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Abstract. An algorithm for approximate credal network updating is
presented. The problem in its general formulation is a multilinear opti-
mization task, which can be linearized by an appropriate rule for fixing
all the local models apart from those of a single variable. This simple
idea can be iterated and quickly leads to very accurate inferences. The
approach can also be specialized to classification with credal networks
based on the maximality criterion. A complexity analysis for both the
problem and the algorithm is reported together with numerical experi-
ments, which confirm the good performance of the method. While the
inner approximation produced by the algorithm gives rise to a classifier
which might return a subset of the optimal class set, preliminary empir-
ical results suggest that the accuracy of the optimal class set is seldom
affected by the approximate probabilities.

1 Introduction

Credal networks [5] are a generalization of Bayesian networks (e.g., [11]) based
on the notion of credal sets. A credal set is a set of probability mass functions,
thus representing a quite general and expressive model of uncertainty. Other
uncertainty models like belief functions [14] or possibility measures can be re-
garded as (special classes of) credal sets. A Bayesian network can be turned into
a credal network by simply replacing the local models, which are conditional
probability mass functions, with conditional credal sets over the same variables.
Exactly as a Bayesian network defines a joint probability mass function over its
whole set of variables, a credal network defines a joint credal set, which is (the
convex closure of) the set of all joint mass functions obtained from the Bayesian
networks consistent with the local credal sets.

Compared to the case of Bayesian networks, inference in credal networks is
considerably harder. For instance, a marginalization task corresponds to a mul-
tilinear optimization problem (updating is a fractional multilinear task) [7]. This
is known to be NP-hard even for singly connected networks [8], while the analo-
gous inference in Bayesian networks can be performed in polynomial time [11].

* This work was supported by the Swiss NSF grants nos. 200020-134759 / 1,
200020-137680 / 1, and by the Hasler foundation grant n. 10030.



Despite the hardness of the problem, some algorithms are known to perform rea-
sonably well under certain conditions. Exact approaches have been proposed that
implement some branch-and-bound method with local searches [4, 6,8, 9]. Unfor-
tunately they all suffer from serious efficiency issues unless the credal network is
very simple. For instance, none of these methods can deal well with a binary node
having four ternary parents, because this setting is already equivalent to 3* = 81
free optimization variables to be chosen, meaning a space of 28! possible solu-
tions just locally to this node! On the other hand, approximate methods either
are fast and provide no accuracy guarantee [3,4, 6] or provide theoretical guar-
antees but are as slow as exact methods [13]. Moreover, all these approximate
methods are only capable of treating credal networks under a vertex-based rep-
resentation, while a constraint-based specification of credal networks still lacks
any practical algorithm.

In this paper we present a fast approximate algorithm for inferences in credal
networks based on solving a sequence of linear programming problems. It uses a
constraint-based specification, which allows us to deal with domains where the
local credal sets are given by their linear constraints. It does not suffer from
many parents and large credal sets because the optimization is done by compact
linear problems. To the best of our knowledge, this is the first method for general
credal networks to truly run the inference with a constraint-based specification.
We describe the method and some heuristic ideas to improve its accuracy. Unlike
similar ideas already proposed in the literature [6], our approach does not require
an explicit enumeration of the extreme points of the credal sets and should be
therefore used when the number of extreme points in the local credal sets is
exponentially large (e.g., variables with many states and/or parents, credal sets
defined by probability intervals, etc). We also discuss how the method can be
used for decision making under the maximality criterion [15].

Sections 2 and 3 review the basic notation and definitions of Bayesian and
credal networks. The proposed procedure is presented in Sections 4 and 5. Nu-
merical experiments show that the proposed method compares favorably against
other available methods in the literature (Section 7). Results are particularly
positive when the algorithm is specialized to the case of classification in credal
networks based on the maximality criterion. Although this problem is shown to
be even harder than the marginalization inferences (discussed in Section 6), clas-
sifications based on our approximate algorithm are empirically shown to coincide
with those based on exact methods.

