∏ 𝑖=1󵄨 󵄨 󵄨 󵄨𝑥 𝑖󵄨 󵄨 󵄨 󵄨
[−10

,10]D
0

St
ep

𝑓 6(𝑥
)=
𝑑 ∑ 𝑖=1(⌊𝑥 𝑖

+0.5
⌋)2

[−10
0,10

0]D
0

Ro
se
nb

ro
ck

𝑓 7(𝑥
)=𝑑
−
1 ∑ 𝑖=1((𝑥 𝑖

−1)2
+10

0(𝑥2 𝑖
−𝑥 𝑖+
1
)2)

[−10
,10]D

0

Pe
na
liz
ed

1
𝑓 8(𝑥

)=𝜋 𝑑(10
sin
2
(𝜋𝑦 𝑖)

+𝑑−1 ∑ 𝑖=1(𝑦 𝑖−
1)2 (

1+1
0sin
2
(𝜋𝑦 𝑖+
1
))+

(𝑦 𝑑−
1)2)

+𝑑 ∑ 𝑖=1𝑢(𝑥 𝑖,
10,1

00,4
),

[−50
,50]D

0

w
he
re

𝑦 𝑖=
1+1 4(𝑥 𝑖+

1),an
d
𝑢(𝑥 𝑖,

𝑎,𝑘,
𝑚)=

{ { { { { { { { {𝑘(𝑥 𝑖
−𝑎)𝑚

,
𝑥 𝑖>

𝑎
0,

−𝑎≤
𝑥 𝑖≤

𝑎
𝑘(−𝑥
𝑖
−𝑎)𝑚

,𝑥
𝑖
<−𝑎

Pe
na
liz
ed

2
𝑓 9(𝑥

)=0
.1(s

in
2
(𝜋𝑥 1

)+𝑑
−
1 ∑ 𝑖=1(𝑥 𝑖−

1)2 (
1+s

in
2
(3𝜋𝑥
𝑖+
1
))(𝑥
𝑑
−1)

(1+
sin
2
(2𝜋𝑥
𝑑
)))

+𝑑 ∑ 𝑖=1𝑢(𝑥 𝑖,
5,10

0,4)
[−50

,50]D
0

Ac
kl
ey

𝑓 10(𝑥
)=−

20ex
p
(−1 5√1 𝑑𝑑 ∑ 𝑖=1𝑥2 𝑖)

−exp
(1 𝑑𝑑 ∑ 𝑖=1co

s(2𝜋
𝑥 𝑖))

+20
+𝑒

[−30
,30]D

0

Sc
hw

ef
el
2.
26

𝑓 11(𝑥
)=4

18.98
2887

2724
3369

×𝑑−
𝑑 ∑ 𝑖=1𝑥 𝑖sin

(√𝑥
𝑖)

[−50
0,50

0]D
0

Ra
str

ig
in

𝑓 12(𝑥
)=
𝑑 ∑ 𝑖=1(𝑥2 𝑖−

10co
s(2𝜋

𝑥 𝑖)+
10)

[−5.1
2,5.1

2]D
0

Complexity 9

MBO
GCMBO
OPMBO

12
00

10
0080

0

18
000

40
0

14
00

16
0020

0

20
0060

0

Generations

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Fi
tn

es
s l

og
ar

ith
m

(a) 𝑓1

MBO
GCMBO
OPMBO

0

60
0

40
0

80
0

20
0

10
00

14
00

16
00

18
00

20
00

12
00

Generations

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Fi
tn

es
s l

og
ar

ith
m

(b) 𝑓2

MBO
GCMBO
OPMBO

0

60
0

80
0

40
0

20
0

12
00

14
00

16
00

18
00

20
00

10
00

Generations

10
3

10
4

10
5

10
6

Fi
tn

es
s l

og
ar

ith
m

(c) 𝑓3

MBO
GCMBO
OPMBO

10
0

10
1

10
2

Fi
tn

es
s l

og
ar

ith
m

0

40
0

60
0

80
0

20
0

12
00

14
00

20
00

10
00

16
00

18
00

Generations

(d) 𝑓4

MBO
GCMBO
OPMBO

0

60
0

20
0

80
0

40
0

12
00

16
00

18
00

10
00

20
00

14
00

Generations

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Fi
tn

es
s l

og
ar

ith
m

(e) 𝑓5

MBO
GCMBO
OPMBO

0

40
0

60
0

80
0

20
0

12
00

14
00

16
00

18
00

20
00

10
00

Generations

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Fi
tn

es
s l

og
ar

ith
m

(f) 𝑓6

Figure 2: Continued.

10 Complexity

MBO
GCMBO
OPMBO

0

40
0

60
0

80
0

20
0

12
00

14
00

16
00

18
00

20
00

10
00

Generations

10
1

10
2

10
3

10
4

10
5

Fi
tn

es
s l

og
ar

ith
m

(g) 𝑓7

MBO
GCMBO
OPMBO

0

80
0

60
0

40
0

20
0

12
00

14
00

16
00

18
00

20
00

10
00

Generations

10
−15

10
−10

10
−5

10
0

10
5

10
10

Fi
tn

es
s l

og
ar

ith
m

(h) 𝑓8

MBO
GCMBO
OPMBO

0

60
0

40
0

80
0

20
0

14
00

16
00

18
00

12
00

20
00

10
00

Generations

10
−15

10
−10

10
−5

10
0

10
5

10
10

Fi
tn

es
s l

og
ar

ith
m

(i) 𝑓9

MBO
GCMBO
OPMBO

0

40
0

60
0

80
0

20
0

12
00

14
00

16
00

18
00

20
00

10
00

Generations

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Fi
tn

es
s l

og
ar

ith
m

(j) 𝑓10

MBO
GCMBO
OPMBO

0

40
0

60
0

80
0

20
0

12
00

14
00

16
00

18
00

20
00

10
00

Generations

10
2

10
3

10
4

10
5

Fi
tn

es
s l

og
ar

ith
m

(k) 𝑓11

MBO
GCMBO
OPMBO

0

40
0

60
0

80
0

20
0

12
00

14
00

16
00

18
00

20
00

10
00

Generations

10
0

10
1

10
2

10
3

Fi
tn

es
s l

og
ar

ith
m

(l) 𝑓12

Figure 2: The convergence curves of the three algorithms on the 50-dimensional functions.

Complexity 11

Table 2: The related parameter values for testing the three algorithms.

Dimension 𝐷 MaxGen NP Num
low 20 500 50 30
medium 50 2000 50 30
high 100 5000 50 30

Table 3: The comparison results of the three algorithms on the 20-dimensional benchmark functions.

