
Statistics and Computing
https://doi.org/10.1007/s11222-019-09858-0

Multiple changepoint detection in categorical data streams

Joshua Plasse1 · Niall M. Adams2

Received: 17 May 2018 / Accepted: 2 February 2019
© The Author(s) 2019

Abstract
The need for efficient tools is pressing in the era of big data, particularly in streaming data applications. As data streams are
ubiquitous, the ability to accurately detect multiple changepoints, without affecting the continuous flow of data, is an important
issue. Change detection for categorical data streams is understudied, and existing work commonly introduces fixed control
parameters while providing little insight into how they may be chosen. This is ill-suited to the streaming paradigm, motivating
the need for an approach that introduces few parameters which may be set without requiring any prior knowledge of the
stream. This paper introduces such a method, which can accurately detect changepoints in categorical data streams with fixed
storage and computational requirements. The detector relies on the ability to adaptively monitor the category probabilities
of a multinomial distribution, where temporal adaptivity is introduced using forgetting factors. A novel adaptive threshold
is also developed which can be computed given a desired false positive rate. This method is then compared to sequential
and nonsequential change detectors in a large simulation study which verifies the usefulness of our approach. A real data set
consisting of nearly 40million events from a computer network is also investigated.

Keywords Adaptive threshold · Categorical data stream · Changepoint detection · Forgetting factor

1 Introduction

The rapid development of data acquisition technology is
allowing data to be collected at an unprecedented rate. This
large-scale collection of data often results in data streams
(Aggarwal 2007; Gama 2010)—unbounded sequences of
observations which arrive at high-frequency and are sub-
ject to unknown temporal variation. Data streams appear
in various real-world applications, such as: industrial man-
ufacturing (Montgomery 2007), genome sequencing (Weiß
2012), social networks and computer network traffic (Gama
2010). This creates a demand for efficient, dynamic, flexible
methodology, which can perform inference while respect-
ing the computational demands of the stream. The particular
focus of this paper is on developing methodology for cate-
gorical data streams.

The frequency of observations arriving is typically very
high. For example, Imperial College London’s computer net-

B Joshua Plasse
j.plasse15@imperial.ac.uk

1 Department of Mathematics, Imperial College London,
London, UK

2 Department of Mathematics and Data Science Institute,
Imperial College London, London, UK

work generates roughly 1.3billion network events per day
(Heard et al. 2014),while theLargeHadronCollider atCERN
generates millions of events per second (Ross et al. 2011).
Data streammining is therefore fundamentally different from
conventional tasks which assume a complete data set is not
only available, but attainable. Since data arrives continuously,
this requires methodology to use limited computational and
storage requirements (Pavlidis et al. 2011). Ideally, methods
will be single pass, that is, once data arrives it is utilized and
immediately discarded. The computational overhead should
also be constant with respect to the length of the stream,
and not increasing over time, which is a common attribute in
many statistical and machine learning algorithms.

The dynamic nature of the world makes it naive to
assume that data streams remain stationary. Nonstationarity
in streams is typically referred to as concept drift (Tsym-
bal 2004; Widmer and Kubat 1996), and if ignored could
be detrimental to the learning process. This temporal aspect
gives rise to two challenges of streaming inference: the abil-
ity to adapt to changes in the data-generating process, as well
as the capability to detect multiple changepoints that occur
over time.

One widely used and arguably easiest way of introducing
a temporal component into the estimation process is to use a

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-019-09858-0&domain=pdf
http://orcid.org/0000-0003-1687-0310

Statistics and Computing

sliding window. Choosing the width of this window is a non-
trivial task, and with few exceptions (e.g., Bifet and Gavalda
(2007)), it is usually taken to be constant. The choice of an
appropriate window size is commonly overlooked, or is said
to be chosen based on advice from a ‘domain expert.’ This
is not suitable for the streaming paradigm as fixed values,
either subjectively chosen or prescribed by an expert, will
not accurately describe a data stream indefinitely. Of course,
an expert could reassess their opinion after some prespeci-
fied amount of time; however, when to adjust the window
remains unclear.

An alternate method for producing adaptive estimates is
to use forgetting factors. Forgetting factors are commonly
used in adaptive filtering (Haykin 2008) and have been
successfully used in various statistical stream mining set-
tings (Anagnostopoulos et al. 2012; Bodenham and Adams
2017; Pavlidis et al. 2011). Forgetting factors are a sequence
of scalars, which continuously downweights historic data
as new data are observed without introducing any compu-
tational burden. Forgetting factors are discussed more in
Sect. 3.

The literature on sequential changepoint detection is vast,
e.g., see Tartakovsky et al. (2014). However, sequential
methods typically have various idiosyncrasies which make
them ill-suited to the streaming paradigm. As discussed in
Sect. 1.1, some of these include: (1) attention is restricted
to continuous, univariate data streams that typically follow
some assumed distribution (e.g., Gaussian), (2) several con-
trol parameters, such as the width of a sliding window, are
introduced and are usually chosen based on information
that is typically unknown (such as the distributions before
and after a changepoint being completely specified), (3) the
detectors liberally use fixed thresholds to signal when a
change occurs without providing insight into how to choose
their values in practice, and (4) methods focus on the detec-
tion of a single changepoint and re-initializing the detector
without interrupting the flow of data is not obvious.

In this paper, attention is restricted to categorical data
streams where the interarrival times between observations
are on the order of milliseconds—an under-researched topic
in the literature. An adaptive estimate, based on a forgetting
factor framework, is developed for the category probabil-
ities of the multinomial distribution governing the stream.
These estimates can be sequentially updated with no com-
putational/storage overhead and can be tuned online without
any user supervision. Comparing the adaptive and static esti-
mates results in a novelmultinomial changedetectionmethod
(MCDM)which can effectivelymonitor formultiple change-
points in data streams. Furthermore, adaptively maintaining
estimates will make the MCDM robust to missed detec-
tions, as the estimate will quickly adjust to concept drift.
This is crucial in monitoring the category probabilities, as
the magnitude of the changes can be at most one, resulting

in potentially small, difficult to detect drift. The detector uti-
lizes the Kullback–Leibler divergence (Kullback and Leibler
1951) to flag changes, and does so based on an original adap-
tive threshold. This adaptive threshold introduces a single
control parameter which can be specified given a desired
false positive rate. This appears to be the first work which
develops a streaming change detector for categorical data
streams without falling into any of the previously discussed
pitfalls.

This paper is structured as follows: Sect. 1.1 discusses
literature directly relevant to this work. Section 2 considers
categorical data streams and the multiple changepoint sce-
nario while providing notation used throughout the paper.
An adaptive estimate for the multinomial distribution, which
can be recursively updated with no computational overhead,
is discussed in Sect. 3. The MCDM is developed in Sect. 4,
and a time-varying threshold to aid in the detection of change-
points is introduced. Section 5 describes the methods which
theMCDM is compared to in the simulation study of Sect. 6.
Section 7 implements theMCDMon nearly 40million obser-
vations collected from Imperial College London’s computer
network.

1.1 Relevant work

Sequential change detection in categorical data streams has
received little attention in recent decades. Although having
merit in their own right, many existing methods fall victim
to the previously mentioned pitfalls. The work of Wolfe and
Chen (1990) appears to be among the first to develop change-
pointmethodology formultinomial sequences. However, this
work focuses on the detection of a single changepoint and
develops estimates which need to be recomputed for various
potential changepoint locations. This violates the single pass
requirement and is therefore not practical for our purposes.
Similar issues occur in Hou et al. (2013), where maximum
likelihood estimation and the commonly used p-chart (Mont-
gomery 2007) are combined to detect a single change among
categorical observations.

Themethodology developed in Ienco et al. (2014) depends
on a ‘context-based’ distance model; however, the choice of
a good context is nontrivial. Moreover, Chebyshev’s inequal-
ity is used to detect changepoints which introduces several
thresholds whose values must be specified. A fuzzy multi-
nomial control chart for linguistic variables is presented
in Amirzadeh et al. (2008), the idea being that the vagueness
in assigning categories (such as poor, good and excellent) to
items being inspected can be made formal with techniques
from fuzzy set theory. Although assigning weights to the lin-
guistic variables is difficult, authors suggest they should be
chosen after careful discussion with experts.

Cao and Huang (2013) introduce an algorithm based on
rough set theory.Thismethoduses afixed slidingwindowand

123

Statistics and Computing

threshold to detect changes, and it is suggested that their val-
ues should be set based on available prior knowledge. Chen
et al. (2009) develop a framework for clustering nonstation-
ary categorical data. A fixed slidingwindow is used to handle
the temporal variation, and several thresholds are introduced
which must be specified. Detectors based on moving sum
statistics (Eiauer and Hackl 1978) have been investigated
recently in Eichinger et al. (2018) and, similar to other meth-
ods, introduce a fixed ‘bandwidth’ parameterwhich is similar
to the width of a slidingwindow. The performance ofmoving
sum detectors depends crucially on the choice of bandwidth
(Eichinger et al. 2018) and is difficult to specify in practice.
The work of Weiß (2012) also considers fixed sliding win-
dows and uses the Gini index (among other measures) to
monitor categorical data streams.