2 Bayesian networks

Consider a set of variables X := (Xy, X1,...,X,) in one-to-one correspondence
with the nodes of an acyclic directed graph G. For each i = 0,...,n, the joint
variable II; C X denotes the parents of X; according to G. All these variables
are categorical: X; takes its values on the finite set (2x, and so does II; in
21, = Xx,;em 2x;, for each i = 0,. .. ,n.! The graph G represents stochastic

1 Symbol x denotes Cartesian set product.



independence relations by means of a Markov condition: any variable is con-
ditionally independent of its non-descendant non-parents given its parents (see
e.g., [11]). The specification of a conditional probability mass function P(X;|m;)
for each m; € 27, and i = 0,...,n, induces, for each x € x}_,{2x,, the factor-

ization:
n

P(z) = [[ P(xilm), (1)

=0

where the values of z; and 7; are those consistent with a.
We call Bayesian network a specification of the conditional probability mass
. €2, . . .
functions {P(Xi|7ri)}f:%7__1_jl In particular, the mass functions associated to X,

7"‘
Le., {P(Xi|mi)}r,e0q, are called the local models of X;, for each i = 0,...,n.
Inference in Bayesian networks is based on the joint probability mass function
in Eq. (1). Marginals, for instance, are obtained by summing out other variables
from the joint, i.e., the marginalization of X corresponds to the computation,

for each z¢ € {2x,, of

P(zo)= > ]I PGim), (2)

15-,%n 1=0

where ) is a shortcut for ) ., . With straightforward calculations, the
marginal in Eq. (2) can be expressed as a linear combination of the local prob-
abilities associated to an arbitrary X; € X, i.e.,

P(xo) = ) [P(xoluj ;) - P(mj)] - Plajlmj), 3)

ZTj,Ty

where probabilities P(7;) and P(zo|z;, ;) can be computed from the joint as
in Eq. (1),2 while probabilities P(z;|m;) are already available in the Bayesian
network specification. As special case, note that for j = 0, Eq. (3) rewrites
as P(CL‘Q) = Zﬂ'o P(’]T()) . P(!L‘o|ﬂ'0); while if Xy € Hj, and HJ/ = Hj \ {X()},
P(xo) = 32, » Pwo, ;) P(xj|wo, 7}). Remarkably, values of both P(;) and

P(xglxj, m;) are not affected by those of the local models of X; in the Bayesian

network specification. To see that, note that when computing a marginal, the
descendants and hence their local models can be removed without affecting the
probability. As X; is a child of all the variables in II;, the computation of P(;)
is not affected by the local models {P(X;|m;)}x, e 2y, - Similarly, when comput-
ing a conditional probability, arcs leaving the variables after the conditioning
bar can be removed: thus, in the case of P(xg|z;,7;), we can disconnect X;
from the rest of the network, thus making its local model irrelevant for the par-
ticular calculation. This remark, together with Eq. (3) will be exploited by the
approximate algorithm presented later.

2 Given a joint probability mass function, conditionals are obtained from Bayes’ rule.
For instance, P(wzo|z;, ;) = P(zo,x;,7;)/P(x;,7;), provided that P(z;, ;) > 0.



3 Credal networks

The Bayesian theory of subjective probability has been extended by more gen-
eral uncertainty theories in order to model situations of highly incomplete or
conflicting information. Among others, the theory of imprecise probability in
[15] adopts credal sets, which are (convex) sets of probability mass functions, as
a more general model of uncertainty about the state of a categorical variable. In
particular, here we focus on finitely generated credal sets, which are specified by
a finite number of linear constraints on the probabilities (e.g., see Fig. 1).

(0,1,0) (0,1,0)

(1,0,0) /7 (1,0,0)
(0,0,1) (0,0,1)

(a) (b)

Fig. 1. Credal sets over a ternary variable X (i.e., 2x = {z’,2"”,2""'}). The repre-
sentation is in a three-dimensional space with coordinates [P(z’), P(z"), P(z"")]. The
polytopes represent respectively: (a) the credal set defined by constraint P(z’) > P(z");
(b) a credal set whose extreme points are {[.1,.3,.6]7,[.3,.3,.4]",[.1,.5,.4]"}.

