
2 

Complexity/Performance  
Analysis of a H.264/AVC Video Encoder 

Hajer Krichene Zrida1, Ahmed Chiheb Ammari2,  
Mohamed Abid1 and Abderrazek Jemai3 

1Sfax University, ENIS Institute, Computer and Embedded Systems CES Laboratory, 
2Carthage University, INSAT Institute, Research Unit in  

Materials Measurements and Applications (MMA), 
3University of Tunis el Manar, Faculty of Science of Tunis, LIP2 Laboratory, 

Tunisia 

 

1. Introduction 

The evolution of digital video industry is being driven by continuous improvements in 
processing performance, availability of higher-capacity storage and transmission 
mechanisms. Getting digital video from its source (a camera or a stored clip) to its 
destination (a display) involves a chain of components. Key to this chain are the processes of 
compression and decompression, in which bandwidth-intensive raw digital video is 
reduced to a manageable size for transmission or storage, then reconstructed for display 
(Richardson, 2003). The early successes in the digital video industry were underpinned by 
international standard ISO/IEC 13818 (ISO/IEC, 1995), popularly known as MPEG-2. 
Anticipation of a need for better compression tools has led to the development of the new 
generation H.264/AVC video standard. The H.264/AVC is aiming to do what previous 
standards did in a more efficient, robust and practical way, supporting widespread types of 
conversational (bidirectional and real-time video telephony, videoconferencing) and no 
conversational (broadcast, storage and streaming) applications for a wide range of bitrates 
over wireless and wired transmission networks (Joch et al., 2002). 
The H.264/AVC has been designed with the goal of enabling significantly improved 
compression performance relative to all existing video coding standards (Joch et al., 2002). 
Such a standard uses advanced compression techniques that in turn, require high 
computational power (Alvarez et al., 2005). For a H.264 encoder using all the new coding 
features, more than 50% average bit saving with 1–2 dB PSNR (Peak Signal-to-Noise Ratio) 
video quality gain are achieved compared to previous video encoding standards (Saponara 
et al., 2004). However, this comes with a complexity increase of a factor 2 for the decoder 
and larger than one order of magnitude for the encoder (Saponara et al., 2004). 
Implementing a H.264/AVC video encoder represents a big challenge for resource-
constrained multimedia systems such as wireless devices or high-volume consumer 
electronics since this requires very high computational power to achieve real-time encoding. 
While the basic framework is similar to the motion compensated hybrid scheme of previous 
video coding standards, additional tools improve the compression efficiency at the expense 

www.intechopen.com



  
Recent Advances on Video Coding 

 

28

of an increased implementation cost. For this, the exploration of the compression efficiency 
versus implementation cost is needed to provide early feedbacks on the standard 
bottlenecks and select the optimal use of its coding features.  
The objective of this chapter is to perform a high-level performance analysis of a 
H.264/AVC video encoder to evaluate its compression efficiency versus its implementation 
complexity and to highlight important properties of the H.264/AVC framework allowing 
for complexity reduction at the high system level. The complexity analysis focus mainly on 
computational processing time measures with instruction-level (Kuhn et al., 1998) profiling 
on a general purpose CISC Pentium processor. Processing time metrics are completed by 
memory cost measures as this have a dominant impact on the cost-effective realization of 
multimedia systems for both hardware and software based platforms (Catthoor et al., 2002), 
(Chimienti et al., 2002). 
Actually, when combining the new coding features, the implementation complexity 
accumulates, while the global compression efficiency becomes saturated (Saponara et al., 
2004). To find an optimal balance between the coding efficiency and the implementation 
cost, a proper use of the AVC tools is needed to maintain the same coding performance as 
the most complex coding parameters configuration (all tools on) while considerably 
reducing complexity. In this chapter, we will cover major H.264 encoding tools. Each new 
tool is typically tested independently comparing the performance and complexity of a 
complex configuration to the same configuration minus the tool under evaluation. The 
coding performance is reported in terms of PSNR and bit rate, while the complexity is 
estimated as the total computational execution time of the application and the maximum 
memory usage allocated by the source code. Absolute complexity values of the obtained 
cost-efficient configuration of the H.264 encoder shall confirm the big challenge of its cost-
effective implementation using of a well-defined multiprocessor approach to share the 
encoding time between several embedded processors. 
The chapter is organized as follows. The next section provides an overview of the new H.264 
technical features. Section 3 defines the adopted experimental environment. The coding 
performance and complexity of the H.264 major encoding tools are evaluated in section 4. 
Section 5 shall give the complexity analysis, memory and task level profiling of an obtained 
cost-efficient configuration. Section 6 discusses some aspects related to previous 
parallelization studies for an efficient parallel implementation of this standard on a given 
multiprocessor platform. 

2. Overview of the H.264/AVC video encoder 

An important concept in the design of H.264/AVC is the separation of the standard into two 
distinct layers: a video coding layer (VCL), which is responsible for generating an efficient 
representation of the video data; and a network adaptation layer (NAL) (Richardson, 2003) 
which is responsible for packaging the coded data in an appropriate manner based on the 
characteristics of the network upon which the data will be used. This chapter is concerned 
with the VCL layer.  

2.1 The coding layer block diagram 

The block diagram of the video coding layer of a H.264/AVC encoder is presented in 
figure1. This figure includes a forward path (left to right) and a reconstruction path (right to 
left) (Richardson, 2003). 

www.intechopen.com



 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

29 

 

Fig. 1. H.264 /AVC video encoder block diagram 

An input frame or field Fn is processed in units of a macro-block (MB). Each MB is encoded 
in intra or inter mode and, for each block in the MB, a prediction PRED (marked ‘P’ in 
figure1) is formed based on reconstructed picture samples. In Intra mode, PRED is formed 
from spatially neighboring samples in the current slice that have previously been encoded, 
decoded and reconstructed (uF’n in the figure1 note that unfiltered samples are used to 
form PRED). The encoding process chooses which and how neighboring samples are used 
for Intra prediction, which is simultaneously conducted at the encoder and decoder using 
the transmitted Intra prediction side information (Malvar et al., 2003).  
In Inter mode, PRED is formed by motion-compensated prediction from one or multiple 
reference picture(s) selected from the set of reference pictures. In the figure1, the reference 
picture is shown as the previous encoded picture F’n-1 but the prediction reference for each 
MB partition (in inter mode) may be chosen from a selection of past or future pictures (in 
display order) that have already been encoded, reconstructed and filtered. The prediction 
PRED is subtracted from the current block to produce a residual difference block Dn that is 
transformed (using a block transform) and quantized to give X, a set of quantized transform 
coefficients which are reordered and entropy encoded. The entropy-encoded coefficients, 
together with side information required to decode each block within the MB (prediction 
modes, quantization parameter, motion vector information, etc.) form the compressed bit 
stream which is passed to a Network Abstraction Layer (NAL) for transmission or storage. 
As well as encoding and transmitting each block in a MB, the encoder decodes (reconstructs) 
it to provide a reference for further predictions. The coefficients X are scaled (Q-1) and 
inverse transformed (T-1) to produce a difference block D’n. The prediction block PRED is 
added to D’n to create a reconstructed block uF’n a decoded version of the original block (u 
indicates that it is unfiltered). A filter is applied to reduce the effects of blocking distortion 
and the reconstructed reference picture is created from a series of blocks F’n. 