The cumulative sum (CUSUM) control chart introduced
in Page (1954) is a popular technique used in statistical qual-
ity control. Since various modifications have been made,
CUSUM is applicable to both Bernoulli and multinomial
sequences. In Ryan et al. (2011), a multinomial CUSUM
chart is developed. The authors mention that if the direction
of the drift in each category cannot be specified in advance,
then a Bernoulli CUSUM chart should be implemented sep-
arately for each category—guidance we will utilize later in
experimental comparisons. Höhle (2010) develops a multi-
nomial CUSUMchart bymodeling the category probabilities
via amultinomial logistic regressionmodel. It is assumed that
the categoryprobabilities after a changepointmanifest as spe-
cific shifts in the intercept of their model, which introduces
several scaling factors. BothmultinomialCUSUMcharts dis-
cussed require prior knowledge of the shift in the category
probabilities, which will be difficult to anticipate in the mul-
tiple changepoint scenario. Therefore, following the advice
of Ryan et al. (2011), multiple Bernoulli CUSUM charts will
be implemented as opposed to a multinomial CUSUM chart.
An overview of the Bernoulli CUSUM chart is provided in
Sect. 5.1.

Bayesian-based techniques are mostly offline, although
there has been some recent research devoted to extending
Bayesian methodology to the online setting. In Adams and
MacKay (2007), the distribution for the length of the current
run, i.e., the amount of time elapsed since the last detected
change, is computed. Thismethod has linear storage and time
complexity, although thresholding the tails of the run-length
distribution allows for, on average, constant complexity per
time-step. However, the worst-case complexity is still linear
in the length of the data, which may be problematic for high-
frequency streams.Byrd et al. (2017) present a laggedversion
of the work in Adams and MacKay (2007) and show via
simulation that themethod ofAdams andMacKay (2007) has
difficulties in detecting changes of smallmagnitude (which is
a primary focus of our work). In the lagged version, changes
are flagged according to thresholding a relative change in the

maximum a posteriori estimate of the run-length distribution.
In terms of the length of the stream, the introduction of the lag
comes at a price in terms of computational complexity, as it
becomes exponential in terms of the lag. As online Bayesian
techniques are not directly relevant to the focus of this work,
they are not considered in the sequel.

2 Nonstationary categorical streams

This section introduces notation used throughout the paper
and provides a brief discussion of the multinomial distri-
bution. The section concludes by discussing the multiple
changepoint scenario and provides a simple way of restarting
a detector once a detection has been made.

2.1 Categorical data streams

It is assumed that independent realizations froma K -category
multinomial distribution arrive sequentially. It is further
assumed that the number of categories K is known, fixed, and
K > 1. The univariate data stream can then be expressed as

〈d1, d2, . . . , dt−1, dt , . . .〉, (1)

where dt ∈ S ≡ {1, 2, . . . , K }. An equivalent representa-
tion of (1) will prove useful in subsequent sections where
other methods are adapted to detect changes in categorical
data streams. This representation is referred to as the bina-
rization of the categorical process (Weiß 2012) and can be
represented as

〈ed1 , ed2 , . . . , edt−1 , edt , . . .〉, (2)

where edt ∈ R
K represents the standard basis vector in R

K

comprised of all zeros except for a one in the index cor-
responding to the value of dt . For example, if K = 3 and
dt = 2, then edt = (0, 1, 0)�. This exposition is concerned
with sequentially monitoring a multinomial distribution for
multiple changepoints in the streaming paradigm, where a
novel method is developed for data streams assuming the
form of (1).

Suppose t observations, denoted d1:t ≡ (d1, . . . , dt), have
been observed from a data stream. Then, the multinomial
distribution governing the process can be expressed as

f (ct | pt) = t !
∏

i∈S

(
c(i)
t

)
!
∏

i∈S

(
p(i)
t

)c(i)
t

,

where ct ∈ R
K is the vector of category counts and pt ∈ R

K

are the corresponding category probabilities. The i th compo-
nent of each vector is denoted, respectively, by c(i)

t and p(i)
t .

123

Statistics and Computing

For each t ∈ Z
+, the following are satisfied

∑

i∈S
c(i)
t = t,

∑

i∈S
p(i)
t = 1.

Given d1:t , the maximum likelihood estimate for the cate-
gory probabilities is givenby p̂t = ĉt/t , ĉt being the vector of
observed category counts. The vector p̂t will be referred to as
the static maximum likelihood estimate as it gives each datum
equal weight in the computation of the estimate. This esti-
mate plays an important role in the development of the change
detection method discussed in Sect. 4. However, allowing
every observation to have equal weight in the estimation pro-
cess will be detrimental as more data are collected from a
drifting stream. To alleviate this issue, a way of adaptively
estimating the probabilities is provided in Sect. 3.

2.2 Multiple changepoints

Any changes in a categorical data stream will manifest in the
category probabilities. In this work, it is assumed that these
probabilities are locally stationary. That is, there exists a set
of changepoints {τk}mk=1 that partition the stream into (m +
1) segments. In each segment, the multinomial distribution
governing the data stream is assumed fixed. The distribution
of the stream, in the kth segment, can then be expressed as

C t ∼ Multi(pk) ∀t ∈ [τk−1, τk),

whereMulti(pk) represents themultinomial distributionwith
probability vector pk . Generally, pt will be used to represent
the probability vector currently generating the observations
from the stream. Notice that pt can only assume one of
(m + 1) vectors, and its value depends on which segment
is currently generating the data. Additionally, let τ0 ≡ 0 and
τm+1 ≡ ∞.

In various research areas, such as statistical quality control
(Montgomery 2007), many methods have been developed to
detect a single changepoint in a data stream. Usually this cor-
responds to finding a fault in some manufacturing process.
Once a change is discovered, the process can be stopped until
a remedy is found. However, in our context, the stream con-

tinues unabated when a changepoint is detected. Therefore,
a restarting mechanismmust be built into the method so that
the continuous flow of data is unaffected by the detection of
changepoints.

A simple restarting mechanism discussed in Bodenham
and Adams (2017) is a grace period. Let G ∈ Z

+ dictate
the length of the grace period, and suppose that a change
detector flagged a change at time t = τ̂ . The grace period
immediately begins, and during the interval t ∈ [τ̂ , τ̂ + G],
no subsequent changepoints are monitored for. The purpose
of this period is to reestimate the new segment’s probability
vector prior to another round of monitoring. Although G
may be considered as a control parameter, any methodology
that can effectively handlemultiple changepointswill require
some sort of restarting procedure. Additionally, G may be
chosen as a function of the minimum allowed false positive
rate for a detector, as it implicitly provides a lower bound on
the number of observations that are processed until a false
positive is flagged. The grace period is depicted graphically
in Fig. 1.

The objective of this work is to accurately estimate the
location of the changepoints without any user intervention,
as well as continuously maintaining an accurate estimate of
the probability vector pt . Due to the nonstationarity of data
streams, this will require a technique which adaptively learns
to discard older data as more observations arrive from the
stream. An effective way of providing temporal adaptivity is
via forgetting factors—the topic of the next section.

3 Adaptive estimation

Adopting a technique commonly used in adaptive filtering
(Haykin 2008); a way of introducing temporal adaptivity is
to use forgetting factors. Forgetting factors are a sequence
of scalars, taking values in [0, 1], that downweight historic
data as newer data arrive. Forgetting factors have been previ-
ously considered (Anagnostopoulos et al. 2012; Bodenham
and Adams 2017; Pavlidis et al. 2011) and can be interpreted
as a continuous analog of the sliding window approach, as
discussed in Sect. 1.

τ1 τ̂1 τ̂1 + G τ2 τ̂2 τ̂2 + G
t

Fig. 1 An example of a stream with two changepoints at times τ1 and τ2, and detections made by a detector at times τ̂1 and τ̂2. The shaded regions
indicate grace periods where the detector is not monitoring for any changepoints

123

Statistics and Computing

In Sect. 3.1, forgetting factors are incorporated in the esti-
mation using a frequentist approach. This leads to a modified
likelihood function which is more suitable for temporally
evolving data. This likelihood is then optimized, resulting in
adaptive estimates for the category probabilities. Section 3.2
presents a sequential formulation of these adaptive estimates,
allowing for the adaptive estimation of pt that introduces no
computational overhead nor the need to store any historical
data. Section 3.3 provides a method for tuning the forgetting
factors online without user supervision.

3.1 A temporally aware likelihood

Similar to Anagnostopoulos et al. (2012), consider the
weighted log-likelihood function given by

LFF(p | d1:t) =
t∑

k=1

[
t−1∏

�=k

λ�

]

L(p | dk) (3)

= λt−1LFF(p | d1:t−1) + L(p | dt), (4)

whereL(· | ·) is the multinomial log-likelihood function and
{λk}t−1

k=1 are a collection of forgetting factors. When k = t ,
the empty product is assumed one. In the above formula-
tion, the time subscript is omitted from the vector pt ; this
is to reinforce that the temporal adaptivity of the soon to be
displayed estimates is strictly due to the forgetting factors.

The interpretation of the forgetting factors is best seen by
inspecting the sequential formulation of the likelihood given
by Eq. (4). The likelihood associated with the most recent
observation is included in the likelihoodwith ‘full-weight,’ or
weight one. Assuming that λt−1 < 1, we see that the histori-
cal data d1:t−1 are smoothly downweighted by the collection
of forgetting factors. Therefore, as desired, older data are
gradually ‘forgotten’ as newer data arrive. See Bodenham
(2014) for a thorough discussion on using forgetting factors
in adaptive estimation.

