
An Open Tool for Assisting in Technical Debt
Management

Carlos Fernández-Sánchez∗, Héctor Humanes†, Juan Garbajosa† and Jessica Dı́az†
∗Universidad Politécnica de Madrid, CITSEM, Madrid, Spain

Email: carlos.fernandez@upm.es
†Universidad Politécnica de Madrid, CITSEM and ETSISI, Madrid, Spain

Abstract—Technical debt monitoring is one of the activities
that have to be performed in technical debt management. To
do that, there are different techniques that can be used to
estimate technical debt and different tools that implement those
different techniques. This paper presents TEDMA Tool, a tool for
monitoring technical debt over the software evolution and that
it is open to integrate third party tools. TEDMA is based on the
analysis of source code repositories and is useful for researching
using empirical data extracted from software projects. Currently,
it is been used to analyze big projects in the execution of several
case studies. The expected evolution of TEDMA will make the
tool useful for software development industry.

I. INTRODUCTION

Technical debt (TD) monitoring is one of the activities
in technical debt management (TDM) [1]. To monitor TD,
it is necessary to analyze the change of TD indicators over
the software evolution. For TDM, it is also needed to take
into accout several requirements, including different points
of view [2], [3]. This implies to obtain data from several
sources and to apply several techniques. There are many
possible metrics and techniques to be used to support TDM
requirements [4]. This variability of techniques is extended to
the approaches for TDM [5]. Therefore, it is compelling to
have means to combine metrics, techniques, and management
approaches implemented by different tools, considering also
that current research in TD [3] is resulting in new metrics
and techniques, that should have to be considered when they
become available. Also, there are some tools that provide
different TD indexes [6]. It must be noted that it is not
completely clear in literature which of the current metrics must
be selected, or how they must be combined, since they might
be indicators of different types of TD [7].

Thus, there is a necessity of tools that integrate different
techniques and other tools for analyzing changes on TD over
the software evolution. This would facilitate the research activ-
ity using empirical data obtained from software projects. This
kind of tools are necessary because they allow the collection
of evidences to support research [8]. Software development
organizations could also take advantage of such tools to define
models for TDM and analyzing the impact of TD in their
projects.

Tools used to manage TD are focused on specific require-
ments of TDM [4]. Existing tools are mainly focused on
obtaining metrics, implementing some specific techniques for

TDM, or providing their own models for TDM [4] and, as
described in [3], each individual tool does not support all the
required elements for TDM and, consequently, it is necessary
to integrate them. As discussed in Section III, current tools
are often standalone and not devised to integrate other tools.

Though, it is challenging to integrate tools that are not
thought to be integrated with other tools. Special attention has
to be paid to the often different tool analysis-strategies. For
example, a tool can be focused on extracting data from the
last version of the software while other tool can consider all
changes in the history of the project. Ignoring these differences
will lead to wrong conclusions when results are compared.

TEDMA is an open tool created to assist in TDM by means
of the execution of TDM metrics and techniques implemented
by third party tools, and taking into account the historical
evolution of the software. It is open in the sense of being
designed to integrate third party tools and developments.
TEDMA allows to analyze the evolution of the metrics over
the software evolution. It facilitates the integration of new
tools and has been designed to support different TDM model
implementations. The information that it generates is stored in
databases that can be exploited by external tools. This includes
to access specific information using query languages. Data
are organized following the software evolution, and therefore
TEDMA facilitates the implementation of efficient algorithms
to traverse the history of files and revisions. As described
in following sections, a first version of TEDMA has been
implemented and has been tested analyzing some large open
source projects. TEDMA analyzes release by release, starting
from the beginning of the project, to create a graph database
with the evolution of each file. Additionally, it gathers metrics
of the files and revisions. This information can be enriched by
the execution of analyzers. An analyzer is an abstraction of
any tool or technique used to obtain relevant data for TDM.
When the analyzer is executed, its outputs are linked to a graph
database as it is described in Section II.

II. TEDMA TOOL DESCRIPTION

A. Overall View

To understand the architecture of the TEDMA tool it may
help to, firstly, describe the process to analyze a project.
Figure 1 depicts the life cycle of a project in TEDMA. A
project has to be added to the tool by providing a name, a
description, and the location of the source code repository



Created
Project

Loaded 
Project 

Analyzed 
Project 

Project creation Analyze

New 
changes New changes

Other 
services 
execution

Delete Delete Delete

Load

Fig. 1. Life cycle of a project in TEDMA

r1 r2 r5r3
r4

fr1 fr2 fr4 fr5

fr3

metrics 
fr1

metrics 
fr2

metrics 
fr4

metrics 
fr5

metrics 
fr3

rn : revision n
frn : file f of revision n
metrics frn : set of metrics of 

file f in revision n

Fig. 2. Basic data structure

(local or remote). After that, the next step is to load the
basic project data into the tool’s database. This information
is mainly source code data about changes in files over the
software evolution. With this basic information, the project
can be analyzed by any of the available analyzers. When new
changes are uploaded to the repository, those changes can be
loaded to the tool and analyzed. At any moment a project can
be removed from TEDMA for releasing resources.