Function Algorithm 𝐵𝑒𝑠𝑡 𝑊𝑜𝑟𝑠𝑡 𝑀𝑒𝑎𝑛 𝑆𝑡𝑑
𝑓1 MBO 2.1817e-08 1056671 10.2897 24.1542

GCMBO 1.4305e-12 2.2191e-08 4.0376e-09 6.1440e-09
OPMBO 1.7124e-18 2.8958e-09 1.9961e-10 5.6832e-10

𝑓2 MBO 2.0696e-05 45.8467 14.1370 14.5827
GCMBO 8.5651e-31 2.7743 0.1784 0.5239
OPMBO 1.1985e-32 1.9515e-25 9.6741e-27 3.6316e-26

𝑓3 MBO 467.5414 2.6400e+04 9.9164e+03 7.0557e+03
GCMBO 5.2744 1.1659e+04 5.7437e+03 3.6304e+03
OPMBO 4.7218e-16 105.8061 12.9713 25.4996

𝑓4 MBO 0.0656 69.6874 34.4202 23.9322
GCMBO 0.8478 65 21.8416 18.9365
OPMBO 6.4794e-08 9.7491 1.3394 2.5359

𝑓5 MBO 2.4859e-04 76.0287 19.5472 24.7662
GCMBO 0 18.8264 2.2732 5.8333
OPMBO 1.2577e-10 6.6586e-06 1.7297e-06 1.8097e-06

𝑓6 MBO 0 38189 8.2961e+03 1.3038e+04
GCMBO 0 2463 9.72000 449.5788
OPMBO 0 0 0 0

𝑓7 MBO 3.2274e-06 3.0575e+03 636.4260 1.0172e+03
GCMBO 1.7541e-07 342.4249 71.0668 96.0405
OPMBO 1.7164e-05 18.6066 14.1968 7.9660

𝑓8 MBO 6.8753e-12 3.3320e+08 4.1706e+07 8.7357e+07
GCMBO 1.0427e-14 4.4128e+06 1.6156e+05 8.0584e+05
OPMBO 1.5705e-32 1.0369e-12 7.8430e-14 2.4871e-13

𝑓9 MBO 4.3862e-10 4.9682e+08 5.5076e+07 1.3686e+08
GCMBO 2.3991e-14 1.1729e+07 7.9503e+05 2.5028e+06
OPMBO 5.6159e-28 5.2997e-12 3.5047e-13 1.0677e-12

𝑓10 MBO 5.0008e-04 20.1443 8.9263 7.9682
GCMBO 1.9918e-06 5.5369 0.2610 1.0806
OPMBO 1.6130e-10 1.6511e-05 6.9485e-06 5.0036e-06

𝑓11 MBO 2.5817e-04 4.8952e+03 2.3067e+03 1.6744e+03
GCMBO 2.5455e-04 3.0729e+03 1.1757e+03 1.0464e+03
OPMBO 2.5455e-04 2.3009e+03 76.6964 420.0823

𝑓12 MBO 1.1262e-04 255.8194 97.2892 96.4221
GCMBO 1.9541e-08 74.1824 10.7346 15.3041
OPMBO 0 2.4978e-07 2.9660e-08 5.3340e-08

has a very fast speed in convergence. For f 6, combining the
convergence graph with Table 4, the OPMBO has obtained
an ideal optimal value when iterating 100 times. For f 8,
although the OPMBO appears to stagnate at 100 iterations,
theOPMBO jumps out of the local optimumat 200 iterations.
The reason is that the migration operator with RLP of
OPMBO makes the algorithm jump out of local optimum

to some extent. For f 9-f 10, the convergence of OPMBO is
much better than those of MBO and GCMBO. Though the
convergence of OPMBO is better than MBO and GCMBO
on f 11 and f 7, it is not as well as f 10. Thus, the convergence
speed of OPMBO is significantly faster than those of the
other algorithms, especially on f 4-f 6 and f 9.The convergence
of GCMBO is better than those of MBO and OPMBO in

12 Complexity

Table 4: The comparison results of the three algorithms on the 50-dimensional benchmark functions.

Function Algorithm Best Worst Mean Std

𝑓1 MBO 0.1477 398.2232 209.3775 139.9068
GCMBO 1.8428e-13 1.0670e-08 1.1156e-09 2.1500e-09
OPMBO 1.5567e-10 2.7548e-08 8.8554e-09 7.5075e-09

𝑓2 MBO 0.0034 415.5476 153.3220 142.7727
GCMBO 1.9171e-07 133.2460 19.7500 29.8177
OPMBO 1.2181e-28 6.6022e-23 9.4507e-24 1.6826e-23

𝑓3 MBO 0.0010 1.6716e+05 7.1776e+04 5.1240e+04
GCMBO 2.3034e+03 7.4799e+04 2.8123e+04 1.7575e+04
OPMBO 9.7152e-10 4.7017e+04 1.9873e+03 8.6490e+03

𝑓4 MBO 0.0071 90.5485 35.3305 26.7642
GCMBO 0.0299 85.3000 33.9794 21.5405
OPMBO 1.4047e-06 22.7838 4.0685 6.5366

𝑓5 MBO 0.1832 227.1000 130.7104 79.0919
GCMBO 0 110.2839 23.6658 35.6746
OPMBO 1.0957e-06 7.7733e-05 2.7397e-05 1.6504e-05

𝑓6 MBO 0 132209 5.1815e+04 5.1859e+04
GCMBO 0 12346 1696 2.9548e+03
OPMBO 0 0 0 0

𝑓7 MBO 1.3455e-04 1.8360e+04 5.9326e+03 6.2480e+03
GCMBO 3.3925e-09 1.4881e+03 243.2459 353.8553
OPMBO 1.2070e-05 306.7838 46.0623 53.5043

𝑓8 MBO 3.4589e-11 1.1141e+09 2.4720e+08 4.0804e+08
GCMBO 2.0184e-17 5.4740e+07 3.2179e+06 1.0925e+07
OPMBO 4.5879e-19 9.7859e-13 1.1863e-13 2.1688e-13

𝑓9 MBO 6.5719e-10 1.9497e+09 3.6131e+08 6.4416e+08
GCMBO 9.8724e-16 1.4513e+08 1.0977e+07 3.1121e+07
OPMBO 1.2994e-16 9.2119e-12 1.9405e-12 2.1819e-12

𝑓10 MBO 3.0017 20.7867 15.9858 6.1167
GCMBO 6.6066e-07 19.8083 1.9658 4.6606
OPMBO 1.0861e-06 9.8438e-05 4.0379e-05 2.2417e-05

𝑓11 MBO 2.4511e+03 1.6770e+04 1.0050e+04 4.1486e+03
GCMBO 6.3638e-04 8.0438e+03 4.2775e+03 2.7433e+03
OPMBO 6.3638e-04 6.0967e+03 970.1854 2.2072e+03

𝑓12 MBO 26.7258 851.3496 489.7041 275.3819
GCMBO 1.9838e-10 98.6456 17.8949 31.4580
OPMBO 7.4206e-09 124.9711 4.1657 22.8165

early iterations, whereas the convergence of OPMBO is faster
than those of the other algorithms in the later iterations
on f 12. As a result, the OPMBO algorithm outperforms
the MBO and GCMBO algorithms from the convergence
curves. In conclusion, the performance of OPMBO on the
medium-dimensional benchmark function is excellent for
the experimental results in Table 4.