uy

Credal sets can be used to extend Bayesian networks to imprecise probabil-
ities. In order to do that, in the definition of Bayesian network, every condi-
tional probability mass function P(X;|m;) is replaced by a (conditional) credal
set K(X;|m;) for each m; € £2p7, and ¢ = 0,...,n. As we focus on credal sets
defined by a finite number of linear constraints, the set of extreme points of
K(X;|m;), to be denoted by ext[K (X;|m;)], has finite cardinality. We call credal

network a specification of conditional credal sets { K (XZ|7TZ)}Z;§HH Under this
generalized setting, Eq. (1) can be used to obtain different joint probability mass
functions. Let us consider all the possible extreme specifications, and then take

the convex hull (denoted as CH), i.e., build the following joint credal set:

n Ve € X7 yf2x,,
K(X):=CH P(X)|P(x) := HP(J}Z'|7TZ'), VP(X;|m;) € ext[K(X;|m;)]
i=0 VizO,l,...,n,Vmeﬂm

(4)
The credal set in Eq. (4) is called the strong extension of the credal network.
Here inference in credal networks is intended as based on the strong extension.
For instance, the lower bound with respect to K (X)) of the marginal probability



in Eq. (2) is:

n
P(xo):= min _ P(zg) = i P(xlm), (5
T €82, ,i=0,...,n

L1,y Ty 1=0

and similarly for the upper P(z). Eq. (5) corresponds to the optimization of
a non-linear (namely multilinear [7]) function over a feasible region defined by
linear constraints on the optimization variables. In the next section we present
an approximate algorithm for this task.

4 The algorithm

The algorithm we present is based on Lukatskii and Shapot’s approach [12]
to approximate the solution of multilinear problems. In essence, a multilinear
problem can be converted into a linear one if we fix all but one optimization
variable in each of its multilinear terms. In Lukatskii and Shapot’s terminology,
there is a partition S; U Sy U...U S, of the optimization variables such that
fixing the optimization variables in every set of the partition apart from 5j, the
multilinear problem becomes linear. By iterating over j, which defines the set .S;
to remain free, one can approximate the solution of the multilinear problem with
a sequence of linear ones. Da Rocha et al. [10] have already used similar ideas
to perform approximate inference in credal networks, but their approach had
to enumerate all the extreme points of credal sets and used a less sophisticated
search.

Our algorithm finds an inner approximation of the interval [P(x), P(x0)],
i.e., an upper approximation of the lower probability as in Eq. (5) and a lower
approximation of the upper probability. The idea is to reduce the multilinear task
in Eq. (5) to a linear program by fixing all the local credal sets to singletons
apart from those associated to an arbitrarily chosen variable X; € X, which we
call the free variable. Given a free X; € X, we pick an extreme point P(X;|r;) €
ext[K (X;|m;)], for each m; € 2x, and i = 0,...,n, i # j. These are additional
constraints to the optimization problem in Eq. (5), which becomes:

B/(.To) ::P i Z H p(.%‘l'ﬂ'l) ~P(xj|7rj):

min
(Xj|mi)EK (X |m;)

™€, T1,Tyen | 1=0,i] ©)
- SR []53; xj,m;) - P(m;)| - P(xj|m;),
P(Xjﬂj)EK(Xjﬂj)zJZ;rj (@olj, m5) - P(m;) (z]mj)

where the last derivation is based on Eq. (3) and probabilities P (x|, ;) and
]3(77.7) are denoted by a tilde as they are computed from the joint of a Bayesian
network with local models { P(X;|m;)}. The discussion of the special cases j = 0
and X € II; is exactly as in the Bayesian case (see the end of Sect. 2). We

focus on marginal probabilities just for the sake of clarity. Yet, the computation



with conditional probabilities is straightforward as the linear programs become
linear-fractional programs.

Let us comment on two important facts about Eq. (6). First, being the solu-
tion of an optimization with additional constraints with respect to Eq. (5) (see
the second term in the equation), we clearly have P(zo) < P’(x¢). Secondly,
it is clear from the third term of Eq. (6) that the computation of P’(zg) is a
linear program whose optimization variables are the local probabilities of X},
ie., {P(xj|m))}a, €Qx, w2, - Moreover, as the solution of a linear program lies
on an extreme point of the feasible region (i.e., an extreme point of the credal
set), there is a specification P*(X|r;) € ext[K(Xj|n;)], for each m; € 257, such
that:

Pllwg)= Y Palm) | [[ Plailm)|- (7)

L1,L2,---,Tn 1=0,i#7]

Coping with zero probabilities. In order to obtain the coefficients of the
objective function in the linear task in Eq. (6), the conditionals P(xo|z;, ;)

(and the marginals P(7;)) should be computed for each z; € £2x,, m; € £p,.