For every i ∈ S, optimization of Eq. (3) results in the tem-
porally adaptive maximum likelihood estimates

p̃(i)
t = 1

nt

t∑

k=1

wk I (dk = i), (5)

where I (·) is the indicator function and

wk =
t−1∏

�=k

λ�, nt =
t∑

k=1

wk .

Subsequently, p̃t ∈ R
K is used to denote the vector of adap-

tive maximum likelihood estimates whose i th component is
given by p̃(i)

t .

3.2 Recursive updates

Aspresented, the computation of p̃t is not suitable for stream-
ing data. This is because Eq. (5) requires maintaining all
historical data in computer memory. This issue is alleviated
by rewriting Eq. (5) as the following recursive update equa-
tions:

nt = λt−1nt−1 + 1, (6)

p̃(i)
t =

(

1 − 1

nt

)

p̃(i)
t−1 + 1

nt
I (dt = i). (7)

At any time t , the current adaptive estimate p̃t can be com-
puted via Eqs. (6)–(7) only having to store a few parameters
in computer memory. Further, this estimate can be computed
using a constant number of floating point operations per time-
step, making it suitable for high-frequency data.

The collection of forgetting factors are allowed to vary
in time. An alternate, but less general, approach would be
to fix the forgetting factors to some user specified value.
This is called fixed forgetting, and the special case where the
collection of forgetting factors are all replaced by one will
prove useful in Sect. 4. In this case, Eqs. (5) and (7) repre-
sent, respectively, the nonsequential and sequential equations
for the static maximum likelihood estimate p̂t discussed in
Sect. 2.1. Therefore, the staticmaximum likelihood estimates
for the category probabilities can also be computed without
introducing any computational/storage overhead by setting
λt−1 = 1 in Eq. (6).

3.3 Tuning the forgetting factors

How quickly p̃t reacts to drift depends entirely on the values
of the forgetting factors. Larger values will continue to give a
considerable amount of weight to older observations, which
will hinder the ability of p̃t to accurately estimate a new seg-
ment’s category probabilities when the stream experiences
drift. Conversely, smaller values will result in poorer esti-
mates during periods of stationarity, as ‘relevant’ data will
be quickly forgotten. It is clear that a way of tuning these
parameters online without any user supervision is a neces-
sity in the streaming paradigm.

At each time-step, the forgetting factors are updated via a
stochastic gradient descent step of the form

λt = λt−1 + η∇
(

∑

i∈S
I (dt = i) log

(
p̃(i)
t−1

)
)

, (8)

where 0 < η � 1 is a step-size and the gradient is taken with
respect to the forgetting factors. The function that is being
differentiated in Eq. (8) represents the one-step ahead log-
likelihood and is an empirical measure of how the estimates
at time (t − 1) fit the current data point (Anagnostopoulos
et al. 2012).

123

Statistics and Computing

Since data streams are unbounded, it is infeasible to store
every forgetting factor in computer memory. This makes the
gradient computation appearing inEq. (8) challenging. These
issues have been rigorously investigated inBodenham (2014)
and were shown to agree with the heuristic argument pro-
posed in Anagnostopoulos et al. (2012). The latter supposes
that the adaptive estimates are a function of a single forget-
ting factor λ and proceeds by taking the appropriate scalar
derivative. Equation (8) can then be reexpressed as

λt = λt−1 + η

(
∑

i∈S
I (dt = i)

∇ p̃(i)
t−1

p̃(i)
t−1

)

,

where the operator ‘∇’ represents differentiationwith respect
to the scalar variable λ and the gradients can be recursively
updated via direct differentiation of Eqs. (6)–(7), resulting in

∇nt = λt−1∇nt−1 + nt−1,

∇ p̃(i)
t =

(

1 − 1

nt

)

∇ p̃(i)
t−1 − ∇nt

n2t

(
I (dt = i) − p̃(i)

t−1

)
.

Similar to Eqs. (6)–(7), the gradient updates require minimal
storage and can be computed using a constant number of
floating point operations per time-step. These time-varying
forgetting factors, recursively updated using the stochastic
gradient descent method, will be subsequently referred to as
adaptive forgetting factors.

In developing the adaptive forgetting factors, a fixed step-
size η was introduced. The behavior of the forgetting factors,
for various choices of η, has been investigated in Boden-
ham (2014), and it has been shown that a range of ‘sensible’
values results in favorable behavior of the forgetting fac-
tors. From experience, any value η = 10−k for k ∈ [2, 5]
results in acceptable performance. There is guidance for tun-

ing η online; however, most methods introduce other control
parameters that need to be specified. Moving forward, we
keep η constant, as opposed to introducing other parame-
ters. See Ruder (2016) for a discussion on variations of the
gradient descent algorithm.

Figure 2 shows the behavior of the adaptive estimates p̃t
and the static estimates p̂t . In this illustration, K = 3 and the
estimates were averaged over 5000 data streams, all experi-
encing a change in distribution at time t = 500. Before the
change, both estimates are indistinguishable, which is to be
expected since during periods of stationarity the adaptive
forgetting factors should be close to one (which is precisely
the static case). However, after the changepoint, p̃t quickly
adapts to the probabilities in the new segment, while p̂t
struggles to accurately estimate the new probabilities. This is
because data prior to the changepoint are contributing equally
to p̂t , hindering its ability to maintain accurate estimates.We
remark that there is a small ‘recovery period’ required for the
adaptive estimates to begin accurately estimating a new seg-
ments probabilities; however, this delay is small relative to
the amount of data arriving from the stream and should not
be a concern in practical applications. The behavior of p̃t and
p̂t during periods of stationarity/drift forms the basis of our
change detection method and is discussed in the next section.

4 Amultinomial change detectionmethod

The intuition behind the multinomial change detection
method (MCDM) relies on the behavior of the adaptive (p̃t)
and static (p̂t) estimates during periods of stationarity and
drift. The idea of comparing the behavior of adaptive and
static estimates is an extension of the work in Plasse et al.
(2017), where a similar concept was developed for detecting

0.2

0.4

0.6

0 250 500

p̃
(1)
t , p̂

(1)
t

750 1000

t

E
st
im

at
es

0.2

0.4

0.6

0 250 500

p̃
(2)
t , p̂

(2)
t

750 1000

t

0.2

0.4

0.6

0 250 500

p̃
(3)
t , p̂

(3)
t

750 1000

t

Fig. 2 An illustration showing the behavior of the adaptive estimates
p̃t (solid) and the static estimates p̂t (dashed) averaged over 5000 data
streams with a change in distribution at time t = 500. The multinomial

distributions generating the data are pt = (1/10, 3/10, 6/10)� before
the changepoint and pt = (4/10, 5/10, 1/10)� after the changepoint

123

Statistics and Computing

changes in a cyber-physical system. As p̃t was developed
to react quickly to changes in the data-generating process,
when the stream experiences drift, the adaptive estimateswill
respond to the change much quicker than the static estimates,
resulting in p̃t and p̂t diverging. This divergence will be
quantified in the next section by appealing to the commonly
used Kullback–Leibler (KL) divergence.

4.1 KL divergence

The KL divergence introduced by Kullback and Leibler
(1951) is a nonsymmetric measure characterizing how one
probability distribution deviates from a second distribution.
Let P and Q be K -category multinomial distributions with
category probability vectors p and q. Then, the KL diver-
gence between P and Q is given by

KL(P || Q) =
∑

i∈S
pi log

(
pi
qi

)

,

which is zero if and only if pi = qi for every i ∈ S.
Suppose d1:t have been observed, and that p̃t and p̂t have

been recursively computed via the update equations given
in Sect. 3. Then, a plug-in estimate for the KL divergence,
between two multinomial distributions being monitored by
adaptive and static estimates, is given by

κt =
∑

i∈S
p̃(i)
t log

(
p̃(i)
t

p̂(i)
t

)

.

During stationary periods κt should be close to zero, and
any changes in the data-generating process should result in
significant fluctuations in κt . A change can then be flagged
whenever κt > εt , where εt is a suitably chosen threshold.

Optimally choosing a threshold in the streaming paradigm
remains a challenging task. Typically, e.g., see Ross et al.
(2011), the threshold is chosen so that the probability of the
detector raising a false alarm remains (approximately) fixed.
This can be achieved by performingMonte Carlo simulations
before a stream is analyzed in hopes of gaining insight into
how the value of the threshold affects the false positive rate.
This usually results in a discretization of the threshold val-
ues that seem ‘sensible,’ which is of course subjective. This
difficulty is exacerbated by the fact that κt ∈ [0,∞), that
is, sensible choices for the threshold are not obvious. In the
next section, a proposed solution to this issue is discussed,
resulting in easily computable adaptive thresholds.

4.2 Adaptive thresholds

In this section, a choice for εt is developed.Ourmethod intro-
duces a control parameterβ ∈ (0, 1), which has ameaningful

interpretation in the context of change detection. Further-
more, this control parameter being bounded in (0, 1) allows
for Monte Carlo simulations to be conducted, as an obvious
discretization is available.