The third part of this experiment is to be carried out
on the 100 dimensions, and the results are demonstrated
in Table 5. The OPMBO algorithm achieves the excellent
performance from Table 5. Although OPMBO is not as good
as GCMBO for the Std on f 11 , it is the best in terms of
both the Mean and Std values on the other functions. Most
importantly, the performance of OPMBO does not decrease

with increasing dimensions on f 6. Therefore, OPMBO can
obtain the best optimization performance on the high-
dimensional.

From Tables 3–5, the GCMBO and OPMBO algorithms
have similar results in three different dimensions on the
identical benchmark functions, and both are better than
MBO on f 1. For f 2, the results of OPMBO in all three
dimensions are the best. In particular, there is no decline in
optimization performance as the dimension rises in the 20-
dimensional and 50-dimensional functions. On f 3 and f 4 ,
although the OPMBO has achieved the best results, the gap
between them is not obvious. The results of OPMBO are
superior to the other two algorithms, especially in the 20-
dimensional and 50-dimensional functions on f 5 . It is worth

Complexity 13

Table 5: The comparison results of the three algorithms on the 100-dimensional benchmark functions.

Function Algorithm Best Worst Mean Std

𝑓1 MBO 2.9655e-04 873.4768 483.6526 327.2392
GCMBO 1.6826e-11 200.0985 10.0288 40.1674
OPMBO 1.4014e-08 138.6132 4.8784 25.2979

𝑓2 MBO 0.0082 1.8812e+03 942.8625 653.6147
GCMBO 4.6673e-05 552.4148 139.0795 154.2869
OPMBO 2.7599e-23 301.3835 15.2540 59.7389

𝑓3 MBO 326.4544 8.2019e+05 3.6314e+05 1.7811e+05
GCMBO 4.5214e+03 2.4929e+05 1.1272e+05 6.3874e+04
OPMBO 3.8963e-08 1.4750e+05 9.4295e+03 2.8488e+04

𝑓4 MBO 2.3891 90.9853 38.9181 25.9349
GCMBO 0.7494 90.9000 40.2048 27.9953
OPMBO 1.0715e-05 33.5396 7.8364 9.4976

𝑓5 MBO 0.0807 484.7000 266.4036 175.1478
GCMBO 5.0299e-07 250.5469 56.1723 71.6008
OPMBO 5.4517e-05 2.2668 0.0760 0.4138

𝑓6 MBO 433 288070 1.7473e+05 1.0058e+05
GCMBO 0 106666 1.7420e+04 2.8532e+04
OPMBO 0 3 0.1000 0.5477

𝑓7 MBO 0.1632 4.2320e+04 1.3569e+04 1.4322e+04
GCMBO 1.0042e-08 8.8990e+03 1.0016e+03 2.0665e+03
OPMBO 1.9180e-05 6.8818e+03 432.4594 1.2535e+03

𝑓8 MBO 4.5486e-11 2.9628e+09 8.5431e+08 1.1962e+09
GCMBO 1.1964e-19 3.6385e+08 4.6229e+07 9.5275e+07
OPMBO 8.3732e-13 5.9931e-12 2.9010e-12 1.4209e-12

𝑓9 MBO 0.9237 5.0861e+09 1.4982e+09 1.7699e+09
GCMBO 3.2011e-15 9.8268e+08 1.3463e+08 2.7277e+08
OPMBO 9.2390e-12 0.4056 0.0135 0.0741

𝑓10 MBO 3.7907 20.8227 18.6499 3.9959
GCMBO 5.7380e-07 19.9186 8.6313 9.1342
OPMBO 4.5998e-05 1.0344 0.0393 0.1897

𝑓11 MBO 8.2058e+03 3.6580e+04 2.3230e+04 8.9660e+03
GCMBO 0.0013 1.8954e+04 9.3635e+03 5.8928e+03
OPMBO 0.0013 3.1905e+04 6.5790e+03 1.0764e+04

𝑓12 MBO 262.6423 1.8211e+03 1.4277e+03 422.1270
GCMBO 7.4610e-09 670.2994 113.0140 155.9463
OPMBO 2.1383e-06 665.6871 57.3632 152.5890

mentioning that OPMBOhas achieved an ideal optimal value
of f 6 in three dimensions, which can prove the excellent
performance of OPMBO. On f 8, the Mean of OPMBO in
20 dimensions is 7.8430e-14, the Mean in 50 dimensions is
1.1863e-13, and the Mean in 100 dimensions is 2.9010e-12. It
follows that the optimization performance of OPMBO does
not decrease as the dimension increases. So, the results of
the OPMBO are much better than the other two algorithms,
regardless of the three dimensions on f 9 and f 10 . On f 11,
OPMBO is better than the other two algorithms, except
for 100 dimensions. Furthermore, the Mean and Std values
of OPMBO are the best in three dimensions on f 7 and
f 12. Therefore, the results show that the performance of
OPMBO is more outstanding than the other two algorithms

on most of the 12 benchmark functions under three different
dimensions.

According to the above experimental results and analysis,
it can be proven that OPMBOnot only has great convergence
accuracy but also shows better global search capabilities on
multimodal functions of three different dimensions, and it
is superior to the contrast algorithms with relatively obvious
advantages. Since the OPMBOembeds the OBL, the diversity
of population has been enhanced and the global exploration
ability has been improved. Moreover, the RLP is added to
the migration operator such that the information of the
better individuals in the population is applied effectively, and
the convergence rate of the OPMBO algorithm is greatly
improved. In summary, OPMBO has better optimization

14 Complexity

Table 6: The two-tailed t-test of the experimental results on 100-dimensional benchmark functions.