For zero-probability conditioning events, i.e., P(z;,m;) = 0, the conditionals
cannot be computed. In this case, the term of the sum in Eq. (6) associated to
(2, 7;) rewrites as: P(xq|zj,7;)-P(m;)-P(z;|m;) = P(xo|x;, ;) P(x;,7;), being
therefore zero. Thus, the corresponding term does not appear in the objective
function and its coefficient can be safely set to zero.

5 Searching for the optimum

In the previous section, we defined a procedure which, given a free variable X;
and the specification of an extreme point for all conditional credal sets of non-
free variables, returns an upper approximation of the lower probability P(xg),
together with the specification of the extreme points of the local credal sets
associated to the free variable which produced that optimum.

If we call almost-Bayesian network a credal network whose local credal sets
are singletons apart from those associated to a single variable, the optimization
procedure we proposed consists in taking an almost-Bayesian network consistent
with the original credal network (i.e., its strong extension is included in that
of the original credal network) and exploiting the fact that marginalization of
almost-Bayesian networks is a linear problem. By solving the linear problem, we
obtain: (i) an upper (lower) approximation of the lower (upper) probability; (ii)
a specification of the extreme points of the credal sets associated to the only
“non-Bayesian” variable in the almost-Bayesian network. These extreme points
can be used as an assignment for the extreme points of those local credal sets,
and another variable can be “freed”, leading to a new linear program. In the rest
of this section we suggest a possible initialization and two iteration strategies.



Initialization. The optimization in Eq. (6) requires an initialization, i.e., the
specification of an almost-Bayesian network consistent with the credal network.
This can be done by randomly picking an extreme point (or a simple point) from
each local credal set apart for those associated to X;. A deterministic alternative
to the random choice is the center of mass of the credal set:?

P(xi|mi)

Pom(x;|mi) == _ 8

( ‘ ) P(Xim)egt[K(Xilm)] |eXt[K(Xi|7ri)H ( )
for each z; € 2x,, m; € 2p,, 7 =0,1,...,n, with ¢ # j. Note that the center
of mass belongs to its credal set, but it is not an extreme point of it (unless the
credal set includes a single point). As we know that the exact solution of Eq. (5)
corresponds to a Bayesian network whose local models are extreme points of the
local credal sets, this means that if a solution includes a center of mass it cannot
be exact. Yet, this can be easily overcome by iterating the procedure at least
once for each variable, as all those linear problems will certainly pick extreme
points.

Greedy search The solution in Eq. (7) of the linear program in Eq. (6) provides
an approximate solution for the computation of the marginal of a credal network.
This procedure can be iterated by changing the “free” variable X; and using
the optimal solution {P*(X;|m;)}x; e @y, of the previous problem as a different
initialization. This improves the solution as shown here.

Proposition 1. Let {p(XJ\ﬂJ)}:’:%?H]n be a Bayesian network specification

consistent with a credal network specification {K(Xj|7rj)};£,17?_’n. Asin Eq. (2),

let P(xq) :== >, Llimo P(x4|m;) and, as in Eq. (6):

~/
P (zg) := min
(o) P(X;|m;) €K (Xjlm;) -

> (I P@ilm)| Plalmy). ()

oo | 9=0
1#]

Then Bl(xo) < P(xo).

Proof. It suffices to put in evidence the terms { P(x;|m;)} €1 in the definition
of P(xo) and note that, by definition of consistency between Bayesian and credal
networks, P(X;|m;) € K(Xj|n;) for each m; € £2p1;. O

As a corollary of Prop. 1, it follows that iterating the algorithm can only improve
the quality of the approximation. A greedy iteration strategy is therefore the
following: given a candidate solution P(z), we evaluate the improved solution
obtained by keeping the same specification of the extreme mass functions as
those used to obtain P(xq) and we free one of the variables a time. Let P’ (x)

3 In the language of evidence theory [14], this corresponds to the so-called pignistic
transformation which associates a probability mass function to a belief functions.



denote the candidate solution obtained by freeing X, for each j = 0,1,...,n.
During the first iteration, we pick as free variable X« such that:

J*=argming_qq o, B}(mo). (10)
This naturally provides us with a partition of the optimization variables as de-
fined by Lukatskii and Shapot [12]. Hence, if all estimated solutions in Eq. (10)
coincide with the previously obtained solution, a stationarity area has been
reached and the algorithm stops. Often this will be a local optimum of the
multilinear problem. Yet, this is not always the case because there might be a
neighborhood of candidates with no improving solution, but whose neighbors
might have an improving solution. The only way to ensure local optimality is to
keep track of all the candidates with equal solution until such set is completely
explored or an improving solution is found [12]. In practice, this is not an issue,
and can be overcome by the use of multiple starts, perturbations of solutions in
case of achieving a stationary area, and/or a queue of candidate solutions, as we
describe in the following.