A fairly conservative upper bound for κt is given by

κt ≤ K

∥
∥
∥
∥ p̃t

/√
p̂t

∥
∥
∥
∥

2

∞
, (9)

where K is the constant number of categories and all oper-
ations on the vectors p̃t and p̂t appearing on the right hand
side of (9) are applied component wise. An adaptive thresh-
old can then be defined as

εt = β

(

K

∥
∥
∥
∥ p̃t

/√
p̂t

∥
∥
∥
∥

2

∞

)

.

The value of β can be viewed as an ‘allowance,’ i.e., β deter-
mines how large the KL divergence can get in relation to the
upper bound before a changepoint is flagged.

As previously mentioned, thresholds are commonly cho-
sen so that the false positive rate remains approximatelyfixed.
This can be equivalently stated as choosing β to maintain,
on average, a fixed number of observations processed until a
false positive is flagged by the detector. The latter is referred
to an average run length in the literature (Page 1954) and
is denoted ARL0. This average run length and other perfor-
mance measures are discussed in Sect. 6.1.

A Monte Carlo simulation was conducted to inspect how
different values of β affected ARL0. The category probabili-
ties in each simulation were uniformly sampled from the unit
simplex inRK , and for everyβ, theMCDMwas implemented
on 250 data streams of length 5000 with no changepoints
present. This is a common way of approximating ARL0, and
the results for several values of K are displayed in Fig. 3.
Any β > 0.1 achieved a perfect ARL0 of 5000 and are omit-
ted from the plots. Figure 3 is reminiscent of the trade-off to
be considered when developing online detection strategies. It
appears that any β > 0.1, for all K considered, will result in
a large ARL0. However, larger values of β will result in the
MCDM taking longer to detect any true changepoints, or fail-
ing to detect the changepoint entirely. Figure 3 also reveals
that, for larger values of K , the MCDM typically performs
worse for smaller values of β, but quickly begins reporting
perfect values of ARL0 when β is slightly increased. There-
fore, caremust be taken in choosing a value for the allowance
β.

To extend the results of the simulations, consider a sig-
moidal function of the form

ARL0 (β | c1, c2, c3) = c1

1 + exp
[
c2−β
c3

] , (10)

123

Statistics and Computing

1000

2000

3000

4000

5000

0.000 0.025 0.050 0.075 0.100

β

A
R
L
0

1000

2000

3000

4000

5000

0.000 0.025 0.050 0.075 0.100

β

1000

2000

3000

4000

5000

0.000 0.025 0.050 0.075 0.100

β

Fig. 3 Plots of ARL0 for various values of the allowance β and num-
ber of categories K . Any β > 0.1 resulted in theMCDMnever flagging
a false positive. Left: K values 3 (solid), 6 (dashed), and 10 (dotted).
Center: K values 25 (solid), 50 (dashed), and 100 (dotted). Right: A

combination of the previous two graphs to show the similarity of the
curves across all values of K . Observe the sigmoidal shape of each
curve

whose coefficients c1, c2, and c3 can be estimated using the
results obtained from the Monte Carlo simulations. Equa-
tion (10) can then be inverted so that, given a desired value
of ARL0 (or equivalently a false positive rate), the value of
the allowance may be chosen according to

β = c2 − c3 log

(
c1

ARL0
− 1

)

ARL0 < c1. (11)

The coefficients c1, c2, and c3 were computed for each value
of K by fitting a self-starting logistic model (Pinheiro and
Bates 2000) to the results obtained from the simulations.
The values for the coefficients were similar for every K ,
and moving forward, the values c1 = 5000, c2 = 0.023, and
c3 = 0.001 are used. As an example, if an ARL0 of 1000 is
desired, Eq. (11) yields an allowance of β = 0.021614.

A few comments are in order. First, observe that the
estimated coefficient c1 is the length of the streams in the
simulation study. This is intuitive as c1 in Eq. (10) represents
the horizontal asymptote of the sigmoid. If larger values of
ARL0 are desired, these simulations can be repeated increas-
ing the length of the data streams. Secondly, the only quantity
required to compute the adaptive thresholds is a specified
value for ARL0 (or false positive rate). In many applications,
a constraint on the false positive rate is typically available,
as the amount of time to investigate the validity of detec-
tions may be costly. Lastly, we remark that other measures,
such as the Hellinger distance or symmetric versions of the
KL divergence, could have been used in the development of
the MCDM—all that is required is an upper bound on the
measure so the adaptive thresholds can be defined. Using
other measures would result in different coefficients for the
sigmoid function in (10), that is, β is measure dependent.
However, as the allowance is tuned to approximate a desired
value of ARL0, the MCDMwill behave similarly for various

measures. Due to this, we favor the well-studied KL diver-
gence and other measures are beyond the scope of this work.

At this stage, an entire framework for sequentially and
adaptively monitoring a multinomial distribution has been
developed. Based on the framework, an MCDM was con-
structedwhich requires few values to be specified. The values
that must be chosen by a practitioner are: the length of
the grace period, a value of ARL0 so that β may be com-
puted, and the step-size used in tuning the forgetting factors.
These quantities, unlike previous work, can be chosen with-
out having to rely on unknown characteristics of the stream.
Additionally, the length of the grace period and ARL0 can
be chosen in terms of constraints on the false positive rate,
which are typically available in practice. In Sects. 6 and 7,
the effectiveness of the MCDM will be shown on synthetic
and real data streams.

5 Comparisonmethods

This section discusses four methods that the MCDM will be
compared to in the simulation study of Sect. 6. Two meth-
ods are nonsequential change detectors whose computational
complexity is too demanding for streaming applications.
However, in the absence of a state-of-the-art streaming detec-
tor for categorical data, these methods provide benchmarks
for the MCDM. The other two detectors are suitable for
streaming data and are commonly used in the literature.

5.1 Bernoulli CUSUM

In the statistical quality control literature, control charts
are commonly used to detect changes in a stochastic pro-
cess. One such chart, briefly mentioned in Sect. 1.1, is the
CUSUM chart introduced in Page (1954). One modifica-

123

Statistics and Computing

tion of the CUSUM chart was presented in Reynolds Jr and
Stoumbos (1999, 2000) and makes the chart applicable to
streams of Bernoulli random variables. These modifications
are briefly stated below, where the notation used follows
that of Reynolds Jr and Stoumbos (1999). See Montgomery
(2007) for a thorough discussion of the CUSUMchart as well
as other techniques used in quality control.

Suppose X1:t ∼ Bernoulli(p0), where the parameter p0 is
commonly referred to as the in-control value of the stochastic
process. The control chart aims to detect a change (either an
increase or decrease) in p0 to some out-of-control value. For
detecting increases and decreases in p0, respectively, the out-
of-control parameters will be denoted by p+

1 and p−
1 .

Detecting an increase in p0, where the terms fraction
conforming and nonconforming are typically used (Mont-
gomery2007), is frequently a primary concern.This is typical
in applications where p0 would represent the probability
of finding a defect in some manufactured item. Clearly,
decreases in p0 are of no concern in this scenario. However,
since this work is concerned with monitoring a multinomial
distribution for multiple changes, increases and decreases in
p0 must be considered.

The Bernoulli CUSUM chart sequentially monitors statis-
tics defined by

B+
t = max

{
0, B+

t−1

} + (
xt − γ +)

,

B−
t = min

{
0, B−

t−1

} + (
xt − γ −)

,

where γ + and γ − are commonly called the reference values
(Reynolds Jr and Stoumbos 1999) and xt ∈ {0, 1} is a real-
ization of the random variable Xt . The reference values may
be chosen using the sequential probability ratio test (Ghosh
and Sen 1991) representation of the chart (Page 1954). This
leads to γ ∗ = r∗

1 /r∗
2 , where

r∗
1 = − log

(
1 − p∗

1

1 − p0

)

, r∗
2 = log

(
p∗
1(1 − p0)

p0(1 − p∗
1)

)

,

and the asterisk symbol, for brevity, assumes a value in
{+,−}. The chart flags a change whenever |B∗

t | > h∗ for
suitably chosen control parameters h∗. These control param-
eters remain fixed until a change is flagged by the detector
where an intervention procedure, such as the grace period in
Sect. 2.2, is then implemented to reinitialize the chart.

Similar to Sect. 4.2, the values for h∗ are typically cho-
sen to approximate a desired value of ARL0. We adopt
the corrected diffusion approximation discussed thoroughly
in Reynolds Jr and Stoumbos (1999), which is an extension
of the work in Siegmund (1979) to choose the values of h∗.
Subsequently, the CUSUM chart with Bernoulli modifica-
tions will be referred to simply as the CUSUM chart.

The values that dictate when the chart becomes out of
control are parameters that must be specified by the user,

and are difficult to set in the multiple changepoint setting.
This is because the control parameters are typically chosen
to detect a change of a certain magnitude. In the multiple
changepoint scenario where changes of varying magnitudes
will exist, choosingvalues for these parameters becomesnon-
trivial. Further, depending on the value of p0, there may be
issues in choosing p∗

1 as it may be too close to the boundary
of [0, 1].

As described, the CUSUM chart is not suitable for
detecting changes in a multinomial distribution. Thus, when
implementing the chart, the binarization of the categorical
process given by (2) is used. The binarization is a multivari-
ate stream,whereas the proposedCUSUMchart is univariate.
The chart is therefore implemented on each component of the
vectors appearing in (2). Given a single data stream, this will
require K runs of the chart, which will increase the amount
of computation needed to process the stream.