Function OPMBO with MBO OPMBO with GCMBO
t p t p

f 1 791.0854 0 8.8112 1.4443e-18
f 2 946.4590 0 112.1480 0
f 3 692.0171 0 165.3924 0
f 4 395.9505 0 431.6215 0
f 5 938.4122 0 157.6091 0
f 6 1.2251e+03 0 97.7934 0
f 7 353.7764 0 15.2470 6.6025e-52
f 8 590.1854 0 32.2386 5.0606e-217
f 9 546.0571 0 48.7033 0
f 10 715.0020 0 272.3707 0
f 11 298.9920 0 16.7654 3.0813e-62
f 12 618.5786 0 10.6642 2.0751e-26
Better 12 12
Equal 0 0
Worse 0 0

Table 7: The comparison results of OPMBO with HFOA on 30 dimensions with a population size of 50.

Function Value HFOA OPMBO

f 1
Mean 1.30e−05 1.2160e-08
Std 6.37e−07 1.4345e-08

f 5
Mean 1.82e−02 2.3977e-05
Std 5.45e−04 2.1619e-05

f 6
Mean 0 0
Std 0 0

f 10
Mean 2.65e−03 2.7394e-06
Std 5.67e−05 3.7822e-06

f 12
Mean 2.60e−03 6.2990e-05
Std 1.34e−04 4.4079e-05

performance than the other two algorithms whether it is
on the unimodal function or the multimodal function.
Therefore, all the experimental results show that the OPMBO
algorithm is effective and feasible.

4.3. Two-Tailed t-Test of the Experimental Results on 100-
Dimensional Benchmark Functions. For the experimental
results of the 100 dimensions on the 12 benchmark functions
inTable 5, following the experimental techniques designed by
Zhang et al. [61], Table 6 shows the values of t and p for a
two-tailed t-test with a 5% level of significance between the
OPMBO algorithm and the other optimization algorithms
(MBOandGCMBO), inwhich “Better”, “Equal”, and “Worse”
indicate that OPMBO is better than, equal to, or worse than
the compared methods in this case, respectively.

Table 6 shows that OPMBO is significantly better than
MBO and GCMBO at a 95% confidence level, which demon-
strates the excellent performance of the OPMBO algorithm.

4.4. Comparison of OPMBO with HFOA on 30 Dimensions
and Population Size of 50. This portion of our experiments
further concerns the optimization performance of OPMBO

on the 30 dimensions and the population size of 50. The
OPMBO algorithm is compared with the HFOA algorithm
in [60]. Both algorithms have the 30 dimensions on the rep-
resentative 5 benchmark functions selected from Table 1, and
the population size is set as 50. Following the experimental
techniques in [60], the results are shown in Table 7, where the
bold font indicates the best.

Both HFOA and OPMBO obtain a theoretical optimal
value on f 6. However, on the other 4 benchmark functions,
OPMBO obviously outperforms the HFOA on theMean and
Std values. Hence, the results indicate that the optimization
ability of OPMBO is strong. In summary, the OPMBO algo-
rithm outperforms the HFOA algorithm on 30 dimensions
and population size of 50.

4.5. Comparison of OPMBO with GWO and OGWO on 30
Dimensions and Population Size of 20. To further illustrate
the optimization performance of the OPMBO algorithm,
similar to Section 4.4, the OPMBO is compared with the
GWO algorithm [16] and the OGWO algorithm [54]. Both
OPMBO and OGWO use the OBL method and have strong
comparability. Three algorithms have the 30 dimensions

Complexity 15

Table 8: The comparison of OPMBO with two GWOs on 30 dimensions with a population size of 20.

Function Value GWO OGWO OPMBO

f 1
Mean 0 0 1.2050e-11
Std 0 0 1.7997e-11

f 2
Mean 1.1120e-03 4.6172e-04 1.5053e-29
Std 7.6128e-04 5.6910e-04 2.5417e-29

f 4
Mean 0 0 1.5287
Std 0 0 2.2393

f 7
Mean 2.6505e+01 2.4281e+01 31.0143
Std 5.2458e-01 4.6388e-01 38.9259

f 8
Mean 4.6138e-02 1.7570e-06 1.4067e-15
Std 2.1483e-02 5.9634e-07 3.6039e-15

on the representative 5 benchmark functions selected from
Table 1, and the population size is 20. Following the experi-
mental techniques designed by Mirjalili et al. [16] and Zhang
et al. [54], the experimental results are demonstrated in
Table 8, where the best values are in bold font.

Table 8 shows that although the results of OPMBO are
not as well as those of GWO and OGWO on f 1, f 4, and
f 7, OPMBO is better than GWO and OGWO on f 2 and
f 8. In conclusion, the optimization performance of OPMBO
is better than those of GWO and OGWO on benchmark
functions.

4.6. Comparison of Clustering Optimization with Six SIO
Algorithms. Clustering is a way of the grouping of objects or
data according to similar criteria, which is done by a group
of data items close to each other based on several criteria
[62]. Data clustering refers to maximizing the similarity of
the members in a group (or cluster) as much as possible and
minimizing the similarity of the members in two different
groups as much as possible [53]. One of the well-known
techniques to handle the clustering problem is to convert
the clustering problem into an optimization problem. Then,
the clustering problem can be solved by any optimization
algorithm [63]. That is, clustering itself can be stated as
an optimization problem, so it can be solved by the SIO
algorithms [54]. Many scholars have been devoted to solving
clustering problem using SIO techniques [62–70].

For a data space, let X be the data set with n number of
objects or patterns, and each object is ofm dimension, where𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑛}, and 𝑋 ∈ 𝑅𝑛×𝑚. Then, a clustering C
can be represented as K clusters {𝐺1, 𝐺2, . . . , 𝐺𝑘}, such that it
must satisfy the following conditions:

(1)⋃𝐾𝑖=1 𝐺𝑖 = 𝑋, where G𝑖 refers to the i
𝑡ℎ cluster.

