
Efficient Position Estimation Based
on GPU-Accelerated Content-based

Image Retrieval

Yuta Kusamura1, Toshiyuki Amagasa2, Hiroyuki Kitagawa2

and Yusuke Kozawa3

1Graduate School of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Ibaraki, 305–8573, Japan
2Center for Computational Sciences, University of Tsukuba,
Tsukuba, Ibaraki, 305–8573, Japan
3Artificial Intelligence Research Center, AIST,
Koto-ku, Tokyo, 130–0064, Japan
E-mail: kusamura@kde.cs.tsukuba.ac.jp; amagasa@cs.tsukuba.ac.jp;
kitagawa@cs.tsukuba.ac.jp; yusuke.kozawa@aist.go.jp

Received 13 January 2018; Accepted 20 February 2018;
Publication 25 April 2018

Abstracts

We propose an efficient position estimation method based on GPU-
accelerated content-based image retrieval (CBIR). The idea is to use videos
of first-person vision associated with geographical position information as
the database. When a user sends a current subjective image, the system
estimates the position using CBIR. Since features extracted from images
are in general high-dimensional vectors, thousands of vectors are extracted
even from a single image, resulting in high processing cost. On the other
hand, GPUs (graphics processing unit) have contributed to accelerate various
processing, while they are originally for graphics processing. Therefore,
we utilize GPU to accelerate CBIR with appropriate data structures and
algorithms. Moreover, our proposed method considers spatial locality of
pedestrians in position estimation applications in order to improve accuracy.

Journal of Mobile Multimedia, Vol. 14 2, 197–230.
doi: 10.13052/jmm1550-4646.1423
c© 2018 River Publishers

198 Y. Kusamura et al.

We demonstrate the efficiency and accuracy of the proposed method through
experiments using a video dataset.

Keywords: GPU, LSH, SIFT, Content-based Image Retrieval, Position
Estimation.

1 Introduction

Geographical position is commonly used in various applications because
of the popularization of mobile devices, such as smartphones. It is com-
mon to use GPS or radio-wave strength to estimate the position of a
device. However, estimating positions suffers from several problems, such
as high measurement errors in urban areas and unavailability in buildings or
underground.

To tackle these problems, Kameda and Ohta [1] proposed a position
estimation method using content-based image retrieval (CBIR) of first-person
vision images, which are taken by cameras attached on someone’s head or
chest. It can be used especially for supporting visually impaired people,
e.g., indoor-outdoor navigation system [2] or spot reminder system [3]. This
method records the movies of first-person vision with position information in
daily transportation paths. From the movies, an image database is constructed
by extracting each frame with position information. Then, a pedestrian can
get his/her current position by taking an image of first-person vision and
issuing a query with the image as key. The system retrieves from the database
the image which is the most similar to the query in terms of the contents, and
returns the position of the retrieved image as the query result. To improve the
accuracy and the robustness as well, it is important to take multiple videos
with different conditions, e.g., weather, lighting, etc., even on a single route.
Notice that, when considering a real application such as navigational support,
it is necessary to estimate the position of an image as quick as possible, e.g.,
less than one second. Besides, we only need to retrieve for a query image the
best matching image, i.e., top-1 query, and more sophisticated query such as
top-k is not necessary.

In such applications, a large number of images can be extracted from
videos, which need to be stored and maintained by image databases. In
addition, a query processing should be executed quickly so that users can
get their positions in real-time. More precisely, to perform image matching,

Efficient Position Estimation Based on GPU-Accelerated 199

it has become common to use image descriptors, such as SIFT [4], SURF [5],
to represent an image, whereby image matching can be carried out by
matching sets of such descriptors, which is called CBIR (content-based image
retrieval). The problem is that, from each image, hundreds of features can
be extracted, which demand high storage and computational costs. For this
reason, it is a reasonable assumption that there is a server responsible for
maintaining images and processing user queries, and users access the server
via mobile networks.

In the meantime, parallel processing using GPU (graphics processing unit)
has been gaining much attentions to accelerate large scale data processing.
GPU was originally used for graphics processing, and has many processing
cores which allow high parallelism. GPGPU (general-purpose computing on
GPUs) is a technique to use GPUs for general-purpose computation utilizing
these characteristics and has contributed to accelerate processing on many
applications [6].