Improving the greedy approach. The greedy approach based on Eq. (10) and
described in the previous paragraph can be improved by defining a priority queue
of size k, which includes not only the best candidate, but the k-best ones (each
candidate is tracked together with its relative Bayesian network specification).
The solutions {P;(z0)}}_, are evaluated for the candidate in the peak of the
priority queue, and are themselves included back in the queue (as long as they
are improving solutions). In this variant, the algorithm stops when the queue
is empty, which guarantees that all candidates have been explored (this will
certainly include the previously explained greedy approach). The queue can be
seen as many greedy searches in distinct “directions”.

Computational complexity (algorithm). Let m and [ denote, respectively,
the maximum number of states and incoming parents (i.e., the indegree) of the
network variables: m 1= max;—o__n |{2x,| and | := max;—,... » |1I;|. Let ¢ be the
maximum number of linear constraints required to define a local credal set. A
linear program as in Eq. (5) has at most m!*! variables and m! - ¢ constraints.
Because the input size should already be proportional to m' - g, the algorithm
spends time equivalent to run a linear programming solver on the (local) input
specification times the total number of iterations.

6 Maximality-based classification

Credal networks have been used to implement both knowledge-based systems
(e.g., [1]) and classifiers (e.g., [16]). Given a credal network over X, let X, be
the class variable and X C X \{X,} the variables (features) for which evidential
information is available. Given an instance & of the features, the identification of
the optimal class(es) of X should be therefore based on the conditional credal
set K(Xo|Z) obtained by conditioning the strong extension in Eq. (4). Such an



identification depends on the adopted decision criterion. E.g., the so called I'-
maximin approach returns zf := argmax, cqo. P(x0|&). Another criterion is
maximality [15], which returns the following set of classes:

2%, = {xg € Nx,| Dy € 2x,

P(ay|) > P(ry/#) "
VP(Xo|E) € K (Xo|®) [

In practice, 2% should be initialized to {2x,. Then, for each xj, zj € 2x,, the
following dominance should be checked:

. 1| ~ !~

b 0 P(I®) — () > 0, (12
and, if satisfied, z{, removed from 2%, The test in Eq. (12) cannot be directly
checked by algorithms for credal networks. Nevertheless, in a recent paper [2],
the test has been mapped to a standard updating task in a credal network. This
is obtained by augmenting the original credal network with an auxiliary node
associated to a Boolean variable Y and such that Y is a leaf child of Xy. The
quantification of the conditional credal sets for Y given X is precise:

0if zy=ap
P(Y =truelzg) = ¢ 1if z9=xj (13)
% otherwise.

After this quantification, the dominance test in Eq. (12) is equivalent to check
whether P(Y = true|&) > 1. The algorithm proposed in [2] can be used to
evaluate the dominance for each pair of classes and determine the undominated
ones according to Eq. (11). The upper approximation P'(Y = true|Z) > P(Y =
true|&) implies that some dominances detected by the algorithm might not re-
ally take place. Hence, the set of optimal classes evaluated by the approximate
algorithm is a subset of the exact one.

Computational complexity (classification). We characterize the computa-
tional complexity of maximality-based classification. The evaluation in Eq. (12)
is called dominance test. Given a credal network, evidence X, ¢ € {2¢, and a ratio-
nal r, the inference query decides whether exists P € K (X) such that P(g|X) > r
[8]. The treewidth of a network measures the extent to which it resembles a tree
(see [11] for a more formal definition).

Theorem 1. The dominance test is coNP-complete in bounded trecwidth net-
works and coNPFP-complete in networks of general topology.