(2) 𝐺𝑖 ̸= Ø, where 𝑖 = 1, 2, . . . , 𝐾.
(3) 𝐺𝑖 ∩ 𝐺𝑗 = Ø, where 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝐾.
(4) sim(X1, X2) > sim(X1, Y1), where 𝑋1, 𝑋2 ∈ 𝐺𝑖 and𝑌1 ∈ 𝐺𝑗, 𝑖 ̸= 𝑗.
It is known that the clustering can be achieved by various

well-known similarity measures. In this experiment, when
the numeric data is analyzed, the Euclidean distance is
introduced to measure the similarity degree between two
objects. Since each individual of OPMBO is viewed as a
candidate solution for the clustering optimization problem, a

fitness value of the individual is used as an objective function
value of the corresponding candidate solution. What is more,
when the solution minimizes the objective function value,
the best can be achieved. Then, the formula of the objective
function [53] is described as

𝑓 = 𝐾∑
𝑘=1

∑
𝑋𝑖∈𝐺𝑘

𝑑 (𝑋𝑖, 𝑍𝑘) , (6)

whereZ𝑘 represents the kth clustering center, and 𝑑(𝑋𝑖 , 𝑍𝑘) =‖𝑋𝑖–𝑍𝑘‖ indicates the Euclidean distance between two m
dimensional objects X𝑖 and Z𝑘.

In Table 9, 13 data sets are adopted to test the cluster-
ing optimization performance of our proposed algorithm.
The specifications of the 13 data sets are shown in Table 9, in
which Mydata can be downloaded at http://yarpiz.com/64/
ypml101-evolutionary-clustering, and the other 12 data sets
are taken from UCI Machine Learning Repository, which
can be downloaded at http://archive.ics.uci.edu/ml/datasets
.htm.

The first section of this experiment is to illustrate the
efficiency of clustering optimization on the selected 10 data
sets from Table 9 with three MBO algorithms, which include
the MBO, GCMBO, and OPMBO algorithms. The common
parameter values of all three algorithms are set as follows:
the population size N is 50, the maximum number of
iterations MaxGen is 200, and the independent run number
on each data set is 30. Following the experimental techniques
designed in [29, 36], the Mean indicates the average mini-
mum distance between each spatial point and the center of
each cluster, the Std describes the standard deviation value,
and then the comparison results are shown in Table 10, where
the bold font indicates the best.

From Table 10, the OPMBO obtains the best Mean and
Std values on all the 10 data sets. TheMean values of OPMBO
are about nearly 5-6% larger than GCMBO and nearly 4-
7% on the Heart, Liver Disorders, and Statlog data sets,
respectively. However, the different values of Std with the
OPMBO, MBO, and GCMBO algorithms on the three data
sets are approximately 1%. Although the OPMBO achieves
the largest values of Mean and Std on the other seven data
sets, it is obvious that the values of OPMBO compared with
MBO and GCMBO are very close.

http://yarpiz.com/64/ypml101-evolutionary-clustering
http://yarpiz.com/64/ypml101-evolutionary-clustering
http://archive.ics.uci.edu/ml/datasets.htm
http://archive.ics.uci.edu/ml/datasets.htm

16 Complexity

Table 9: Overview of the thirteen data sets.

Data set Samples Attributes Clusters
Mydata 300 2 3
Abalone 4177 8 3
Balance Scale 625 4 3
Car 1728 6 4
Heart 270 13 2
Liver Disorders 345 7 2
Soy bean 47 35 4
Statlog 270 13 2
Yeast 2417 103 14
Zoo 101 17 7
Iris 150 4 3
Wine 178 13 3
Glass 214 9 6

Table 10: The comparison results of clustering optimization on the three different MBO algorithms.

Dataset Value MBO GCMBO OPMBO

Mydata mean 1.8159 1.7644 1.5715
std 0.1740 0.1710 0.1382

Abalone mean 1.8487 1.8430 1.6846
std 0.1259 0.1135 0.0904

Balance Scale mean 2.3613 2.3647 2.3250
std 0.0237 0.0238 0.0147

Car mean 2.0465 2.0478 2.0125
std 0.0227 0.0214 0.0193

Heart mean 52.6973 53.0394 48.2396
std 3.5966 3.5950 3.3478

Liver Disorders mean 46.1680 44.4722 39.9735
std 5.0187 4.2370 3.5294

Soy bean mean 3.5825 3.6082 3.3619
std 0.0852 0.0891 0.0715

Statlog mean 92.6813 92.3759 86.4422
std 12.2853 12.2129 10.6546

Yeast mean 0.3879 0.4006 0.3579
std 0.0352 0.0402 0.0286

Zoo mean 2.3883 2.3986 2.3412
std 0.0725 0.0716 0.0666

The following part of this experiment further concerns
the clustering optimization performance on the selected
three data sets from Table 9 with the four kinds of different
optimization algorithms, which include the OPMBO, the
PSO algorithm [5], the FA algorithm [42, 69], and the cuckoo
search (CS) algorithm [70]. The related parameter values of
OPMBO are the same as [5, 69, 70], where the population
size N is 40, the maximum number of iterations MaxGen
is 200, and the independent run number on each data set
is 20. Following the experimental techniques designed in
[5, 42, 69, 70], similar to Section 4.2, the Best, Worst, Mean,
and Std of the fitness values can be obtained. The comparison
results are illustrated in Table 11, where the bold font indicates
the best.

It can be observed from Table 11 that OPMBO exhibits
the largest values of Best, Worst, Mean, and Std on the Wine
and Glass data sets, except for Iris. For Wine, the values of
Best, Worst, Mean, and Std achieved by the PSO, FA, and CS
algorithms are 1000 times larger than those of the OPMBO
algorithm. For Glass, the values of Best, Worst, and Mean
achieved by the FA are 400-450 larger than those of OPMBO.
However, the value of Std of OPMBO is close to that of FA.
Meanwhile, the value of Std of the PSO is nearly 100 larger
than that of OPMBO. For Iris, the value of Std of the OPMBO
is 3-8 less than that of PSO, FA, and CS. However, the values
of Best, Worst, andMean obtained by the OPMBO are 40-80
larger than those of PSO, FA, and CS. The reason is that the
Iris data set may have too few attributes so that the OPMBO

Complexity 17

Table 11: The comparison of the clustering optimizations on the four different optimization algorithms.

Data set Algorithm Best Worst Mean Std

Iris

PSO 80.576 153.232 116.128 22.435
FA 81.176 152.347 106.476 19.547
CS 80.647 152.348 100.45 17.623

OPMBO 142.8859 199.5001 184.8284 14.7271

Wine

PSO 16529651 17292036 17019639 185396
FA 16695182 17963968 16962938 172644
CS 16209233 17325656 16940862 262499

OPMBO 1.6856e+04 2.0190e+04 1.8219e+04 913.9988

Glass

PSO 687.347 1140.445 882.098 115.025
FA 1023.533 1110.698 1079.931 22.597
CS 729.658 1095.603 957.901 81.275

OPMBO 612.3864 688.3899 653.4392 21.1229

algorithm performs very poorly in Mean. In general, the
OPMBO algorithm can obtain satisfactory results in solving
the clustering optimization problems.