Figure 2 depicts how the information is stored in TEDMA.
TEDMA stores information for each revision and for each
file in each revision. For each file several metrics are stored.
Example of metrics are basic size metrics of each file as size
in bytes, number of lines, and, if the file has changed, the type
and size of the change. Depending on the analyzers executed,
different metrics can be stored. Each analyzer prescribes how
its output is stored. For example, the current implementation
of the PMD analyzer [9], one of the tools integrated, includes
a problem for each file in which PMD detects problems.

Additionally, TEDMA ensures that any change or action
over the files is considered just one time. This is important in
merging revisions where changes could be considered twice
if they are not carefully checked. Even when TEDMA is
currently focused on file level, because of the flexibility of its
data model, it can be extended to use other abstraction levels
such as modules and methods. This flexibility facilitates the
integration of tools focused on different types of TD as code
TD and architectural TD.

B. Obtaining information from projects

Currently, TEDMA can gather information about the evo-
lution of each file in a project, and this information is mainly

Fig. 3. Evolution of the number of files with cyclomatic complexity issues
in Apache Log4j 2 project

obtained from Git repositories [10], PMD [9] detected code
smells, and Findbugs [11] detected problems. Both, PMD and
Findbugs analyzers are limited to analyze Java projects. In
the case of Findbugs, each release has to be compiled, so
it is necessary to have installed additional tools to build the
project, for example Maven and Gradle. Other metrics have
been directly implemented, for instance, the probability of
change and expected size of change as are defined in [7].
Data are collected for all the releases of the software so that
metrics evolution can be analyzed.

Figure 3 shows the evolution of one metric: the number
of files with at least a method with a cyclomatic complexity
issue, as it is detected by the default PMD configuration in
Apache Log4j 2 project. This type of time series provides
information about how some problems are evolving in the
analyzed projects. In this case, it seems that the project is
getting more complex over time. This type of analysis can help
to identify potential TD problems over the software evolution.
Figure 3 is generated, in that case, using R [12] to generate the
graphical representation from the data exported by TEDMA.
R is a free software environment for statistical computing and
graphics.

In the following sections it is explained how R has been
also used for other purposes in TEDMA.

C. Processing information from projects

Currently, the TEDMA core components are already im-
plemented. TEDMA is being used to analyze open source
projects on GitHub that are widely used in the software
development industry. Examples of already analyzed projects
are Spring-Framework, Karaf, Log4j 2, Hbase, and Hadoop.
Thanks to these analyses, and that projects are really large,
it was possible to test the capabilities of TEDMA. In this
sense, TEDMA has proved helpful to investigate metrics and
models for TDM. It provides empirical data obtained from
real projects used in the software development industry. The
results of these analyses will be published separately.

The tool provides access to data at different abstraction
levels that can be used together when needed. The most
abstract level is the entity level (project, revision, file, change,
etc.). At that level of abstraction, the programmer can manage
all this concepts without thinking in the source code repository



Data Layer
Source Code 
Repository1

1. Git repositories currently supported.
2. Partially implemented.
3. Not yet implemented.

Graph 
Database

Massive Data 
Storage2

Service Layer Data Loader1 Data Analyzer

Java 
Analyzers

R 
Analyzers2

External 
Analyzers2

Statistics2 TDM 
Models2

Third Party 
Data 

Storage3

Presentation 
Layer

Visualization2Reports3

Fig. 4. Modules of TEDMA

or the database. If it is needed, the TEDMA API supports
the direct usage of the Neo4j [13] API to manage the graph
database and the JGit [14] API to manage the Git repository.

D. How TEDMA is built

In this section we describe the main modules of
TEDMA(see Figure 4).

1) Data Layer: TEDMA uses several means to obtain and
store projects data. The main data source is the source code
repository. Currently, TEDMA only supports Git repositories.
For each project, TEDMA clones the source code repository
to be used in the whole life cycle of the project TDM.