We propose an efficient position estimation method based on GPU-
accelerated SIFT-based CBIR in this paper. The main ideas are 1) proposing
appropriate data structures and algorithms for GPU computing, 2) compress-
ing feature vectors of images, and 3) utilizing spatial locality of pedestrians.
The process of proposed method can be divided into two phases, namely,
database construction and query processing. Preprocessing is performed for
efficient retrieval in the database construction phase, and the position is
estimated based on the input query in the query processing phase.

We propose an efficient image matching algorithm on GPU, because
appropriate algorithms and implementation are necessary to exploit the par-
allel processing power of GPU. One of the drawbacks of the naive matching
method is low scalability due to the write conflicts among threads.

Also, our proposed method compresses the feature vectors because the
data compression is important for GPU computing: The device memory of
GPU is relatively small compared with main memory, while the data is
necessary to be stored on the device memory. Therefore, it is important to
compress the data loaded on GPU. There are various compression schemes
and their characteristics are different. In particular, LSH (locality sensitive
hashing) [7] is suitable for parallel computing because the calculations are
simple. LSH is a hashing method which converts similar vectors into the
same hash value, which can be used to accelerate similarity searching. For
this reason, we utilized LSH to compress the feature vectors.

200 Y. Kusamura et al.

Our proposed method considers spatial locality of pedestrians to improve
the accuracy of estimation, supposing actual applications. The position
of the pedestrian is continuous because the position estimation may also
be performed continuously. In other words, the position of the pedestrian
can somewhat be estimated in advance, when position estimation is per-
formed continuously. Therefore, we try to improve accuracy by reducing the
candidate to only images around the query position.

In order to evaluate the performance of our proposed method, we con-
ducted experiments over a video dataset. The experiments indicated that it
is possible to estimate pedestrian’s position by consistent high-speed CBIR
for multiple parameters, using LSH and GPU. We also showed that accuracy
of position estimation can be improved using spatial locality while keeping
processing speed. Also, we discuss usefulness of our proposed method for
position estimation applications.

The rest parts of this paper are organized as follows. First, we explain pre-
liminaries in Section 2. Then, we explain our proposed method in Section 3
and Section 4. Sections 3 and 4 focus on acceleration of position estimation
based on CBIR and improvement accuracy using spatial locality, respectively.
We discuss the performance of proposed method through the experiments in
Section 5. Then, we introduce related work in Section 6. Finally, we conclude
this paper in Section 7.

2 Preliminaries

In this section, we explain preliminaries related to this research. Specifi-
cally, Section 2.1 explains the basis of content-based image retrieval, and
Section 2.2 introduces the concept of GPU computing.

2.1 Position Estimation Based on Content-based
Image Retrieval

Content-based image retrieval is to retrieve, for a given query image, similar
images from an image database on the basis of visual contents [8]. As with
Kameda and Ohta [1], we apply CBIR for position estimation applications,
which can be defined as the following system.

Definition 1: As a premise, a set of images with position information, which
could be potentially large, are given, and an image database is constructed
from the images. Given a query image, the system retrieves from the database

Efficient Position Estimation Based on GPU-Accelerated 201

such an image that is the most similar to the query, and outputs its position
information as the result.

To measure the similarity between two images, many CBIR methods use
feature vectors, which represent the features of an image. While various types
of feature vectors such as SURF [5] and AKAZE [9] have been proposed,
we utilize SIFT (scale-invariant feature transform) descriptor [4]. SIFT has
an important property that it is robust against rotation, scale and brightness,
which are desirable for CBIR.

2.1.1 SIFT descriptors
SIFT descriptor [4] is known to be one of the most basic image feature
descriptors. One image is represented by a set of 128-dimensional feature
vectors corresponding to the keypoints in the image. Keypoints are detected
according to the difference in light levels and shades, and the SIFT descriptor
with regard to the keypoint is computed based on the gradients of the image.
The number of keypoints depends on the contents of images: In general,
several hundreds of keypoints are detected, and the same number of feature
vectors are generated.

2.1.2 Content-based image retrieval using SIFT matching
For a set of images, content-based image retrieval (CBIR) is to retrieve
images that are similar to the given query image in terms of the visual con-
tents. CBIR has been well-studied for several decades, and recent advances
have been enabled by the introduction of latest image feature descriptors (as
discussed above). For example, using SIFT descriptors, CBIR can be carried
out as follows. The process is divided into two phases, namely, database
construction phase and query processing phase.

In the database construction phase, the system is given a set of images.
Then the system extracts SIFT descriptors from each image, and stores them
in a database D. This database contains the records of the form (f , id) for
each feature vector of the image, where f and id are a feature vector and the
ID of image from which f is extracted, respectively. Hereafter, we denote by
id(f) the image ID corresponding to feature vector f .