5. Conclusion and Future Work

Recently, SIO algorithms have been widely employed for
solving complex optimization problems. MBO as one of the
most promising SIO methods is proposed to tackle global
optimization problems. In order to improve the optimization
efficiency of MBO algorithm and obtain an algorithm with
strong universal applicability, this paper introduces OBL into
MBO and proposes RLP to improved basic MBO algorithm.
The improvements are mainly from two aspects, one is to
enhance the optimization performance and the other is to
reduce the computation complexity. The OBL firstly prevents
the algorithm from falling into the local optima to some
degree. A new RLP is merged into the migration operator,
which can enhance the local search ability and accelerate the
convergence speed. Then, the greedy strategy is used instead
of the elitist strategy, and it can decrease the setting of elite
parameters and eliminate a sorting operation. Finally, the
OPMBO algorithm is proposed, and to verify the optimiza-
tion performance of OPMBO, a series of experiments are
performed on 12 benchmark functions and 13 public data
sets. The results verify that our OPMBO algorithm typically
outperforms the other algorithms considered. Based on the
comparison and analysis of our scheme with other schemes,
the contribution of our proposedmethod can be summarized
as follows:(1) The OBL as a widely used technique in optimization
algorithms is introduced into the MBO algorithm, an oppo-
site candidate solution generated by OBL has a better chance
to be closer to the global optimum solution than a random
candidate solution, and then this process can efficiently avoid
the MBO from falling into a local optimum.(2)TheRLP is proposed tomerge into themigration oper-
ator, which shares the information of the optimal solution
and the suboptimal solution, and it is helpful to guide the
current individual to move toward the optimal solution and

the suboptimal solution. Then, the premature convergence of
MBO can be eliminated effectively.(3) A greedy strategy is introduced into the improved
migration operator with RLP, and the superior candidate
solution is retained by the principle of survival of the fittest.
This operation eliminates the elitist parameters, gets rid of a
sorting, and further improves the operation efficiency.(4) Since each individual of OPMBO is viewed as a
candidate solution for clustering optimization problem, a
fitness value of the individual is used as an objective function
value of the corresponding candidate solution. When the
solution minimizes the objective function value, the best can
be achieved. Then, the OPMBO algorithm can be applied to
solve clustering optimization on public data sets.

It is well-known that there is not any SIO algorithm
that can effectively solve all optimization problems, and then
in our experiments the OPMBO algorithm cannot obtain
the satisfactory results on some benchmark functions. In
our future work, some interesting problems can be further
studied. We intend to hybridize MBO with the latest SIO
methods, further improve the OPMBO algorithm, and use
it to resolve multiobjective optimization problems. Further-
more, the OPMBOwill be applied to other engineering fields.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural
Science Foundation of China (Grants 61772176, 61402153,
61472042, and 11601130), the China Postdoctoral Science
Foundation (Grant 2016M602247), the Plan for Scientific
Innovation Talent of Henan Province (Grant 184100510003),

18 Complexity

the Key Project of Science and Technology Department
of Henan Province (Grants 182102210362, 182102210078),
the Young Scholar Program of Henan Province (Grant
2017GGJS041), the Key Scientific and Technological Project
of Xinxiang City (Grant CXGG17002), the Ph.D. Research
Foundation of Henan Normal University (Grants qd15132,
qd15129), the Natural Science Foundation of Henan Province
(Grants 182300410130, 182300410368), and the Natural Sci-
ence Project of Henan Province Education Department
(Grant 17A520039).

References

[1] F. Wang, H. Zhang, K. Li, Z. Lin, J. Yang, and X.-L. Shen, “A
hybrid particle swarm optimization algorithm using adaptive
learning strategy,” Information Sciences, vol. 436/437, pp. 162–
177, 2018.

[2] X. Lv, D. Zhou, Y. Tang, and L. Ma, “An improved test selection
optimization model based on fault ambiguity group isolation
and chaotic discrete PSO,” Complexity, vol. 2018, Article ID
3942723, 10 pages, 2018.

[3] L. Sun, X. Zhang, Y. Qian, J. Xu, S. Zhang, and Y. Tian,
“Joint neighborhood entropy-based gene selectionmethodwith
Fisher score for tumor classification,” Applied Intelligence, 2018.

[4] L. Wang, H. Hu, X.-Y. Ai, and H. Liu, “Effective electricity
energy consumption forecasting using echo state network
improved by differential evolution algorithm,” Energy, vol. 153,
pp. 801–815, 2018.

[5] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
Encyclopedia of Machine Learning, pp. 760–766, 2011.

[6] Z. Zheng, N. Saxena, K. K. Mishra, and A. K. Sangaiah,
“Guided dynamic particle swarm optimization for optimizing
digital image watermarking in industry applications,” Future
Generation Computer Systems, vol. 88, pp. 92–106, 2018.

[7] A. Wu and Z. L. Yang, “An elitist transposon quantum-based
particle swarm optimization algorithm for economic dispatch
problems,” Complexity, vol. 2018, Article ID 7276585, 15 pages,
2018.

[8] M.M. Eusuff and K. E. Lansey, “Optimization of water distribu-
tion network design using the shuffled frog leaping algorithm,”
Journal of Water Resources Planning and Management, vol. 129,
no. 3, pp. 210–225, 2003.

[9] C. Liu, P. Niu, G. Li, Y. Ma,W. Zhang, and K. Chen, “Enhanced
shuffled frog-leaping algorithm for solving numerical function
optimization problems,” Journal of Intelligent Manufacturing,
vol. 29, no. 5, pp. 1133–1153, 2018.

[10] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” in
Proceedings of the International Conference in Swarm Intelli-
gence, pp. 355–364, 2010.

[11] S. Gholizadeh andA.Milany, “An improved fireworks algorithm
for discrete sizing optimization of steel skeletal structures,”
Engineering Optimization, vol. 50, no. 11, pp. 1829–1849, 2018.

[12] X. Yin, X.Wei, L. Liu, and Y.Wang, “Improved hybrid fireworks
algorithm-based parameter optimization in high-order sliding
mode control of hypersonic vehicles,” Complexity, vol. 2018,
Article ID 9098151, 16 pages, 2018.

[13] A. H. Gandomi and A. H. Alavi, “Krill herd: a new bio-inspired
optimization algorithm,” Communications in Nonlinear Science
and Numerical Simulation, vol. 17, no. 12, pp. 4831–4845, 2012.