2.2 Main innovations in comparison to previous standards 

The basic functional elements of H.264 /AVC presented in figure1 represent a similar set of 
the generic DPCM/DCT (Richardson, 2003) coding and decoding functions of earlier 
standards. The H.264 provides higher coding efficiency through added features and 

www.intechopen.com



  
Recent Advances on Video Coding 

 

30

functionality that in turn entails additional complexity. Here we present a summary of the 
most relevant key features for the performance of this standard.  
First, the motion compensation model supports the use of multiple reference frames for 

prediction with a weighted combination of the prediction signals. Also, it introduces 

variable block-size motion compensation with small block sizes that range from 16x16 up to 

7 modes including 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 pixel blocks. Motion vectors can be 

specified with higher spatial accuracy with quarter-pixel and eighth-pixel instead of half-

pixel accuracy. In order to estimate and compensate fractional-pel displacements, the image 

signal of the reference image has to be generated on sub-pel positions by interpolation. Pixel 

interpolation is based on a finite impulse response (FIR) filtering operation: 6 taps for the 

quarter resolution and 8 taps for the eighth one (Schäfer et al., 2003). A rate-distortion (RD) 

Lagrangian technique optimizes both motion estimation and coding mode decisions. 

Moreover, an adaptive deblocking filter is added to reduce visual artifacts produced by the 

block-based structure of the coding process (Ostermann et al., 2004). 

For the intra-frame prediction, in contrast to previous video coding standards where 

prediction is conducted in the transform domain, prediction in H.264/AVC is always 

conducted in the spatial domain by referring to neighboring samples of already coded 

blocks (Schäfer et al., 2003). Two classes of intra coding modes are supported. When using 

the INTRA-4x4 class, each 4x4 block of the luma component utilizes one of nine prediction 

modes. Beside DC prediction, the standard supports eight directional prediction modes 

involving linear combinations of the samples. For the INTRA 16x16 classes, four prediction 

modes are supported (ISO/IEC, 2003). 

The concept of Bipredictive (B) slices is generalized in H.264/AVC. B slices use a similar 

macroblock partitioning as for the Predicted (P) slices. This includes the Intra 4x4, the intra 

16x16 all the inter 16 x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 modes. B slices are coded in a 

manner in which some macroblocks may use a weighted average of two distinct motion 

compensated prediction values, for building the prediction signal. Generally, B slices utilize 

two distinct reference picture buffers referred as the first and the second reference picture 

buffer, respectively. Four different types of inter prediction are supported: list0, list1, bi-

predictive, and direct prediction. List 0 or List 1 prediction indicates that the prediction 

signal is formed by motion compensation from a picture of the first respectively the second 

reference buffer. In the bi-predictive mode, the prediction signal is formed by a weighted 

average of a motion-compensated list 0 and list 1 prediction signal. The direct prediction 

mode is inferred from previously transmitted syntax elements and can be either list 0 or list1 

prediction or bi-predictive (Schäfer et al., 2003). 
For the (T) transform, H.264/AVC employs a purely integer spatial approximation discrete 
cosine transform (DCT). This transform basically works on 4x4 shapes, as opposed to the 
conventional floating-point 8x8 DCT specified with rounding error tolerances that is used in 
earlier standards. The small size helps to reduce blocking and ringing artifacts, while the 
precise integer specification eliminates any mismatch between the encoder and decoder in 
the inverse transform (Ostermann et al., 2004). For the quantization (Q) of transform 
coefficients, H.264/AVC uses scalar quantization. The quantization step size is chosen by a 
so called quantization parameter QP which supports 52 different quantization parameters. 
One of 52 quantizers is selected for each macroblock by the Quantization Parameter (QP). 
The quantizers are arranged so that there is an increase of approximately 12.5% in the 
quantization step size when incrementing the QP by one (Malvar et al., 2003). 

www.intechopen.com



 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

31 

Finally, H.264/AVC specifies two alternative methods of entropy coding: a low-complexity 
technique based on the usage of context-adaptively switched sets of variable length codes, 
so-called CAVLC, and the computationally more demanding algorithm of context-based 
adaptive binary arithmetic coding (CABAC). Both methods represent major improvements 
in terms of coding efficiency compared to the techniques of statistical coding traditionally 
used in prior video coding standards (Ostermann et al., 2004). 

3. Experimental environment 

The complexity of the H.264 video encoder application depends on the algorithm, the 
encoding option tools, the input sequences and the architecture in which it is implemented. 
For making a complete analysis of the effect of the encoding option parameters on 
performance and complexity of a H.264 video encoding application, the JM encoder 
software reference version 10.2 is used with main profile @ level 4 (JM 10.2, 2005). 
Measurements have been done on a General-Purpose Processor (GPP) platform based on an 
INTEL Centrino 1.6 GHZ running a Linux operating system. 
The encoding option parameters are representative of the standard encoding new tools. For 
this analysis, each coding tool is tested independently comparing the performance and 
complexity of a complex configuration to the same configuration minus the tool under 
evaluation. For the starting complex configuration, a full search algorithm for motion 
estimation is fixed, P (predicted) and B (Bi predicted) frame weighted prediction is used, 
motion vectors fractional pixel accuracy is applied with variable block sizes supported  
(7 motion compensation block types) and multi-frame references fixed to 5. A loop filter and 
Hadamard transform are used. The Rate-Distortion (R-D) optimization technique with an 
explicit Lagrangian parameter selection is activated. The input search range is fixed to 32, 
and the quantization parameter (QP) values is fixed to 28 for I and P slices, 30 for B slices 
and 29 for B reference slices. For B frame generalization, only one reference is used for list0 
and list1. Motion estimation based on the spatial direct and bi-predictive modes is thus 
activated. The CABAC entropy method is used. 
For video streaming and video conferencing applications, we used popular test video 
sequences in the Common Intermediate Format (CIF, 352 × 288 picture elements) and in the 
Quarter Common Intermediate Format (QCIF, 176×144 picture elements). 7 test sequences in 
a 4:2:0 YUV format with different grades of motion characteristics and frame rate (trace.eas, 
n.d.) are used as given in table1. “Bridge far”, “container” and “Mother & Daughter” offer a 
wide variety of video QCIF content occurring in low-bit-rate applications of tens of Kbps. 
“Foreman” is a good medium complexity QCIF test sequence for medium bit rate 
applications of hundreds of Kbps. The CIF version of “Paris” and “Bridge close” are useful 
test cases for middle-rate applications. Finally, “Mobile” is a high-complexity CIF sequence 
with lot of movements including rotation and is a good test for high-rate applications of 
thousands of Kbps. 

4. H.264/AVC performance and complexity parametric analysis 

In this section, the coding performance and complexity of the H.264 major encoding tools 
are evaluated. The coding performance is reported in terms of PSNR and bit rate output, 
while the complexity metrics focus mainly on the amount of computing time required to 
encode a given test sequence on the used GPP platform. As motion estimation is the most 

www.intechopen.com



  
Recent Advances on Video Coding 

 

32

important computing part of the encoder, the computing complexity of this module is 
particularly noted for all the experimented simulations. Processing time metrics are 
completed by memory cost measures as this have a dominant impact on the cost-effective 
realization for both hardware and software based platforms.  
 