It should be taken into account that multivariate control
charts such as the multinomial CUSUM chart discussed in
Sect. 1.1 exist. See Bersimis et al. (2007) for an excellent
survey. However, most of the multivariate charts assume the
observations are continuous and are not directly relevant to
this work. Further, since it is impractical to specify the direc-
tions of the out-of-control parameters for every changepoint,
we follow the advice of Ryan et al. (2011), who recommend
using K Bernoulli charts in replace of amultinomialCUSUM
chart.

5.2 CPM

The R package cpm (Ross et al. 2015) provides various
changepoint models for the parametric or nonparametric
detection of multiple changepoints in a univariate data
stream. Each method assumes Xt ∼ Ft for some known or
unknown distribution Ft , and a change is detected whenever
Dt > ht , for a suitably chosen test statistic Dt and threshold
ht .

There are several models implemented in the cpm pack-
age which may be used as a comparison method. However, a
complete contrast of the MCDM to this R package is not in
the scope of the paper. Therefore, in what follows the com-
putation of Dt is based on theMann–Whitney test which has
been investigated in Hawkins et al. (2003) and Pettitt (1979).
This test makes no assumptions on the distribution generat-
ing the observations and has been extended to the streaming
setting in Ross et al. (2011). Further, the sequence of thresh-
olds ht is computed, similar to this work, via Monte Carlo
simulation. This method, subsequently denoted by CPM, is
sufficient for our purposes. Lastly, similar to the CUSUM
chart, the CPM method must be implemented on the bina-
rizations of the data stream, requiring K runs of the method
to analyze a single data stream.

123

Statistics and Computing

5.3 ECP

A nonsequential alternative, which can handle multivari-
ate data, is provided in the R package ecp (James and
Matteson 2013). This package can detect multiple change-
points via a divisive or agglomerative approach. The divisive
method sequentially searches for changepoints by applying
a bisection technique, whereas, the agglomerative method
determines an optimal partitioning. The divisive approach is
used in the sequel, and this methodwill be referred to as ECP.

The divisive procedure available in the ecp package is
based on work developed in Matteson and James (2014)
and assumes that the multivariate observations are indepen-
dent with a finite kth absolute moment for some k ∈ (0, 2].
A divergence measure is then used to detect distributional
changes, which is based on the energy statistic developed
inSzekely andRizzo (2005). The significance of an estimated
changepoint is assessed via a permutation test which requires
a specified number of maximum permutations M to be pre-
scribed. A significance level α for the test is also required.

The computational complexity of the divisive approach is
quadratic making it ill-suited for streaming data. However,
since this is a nonsequential method which utilizes multiple
passes through the data, it provides a good benchmark for
the MCDM. Since this method can handle multivariate data,
unlike CUSUM and CPM, it can be directly applied to the
data stream in (2)without having to consider each component
of the vectors separately.

5.4 PELT

The pruned exact linear time (PELT) method was introduced
in Killick et al. (2012) and is implemented in the R package
changepoint (Killick and Eckley 2014). This method is able
to detect multiple changepoints in a nonstationary time series
by utilizing several passes over the data. Hence, PELT will
also not be suitable for a majority of streaming applications.
Nonetheless, this method will provide a good benchmark
when investigating the performance of the MCDM.

Given a cost function, PELT is able to return an opti-
mal segmentation of the data by applying a modification
to the optimal partitioning algorithm (Jackson et al. 2005).
Provided certain assumptions hold, such as the number of
changepoints increasing linearly with the size of the data,
PELThas a linear computational cost. This is an improvement
from optimal partitioning and ECP which have quadratic
computational costs. However, if assumptions fail to hold
the worst-case complexity is also quadratic in the length of
the data. The changepoint package is currently designed for
univariate time series, thus PELT is implemented over K data
streams where each stream is a sequence of vector compo-
nents given by (2). If desired, a multivariate cost function
could be prescribed to PELT, allowing the method to ana-

Table 1 A summary of the methods and some their characteristics,
including if the methods are suitable for streaming data, if they are
implemented on the binarizations or the categorical data stream, if they
only have to be run once given a single data stream, and if there is an
available R package that is used in the simulation section

Streaming Binarization 1-Run R package

MCDM ✓ ✗ ✓ ✗

CPM ✓ ✓ ✗ ✓

CUSUM ✓ ✓ ✗ ✗

ECP ✗ ✓ ✓ ✓

PELT ✗ ✓ ✗ ✓

lyze a stream in one run; however, using the binarization is
sufficient for our purposes.

Table 1 displays the methods, whether or not they are
applicable to the streaming setting, if they are implemented
on the categorical stream given in (1) or the binarizations
provided in (2), how many runs are required given a single
data stream, and if a publicly available R package is used to
obtain results in the simulation section.

6 Simulation study

In this section, the MCDM is implemented on synthetic data
streams and compared to the methods discussed in Sect. 5.
Section 6.1 introduces performance measures used to com-
pare the detectors, and Sect. 6.2 discusses the experimental
design of the simulations. A way of synthetically generat-
ing changepoints so streaming and non-streaming algorithms
may be fairly compared is also introduced. Section 6.3 ana-
lyzes the results.

6.1 Performancemeasures

Two commonly used performance measures for change
detection algorithms are the average run lengths ARL0 and
ARL1 (Page 1954). The scalar ARL0 can be defined as the
average number of observations processed until a false posi-
tive is flagged and was fundamental in developing a way for
choosing the parameter β in Sect. 4.2. The other average run
length, ARL1, is defined as the average detection delay. In
practice, higher values of ARL0 and lower values of ARL1

suggest that a change detector is performing favorably; how-
ever, there is a trade-off to consider as either of the run lengths
can be improved at the expense of the other. To compute the
average run lengths exactly would require the distributions of
ARL0 and ARL1, which in most cases are difficult to obtain.
Therefore, it is customary to approximate the run lengths via
Monte Carlo simulation.

The average run lengths are not complete measures of
performance in the multiple changepoint scenario as they do

123

Statistics and Computing

not take into consideration howmany changepoints a detector
flags nor the number of changepoints that remain undetected.
Due to this, the proportion of changepoints correctly detected
(CCD) and the proportion of detections that are not false
(DNF) are considered. Both CCD and DNF assume values
in [0, 1], with values closer to one (for both measures) indi-
cating better performance. As an example, a CCD and DNF
both equaling one indicate that a detector correctly identi-
fied all changepoints while raising no false alarms. Similar
to the average run lengths, these quantities are approximated
via Monte Carlo simulation; see Bodenham (2014) for more
discussion.

6.2 Experimental design

All methods are implemented on 2000 Monte Carlo repli-
cates, where the length of each stream is a function of
parameters introduced in this section. The number of cate-
gories and changepoints in each stream, respectively, assume
values in the sets K ∈ {3, 6, 10, 25} and m ∈ {0, 1, 5, 10}.

How the changepoints are generated in each stream war-
rants discussion. As sequential and nonsequential detectors
are being compared, care needs to be taken inwhat constitutes
a ‘true detection,’ sequential detectors will never correctly
flag a changepoint before one occurs; however, nonsequen-
tial detectorsmay accurately detect a change before the actual
location of the changepoint. These detections should not be
ignored; therefore, a ‘bubble’ is defined around the location
of each changepoint. More precisely, suppose τ is a change-
point location and let ξ ∈ Z

+. Then, for the nonsequential
detectors, any detection made in the interval [τ − ξ, τ + ξ]
is considered a true detection; whereas, the true detection
region for sequential detectors is defined as [τ, τ + ξ]. Any
detector that does not flag a change within ξ time-steps of the
true location (on either side of τ for nonsequential detectors)
is said to have missed the detection.

How the changepoints are generated depends on the value
of m. When m = 0, there is no changepoint to generate, and
when m = 1, the changepoint is randomly placed near the
middle of the stream. In the case where m > 1, a change-
point generation scheme similar to that in Bodenham and
Adams (2017) is used. That is, the changepoints are gener-
ated according to

τ1 = 2ξ + ρ + ν1,

τk = τk−1 + 2ξ + ρ + νk k = 2, . . . ,m,

where ρ ∈ Z
+ is a ‘pad’ parameter to ensure that the true

detection regions around the changepoints do not overlap
and νk ∼ Poisson(r).

Under this scheme, the expected length between consec-
utive changepoints is 2ξ + ρ + r . Given an average length
between changepoints L > 2ξ + ρ, the rate parameter r is

chosen as r = L − 2ξ − ρ. The length of the stream S is
then taken to be the smallest integer multiple of 2500 sat-
isfying S > m(2ξ + ρ + r). When m = 0 or m = 1, the
length of the stream is taken as S = 5000. Additionally,
(ξ, ρ, L) = (50, 20, 500) are chosen. Note that these values
are only used in the generation of the changepoint locations
and are not control parameters for any particular method.

For theMCDM, the length of the burn-in and grace period
regions is chosen as B = S/10 and G = 100. Burn-in peri-
ods are typical in applications and are used to obtain initial
parameter estimates for the category probabilities. Care was
taken so that these values were used similarly in the other
change detection methods. For example, in the R packages
changepoint and ecp, the scalar G was used as the mini-
mum segment length between changepoints. Moreover, the
MCDM and the CPM and CUSUM methods allow for a
desired value ofARL0 to be specified. This is chosen as 2000,
resulting in an allowance parameter for the MCDM being
β = 0.022594.The step-size used in thegradient descent step
for the MCDM is chosen as η = 10−3.5, which has been pre-
viously shown to result in favorable behavior of the forgetting
factors; refer to Anagnostopoulos et al. (2012) and Boden-
ham and Adams (2017).