[14] R. Jensi and G. W. Jiji, “An improved krill herd algorithm with
global exploration capability for solving numerical function

optimization problems and its application to data clustering,”
Applied Soft Computing, vol. 46, pp. 230–245, 2016.

[15] P. Singh and B. Khan, “Smart microgrid energy management
using a novel artificial shark optimization,” Complexity, vol.
2017, Article ID 2158926, 22 pages, 2017.

[16] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, 2014.

[17] W.-L. Mao, Suprapto, and C.-W. Hung, “Type-2 fuzzy neural
network using grey wolf optimizer learning algorithm for
nonlinear system identification,”Microsystem Technologies, vol.
24, no. 10, pp. 4075–4088, 2018.

[18] C. Lu, L. Gao, and J. Yi, “Grey wolf optimizer with cellular
topological structure,”Expert SystemswithApplications, vol. 107,
pp. 89–114, 2018.

[19] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[20] N.Noman andH. Iba, “Differential evolution for economic load
dispatch problems,” Electric Power Systems Research, vol. 78, no.
8, pp. 1322–1331, 2008.

[21] L. Peng, S. Liu, R. Liu, and L. Wang, “Effective long short-term
memory with differential evolution algorithm for electricity
price prediction,” Energy, vol. 162, pp. 1301–1314, 2018.

[22] L. Cui, G. Li, Q. Lin, J. Chen, and N. Lu, “Adaptive differential
evolution algorithm with novel mutation strategies in multiple
sub-populations,”Computers &Operations Research, vol. 67, pp.
155–173, 2016.

[23] W.-T. Pan, “A new fruit fly optimization algorithm: taking
the financial distress model as an example,” Knowledge-Based
Systems, vol. 26, pp. 69–74, 2012.

[24] L. Wang, R. Liu, and S. Liu, “An effective and efficient fruit
fly optimization algorithm with level probability policy and
its applications,” Knowledge-Based Systems, vol. 97, pp. 158–174,
2016.

[25] L. Wang, S. Lv, and Y. Zeng, “Effective sparse adaboost method
with ESN and FOA for industrial electricity consumption
forecasting in China,” Energy, vol. 155, pp. 1013–1031, 2018.

[26] Y. Mokhtari and D. Rekioua, “High performance of Maximum
Power Point Tracking Using Ant Colony algorithm in wind
turbine,” Journal of Renewable Energy, vol. 126, pp. 1055–1063,
2018.

[27] F.Min, Z.-H.Zhang, and J.Dong, “Ant colonyoptimizationwith
partial-complete searching for attribute reduction,” Journal of
Computational Science, vol. 25, pp. 170–182, 2018.

[28] O. Abedinia, N. Amjady, and A.Ghasemi, “A newmetaheuristic
algorithm based on shark smell optimization,” Complexity, vol.
21, no. 5, pp. 97–116, 2016.

[29] G. Wang, S. Deb, and Z. Cui, “Monarch butterfly optimization,”
Neural Computing and Applications, 2015.

[30] S. Chen, R. Chen, and J. Gao, “Amonarchbutterfly optimization
for the dynamic vehicle routing problem,” Algorithms, vol. 10,
no. 3, pp. 1–19, 2017.

[31] Y. Feng, G.-G. Wang, S. Deb, M. Lu, and X.-J. Zhao, “Solving
0–1 knapsack problemby a novel binarymonarch butterfly opti-
mization,”Neural Computing and Applications, vol. 28, no. 7, pp.
1619–1634, 2017.

[32] H. Faris, I. Aljarah, and S. Mirjalili, “Improvedmonarch butter-
fly optimization for unconstrained global search and neural
network training,” Applied Intelligence, vol. 48, no. 2, pp. 445–
464, 2018.

Complexity 19

[33] V.Yadav andS. P.Ghoshal, “Optimal power flow for IEEE 30 and
118-bus systems using monarch butterfly optimization,” in Pro-
ceedings of the IEEE International Conference on Technologies for
Smart-City Energy Security and Power, pp. 1–6, Bhubaneswar,
India, March 2018.

[34] D. Devikanniga and R. Joshua Samuel Raj, “Classification of
osteoporosis by artificial neural network based onmonarch but-
terfly optimisation algorithm,” Healthcare Technology Letters,
vol. 5, no. 2, pp. 70–75, 2018.

[35] H. Hu, Z. Cai, S. Hu, Y. Cai, J. Chen, and S. Huang, “Improving
monarch butterfly optimization algorithm with self-adaptive
population,” Algorithms, vol. 11, no. 5, article 71, 2018.

[36] G.-G. Wang, X. Zhao, and S. Deb, “A novel monarch butterfly
optimization with greedy strategy and self-adaptive,” in Pro-
ceedings of the IEEE Second International Conference on Soft
Computing and Machine Intelligence, pp. 45–50, 2015.

[37] Y. Feng, J. Yang, C. Wu, M. Lu, and X.-J. Zhao, “Solving 0–1
knapsack problems by chaotic monarch butterfly optimization
algorithm with Gaussian mutation,” Memetic Computing, vol.
10, no. 2, pp. 135–150, 2018.

[38] Y. Feng, G. Wang, W. Li, and N. Li, “Multi-strategy monarch
butterfly optimization algorithm for discounted (0-1) knapsack
problem,” Neural Computing and Applications, vol. 30, no. 10,
pp. 3019–3036, 2018.

[39] S. M. Abd-Elazim and E. S. Ali, “A hybrid particle swarm opti-
mization and bacterial foraging for power system stability
enhancement,” Complexity, vol. 21, no. 2, pp. 245–255, 2015.

[40] W. A. Ghanem and A. Jantan, “A novel hybrid artificial bee
colony with monarch butterfly optimization for global opti-
mization problems,” inModeling, Simulation, andOptimization,
EAI/Springer Innovations in Communication and Computing, P.
Vasant, I. Litvinchev, and J. Marmolejo-Saucedo, Eds., pp. 27–
38, 2018.

[41] M. Ghetas, C. H. Yong, and P. Sumari, “Harmony-based
monarch butterfly optimization algorithm,” inProceedings of the
IEEE International Conference on Control System, Computing
and Engineering, pp. 156–161, 2015.

[42] I. Strumberger, M. Sarac, D. Markovic, and N. Bacanin,
“Hybridized monarch butterfly algorithm for global optimiza-
tion problems,” International Journal of Computers, vol. 3, pp.
63–68, 2018.