Sequence Format (Pixel) Frame Rate (Hz) Frames Coded 

Bridge close CIF (352x288) 15 2000 

Mobile CIF 25 300 

Paris CIF 15 1065 

Bridge far QCIF (176x144) 15 2101 

Container QCIF 25 300 

Foreman QCIF 25 400 

Mother & Daughter QCIF 25 961 

Table 1. Used test video sequences 

4.1 Coding structures influence evaluation 

The influence of the different H.264 encoding structures, including the classical coding types 

and the advanced pyramid coding structures is analyzed. In this section, only the first 150 

frames of all the test sequences are used. This shall provide the best optimal coding order 

for the best encoding performance. The used structures are described as follows: 

 An I-P-P-P-P… coding and display order using P only coding, 

 an I-B-P-B-P… coding order with one non reference B slice, 

 an I-B-B-P-B-B-P… coding order with 2 non reference B slices, 

 an I0-P4-RB2-B1-B3-P8… coding order with 3 level pyramid using 3 B pictures (3L3B), 

 an I0-P6-RB2-RB4-B1-B3-B5-P12… coding order with 3 level pyramid using 5 B pictures 

(3L5B), 

 an I0-P8-RB2-RB4-RB6-B1-B3-B5-B7-P16.. coding order with 3 level pyramid using 7 B 

pictures (3L7B), 

 an I0-P8-RB4-RB2-RB6-B1-B3-B5-B7-P16.. coding order with 4 level pyramid using 7 B 

pictures (4L7B), 

 and an I0-P12-RB6-RB3-B1-B2-B4-B5-RB9-B7-B8-B10-B11-P24… coding order with 4 

level pyramid using 11 B pictures (4L11B). 

Bit rate output performance results are presented in figure 2 for four selected sequences. 

This figure indicates clearly that the bit rate output is significantly improved using reference 

B slices (up to 35% bit rate reduction with one non reference B slice and 15% more bit rate 

reduction with two non reference B slices for the CIF version of “Bridge-close”). The bit rate 

output and the PSNR video quality are better using Pyramid structures compared to the 

classical coding structures (between 5 and 10% bit rate reduction with a light PSNR 

improvement with 3L3B, and much better with 3L5B and 3L7B). For this, making the use of 

these pyramid structures is interesting. According to the obtained results, the best structure 

in term of coding performance is 3Level-7B pyramid. However, compared to 3Level-5B 

pyramid structure, the 3Level-7B requires more computational time for practical the same 

performance. Thus, to achieve the best performance with a minimum complexity, the 

www.intechopen.com



 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

33 

3Level-5B pyramid is preferred. The 4Level-7B pyramid and the 4Level-11B pyramid don’t 

appear to provide any additional performance compared to the 3Level-5B pyramid as a 

small performance loss in bit rate is observed.  

 

0

50

100

150

200

250

300

350

400

450

500

I-P-P IBP... IBBP... 3L3B 3L5B 3L7B 4L7B 4L11B

B
it
 r

a
te

 (
K

b
p
s
)

Bridge-

close
Paris

Foreman

Mother &

Daughter

 

Fig. 2. Bit rate for various coding structures and video format 

Given these obtained results, it is clear that the 3Level-5B hierarchical coding order offers 
the best performance/complexity values. Given this, the 3Level-5B is the adopted structure 
for the starting complex configuration. 

4.2 Performance and computing complexity of the reference configuration 

Performance and computing complexity of the H.264 complex reference encoder 
configuration is first estimated for all the test sequences of table 1. Results of this analysis 
are reported in table 2 as the total processing time, the motion estimation ME time, the bit 
rate output, and the luminance PSNR values. The PSNR values, given in dB, are 
representative of the obtained encoding performance. More the PSNR value is high, more 
the image quality and the encoding performance are better. Given these results, it is 
obtained that even for the low-bit-rate QCIF “bridge far” sequence, the time required to 
compute the encoding algorithms on the GPP platform is of 5137.08 second. The associated 
encoding performance in frames per second is of 0.41 fps. Really, this is too far from a real 
time video encoding performance of 25 frames per second. As a consequence, an optimal 
selection of the new coding tools can allow for roughly the same performance as for the 
complex reference configuration but with a considerable complexity reduction.  

4.3 Performance and computing complexity of major encoding tools 

This section presents a performance and computing complexity analysis of some major 
encoding tools. The considered tools are the search size, the variable block size, the multiple 
reference frames, the fractional pixel accuracy, and the bi-prediction motion estimation. The 
efficiency of the fast motion estimation algorithms, the R-D Lagrange technique, the 
Hadamard transform and the entropy coding techniques are also evaluated. To find an 
optimal trade-off between coding efficiency and implementation complexity, the effect of 

www.intechopen.com



  
Recent Advances on Video Coding 

 

34

each coding tool is tested separately in comparison with the fixed reference configuration. 
We will observe varying complexity values at a gain in the obtained video quality and bit-
rate output. 
 

Res. Sequence 
Total time 

(s) 
ME 

Time (s) 

ME 
Complexity 
(ME C %) 

frames per 
Seconds 

(fps) 

Bit rate 
(Kbps) 

PSNR-Y 
(dB) 

 
CIF 

 

Bridge-close 19259,41 15670,33 81,36 0,1 106,44 35,01 

Mobile 3027,4 2343,04 77,39 0,1 676,08 32,82 

Paris 9479,15 7327,81 77,3 0,11 129,54 35,28 

 
QCIF 

Bridge-far 5137,08 4295,38 83,62 0,41 2,74 37,84 

Container 715,06 580,44 81,17 0,41 19,37 36,17 

Foreman 1026,86 838,6 81,67 0,39 79,2 35,01 

Mother & 
Daughter 

2145,51 1728,42 80,56 0,45 30,32 36,3 

Table 2. Performance/complexity of the reference configuration 

4.3.1 Full/Fast full motion estimation 

The full Search motion estimation is reported to be the most-consuming part of the entire 

encoding process (Pascalis et al., 2004). For this, several fast motion estimation algorithms 

have been proposed (Pascalis et al., 2004), (Chen et al., 2002). In our case, the efficiency of 

the UMHexagonS fast search algorithm (Chen et al., 2002) is analyzed in comparison with 

the full search estimation scheme. The obtained results of this analysis are reported in table 

3. It is clear from table 3 that using the UMHexagonS search method we got a very slight bit 

rate and PSNR degradations in comparison with a full search algorithm. But, this comes 

with up to 45% of computation time complexity reduction. Thus, as the fast full search 

technique considerably improves the coding complexity without a notable loss in video 

quality and bit rate for all test sequences, the UMHexagonS will be adopted as a fast motion 

estimation scheme. 

4.3.2 Search range  

The influence of the search range (SR) window is evaluated for different SR values. The 

obtained results are given in table 4 as the total processing time, the bit rate output, and 

PSNR values. As shown in table 4, an important complexity reduction is obtained using a 

search range of 8 compared to 16 and 32 values, at a cost of a negligible loss in bit rate and 

video quality. For consequence and for a cost-efficient configuration, a search range of 8 is 

chosen. 

4.3.3 Variable block sizes 

The influence of three block size modes is evaluated. The first mode is with 7 block sizes 
activated (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4), the second is with 4 (16x16, 16x8, 8x16, 
and 8x8), and the third is with only one 16x16 block size. As presented in table 5, supporting 
all the seven block sizes increases the computational complexity especially for the motion 
estimation module, at a gain in the coding efficiency. Compared, with the 4 block size 

www.intechopen.com



 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

35 

(16x16, 16x8, 8x16, and 8x8), we got a light video quality degradation with a negligible loss 
in bit rate (negligible loss for the QCIF version of “bridge far” and less than 2.5% for the CIF 
version of “mobile”), but with a 10% average complexity reduction. With only one 16x16 
block size mode, we got more significant video quality degradation compared to that with 
four block sizes, but with an encoding time further reduced 10% average. These results 
confirm that block sizes smaller than 8x8 (i.e. the seven block size mode on) do not provide 
significant benefits compared with the 4 block size mode. However, with the use of only 
16x16 block size, the encoding performance is significantly decreased. For consequence, to 
reduce the implementation complexity while maintaining the same encoding performance, 
the 4 block size mode is adopted. 
 