The CUSUM chart must be implemented over K data
streams. Thus, the in-control and out-of-control parameters
are actually vectors of length K and will be denoted by p0,
p+
1 , and p−

1 . The in-control vector p0 is estimated via a burn-
in period of length B, and the components are truncated to
the interval [pmin, pmax] to ensure no component is too close
to the boundary of [0, 1]. The out-of-control vectors are then
chosen as

p+
1 = min

{
1, p0 + δ

}
, p−

1 = max
{
0, p0 − δ

}
,

where δ ∈ {0.01, 0.1, 0.25, 0.5} determines the magnitude
of the change one is looking to detect, and the min-
imum and maximum are applied component wise. The
truncation parameters in the simulations are given by
(pmin, pmax) = (0.001, 0.999).

Lastly, forECP themaximumnumber of allowedpermuta-
tionswas set toM = 30, and the significance level for the per-
mutation testwas chosen asα = 0.05. For themethodswhose
R implementations are being used, all other parameters not
mentioned are chosen according to the package defaults.

6.3 Results

Results for the simulations are summarized in Fig. 4, Tables 2
and 4 (found in the ‘Appendix’ and displays all numeri-
cal results). Figure 4 displays the differences between the
MCDM and a competing methods performance measure, so
that any point appearing above the line y = 0 indicates that
theMCDM reported better performance. The vertical dashed

123

Statistics and Computing

lines partition the plots by values of K , where from left to
right the value of K increases. When estimating ARL1, only
detections made within the allowed detection regions con-
tributed to the value of ARL1, that is, if a detector missed a
detection, it did notworsen theARL1. Thus, the proportion of
simulations where the changepoint was correctly identified
is also investigated; these are provided in Table 2.

Consider theARL0 results in the top left of Fig. 4. From the
figure, we see that the MCDM reported better ARL0 values
only when compared to the CUSUM method (for K < 25).
The desired value of ARL0 was chosen as 2000. Averaging
over K , the MCDM reports a value of 2021.73, reinforc-
ing the validity of our approach for choosing the allowance
parameter β (refer to Table 4 for the numerical values for
ARL0). Now, examine the ARL1 results displayed in the top
center plot of Fig. 4. In this case, the MCDM reported better
values for ARL1 only when compared to the CPM method
(for K > 6). Although after rescaling this run length, even
though most of the competing methods report smaller detec-
tion delays, the MCDM is reporting values close to the other
methods, relative to the size of the stream. Further, inspec-
tion of Table 2 shows that the MCDM correctly detects the

change in a large proportion of simulations. Notice that when
K = 25, the CPMand PELTmethods, respectively, only cor-
rectly detected the changepoint 9% and 23.5% of the time,
whereas theMCDMwas able to correctly identify 82%of the
changes. For both average run lengths, the best performance
is typically obtained by the nonsequential detectors. This is
not surprising as these methods are able to make multiple
passes over the data.

The top right plot, as well as the bottom row of plots in
Fig. 4 display the CCD and DNF results. This corresponds to
the multiple changepoint scenario and highlights the advan-
tages of our approach. As seen from the figure, the MCDM
outperforms all of the sequential detectors and even outper-
forms PELT in terms of CCD (and DNF when K = 25).
The onlymethodwhich seems to consistently outperform the
MCDM is the ECP method. However, due to the quadratic
time complexity of this method, this approach is unsuitable
for streaming data and has only been included as a bench-
mark. To reinforce this, when (S, K ,m) = (7500, 25, 10),
the ECP method took, on average, over 20min to run per
simulation, whereas theMCDMmethod attained similar per-
formance in roughly 2 seconds per simulation.

-1.0

-0.5

0.0

0.5

1.0

ARL0

-0.006

-0.003

0.000

0.003

0.006

ARL1

-1.0

-0.5

0.0

0.5

1.0

CCD (m = 5)

-1.0

-0.5

0.0

0.5

1.0

DNF (m = 5)

-1.0

-0.5

0.0

0.5

1.0

CCD (m = 10)

-1.0

-0.5

0.0

0.5

1.0

DNF (m = 10)

Methods: (CPM) (CUSUM) (ECP) (PELT)

Fig. 4 For a given performance measure, each point represents the
difference between the MCDM and a competing methods performance
measure,where any point above the line y = 0 indicates that theMCDM
reported better performance. The average run lengths have been rescaled
to the unit interval so that all measures have the same range, and the ver-

tical dashed lines partition the plots by the value of K ∈ {3, 6, 10, 25},
so from left to right, the value of K increases. Recall that for CUSUM
multiple values of δ were considered, which is why the method has
more points appearing in the plots

123

Statistics and Computing

Table 2 For simulations with a single changepoint, the proportion of
simulations where a particular method detected the changepoint within
its detection region is displayed. Values closer to one indicate that a
method has correctly identified the changepoint in a large proportion of
simulations

3 6 10 25

MCDM 0.945 0.953 0.937 0.820

CPM 0.991 0.967 0.770 0.090

CUSUM(0.01) 0.937 0.961 0.982 0.999

CUSUM(0.10) 0.997 0.999 0.999 1.000

CUSUM(0.25) 0.995 0.999 0.999 0.999

CUSUM(0.50) 0.993 0.998 0.997 0.996

ECP 1.000 1.000 1.000 0.999

PELT 0.999 0.997 0.957 0.236

These simulations provide several rewarding conclusions.
First, theMCDMprovides comparable performance in terms
of average run length and provides significant improvements
in the multiple changepoint scenario. Only the ECP method
is able to consistently performwell, but is a rather unfair com-
parison due to its high computational demands, whereas the
MCDM is suitable for streaming data and does not sacrifice
much in terms of detection power. Secondly, given a speci-
fied ARL0 (equivalently, a false positive rate), the choice of
β leads to the MCDM approximately respecting this desired
run length. Specifying a value for ARL0 is not a burden in
practice, as many practitioners have an idea of how many
false positives can be tolerated for a given application. In the
next section, theMCDM is implemented on a real-world data
streamoriginating from ImperialCollegeLondon’s computer
network.

7 Real data example

Lewis (2008) has estimated that cyber-crime costs approx-
imately $600billion per annum. The ability to dynamically
monitor network traffic in real time for malicious activity
is therefore a pressing concern. In this section, a stream of
nearly 40million computer network events collected from
Imperial College London is monitored for changes. The data
are discussed in Sect. 7.1, and the MCDM is implemented
on the stream in Sect. 7.2 to highlight that the method is
suitable for high-frequency data streams occurring in prac-
tice. The network traffic has no ground truth labeling of
malicious activity, as is frequently the case in cyber-security
(Anagnostopoulos 2018). To provide meaning to our results,
in Sect. 7.3 the data are modified to mimic the WannaCry
cyber attack (Mohurle and Patil 2017), which took place in
May 2017.

Table 3 The top ten TCP destination ports, collected over a single
router, present in the Imperial College London network. These ten ports
amount to approximately 98% of the entire data stream

Port number Description Proportion

80 HTTP ∼ 0.489

445 Microsoft-DS ∼ 0.216

443 HTTPS ∼ 0.158

88 Kerberos ∼ 0.029

389 LDAP ∼ 0.026

631 IPP ∼ 0.025

111 SUN remote procedure call ∼ 0.012

22 SSH ∼ 0.012

135 DCE endpoint resolution ∼ 0.009

139 NETBIOS session service ∼ 0.003

7.1 The data

The data consist of a sequence of network events collected
froma single router in the Imperial CollegeLondon computer
network. Each event relates to a communication between
devices, and only the ‘well-known’ transmission control pro-
tocol (TCP) events are considered.Much TCP activity is well
defined by the ‘destination port,’ which often indicates the
type of activity and is assigned an integer in [0, 1023]. Refer
to Comer (2000) for more on TCP protocols. The focus of
this section is to highlight that the MCDM is appropriate
for large-scale, high-frequency data streams, and a complete
investigation of this network is beyond the scope of the paper.

A total of 39,031,345 events produce a sequence of well-
known TCP destination ports, collected over a day in 2015,
and make up the data stream to be analyzed. Table 3 displays
the top ten ports present in the data, which make up nearly
98% of the entire stream. In consequence, the 1024 destina-
tion ports are condensed to the ten ports appearing in Table 3,
and an ‘other’ category representing any port not appearing
in the table.

Since the stream consists of over 39million observations,
previous methods that requiredmore than a single run to ana-
lyze the data are not suitable for the TCP stream. This would
require nearly 440million observations to be processed, as
there are 11 categories present in the stream.TheECPmethod
can detect changes in a single run over the data, but is also not
applicable due to its high computational complexity. Hence-
forth, only the MCDM is implemented on the TCP data
stream, and results are discussed in the next two sections.