Proof. We show hardness by demonstrating that the complementary decision,
that is, whether the minimization of Eq. (12) is less than or equal to zero, is
NPPP_hard in general, and NP-hard for bounded treewidth networks. For that,
we reduce the marginal inference problem in a credal network to it. Marginal
inference in credal networks is shown to be NP-hard in polytrees with at most
two parents per node and NPF-hard in general networks [8].



Take a credal network with inference query 3P : P(q|X) > r, for a given
rational r, query q and evidence X. Build a new network by adding a binary
node Xgo, which has Q as sole parent and precise probability mass functions
defined as P(z{|q) = % and P(x{|~q) = 11~. Note that the new network has the
same topology (and treewidth) of the original one. Now, the complement of the
dominance test asks whether

m}i)n [P(zg|x) — P(z4|%)] <0 <— mlin 2P(zglx)—1] <0
— m}in [rP(g|x) + (1 +7r)P(—q|X)) — 1] <0 «—
m}in [r—P(gx)] <0 <~ mgxP(qu) >r < JP: P(q|x) >,

which is exactly the credal network marginal query. As the treewidth of the net-
work has not been modified, the hardness results follow. Pertinence of this com-
plementary decision in NP for the case of bounded treewidth (respectively in
NPFP for the general case) is immediate, since given P € K(X), we can use
a Bayesian network inference to certify that P(z(|X) < P(z(|X) (in polynomial
time for bounded treewidth nets and by using the PP oracle for the general case).

O

Hence, deciding whether a class is in the maximal set is a very demanding
query, because it is tested against all other classes, and each of such tests can be
itself hard. For example, if the network has bounded treewidth, the problem of
deciding whether a class is maximal falls in the class of decision problems that
can be solved by polynomial time machines with access to non-adaptive queries
to an NP oracle, namely PII'NP_ Even if a hard task to do exactly, we shall see
that our algorithm is able to recover the set of maximal classes successfully in
practice (but without guarantee of exactness).

7 Experiments

To validate the performance of our algorithm, we use a benchmark made of dif-
ferent credal nets with random topology, either multiply or singly connected, and
two classical (multiply connected) models, namely the Alarm and the Insurance
networks. The maximum indegree for the networks with random topology is lim-
ited to 5. The number of states for the Alarm and the Insurance networks is the
same as in their original specifications, while for the other networks the number
of states is randomly chosen between 2 and 8. All the models are quantified
by randomly generated conditional credal sets with a fixed number of extreme
points, whose number is ranging from 2 to 8 for each network. Inferences are
computed by a Java implementation of the algorithm linked to the COIN-OR
linear program solver. The code is available as a free software tool.* In these
experiments, the greedy approach described in Sect. 4 is considered and the al-
gorithm is therefore called G-LP. Centers of mass are used for the first iteration.

* See http://ipg.idsia.ch/software and http://www.coin-or.org.



Exact inferences are computed by mapping the problem to an integer linear pro-
gram [9], which is solved by CPLEX. Comparisons are with other approximate
algorithms: the iterated local search (ILS) [6] and the GL2U algorithm [3].

Networks # of tests  G-LP G-LP* GL2U ILS
Alarm 973 .0474 .0076  .1218 .2709
Insurance 650 .0767 .0795 1818 .2700
Random (single) 6162 .0816 .0109 1724 .1528
Random (multi) 2963 .0855 .0140  .1594 .1269

Table 1. Benchmark results (mean square absolute errors). Upper marginal probabil-
ities have been computed for each state of each network in the benchmark such that
the exact solver took less than three minutes to find the optimum.