Resolution CIF QCIF 

ME 
Algo 

Seq. 
Bridge- 

close 
Mobile Paris 

Bridge-
far 

Container Foreman 
Mother & 
Daughter 

Full 
Search 

ME C (%) 81,36 77,39 77,3 83,62 81,17 81,67 80,56 

Bit rate 106,44 676,08 129,54 2,74 19,37 79,2 30,32 

PSNR-Y 35,01 32,82 35,28 37,84 36,17 35,01 36,3 

Fast ME 

TEC (%) -39,43 -32,33 -40,16 -41,66 -40,03 -38,53 -42,92 

ME C (%) 70,26 66,28 62,81 72,81 69,19 71,41 66,43 

Bit rate -0,03 1,43 0,8 -0,01 0,08 0,08 -0,04 

PSNR-Y -0,02 0 -0,02 -0,03 0 -0,02 -0,03 

Total Encoding Complexity (TEC (%)) = Encoding Complexity (with Fast ME algorithm) – Encoding 

Complexity (with Full Search). Bit rate (Kbps) = Bit rate (with Fast ME algorithm) – bit rate (with Full 

Search), idem for PSNR-Y  

Table 3. Performance and Complexity Results for Full Search and Fast Full Search Algorithms 

 

Resolution CIF QCIF 

Search 
Range 

Seq. 
Bridge- 

close 
Mobile Paris 

Bridge-
far 

Container Foreman 
Mother & 
Daughter 

32 

ME C (%) 70,26 66,28 62,81 72,81 69,19 71,41 66,43 

Bit rate 106,41 677,51 130,34 2,73 19,45 79,28 30,28 

PSNR-Y 34,99 32,82 35,26 37,81 36,17 34,99 36,27 

16 

TEC (%) -42,68 -42,58 -37,46 -40,63 -43,09 -43,61 -39,68 

ME C (%) 47,52 41,91 40,22 53,21 47,36 49,57 44,9 

Bit rate 0 -0,12 0,16 -0,01 -0,03 0,35 0 

PSNR-Y 0,01 -0,01 0 0 0 -0,01 0,01 

8 

TEC (%) -23,98 -19,87 -19,85 -28,73 -23,45 -24,80 -20,26 

ME C (%) 30,72 26,38 25,78 36,4 29,81 33,42 30,94 

Bit rate 0,26 1,07 0,73 0,01 0 1,81 0,08 

PSNR-Y -0,01 0 0 0 0 0 -0,01 

Table 4. Performance and complexity results for various search sizes 

www.intechopen.com



  
Recent Advances on Video Coding 

 

36

Resolution CIF QCIF 

Block 
Sizes 

Seq. 
Bridge- 

close 
Mobile Paris 

Bridge-
far 

Container Foreman 
Mother & 
Daughter 

7 

ME C (%) 30,72 26,38 25,78 36,4 29,81 33,42 30,94 

Bit rate 
 

106,67 678,46 131,23 2,73 19,42 81,44 30,36 

PSNR-Y 34,99 32,81 35,26 37,81 36,17 34,98 36,27 

4 

TEC (%) -11,32 -10,51 -10,23 -9,11 -9,16 -11,91 -11,26 

ME C (%) 27,42 22,21 22,34 33,81 26,71 29,31 26,99 

Bit rate 0,67 14,53 5,19 0 0,45 1,32 0,18 

PSNR-Y -0,06 -0,11 -0,13 -0,03 -0,09 -0,09 -0,14 

1 

TEC (%) -11,62 -14,17 -11,24 -13,14 -12,33 -13,87 -12,75 

ME C (%) 25,67 19,11 19,98 32,8 25,14 26,73 24,58 

Bit rate 2,3 58,35 15,36 0,01 2,96 9,15 2,82 

PSNR-Y -0,09 -0,14 -0,17 -0,07 -0,18 -0,2 -0,22 

Block sizes=7, then all seven modes (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4) are on. 
Block sizes=4, then 16x16, 16x8, 8x16, and 8x8 modes are on. 
Block sizes=1 only 16x16 mode is on 

Table 5. Performance and complexity results for motion compensation blocks sizes 

4.3.4 Multiple reference frames 

Results concerning the influence of the multiple reference frame option are reported in table 
6. Using this table, we observe for example for the CIF “bridge close” an increase of 43% bit 
rate for a reference frame number reduction from 5 to 1. This goes also for the QCIF 
“Foreman” video sequence with a 50% of bit rate increase for also a reference frame 
reduction from 5 to 1. However, with the use of only 3 reference frames, we observe a slight 
gain in the computational complexity and less than 5% bit rate increase with a little video 
quality degradation. Thus, using only 3 reference frames leads to a somewhat computational 
burden decrease without a noticeable coding efficiency degradation compared to that 
obtained with 5 reference frames. However, using only one reference frame leads to a 
sensible loss in coding performance with a slight complexity reduction. Thus, the optimal 
reference frame number is fixed to 3 for an optimized configuration. 

4.3.5 RD-Lagrangian optimization 

The R-D optimization is the criterion for selecting the best coding mode. It evaluates the cost 
of every possible coding mode, considering the balance of the distortion and the number of 
consumed bits. The obtained mode with the smallest cost will be considered as the best 
coding mode. As presented in table 7, the R-D Lagrangian technique gives a substantial 
compression efficiency improvement at a double complexity cost. The encoder without RD 
optimization is about 2~3 times faster and gives a noticeable loss in bit rate-distortion 
compared to the case with an RD-Lagrangian technique enabled (an average of 40% in bit 
rate increase in case of QCIF “bridge far” sequence, as described in table 7). While the 
considerable computational complexity required by the R-D optimization, it is a very 

www.intechopen.com



 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

37 

important tool of the JM reference software. As our objective is to obtain comparable 
performance as for the reference configuration, this option will be maintained. 

4.3.6 Hadamard transform 

A Hadamard transform may be used to improve the error cost functions performance such 

as the sum of absolute differences (SAD). However, given the obtained results of table 8, 

activating the Hadamard transform causes a slight complexity increase without any coding 

efficiency gain. Thus, the Hadamard transform will be disabled for the optimized parameter 

configuration. 

 

Resolution CIF QCIF 

Reference 
Frames 

Seq. 
Bridge- 

close 
Mobile Paris 

Bridge-
far 

Container Foreman 
Mother & 
Daughter 

5 

ME C (%) 27,42 22,21 22,34 33,81 26,71 29,31 26,99 

Bit rate 
 

107,34 692,99 136,42 2,73 19,87 82,76 30,54 

PSNR-Y 34,93 32,7 35,13 37,78 36,08 34,89 36,13 

3 

TEC (%) 0,59 -1,78 0,05 0,30 -0,91 1,15 0,79 

ME C (%) 27,68 22,81 22,57 33,55 27,13 30,23 27,6 

Bit rate 6,7 26,98 6,47 0 0,81 2,59 1,15 

PSNR-Y -0,02 -0,03 -0,02 0 -0,03 -0,04 -0,04 

1 

TEC (%) 0,19 1,80 0,68 -0,43 -0,21 3,89 2,53 

ME C (%) 27,81 24,12 22,91 33,9 27,61 30,79 27,98 

Bit rate 39,5 285,65 50,9 -0,08 5,27 41,43 12,44 

PSNR-Y -0,1 -0,43 -0,19 -0,01 -0,27 -0,43 -0,36 

Table 6. Performance and complexity results for multiple reference frames 

 