[43] H. R. Tizhoosh, “Opposition-based learning: A new scheme for
machine intelligence,” in Proceedings of the International Con-
ference on Computational Intelligence for Modeling, Control and
Automation, pp. 695–701, 2005.

[44] J. L. Shang, Y. Sun, S. J. Li et al., “An improved opposition-
based learning particle swarm optimization for the detection of
SNP-SNP interaction,”Biomed Research International, vol. 2015,
Article ID 524821, 12 pages, 2015.

[45] T. K. Sharma and M. Pant, “Opposition based learning in-
grained shuffled frog-leaping algorithm,” Journal of Computa-
tional Science, vol. 21, pp. 307–315, 2017.

[46] M. A. Ahandani and H. Alavi-Rad, “Opposition-based learning
in shuffled frog leaping: An application for parameter identifi-
cation,” Information Sciences, vol. 291, no. C, pp. 19–42, 2015.

[47] S. Yu, S. Zhu, Y. Ma, and D. Mao, “Enhancing firefly algo-
rithm using generalized opposition-based learning,” Comput-
ing: Archives for Scientific Computing, vol. 97, no. 7, pp. 741–754,
2015.

[48] C. Yang, J. K. Zhang, and L. X. Guo, “Investigation on the inver-
sion of the atmospheric duct using the artificial bee colony

algorithm based on opposition-based learning,” International
Journal of Antennas and Propagation, vol. 2016, Article ID
2749035, 10 pages, 2016.

[49] X. Shan, K. Liu, and P. L. Sun, “Modified bat algorithm
based on lévy flight and opposition based learning,” Scientific
Programming, vol. 2016, Article ID 8031560, 13 pages, 2016.

[50] S.-Y. Park and J.-J. Lee, “Stochastic opposition-based learning
using a beta distribution in differential evolution,” IEEE Trans-
actions on Cybernetics, vol. 46, no. 10, pp. 2184–2194, 2016.

[51] Y. Kumar and G. Sahoo, “An improved cat swarm optimization
algorithm based on opposition-based learning and Cauchy
operator for clustering,” Journal of Information Processing Sys-
tems, vol. 13, no. 4, pp. 1000–1013, 2017.

[52] R. Sarkhel, N. Das, A. K. Saha, and M. Nasipuri, “An improved
Harmony Search Algorithm embedded with a novel piecewise
opposition based learning algorithm,” Engineering Applications
of Artificial Intelligence, vol. 67, pp. 317–330, 2018.

[53] X. M. Zhang, Q. Kang, Q. Tu et al., “Efficient and merged
biogeography-based optimization algorithm for global opti-
mization problems,” Soft Computing, 2018.

[54] X. Zhang, Q. Kang, J. Cheng, and X. Wang, “A novel hybrid
algorithm based on Biogeography-Based Optimization and
GreyWolf Optimizer,” Applied Soft Computing, vol. 67, pp. 197–
214, 2018.

[55] B. Mandal and P. K. Roy, “Optimal reactive power dispatch
using quasi-oppositional teaching learning based optimiza-
tion,” International Journal of Electrical Power& Energy Systems,
vol. 53, no. 1, pp. 123–134, 2013.

[56] L. Wang, Y. Shi, and S. Liu, “An improved fruit fly optimization
algorithm and its application to joint replenishment problems,”
Expert Systems with Applications, vol. 42, no. 9, pp. 4310–4323,
2015.

[57] M. D. Li, H. Zhao, X. W. Weng, and H. Q. Huang, “Artificial
bee colony algorithm with comprehensive search mechanism
for numerical optimization,” Journal of Systems Engineering and
Electronics, vol. 26, no. 3, pp. 603–617, 2015.

[58] K. Yu, X.Wang, and Z.Wang, “An improved teaching-learning-
based optimization algorithm for numerical and engineering
optimization problems,” Journal of Intelligent Manufacturing,
vol. 27, no. 4, pp. 831–843, 2016.

[59] M.-X. Li, R.-Q. Liao, and Y. Dong, “The particle swarm
optimization algorithm with adaptive chaos perturbation,”
International Journal of Computers, Communications &Control,
vol. 11, no. 6, pp. 804–818, 2016.

[60] S.-X. Lv, Y.-R. Zeng, and L. Wang, “An effective fruit fly
optimization algorithm with hybrid information exchange and
its applications,” International Journal of Machine Learning and
Cybernetics, vol. 9, no. 10, pp. 1623–1648, 2018.

[61] X. M. Zhang, Q. Kang, X. Wang, and J. F. Cheng, “Particle
swarm optimization algorithm with cross opposition learning
and particle-based social learning,” Journal of Computer Appli-
cations, vol. 37, no. 11, pp. 3194–3200, 2017.

[62] L. Sun, R. Liu, J. Xu, S. Zhang, and Y. Tian, “An affinity pro-
pagation clustering method using hybrid kernel function with
LLE,” IEEE Access, vol. 6, pp. 68892–68909, 2018.

[63] A. Bouyer and A. Hatamlou, “An efficient hybrid clustering
method based on improved cuckoo optimization and modified
particle swarm optimization algorithms,” Applied Soft Comput-
ing, vol. 67, pp. 172–182, 2018.

[64] L. Sun, J. Xu, and Y. Tian, “Feature selection using rough
entropy-based uncertainty measures in incomplete decision
systems,” Knowledge-Based Systems, vol. 36, pp. 206–216, 2012.

20 Complexity

[65] P. Das, D. K. Das, and S. Dey, “A modified Bee Colony
Optimization (MBCO) and its hybridization with k-means for
an application to data clustering,” Applied Soft Computing, vol.
70, pp. 590–603, 2018.

[66] L. Sun, J. Xu, S. Liu, S. Zhang, Y. Li, andC. Shen, “A robust image
watermarking scheme using Arnold transform and BP neural
network,”Neural Computing and Applications, vol. 30, no. 8, pp.
2425–2440, 2018.

[67] L. Sun, X. Zhang, J. Xu, W. Wang, and R. Liu, “A gene selection
approach based on the fisher linear discriminant and the
neighborhood rough set,” Bioengineered, vol. 9, no. 1, pp. 144–
151, 2018.

[68] R. Wang, S. Lai, G. Wu, L. Xing, L. Wang, and H. Ishibuchi,
“Multi-clustering via evolutionary multi-objective optimiza-
tion,” Information Sciences, vol. 450, pp. 128–140, 2018.

[69] X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver
Press, 2008.

[70] X. S. Yang and S. Deb, “Cuckoo search via Levy flights,” in
Proceedings of the World Congress on Nature and Biologically
Inspired Computing, pp. 210–214, 2010.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