After the source code repository, the most relevant data are
stored is the graph database. For each project, TEDMA creates
and maintains a graph database that represents the whole
software evolution, including all the source files evolution.
This graph allows to access the information following the
evolution paths of the software. Therefore it can be traversed
using releases, revisions, and files following any combination
of the stored relationships of such nodes. In fact, the graph
database acts as an index for the rest of the information. If any
node requires large amount of data to be stored, an additional
storage is used to avoid overcharging the graph with data that
it is only required in specific analysis or reports. Additionally,
it is planned to provide means to use third party data storage
by including extensions for other data sources, for example,
external metrics databases.

2) Service Layer: TEDMA provides a set of services that
can be used in the TDM process. The first service is Data
Loader. This service is in fact the service that incorporates a
project to the tool to be analyzed.

The data analyzer service allows to implement and execute
different analyzers in the projects. As it was said before, an
analyzer is an abstraction of any tool or technique used to
obtain relevant data for TDM. Analyzers can be implemented
using Java and R. Currently, two analyzers are available to use
PMD [9] and Findbugs [11] to analyze projects. Other metrics
have been directly implemented, for instance, the probability
of change and expected size of change as are defined in [7].
All these implementations were done to demonstrate TEDMA
integration capacity.

The statistics service is based on the integration of R in the
core of the TEDMA. This facilitates the usage of R scripts and
incorporates all the power of R to perform statistical analysis
over the collected metrics. Currently, only a basic version
exists. R can be used into the TEDMA using two different
approaches, Renjin [15] and Rserve [16].

Technical debt management models service addresses the
goal of testing and developing TDM models that help decision
making about TD. Models can be defined in Java or R
languages. Currently, a model for TDM is implemented in R,
but not completely integrated into TEDMA (the model will
be published separately). To be used it is necessary to export
project data from TEDMA using an adhoc export module, and
after that, it is possible to use the model from R directly.

3) Presentation Layer: The reports service, which is not
currently available, will be focused on the elaboration of
automatic reports to show the results of the analyses. The
reports will be oriented to different stakeholders roles needs.

The visualization service is in charge of showing dashboards
and graphical representations of the results. It is related
to the reports service but focused on interactive means of
visualization of the information. This service is currently under
development.

E. Integration of third party tools

So that it can be extended, TEDMA provides one API to
manage all the information stored in the Data Layer. The API
allows to work with Git repositories using internally JGit [14].
The graph database is implemented using Neo4j [13]. The
API provided by TEDMA uses internally Neo4j and it has
different levels of abstractions that allow to work with files,
revisions, projects, etc., including the usage of queries using
CYPHER language. This provides a large flexibility when new
extensions have to be created. If it is needed, the TEDMA API
allows to use the Neo4j and JGit APIs directly. This API can
be used to extend any of the services provided by TEDMA or
implement new ones.

F. TEDMA Tool Roadmap

The great advantage of TEDMA is that it can be integrated
with other tools to obtain metrics from many different sources.
At the moment TEDMA is used to analyze projects with
thousands of revisions and thousands of files in each revision.
This demonstrates that the core of TEDMA is ready for
the analysis of real software to extract metrics over their
evolution. The next planned integration is with SonarQube to
take advantage of the great number of metrics that this tool can
obtain. Additionally, SonarQube is widely used in software
development industry, so this integration will help to use
TEDMA in any development environment where SonarQube
is currently been used.

Summing up, in the next months it is planned to extend
TEDMA to implement all the modules described in Figure 4.
The next specific features that will be included in TEDMA
are: i) support for SVN source code repository; ii) integration
with SonarQube; iii) full integration of R; iv) visualization



service; and v) report service. When all these features are
implemented TEDMA will be released. At that point TEDMA
will provide software development organizations with a high
value by allowing them to use already implemented TDM
models and by allowing them to implement their own models.
The goal is to have a tool that can be used to generate reports
and dashboards without a deeper knowledge of how TEDMA
is working internally.

III. RELATED WORK

To the knowledge of the authors there is not other tool
with the goal of integration of TDM tools. The available tools
are focused on implementing metrics, specific techniques for
TDM, or both of them. Techniques and tools for TD have been
analyzed in literature reviews previously [4], [1], [3]. The goal
of this tools is not to be a quality tool that implements metrics
to keep the code quality. TEDMA pursues to manage TD by
integrating other available tools that implements those metrics
or TD approaches.

One of the most used tool to analyze code is Sonar-
Qube [17]. This tool integrates many code metrics and is
widely used in software projects. It is based on the static
analysis of source code. The goal of the tool presented in
this paper is to analyze the evolution of code, and to compare
different techniques to analyze software. Therefore, one future
work will include the integration with SonarQube to use it as
another source of metrics for TEDMA. Other tool, Titan [18],
which provides mechanisms to estimate TD and that also
provides a framework to make decisions based on these
estimations, could be also integrated into TEDMA. Titan [18]
is mainly focused on the analysis of modularity violations,
similar to Clio [19], and a model for TDM. As the goal of
TEDMA is to integrate both metrics and management models,
the integration of a tool as Titan could be a good example
of the capabilities of TEDMA. Similar tools that could be
integrated in the future within TEDMA are Structure101 [20],
Sonargraph [21], Lattix [22], and Arcan [23].