Resolution CIF QCIF 

RD-
Lagrange 

Seq. 
Bridge- 

close 
Mobile Paris Bridge-far Container Foreman 

Mother & 
Daughter 

Enabled 

ME C (%) 27,68 22,81 22,57 33,55 27,13 30,23 27,6 

Bit rate 
 

114,04 719,97 142,89 2,73 20,68 85,35 31,69 

PSNR-Y 34,91 32,67 35,11 37,78 36,05 34,85 36,09 

Disabled 

TEC (%) -61,65 -68,63 -66,85 -53,81 -59,31 -59,61 -60,69 

ME C (%) 74,28 73,26 71,26 78,43 70,66 76,48 74,68 

Bit rate 23,34 152,46 13,93 1,09 2,51 14,3 5,1 

PSNR-Y 0,24 0,32 0,06 -0,08 -0,11 0,04 0,01 
 

Table 7. Performance and complexity results for R-D Lagrangian technique 

www.intechopen.com



  
Recent Advances on Video Coding 

 

38

Resolution CIF QCIF 

Hadamard Seq. 
Bridge- 

close 
Mobile Paris 

Bridge-
far 

Container Foreman 
Mother & 
Daughter 

Enabled 

ME C (%) 27,68 22,81 22,57 33,55 27,13 30,23 27,6 

Bit rate 
 

114,04 719,97 142,89 2,73 20,68 85,35 31,69 

PSNR-Y 34,91 32,67 35,11 37,78 36,05 34,85 36,09 

Disabled 

TEC (%) -3,25 -2,10 -1,41 -3,92 -2,53 -2,60 -2,93 

ME C (%) 25,29 20,6 20,47 31,38 25,09 27,65 24,89 

Bit rate 0,12 1,49 0,76 0 0 0,44 0,05 

PSNR-Y -0,01 -0,04 -0,05 0,01 -0,03 -0,06 -0,07 

Table 8. Performance and complexity results for Hadamard transform 

 

Resolution CIF QCIF 

 Seq. 
Bridge- 

close 
Mobile Paris 

Bridge-
far 

Container Foreman 
Mother & 
Daughter 

With 
Fractional 
Pixel 
Accuracy 

ME C (%) 25,29 20,6 20,47 31,38 25,09 27,65 24,89 

Bit rate 114,16 721,46 143,65 2,73 20,68 85,79 31,74 

PSNR-Y 34,9 32,63 35,06 37,79 36,02 34,79 36,02 

Without 
Fractional 
Pixel 
Accuracy 

TEC (%) -4,60 -3,98 -6,25 -7,05 -5,87 -6,08 -7,09 

ME C (%) 21,52 16,52 16,65 26,81 20,62 22,44 20,13 

Bit rate 2,84 452,18 25,32 0,02 9,06 26,96 9,62 

PSNR-Y -0,14 -0,45 -0,12 -0,05 0 -0,34 -0,24 

Table 9. Performance and complexity results for fractional pixel motion compensation 
accuracy 

4.3.7 Fractional pixel motion compensation  

According to table 9, disabling the fractional pixel motion compensation accuracy option 
results in a significant increase of the bit rate output (more than 30% of bit rate increase 
for the QCIF “foreman” sequence and about 63% for CIF “mobile” sequence), with a light 
video quality degradation and a 5% average gain in complexity reduction. Thus, in order 
to maximize the coding performance, the fractional pixel accuracy option should be 
activated. 

4.3.8 Bi-prediction motion estimation 

Given results of table 10, disabling the bi-prediction motion estimation tool leads to a 20% 
average complexity reduction, without any noticeable coding efficiency degradation in 
terms of bit rate output and PSNR video quality. Thus, the use of bi-prediction motion 
estimation does not provide any significant improvement in the compression efficiency for 

www.intechopen.com



 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

39 

all the tested CIF and QCIF sequences. So, the bi-prediction motion estimation option shall 
be disabled. 

4.3.9 Entropy coding  

Given the results of table 11, it is clear that the CABAC entropy coding method provides 

noticeable gains in coding efficiency. Typically, it offers, for many sequences, between 5 to 

10 percent efficiency gain and larger gains for higher resolution sequences. This comes with 

noticeable complexity drawbacks. However, The CAVLC entropy method offers much more 

implementation simplicity and offer about 25% of complexity reduction, with only a slight 

bit rate increase. Thus, for an optimized complexity configuration, CAVLC entropy coding 

method will be used. 

 

Resolution CIF QCIF 

Bi-Predict 
ME 

Seq. 
Bridge- 

close 
Mobile Paris 

Bridge-
far 

Container Foreman 
Mother & 
Daughter 

Enabled 

ME C (%) 25,29 20,6 20,47 31,38 25,09 27,65 24,89 

Bit rate 
 

114,16 721,46 143,65 2,73 20,68 85,79 31,74 

PSNR-Y 34,9 32,63 35,06 37,79 36,02 34,79 36,02 

Disabled 

TEC (%) -21,29 -17,58 -19,27 -28,81 -23,13 -23,32 -24,31 

ME C (%) 6,45 6,59 5,58 7,2 6,29 8,76 7,32 

Bit rate 0,01 6,4 0,81 0 0,05 1,32 0,07 

PSNR-Y -0,01 -0,04 0 0 0 -0,03 0 

Table 10. Performance and complexity results for bi-prediction motion estimation  

 

Resolution CIF QCIF 

Entropy 
Coding 
Method 

Sequence 
Bridge- 

close 
Mobile Paris 

Bridge-
far 

Container Foreman 
Mother & 
Daughter 

CABAC 

ME C (%) 6,68 6,74 5,75 7,39 6,33 8,89 7,33 

Bit rate 
 

113,95 727,49 143,5 2,51 20,92 82,88 31,11 

PSNR-Y 34,89 32,59 35,04 37,79 35,94 34,76 36,06 

CAVLC 

TEC (%) -24,60 -24,61 -26,58 -21,54 -26,94 -23,76 -24,89 

ME C (%) 8,66 9,28 7,62 9,46 8,29 11,66 9,56 

Bit rate 
 

8,31 37,63 6,43 0,07 1,11 5,11 2,08 

PSNR-Y 0,02 -0,06 0,02 0,05 -0,04 -0,02 -0,01 

Table 11. Performance and complexity results for the two entropy coding methods 

www.intechopen.com



  
Recent Advances on Video Coding 

 

40

4.4 Memory cost analysis  

The data dominance of a video system implies that the memory cost have a dominant 

impact on the realization efficiency (Denolf et al., 2002). Application specific hardware 

implementations have to match memory system to the application. An efficient design flow 

uses this to reduce area and power. Thus, providing for the H.264/AVC a high level 

analysis of memory cost is essential to identify its resource requirements for hardware and 

software platforms. For each test sequence and for all the previously reported H.264 

configurations, peak memory usage is measured using the “memprof” GNU profiler 

(memprof, n.d.). The obtained peak memory usage dependencies are reported in table 12. It 

is obtained that the encoder peak memory usage depends on the video format and linearly 

on the number of reference frames and the search size. The influence of the other coding 

tools and the input video characteristics is negligible. 

 

Search 
size 

QCIF CIF 

1F 3F 5F 1F 3F 5F 

32 5.68 10.52 15.52 10.74 18.68 26.6 

16 2.87 5.02 7.1 7.92 12.92 18.23 

8 2.15 3.59 4.93 7.13 11.81 16.08 

Table 12. Memory cost (in Mb) for different video formats, search size and reference frames 

5. Complexity analysis of the optimized configuration  

Given the previous analysis, the optimized configuration is presented as follows. A 3L5B 

pyramid coding structure, an UMHexagonS fast motion estimation scheme, a search range 

fixed to 8, 4 variable block sizes, 3 reference frames, R-D Lagrangian optimization activated, 

Hadamard transform disabled, motion vector fractional pixel accuracy enabled, P and B 

frames weighted prediction with bi-prediction motion estimation disabled, a QP value fixed 

to 28, and CAVLC entropy coding technique used. 