Before commenting on the results in Tab. 1, note that our approach assumes
the local credal sets to be specified by linear constraints. This is often the case in
real scenarios (e.g., credal classifiers or knowledge-based expert systems quanti-
fied by probability intervals). Conversely, credal networks used for benchmarking
represent their local credal sets by explicit enumeration of the extreme points.
The reason is that most of the algorithms for credal networks require the lo-
cal credal sets to be described by their extreme points. In the first experiment,
we evaluate the lower and upper bounds of the probabilities w.r.t. the extreme
points. E.g., for the credal set in Fig. 1(b): P(z') € [.1,.3], P(z") € [.3,.5],
P(z"") € [.4,.6]. These constraints define larger credal sets compared to the
original ones. The third column of Tab. 1 reports the results, i.e., the mean
square difference between the inner approximation obtained by G-LP and the
exact inferences. The accuracy is fairly good on the whole benchmark. In the
fourth column of Tab. 1, the same inferences computed by G-LP in the third col-
umn are regarded here as approximations for credal networks with local credal
sets defined by the original extremes (and not by the induced linear constraints).
We denote this heuristic variant as G-LP’. The inner approximation of G-LP is
now balanced by the outer approximation introduced by considering the linear
constraints and this produces smaller errors (MSE< .02) for the Alarm and the
random networks. The performance is less accurate for the Insurance network,
probably because of the relatively high number of states for the variables of this
network, which makes the outer approximation too coarse. Regarding the pro-
posed improvement of the greedy approach, the results (with queue size k = 40
and still one minute as maximum running time) are just marginally better than
those based on G-LP and for this reason are not reported. Finally, we evaluate
the performance of G-LP for maximality-based classification. We consider ten
benchmark networks with the Alarm topology. As classes we choose the variables
with four states with no evidence (i.e., X = ). On all these classification tasks
the two sets of optimal classes coincide. Thus, the small approximation in the
inferences based on G-LP seems to have no effect when finding the set of max-
imal solutions, which were recovered exactly. While this is somehow expected
(because the dependency on the exact probability value is less important), this
empirical result is promising for the use of credal networks in classification.
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Conclusions

A new algorithm based on a sequence of linear optimizations is proposed for
approximate credal network updating. The algorithm can deal with a constraint-
based specification of credal networks, and provides inner approximation solu-
tions. It is also extended to find the maximal classes in a classification problem.
The complexities of these problems and of the algorithm are presented. In a
practical perspective, preliminary results are promising: the algorithm is fast
and accurate. As future work, we intend to test the algorithm on larger net-
works and with other search heuristics, and support other decision criteria.

References

1.

2.

10.

11.

12.

13.

14.
15.

16.

A. Antonucci, R. Brithlmann, A. Piatti, and M. Zaffalon. Credal networks for
military identification problems. Int. J. Approz. Reasoning., 50(2):666—-679, 2009.
A. Antonucci and C.P. de Campos. Decision making by credal nets. In Proceed-
ings of the International Conference on Intelligent Human-Machine Systems and
Cybernetics (IHMSC 2011), volume 1, pages 201-204. IEEE, 2011.

A. Antonucci, S. Yi, C.P. de Campos, and M. Zaffalon. Generalized loopy 2U:
a new algorithm for approximate inference in credal networks. Int. J. Approz.
Reasoning., 51(5):474-484, 2010.

A. Cano, M. Gomez, S. Moral, and J. Abellan. Hill-climbing and branch-and-
bound algorithms for exact and approximate inference in credal networks. Int. J.
Approz. Reasoning., 44(3):261-280, 2007.

F. G. Cozman. Credal networks. Artificial Intelligence, 120:199-233, 2000.

J. C. F. da Rocha, F. G. Cozman, and C. P. de Campos. Inference in polytrees
with sets of probabilities. In UAT ’03, pages 217-224, 2003.

C. P. de Campos and F. G. Cozman. Inference in credal networks using multilinear
programming. In Proceedings of the Second Starting Al Researcher Symposium,
pages 50-61, Amsterdam, 2004. IOS Press.

C. P. de Campos and F. G. Cozman. The inferential complexity of Bayesian and
credal networks. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 1313-1318, Edinburgh, 2005.

C. P. de Campos and F. G. Cozman. Inference in credal networks through integer
programming. In International Symposium on Imprecise Probability: Theories and
Applications (ISIPTA), pages 145-154, Prague, 2007.

J.C. Ferreira da Rocha and F.G. Cozman. Inference in credal networks: branch-
and-bound methods and the A/R+ algorithm. Int. J. Approxz. Reasoning., 39(2-
3):279-296, 2005.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, 2009.

A. M. Lukatskii and D. V. Shapot. Problems in multilinear programming. Com-
putational Mathematics and Mathematical Physics, 41(5):638-648, 2000.

D.D. Maua, C.P. de Campos, and M. Zaffalon. Updating credal networks is ap-
proximable in polynomial time. Int. J. Approz. Reasoning., 2012.

G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.
P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,
1991.

M. Zaffalon. The naive credal classifier. J. Stat. Plann. Inference, 105(1):5-21,
2002.