IV. CONCLUSIONS

This paper presents TEDMA. TEDMA is a tool to ana-
lyze software projects with a perspective of evolution. It is
thought to work with projects with thousands of revisions and
thousands of files per revision. To do that, it supports the
integration of third party tools for TDM in order to use them
in the analysis of the evolution of TD of software. It can be
extended to include additional tools or to implement specific
metrics. With these capabilities, TEDMA is a useful tool
for researching using empirical data extracted from software
projects. Currently, it is been used to analyze large projects in
the execution of several case studies.

TEDMA provides a way to experiment with different met-
rics required for TDM. TEDMA helps to analyze how these
different techniques work in specific projects. This is important
for software developers because it allows them to choose, from
all the available tools that calculate metrics for TDM, those
that are the most useful for their projects.

Using TEDMA, organizations will be able to manage the
TD of their projects by selecting the tools and indicators that
are the most important for them.

ACKNOWLEDGMENT

This work was partially sponsored by MESC DPI2013-
47450-C2-2-R (Spain) and by CrowdSaving TIN2016-79726-
C2-1-R (Spain).

REFERENCES

[1] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” J. Syst. Softw., vol. 101, no. C,
pp. 193–220, Mar. 2015.

[2] D. Falessi, M. Shaw, F. Shull, K. Mullen, and M. Keymind, “Practical
considerations, challenges, and requirements of tool-support for manag-
ing technical debt,” in International Workshop on Managing Technical
Debt (MTD), 2013.

[3] C. Fernández-Sánchez, J. Garbajosa, A. Yagüe, and J. Perez, “Identifi-
cation and analysis of the elements required to manage technical debt
by means of a systematic mapping study,” J. Syst. Softw., vol. 124, pp.
22 – 38, 2017.

[4] C. Fernández-Sánchez, J. Garbajosa, C. Vidal, and A. Yagüe, “An
analysis of techniques and methods for technical debt management: a
reflection from the architecture perspective,” in SAM 2015, 2015.

[5] N. S. Alves, T. S. Mendes, M. G. de Mendona, R. O. Spnola, F. Shull,
and C. Seaman, “Identification and management of technical debt:
A systematic mapping study,” Information and Software Technology,
vol. 70, pp. 100 – 121, 2016.

[6] F. A. Fontana, R. Roveda, and M. Zanoni, “Technical debt indexes
provided by tools: A preliminary discussion,” in 2016 IEEE 8th In-
ternational Workshop on Managing Technical Debt (MTD), 2016.

[7] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and
F. Shull, “Comparing four approaches for technical debt identification,”
Software Quality Journal, vol. 22, no. 3, pp. 403–426, 2014.

[8] F. Shull, D. Falessi, C. Seaman, M. Diep, and L. Layman, “Technical
debt: Showing the way for better transfer of empirical results,” in
Perspectives on the Future of Software Engineering, J. Münch and
K. Schmid, Eds. Springer Berlin Heidelberg, 2013, pp. 179–190.

[9] Pmd web project. [Online]. Available: https://pmd.github.io/
[10] Git web page. [Online]. Available: https://git-scm.com/
[11] Findbugs project. [Online]. Available: http://findbugs.sourceforge.net/
[12] The r project. [Online]. Available: https://www.r-project.org/
[13] Neo4j web project. [Online]. Available: https://neo4j.com/
[14] Jgit web project. [Online]. Available: https://eclipse.org/jgit/
[15] Renjin web project. [Online]. Available: http://www.renjin.org/
[16] Rserve web project. [Online]. Available: https://rforge.net/Rserve/
[17] Sonarqube web project. [Online]. Available: https://www.sonarqube.org/
[18] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,

and A. Shapochka, “A case study in locating the architectural roots of
technical debt,” in 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, vol. 2, May 2015, pp. 179–188.

[19] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software mod-
ularity violations,” in 2011 33rd International Conference on Software
Engineering (ICSE), May 2011, pp. 411–420.

[20] Structure101 web page. [Online]. Available: http://structure101.com/
[21] Sonargraph web page. [Online]. Available: http://www.hello2morrow.

com/products/sonargraph
[22] Lattix web page. [Online]. Available: http://lattix.com/
[23] F. A. Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic

detection of instability architectural smells,” in IEEE International
Conference on Software Maintenance and Evolution, 2016.