5.1 Performance/computing time complexity 

For this final configuration, the encoding performance and computing time complexity are 

obtained and given in table 13. In comparison with results of table 2, one order of 

magnitude in complexity reduction has been achieved with less than 10% average bit rate 

increase for all the CIF and QCIF used video test sequences. However, for this optimized 

configuration and even for the very low bit rate QCIF “bridge far” sequence, the time 

required to compute the encoding algorithms on the GPP platform is of 597.87 second. The 

associated complexity in frames per second is of 3.51 fps. Even with this configuration 

offering an optimal trade-off between coding efficiency and implementation complexity, we 

are still very far from a real time performance of 25 frames per second. Implementing this 

configuration of the encoder represents a big challenge for resource-constrained multimedia 

systems such as wireless devices or high-volume consumer electronics since this requires 

very high computational power to achieve real-time encoding. 

www.intechopen.com



 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

41 

Res. Sequence 
Total time 

(s) 
ME Time  

(s) 
ME C  

(%) 
frames per 

Seconds (fps) 
Bit rate 
(Kbps) 

PSNR-Y 
(dB) 

 
CIF 

 

Bridge-close 2463,25 213,42 8,66 0,81 122,26 34,91 

Mobile 488,26 45,3 9,28 0,6 765,12 32,53 

Paris 1451,57 110,57 7,62 0,73 149,93 35,06 

QCIF 

Bridge-far 597,87 56,54 9,46 3,51 2,58 37,84 

Container 91,71 7,6 8,29 3,22 22,03 35,9 

Foreman 130,24 15,19 11,66 3,05 87,89 34,71 

Mother & 
Daughter 

289,85 27,71 9,56 3,32 33,19 36,05 

Table 13. Performance/computing time complexity of the reference configuration 

5.2 Memory profiling 
For the optimized configuration, the peak memory cost is of 5.02 MB for the QCIF and 12.92 
MB for the CIF sequences. Comparisons with MPEG 4 Part2, simple profile with a 16 search 
size, half pixel resolution and I and P pictures are provided in (Saponara et al., 2004). For the 
memory usage, MPEG4 requires 2.97 MB for the QCIF and 9.88 for the CIF sequences. This 
result refers to no optimized MPEG4 source code. Applying platform independent memory 
optimizations through C level code transformations may be used to get a memory and 
algorithmic optimized version of the reference code. An example of such optimizations is 
applied in (Denolf et al., 2000) for an MPEG4 simple profile video decoder and in 
(Vleeschouwerand et al., 2001) for an encoder. By applying such optimization techniques, an 
optimized MPEG 4 simple profile is obtained using only 348.2 Kb of memory for CIF 
sequences (Vleeschouwerand et al., 2001). This represents a memory decrease with a factor 
of 30. 
These memory optimizations can also be applied to our AVC optimized configuration. 
However, for the AVC case, the number of B frames is not limited to one B between two I/P 
frames, thus the memory compactation transformations used in (Vleeschouwerand et al., 
2001) become invalid. Actually, even with possible optimizations, still around a minimum of 
few MB would be required, which is a problematic size for a realistic implementation. 
Memory profiling of this optimized configuration is shown in figure 3. This figure presents 
the memory usage distribution over the main modules of the encoder. The 
“Init_Motion_Search_module” for the motion estimation is the most memory consuming 
with 67% of the total memory usage.  

5.3 instruction-level profiling 

For the 300 frames QCIF “Container” sequence and using the H.264/AVC encoder with the 
optimized configuration, we have performed an analysis of dynamic instruction distribution 
using the “Iprof” GNU profiler (Kuhn, 1999). The obtained results are shown in the 
following figure 4. It is clear from this figure that the H.264/AVC is dominated by integer 
operations, most of them are add, sub and shift instructions. Given the lot of data transfer 
operations, there are more memory instructions (more of 41%) than effective computation 
ones.  

www.intechopen.com



  
Recent Advances on Video Coding 

 

42

67%
11%

11%

7% 2%
0%

1%
1%

Init_Motion_Search_Module

encode_one_frame

init_img

init_global_buffer

AllocNalPayloadBuffer

init_rdopt

GenerateParameterSets

Autres

 

Fig. 3. Memory profiling of the optimized encoder configuration 

 

 

Fig. 4. Instruction breakdown of the optimized encoder configuration 

www.intechopen.com



 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

43 

Taken that the instruction per cycle is given by IPC=InstCount/(Feq*ExecTime), for the 
used 1.6 GHz clock frequency GPP machine, and with an obtained number of instructions 
per frame of 598.55 106 (179565.059106 / 300), the obtained IPC is of 0.92. For a higher 
performance 3.0 GHz GPP machine, the necessary IPC for encoding H.264/AVC in real time 
should be 4.98. From these results we can note that even with a high frequency 3.0 GHz 
processor, approximately 5 instructions per cycle have to be executed to achieve H.264 real 
time encoding QCIF video sequences. Thus, using a single processor to real time encode 
H.264 bit streams may require a very high performance, high frequency super scalar 
processor. Such a choice is not suitable for embedded systems that have strict power and 
cost constraints.  
An alternative solution is to use a multiprocessor approach to share the encoding execution 
time between several embedded processors. The sequential encoder application has to be 
distributed using a parallel programming model over a multiprocessor architecture. Based 
on that, we can conclude that it is necessary to explore multiple ways of parallelization apart 
from SIMD extensions in order to achieve the required performance for real time operation. 
To find the best scheme for parallel code execution, profiling the execution of the obtained 
configuration shall identify the major application bottlenecks and the main subcomponents 
candidate for efficient parallelization. 

5.4 Execution profiling 
Typically, tasks will not need the same amount of processing time. Thus, a computational 
profiling should be considered to identify the most computationally-expensive tasks and to 
give a clear picture of the critical code parts candidate for task-level parallelization. After 
that, complex tasks may also be subdivided further into smaller ones, i.e. each slowest 
compute node must be split in a set of compute nodes with better execution values. 
For this, we have profiled the execution of the 300 frames of QCIF “Container” sequence 
with the “Gprof” GNU profiler (Graham et al., 1982). The obtained results are reported in 
the following figure 5 in terms of the CPU time percentage spent in the execution of each 
module. The obtained profile shows that the motion estimation and compensation (MEC), 
DCT transform, the entropy coding, the rate-distortion optimization (RDO) intra/inter 
mode decision, and the intra-prediction modules are the most time-consuming modules. 
These tasks constitute the major bottlenecks of the encoder. 

6. Parallelization of the H.264/AVC video encoder 

In the previous sections, we motivated the implementation of H.264/AVC encoder 
application on a multiprocessor platform. Actually, using a single processor to real time 
encode H.264/AVC bit streams may require a high performance, high frequency super 
scalar processor. Such a choice is not suitable for systems that have strict power and cost 
constraints. For such case, it may be probably necessary to use some kind of multiprocessor 
approach to share the encoding application execution time between several processors.  
For the cost-efficient H.264/AVC parameters configuration, the obtained absolute complexity 
values and profiling analysis results confirmed the big challenge needed for a parallel 
multiprocessor execution. Parallelization consists in transforming the sequential encoding 
algorithms into concurrent tasks for execution in a multiprocessor system (Li et al., 2005). 
The predominant forms of parallelism in such systems are data-level parallelism (DLP) and 
task-level parallelism (TLP). DLP is perhaps the most commonly used form of parallelism, 
implemented through vector or SIMD architectures. The benefits of TLP are achieved by 
 

www.intechopen.com



  
Recent Advances on Video Coding 

 

44

25%

16%

29%

11%

10%

9%

Entropy Coding

Motion Estimation and

Compensation

DCT

RDO Intra/Inter Mode

Decision

Intra Prediction

Others

 