7.2 Unmodified TCP stream

In this section, the MCDM is implemented on the TCP
stream. A burn-in period of length 9,031,345 is used,
resulting in a stream of 30million destination ports being

123

Statistics and Computing

monitored for changes. In cyber-security, practitioners will
typically have a rough estimate as to howmany false positives
can be tolerated throughout the day, as examining detections
may be time-consuming and costly. The value of G is cho-
sen to coincide with these concerns since it provides a lower
bound on ARL0, and moving forward the length of the grace
period is chosen as G = 135600. This results in approxi-
mate 5min grace periods as the TCP data arrive at a rate of
approximately 452 per second.

Choosing the allowance parameter β merits discussion.
Cyber analysts are interested in detectors which flag few
false positives, or equivalently, detectors which exhibit large
values of ARL0. Since a large amount of data are collected
each day, to meet practitioner’s demands would require an
ARL0 on the order of millions. Indeed, to flag a false posi-
tive roughly every hour in the TCP stream requires an ARL0

larger than 1.6million. At the present time,we are unaware of
any literature that can choosemodel parameters to accurately
obtain an ARL0 on this order of magnitude, and we remark
that this provides a promising direction for futurework.Mov-
ing forward, a set of Monte Carlo simulations was conducted
with S = 20,000 and an allowance parameterβ = 0.077was
computed, resulting in the MCDM having an ARL0 roughly
equal to 20,000.

Implementing the MCDM took roughly 9h to run over
the 30million destination ports. The MCDM can therefore
process a day’s worth of network data in less than 24h, mak-
ing the MCDM a suitable method for the TCP stream. A
histogram displaying the time elapsed (in minutes) between
consecutive detected changepoints is displayed in Fig. 5.
Recall that G was chosen to result in an approximate 5min
grace period, and since data arrives irregularly from the
router, detections could theoretically occur in under 5min.
Given the choice for G and β, we would expect the MCDM
to flag a detection, on average, roughly every 5.74min (ver-
tical dashed line in Fig. 5). From the histogram, we see that
the detections made by theMCDM behave as expected, rein-
forcing that the control parameters can be chosen based on
practical considerations, and can be successfully applied to
a real-world data stream.

The TCP data have no ground truth accompanying it, that
is, both the existence and location of potential changepoints
are unknown. The purpose of this section was to illustrate
that the MCDM scales well with the size of the data and
is suitable for real-world problems. In the next section, the
TCP data are tampered with so that there is a change in the
sequence of destination ports.

7.3 WannaCry

The WannaCry attack took place in May 2017 and is esti-
mated to have affected over 200,000 devices running the
Windows operating system, spanning over 150 countries

0

10

20

30

5 10 15

τ̂k − τ̂k−1

Fr
eq
ue
nc
y

Fig. 5 A histogram of the elapsed time (in minutes) between the esti-
mated location of consecutive changepoints (denoted τ̂k − τ̂k−1). The
dashed vertical line represents the time between detections that we
would expect, on average, given the chosen values for G and β used in
analyzing the TCP stream

(Mohurle and Patil 2017). The attack exploited Windows’
server message block (SMB) protocol and encrypted valu-
able data on the user’s machine. The user was then issued a
‘ransommessage’ asking to be paid in the Bitcoin cryptocur-
rency in exchange for a decryption key.

The SMB protocol can run directly over TCP port 445,
or via the Netbios API, which may run over TCP port
139 (Parziale et al. 2006)—both of these ports appearing
in Table 3. To mimic the WannaCry attack in the sequence
of destination ports, these specific ports are tampered with.
Specifically, an attack begins at 11:00:00 and lasts until
11:10:00. Starting at 11:00:00, in minute intervals, one of
the ports exhibits a burst in activity which lasts for a short
period of time. This is done in such a way that the frequency
of the tampered ports is inflated by approximately 10% in
the data stream.

The values forG and β discussed in Sect. 7.2 are also used
when inspecting the altered data stream. TheMCDMflagged
two detections during the attack period at times 11:00:29
and 11:08:10, which were not flagged when deploying the
MCDM over the stream without the attack. It is therefore
sensible to conclude that the MCDM was indeed successful
in detecting the attack.

8 Conclusions

The detection of multiple changepoints in categorical data
streams is a nontrivial issue and has not received a signif-
icant amount of attention in the literature. The presence of
several changepoints makes it particularly difficult to jus-

123

Statistics and Computing

tify setting control parameters, such as fixed thresholds used
to detect changepoints, or constant width sliding windows.
To the best of our knowledge, this is among the first works
to present a method for detecting changes in categorical data
streams, while providing a practitioner with evidence on how
to choose the parameters that are introduced.

To implement theMCDMrequires three values to be spec-
ified: the length of the grace period, the desired value of
ARL0, and the step-size used in tuning the forgetting factors.
The first two can be chosen based on a minimum, and aver-
age desired false positive rate. These values do not depend on
unknown dynamics of the stream, and the ability to choose
them given constraints on the number of false positives is an
attractive quality. Recent literature has investigated the step-
size parameter used in tuning the adaptive forgetting factors,
and it has been observed that a range of values lead to desir-
able behaviors. Future work will develop streaming methods
for this parameter. Although the number of parameters is not
necessarily less than other existing methods, we remark that,
unlike existing work, they can be chosen without relying on
unknown characteristics of the stream.

In conclusion, the MCDM presents several novel contri-
butions, such as: a way of comparing the behavior between
adaptive and static estimates for the multinomial distribu-
tion, and an adaptive thresholding technique which can be
computed requiring only a desired value for the false posi-

tive rate. The MCDM is also robust to missed detections, as
the adaptiveness of the forgetting factors will result in accu-
rate estimates regardless of how many changes the stream
experiences. Through simulations, the MCDM was shown
to accurately detect multiple changepoints with minimal
storage/computational overhead while being compared to
commonly used sequential and nonsequential detectors. The
MCDMwas also implemented on nearly 40million observa-
tions, reinforcing that the method is suitable for applications
which continuously generate a large amount of data.

Acknowledgements The work of Joshua Plasse was fully funded by
an Imperial College London President’s PhD Scholarship. The authors
would like to express gratitude to Andy Thomas and Imperial College
London for the data analyzed in this paper, as well as Dr. Din-Houn Lau
for his helpful comments when revising the manuscript.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix

See Table 4.

Table 4 A summary of performance measures for every method and for every K ∈ {3, 6, 10, 25} used in the synthetic simulations

MCDM CPM CUSUM(0.01) CUSUM(0.10) CUSUM(0.25) CUSUM(0.50) ECP PELT

m = 0

3 3144.36 4354.73 1307.16 1399.68 1584.99 1653.98 4931.77 5000.00

6 2343.87 4177.44 1267.62 1340.74 1410.92 1476.76 4910.33 5000.00

10 1739.37 4350.91 1312.09 1318.60 1377.61 1500.90 4918.65 5000.00

25 859.30 4790.01 1282.66 1300.60 1365.82 1441.71 4905.93 5000.00

m = 1

3 22.78 12.20 18.89 12.45 9.32 8.38 2.11 1.23

6 20.85 19.33 16.14 11.00 9.16 9.05 2.03 1.45

10 21.94 27.03 14.43 9.91 8.52 8.86 1.96 3.05

25 26.44 33.05 10.49 7.85 7.10 7.51 2.16 9.10

m = 5

3 (0.96, 0.86) (0.69, 0.79) (0.63, 0.06) (0.77, 0.08) (0.78, 0.08) (0.76, 0.08) (1.00, 0.99) (0.61, 0.99)

6 (0.97, 0.82) (0.32, 0.51) (0.39, 0.04) (0.57, 0.06) (0.56, 0.06) (0.53, 0.06) (1.00, 0.99) (0.20, 0.95)

10 (0.96, 0.75) (0.12, 0.29) (0.28, 0.03) (0.44, 0.05) (0.41, 0.05) (0.38, 0.05) (1.00, 0.99) (0.05, 0.86)

25 (0.88, 0.57) (0.01, 0.05) (0.18, 0.03) (0.24, 0.03) (0.22, 0.03) (0.20, 0.03) (1.00, 0.99) (0.00, 0.14)

m = 10

3 (0.96, 0.88) (0.70, 0.80) (0.64, 0.07) (0.77, 0.09) (0.77, 0.09) (0.76, 0.08) (1.00, 1.00) (0.60, 1.00)

6 (0.97, 0.85) (0.32, 0.51) (0.39, 0.05) (0.57, 0.07) (0.56, 0.07) (0.53, 0.07) (1.00, 1.00) (0.18, 0.97)

10 (0.96, 0.81) (0.13, 0.30) (0.28, 0.04) (0.44, 0.06) (0.42, 0.06) (0.39, 0.05) (1.00, 1.00) (0.04, 0.91)

25 (0.88, 0.64) (0.01, 0.06) (0.18, 0.03) (0.25, 0.04) (0.23, 0.04) (0.21, 0.03) (1.00, 1.00) (0.00, 0.18)

When m = 0 and m = 1, respectively, the table shows results for ARL0 and ARL1. For m > 1, the entries in the table are tuples of the form
(CCD,DNF) corresponding to the multiple changepoint setting—the focal point of the paper. Larger values for ARL0, CCD and DNF and lower
values of ARL1 are indicative of a method performing favorably. For CUSUM, the value in parenthesis corresponds to the value of δ used in the
simulations

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Statistics and Computing

References

Adams, R.P., MacKay, D.J.: Bayesian online changepoint detection.
arXiv:0710.3742 (2007)

Aggarwal, C.C.: Data Streams: Models and Algorithms. Springer,
Berlin (2007)