Fig. 5. Computational profile of H.264 video encoding 

distributing the workload of a single high performance processor among a number of 
slower and simpler processor cores. This requires first to split the algorithms into separate 
tasks that may be executed at the same time, then to establish the necessary inter-task 
communication using parallel programming model primitives (Youssef et al., 2004). 
Generally, the parallel task execution is limited by data dependency between tasks. A data 
dependency means that one task needs the result of another one to be processed therefore 
limiting ways for parallelization (Pastrnak et al., 2006). 
Given this, several multiprocessor and multi-threading encoding systems and parallel 
implementation methodologies have been proposed and discussed in many previous 
research studies (Gulati et al., 2005; Chen, 2004; Zhao, 2006; Sun, 2007) to find the best 
parallel execution scheme of the H.264/AVC video encoder for a chosen multiprocessor 
platform. Based on the performance results obtained in these previous works, and given our 
concern with resource constrained devices, we developed in a dedicated work a new high-
level independent target-architecture parallelization approach (Krichene Zrida et al., 2009) 
based on the use of the parallel streaming programming models of computation and the 
simultaneous exploration of the two predominant concepts of parallelism; the data-level 
partitioning and the task-level splitting and merging. The goal of this approach is to derive 
in a structured way a parallel model of the encoder with the best computation and 
communication workload balance. Based on this parallelization approach (Krichene Zrida et 
al., 2009), a starting parallel model of the H.264/AVC reference encoder is first proposed. 
The implementation of this model is performed according to an appropriate programming 
strategy. According to the communication and computation concurrency properties of the 
implemented starting model, concurrency optimizations using task-merging and data-
partitioning forms of parallelism have been considered. This resulted in an optimized 
parallel model with the best computation and communication workload balance. 
To evaluate the effectiveness of the optimized parallel model, the system-level 
Sesame/Artemis simulation framework (Coffland et al., 2003) has been used targeting 
multiple multiprocessor platforms (Krichene Zrida et al., 2010). It has been shown that the 
encoding performance obtained, in terms of frames per second, are getting linearly better 
with the number of simulated processors (assumed to be MIPS R3000) as presented in the 
figure 6.  

www.intechopen.com



 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

45 

2,16

4,72

7,77
8,75

0

1

2

3

4

5

6

7

8

9

N
u
m

b
e
r 

o
f 

fr
a
m

e
s
 p

e
r 

s
e
c
o
n
d

1 CPU 2 CPUs 4 CPUs 6 CPUs

Sequential Code Optimized Parallel Code

 
 

Fig. 6. Sesame/Artemis H.264 encoding performances vs. number of simulated processors  

In addition, the encoding performance results of this optimized parallel model have also 

been compared to those previously obtained using the data-level parallelization approaches 

proposed in (Zhao, 2006; Sun, 2007). Results of this comparison are given in the table14. This 

table clearly shows that our solution (Krichene Zrida et al., 2009), based on simultaneous 

task and data level parallelism, has achieved better performance of the encoding process. 

Actually, using references (Zhao, 2006; Sun, 2007), data splitting is performed respectively at 

the Macro-Blocks MBs row and MBs region communication granularity levels. But for our 

case, a more fine-grain Macro-Block communication granularity level is exploited. Thus, 

with a more fine grain data amount exchanged by the processors, our proposed approach is 

more appropriate for use in embedded multiprocessor SoC implementations having limited 

on-chip memory resources.  

 

 
Number of 
processors 

QCIF YUV 
frames 

Encoding 
simulation time 

(s) 

Number of 
frames per 

second (fps) 
Speedup 

Speedup in 

(Zhao, 
2006) 

Speedup in 

(Sun, 
2007) 

Sequential 
H.264 code 

(JM10.2) 

Mono-
Processor 

__ 2.16 1 1 1 

Optimized 
parallel 
H.264 
model 

2 Processors 1,6 4.72 2.19 __ __ 

4 Processors 1.00 7.77 3.6 3.1 3.3 

 

Table 14. Obtained Multiprocessor simulation results in comparison to those obtained in 
(Zhao, 2006; Sun, 2007) 

www.intechopen.com



  
Recent Advances on Video Coding 

 

46

Finally it has been shown, for a four-processor platform with the common bus structure, 
that the computation cost is much more important than the time spent in reading/writing 
from/to the shared memory. The communication and computation loads are nearly 
balanced for all the used components, as shown in the figure 7. These results represent again 
a solid confirm of the good concurrency properties of the obtained optimized model.  
 

0% 20% 40% 60% 80% 100%

µP1

µP2

µP3

µP4

Memory

Read/Write time

Busy time

Idle time

 

Fig. 7. Reading-Writing/Execution/Idle statistics for the common-bus-based architecture 

However given the results of the figure 7, the times being idle are too much important in 
comparison with those being busy for all the architecture components. This has probably 
caused a substantial degradation of the final encoding performances. Given the important 
amount of data communicated between processes for the H.264/AVC encoding process, it is 
clear that the common memory bus structure constitutes a serious communication 
bottleneck. Actually, the very important data dependency between processors requires a 
potential memory access and allocation for the read/write operations. For a common-bus 
multiprocessor architecture, this causes a saturation of bus and thus a lot of time is spent in 
waiting to read/write data from/to other component. For further design space exploration 
and in order to reduce the communication bottleneck observed for the common-bus-based 
architecture, others inter processors communication structures and topologies need to be 
evaluated for a better encoding performance.  

7. Conclusions 

The H.264/AVC has been designed with the goal of enabling significantly improved 
compression performance relative to all existing video coding standards. Implementing a 
H.264 video encoder represents a big challenge for resource-constrained multimedia 
systems such as wireless devices or high-volume consumer electronics since this requires 
very high computational power to achieve real-time encoding. In this chapter, a high-level 
performance analysis of a H.264 video encoder is first performed to find an optimal balance 
between the coding efficiency and the implementation cost allowing for a complexity 
reduction at the high system level.  
For an optimal use of the AVC tools, the best configuration parameters are obtained. For this 
cost-efficient configuration, the absolute complexity values, the memory and task level 
profiling results confirmed the big challenge needed for its effective implementation. For 

www.intechopen.com



 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

47 

such implementation, a multiprocessor approach is needed to share the encoding 
application execution time between several processors for achieving better execution 
performances and real time encoding. 

8. References 

Richardson, Iain E.G. (2003), H.264 and MPEG-4 Video Compression: Video Coding for Next-
generation Multimedia, John Wiley & Sons Ltd. 

ISO/IEC 13818 (1995), Information technology: generic coding of moving pictures and associated 
audio information, (MPEG-2). 

Joch, A., Kossentini, F., & Nasiopoulos, P. (2002). A Performance Analysis of the ITU-T Draft 
H. 26L Video Coding Standard, Proceedings of the 12th International Packet Video 
Workshop, Pittsburg, Pa, USA, April 2002.  

Alvarez, M., Salami, A., Ramirez, A., & Valero, M. (2005), A Performance Characterization 
of high Definition Digital Video Decoding using H264/AVC, Proceedings of the IEEE 
International, Symposium on Workload Characterization, pp. 24 – 33, 6-8 Oct. 2005. 

Saponara, S., Denolf, K., Lafruit, G., Blanch, C. , & Bormans, J. (2004), Performance and 
Complexity Co-evaluation of the Advanced Video Coding Standard for Cost-
Effective multimedia communication, EURAPIS Journal on Applied Signal Processing, 
pp. 220-235, 2004:2. 

Kuhn, P. , & Stechele, W. (1998), Complexity analysis of the emerging MPEG-4 standard as a 
basis for VLSI implementation, Proceedings of SPIE Visual Communications and Image 
Processing, vol. 3309, pp. 498–509, San Jose, Calif, USA, January 1998. 

Catthoor, F., Wuytack, S., De Greef, E., Balasa, F., Nachtergaele, L., & Vandecapelle, A. 
(2002), Data Access and Storage Management for Embedded Programmable 
Processors, Kluwer Academic, Boston, Mass, USA, 2002. 

Chimienti, A., Fanucci, L., Locatelli, R., & Saponara, S. (2002), VLSI architecture for a low-
power video codec system, Microelectronics Journal, vol. 33, no. 5-6, pp. 417–427, 
2002. 

Schäfer, R., Wiegand, T., Schwarz, H. (2003), The emerging H264/AVC standard, EBU 
technical review, January 2003. 

Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T., 
& Wedi, T. (2004), Video coding with H.264/AVC: Tools, Performance, and 
Complexity, proceedings of the IEEE Circuits and Systems Magazine, 2004. 

ISO/IEC 14496–10:2003, Coding of Audiovisual Objects—Part 10: Advanced Video Coding, 
2003, also ITU-T Recommendation H.264 Advanced video coding for generic 
audiovisual services. 

Malvar, H., Hallapuro, A., Karczewicz, M., & Kerofsky, L. (2003), Low-Complexity 
transform and quantization in H.264/AVC, proceedings of the IEEE Transactions on 
Circuits and Systems for Video Technology, vol. 13, pp. 598–603, July 2003. 

H264 Reference Software Version JM 10.2 
 http://iphome.hhi.de/suehring/tml/. November 2005. 
Arizona State University, Video traces for network performance evaluation, 
 http://trace.eas.asu.edu 
Pascalis, P., Pezzoni, L., Mian, G.A., & Bagni, D. (2004), Fast Motion Estimation with size-

based predictors’ selection hexagon in H264/AVC Encoding, proceedings of the 12th 
European Signal Processing Conference, September 6-10 2004, Vienna, Austria 

www.intechopen.com



  
Recent Advances on Video Coding 

 

48

Chen, Z., & He, Y. (2002), Fast Integer and Fractional Pel Motion Estimation, JVT-E045, 5th 
Meeting: Geneva, Switzerland, 9-17 October, 2002. 

Denolf, K., Blanch, C., Lafruit, G., & Bormans, J. (2002), initial memory complexity analysis 
of the AVC codec, proceedings of the IEEE Workshop on Signal Processing Systems, 
pp. 222–227, San Diego, Calif, USA, October 2002. 

 www.gnome.org/projects/memprof/ 
Denolf, K. et al. (2000), Cost-efficient C-level design of an MPEG-4 video decoder, 

proceedings of the IEEE Workshop on Power and Timing Modeling, optimization and 
Simulation, pp. 233-242, Goettingen, Germany, September 2000. 

Vleeschouwerand, C.D., & Nilsson, T. (2001), Motion estimation for low power video 
devicrs, proceedings of the IEEE International Conference on Image Processing, pp. 953-
957, Creece, October 2001. 

Kuhn, P. (1999), Complexity Analysis and VLSI Architectures for MPEG-4 Motion 
Estimation, Kluwer Academic Publishers, 1999. 

Graham, S.L., Kessler, P.B., McKusick, M.K. (1982), Gprof: A Call Graph Execution Profiler. 
Proceedings of the SIGPLAN '82 Symposium on Compiler Construction. 

 http://www.gnu.org/software/binutils/manual/gprof-2.9.1/ 
Li, P., Veeravalli, B., & Kassim, A. (2005), Design and Implementation of Parallel Video 

Encoding Strategies Using Divisible Load Analysis, IEEE Transactions on Circuits 
and Systems for Video Technology, No. 9, Vol. 15, pp. 1098-1112, September 2005. 

Youssef, M., Yoo, S., Sasongko, A., Paviot, Y., & Jerraya, A.A. (2004), Debugging HW/SW 
interface for MPSOC: Video Encoder System Design Case Study, proceedings of the 
41st Design Automation Conference, 2004. 

Pastrnak, M., de With, P.H.N., Stuijk, S., & van Meerbergen, J. (2006), Parallel 
Implementation of Arbitrary-Shaped MPEG-4 Decoder for Multiprocessor Systems, 
proceedings of the Visual Communications and Image Processing, pp 60771I-1 - 60771I-
10, 2006. 

Gulati, A., & Campbell, G. (2005), Efficient mapping of the H.264 encoding algorithm onto 
multiprocessor DSPs. proceedings of the SPIE-IS&T Electronic Imaging, 2005 

Chen, Y-K., Tian, X., Ge, S., & Girkar, M. (2004), Towards Efficient Multi-Level Threading of 
H.264 Encoder on Intel Hyper-Threading Architectures, Proceedings of the 18th 
International Parallel and Distributed Processing Symposium, 2004. 

Zhao, Z., Liang, P. (2006), A Highly Efficient Parallel Algorithm for H.264 Video Encoder, 
Proceedings of the 31st IEEE International Conference on Acoustics, Speech, and Signal 
Processing, 2006. 

Sun, Sh., Wang, D., & Chen, S. (2007), A Highly Efficient Parallel Algorithm for H.264 
Encoder Based on Macro-Block Region Partition, HPCC 2007, LNCS 4782, pp. 577–
585, Berlin Heidelberg 2007. 

Krichene Zrida, H., Jemai, A., Ammari, A.C., & Abid, M. (2009), High Level H.264/AVC 
Video Encoder Parallelization for Multiprocessor Implementation, Proceedings of the 
12th ACM/IEEE Design Automation and Test in Europe conference and exhibition , Nice-
France, 20-24 April 2009. 

Coffland. J.E., & Pimentel, A.D. (2003), A Software Framework for Efficient System level 
Performance Evaluation of Embedded Systems, Proceedings of the SAC the ACM 
Symposium on Applied Computing, Melbourne, Florida, USA, Mar. 2003. 

Krichene Zrida, H., Ammari, A.C., Jemai, A., & Abid, M. (2010), High Level Optimized 
Parallel Specification of a H.264/AVC Video Encoder, International Journal of 
Computing and Information Sciences (IJCIS), Volume 8, n°3, December 2010. 

www.intechopen.com



Recent Advances on Video Coding
Edited by Dr. Javier Del Ser Lorente

ISBN 978-953-307-181-7
Hard cover, 398 pages
Publisher InTech
Published online 24, June, 2011
Published in print edition June, 2011

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

This book is intended to attract the attention of practitioners and researchers from industry and academia
interested in challenging paradigms of multimedia video coding, with an emphasis on recent technical
developments, cross-disciplinary tools and implementations. Given its instructional purpose, the book also
overviews recently published video coding standards such as H.264/AVC and SVC from a simulational
standpoint. Novel rate control schemes and cross-disciplinary tools for the optimization of diverse aspects
related to video coding are also addressed in detail, along with implementation architectures specially tailored
for video processing and encoding. The book concludes by exposing new advances in semantic video coding.
In summary: this book serves as a technically sounding start point for early-stage researchers and developers
willing to join leading-edge research on video coding, processing and multimedia transmission.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hajer Krichene Zrida, Ahmed Chiheb Ammari, Mohamed Abid and Abderrazek Jemai (2011).
Complexity/Performance Analysis of a H.264/AVC Video Encoder, Recent Advances on Video Coding, Dr.
Javier Del Ser Lorente (Ed.), ISBN: 978-953-307-181-7, InTech, Available from:
http://www.intechopen.com/books/recent-advances-on-video-coding/complexity-performance-analysis-of-a-h-
264-avc-video-encoder



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