Amirzadeh, V., Mashinchi, M., Yaghoobi, M.: Construction of control
charts using fuzzy multinomial quality. J. Math. Stat. 4(1), 26–31
(2008)

Anagnostopoulos, C.: Weakly supervised learning: how to engineer
labels in cyber security. In: Data science for cyber security (2018,
Forthcoming)

Anagnostopoulos, C., Tasoulis, D.K., Adams, N.M., Pavlidis, N.G.,
Hand, D.J.: Online linear and quadratic discriminant analysis with
adaptive forgetting for streaming classification. Stat. Anal. Data
Min. 5(2), 139–166 (2012)

Bersimis, S., Psarakis, S., Panaretos, J.: Multivariate statistical process
control charts: an overview. Qual. Reliab. Eng. Int. 23(5), 517–543
(2007)

Bifet, A., Gavalda, R.: Learning from time-changing data with adap-
tive windowing. In: Proceedings of the 2007 SIAM International
Conference on Data Mining, pp. 443–448. SIAM, Philadelphia
(2007)

Bodenham, D.A., Adams, N.M.: Continuous monitoring for change-
points in data streams using adaptive estimation. Stat. Comput.
27(5), 1257–1270 (2017)

Bodenham, D.A.: Adaptive estimation with change detection for
streaming data. Ph.D. Thesis, Imperial College London (2014)

Byrd, M., Nghiem, L., Cao, J.: Lagged exact Bayesian online change-
point detection. arXiv:1710.03276 (2017)

Cao, F., Huang, J.Z.: A concept-drifting detection algorithm for cate-
gorical evolving data. In: Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 485–496. Springer, Berlin (2013)

Chen, H.L., Chen, M.S., Lin, S.C.: Catching the trend: a framework for
clustering concept-drifting categorical data. IEEE Trans. Knowl.
Data Eng. 21(5), 652–665 (2009)

Comer, D.E.: Internetworking with TCP/IP: Principles, Protocols, and
Architecture, vol. 1. Prentice-Hall, Upper Saddle River, NJ (2000)

Eiauer, P., Hackl, P.: The use of MOSUMS for quality control. Techno-
metrics 20(4), 431–436 (1978)

Eichinger, B., Kirch, C., et al.: A MOSUM procedure for the estima-
tion of multiple random change points. Bernoulli 24(1), 526–564
(2018)

Gama, J.: Knowledge Discovery from Data Streams. CRC Press, Boca
Raton (2010)

Ghosh, B.K., Sen, P.K.: Handbook of Sequential Analysis. CRC Press,
Boca Raton (1991)

Hawkins, D.M., Qiu, P., Kang, C.W.: The changepoint model for sta-
tistical process control. J. Qual. Technol. 35(4), 355–366 (2003)

Haykin, S.S.: Adaptive Filter Theory. Pearson Education India, New
Delhi (2008)

Heard, N., Rubin-Delanchy, P., Lawson, D.J.: Filtering automated
polling traffic in computer network flow data. In: IEEE Joint Intel-
ligence and Security Informatics Conference. pp. 268–271. IEEE,
Washington (2014)

Höhle, M.: Online change-point detection in categorical time series.
In: Kneib, T., Tutz, G. (eds.) Statistical Modelling and Regression
Structures, pp. 377–397. Springer, Berlin (2010)

Hou, C.D., Shao, Y.E., Huang, S.: A combined MLE and generalized
P chart approach to estimate the change point of a multinomial
process. Appl. Math. Inf. Sci. 7(4), 1487–1493 (2013)

Ienco,D., Bifet, A., Pfahringer, B., Poncelet, P.: Change detection in cat-
egorical evolving data streams. In: Proceedings of the 29th Annual
ACM Symposium on Applied Computing, pp. 792–797. ACM,
New York (2014)

Jackson, B., Scargle, J.D., Barnes, D., Arabhi, S., Alt, A., Gioumousis,
P., Gwin, E., Sangtrakulcharoen, P., Tan, L., Tsai, T.T.: An algo-
rithm for optimal partitioning of data on an interval. IEEE Signal
Process. Lett. 12(2), 105–108 (2005)

James, N.A., Matteson, D.S.: ecp: an R package for nonparametric mul-
tiple change point analysis of multivariate data. arXiv:1309.3295
(2013)

Killick, R., Eckley, I.: changepoint: an R package for changepoint anal-
ysis. J. Stat. Softw. 58(3), 1–19 (2014)

Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of change-
points with a linear computational cost. J. Am. Stat. Assoc.
107(500), 1590–1598 (2012)

Kullback, S., Leibler, R.A.: On information and sufficiency. Ann.Math.
Stat. 22(1), 79–86 (1951)

Lewis, J.: Economic impact of cybercrime—no slowing down. Techni-
cal report, McAfee (2008)

Matteson, D.S., James, N.A.: A nonparametric approach for multiple
change point analysis of multivariate data. J. Am. Stat. Assoc.
109(505), 334–345 (2014)

Mohurle, S., Patil, M.: A brief study of Wannacry threat: ransomware
attack 2017. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 8(5), 2016–
2018 (2017)

Montgomery, D.C.: Introduction to Statistical Quality Control. Wiley,
New York (2007)

Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–
115 (1954)

Parziale, L., Liu,W.,Matthews, C., Rosselot, N., Davis, C., Forrester, J.,
Britt, D.T., et al.: TCP/IP Tutorial and Technical Overview. IBM
Redbooks, New York (2006)

Pavlidis, N.G., Tasoulis, D.K., Adams, N.M., Hand, D.J.: λ-perceptron:
an adaptive classifier for data streams. Pattern Recognit. 44(1), 78–
96 (2011)

Pettitt, A.: A non-parametric approach to the change-point problem. J.
R. Stat. Soc. Ser. C Appl. Stat. 28, 126–135 (1979)

Pinheiro, J.C., Bates, D.M.: Mixed-Effects Models in S and S-PLUS.
Springer, Berlin (2000)

Plasse, J., Noble, J., Myers, K.: An adaptive modeling framework
for bivariate data streams with applications to change detection
in cyber-physical systems. In: IEEE International Conference
on Data Mining Workshops, pp. 1074–1081. IEEE, Washington
(2017)

Reynolds Jr., M.R., Stoumbos, Z.G.: A CUSUM chart for monitoring a
proportion when inspecting continuously. J. Qual. Technol. 31(1),
87 (1999)

Reynolds Jr., M.R., Stoumbos, Z.G.: A general approach to modeling
CUSUM charts for a proportion. IIE Trans. Qual. Reliab. Eng.
32(6), 515–535 (2000)

Ross, G.J., Tasoulis, D.K., Adams, N.M.: Nonparametric monitoring
of data streams for changes in location and scale. Technometrics
53(4), 379–389 (2011)

Ross, G.J., et al.: Parametric and nonparametric sequential change
detection in R: the cpm package. J. Stat. Softw. 66(3), 1–20 (2015)

Ruder, S.: An overview of gradient descent optimization algorithms.
arXiv:1609.04747 (2016)

Ryan, A.G., Wells, L.J., Woodall, W.H.: Methods for monitoring mul-
tiple proportions when inspecting continuously. J. Qual. Technol.
43(3), 237–248 (2011)

Siegmund, D.: Corrected diffusion approximations in certain random
walk problems. Adv. Appl. Probab. 11(4), 701–719 (1979)

Szekely, G.J., Rizzo, M.L.: Hierarchical clustering via joint between-
within distances: extending Ward’s minimum variance method. J.
Classif. 22(2), 151–183 (2005)

Tartakovsky, A., Nikiforov, I., Basseville, M.: Sequential Analysis:
Hypothesis Testing and Changepoint Detection. Chapman and
Hall/CRC, Boca Raton (2014)

123

http://arxiv.org/abs/0710.3742
http://arxiv.org/abs/1710.03276
http://arxiv.org/abs/1309.3295
http://arxiv.org/abs/1609.04747

Statistics and Computing

Tsymbal, A.: The problemof concept drift: definitions and relatedwork.
Technical report, Computer Science Department, Trinity College
Dublin (2004)

Weiß, C.H.: Continuously monitoring categorical processes. Qual.
Technol. Quant. Manag. 9(2), 171–188 (2012)

Widmer, G., Kubat, M.: Learning in the presence of concept drift and
hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

Wolfe, D.A., Chen, Y.S.: The changepoint problem in a multinomial
sequence. Commun. Stat. Simul. Comput. 19(2), 603–618 (1990)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Multiple changepoint detection in categorical data streams
	Abstract
	1 Introduction
	1.1 Relevant work

	2 Nonstationary categorical streams
	2.1 Categorical data streams
	2.2 Multiple changepoints

	3 Adaptive estimation
	3.1 A temporally aware likelihood
	3.2 Recursive updates
	3.3 Tuning the forgetting factors

	4 A multinomial change detection method
	4.1 KL divergence
	4.2 Adaptive thresholds

	5 Comparison methods
	5.1 Bernoulli CUSUM
	5.2 CPM
	5.3 ECP
	5.4 PELT

	6 Simulation study
	6.1 Performance measures
	6.2 Experimental design
	6.3 Results

	7 Real data example
	7.1 The data
	7.2 Unmodified TCP stream
	7.3 WannaCry

	8 Conclusions
	Acknowledgements
	Appendix
	References