In the query processing phase, the system takes as input a query image,
and outputs the image in the database which is the most similar to the query.
More precisely, the system extracts SIFT vectors from the query image, and
tries to find, for each query vector, the most similar vector from the database.
Having identified those vectors, the system probes the image IDs that are

202 Y. Kusamura et al.

associated to each vector, and conducts a majority vote, which in turn will
be output as the query result. This process is described in Algorithm 1. Note
that dist computes the distance between two vectors and argmax outputs the
index that has the largest population in the array. Note also that, in general
image retrieval, top-k similar images are returned as the results whereas we
only need top-1 result in this work for the purpose of position estimation.

2.1.3 Content-based image retrieval using SIFT matching
with LSH

LSH (locality sensitive hashing) [7] is a class of hashing methods where two
vectors are mapped to the same hash bucket with high probability if they are
similar. It has been used for various purposes, such as data compression and
feature matching [10].

LSH converts a vector into a hash value by a hash function H (), which
is computed by k different hash functions hi () (0 ≤ i < k). Specifically, a
d-dimensional vector v is converted into a hash value v′ as follows:

v′ = H (v) = (h0(v), h1(v), . . . , hk−1(v)). (1)

Notice that the hash functions hi () (0 ≤ i < k) are generated probabilis-
tically, and the method to generate them depends on the distance criterion
of the vector space. There have been several hashing functions for different
distance criteria, such as lp norm and cosine similarity [11].

Algorithm 1 CBIR using SIFT descriptors.
Input: Q,D, num images (= # of images in the image database)
Output: result id
1: freq [num images] // init with 0
2: for i = 0 : Q.size− 1 do
3: min id = −1
4: min dist = DOUBLE MAX
5: for j = 0 : D.size − 1 do
6: dist = dist(qi,fj)
7: if dist < min dist then
8: min id = id(fj)
9: min dist = dist
10: end if
11: end for
12: freq [min id] + +
13: end for
14: result id = argmax(freq)

Efficient Position Estimation Based on GPU-Accelerated 203

We utilize l2 norm-based LSH [12], because the l2 norm is considered
to be the standard distance criterion for SIFT feature vectors. A hash value
is calculated using three variables a, W and b: a is a d-dimensional vector
whose elements are selected at random from Gaussian distribution; W is a
predetermined positive real number; and b is also a real number selected from
the uniform distribution of half-open interval [0,W). The hash function hi ()
is defined as follows:

hi(v) =

⌊
a · v + b

W

⌋
. (2)

Intuitively, the original vector space is divided into some randomly generated
non-overlapping partitions, and the vectors belonging to the same partition
are given the same hash value. W determines the width of subspace as a
parameter. W is to control the size of partitions and the size of has vectors
as well, resulting in different sensitivity that the hash values for two vectors
coincide with each other.

A typical usecase of LSH is to substitute it for similarity search over
vectors; i.e., instead of performing pair-wise vector comparison, we can just
retrieve such vectors that are in the same hash bucket. To leverage LSH in
SIFT matching-based CBIR (Section 2.1.2), we need to slightly modify the
procedure of above mentioned CBIR as follows.

In the database construction phase, after extracting SIFT features from
images, we convert the feature vectors in the tuples into hash values by
applying LSH, i.e., f ′

i = H (fi) for the tuple of (fi, id). After that, the pairs
of hash value and the associated image ID are stored in database D′, using a
data structure like dictionary, whereby a set of image IDs are retrieved quickly
for a given hash value.

In the query processing phase, similar to the database construction phase,
for a given query image, the SIFT features q ∈ Q are extracted and are
converted to a set of hash values q′ ∈ Q′ using the same LSH function. After
that, for each q′ ∈ Q′, the system retrieves the associated image IDs in D′,
and hash values f ′ (q′ = f ′) in D′, and obtains the associate image IDs
id(f ′). Finally, a majority vote is conducted by counting the frequency of
IDs, and returns the ID which appears the most as the result.

2.2 GPU Computing

GPGPU (general-purpose computing on GPUs) is a technique to use GPU
(graphics processing unit) for general-purpose computation rather than

204 Y. Kusamura et al.

graphics processing. Although GPUs are originally developed for graphics
processing, they have many processing cores, thereby allowing highly par-
allel computation. For this reason, GPGPU has contributed to accelerate
processing in many applications [6]. NVIDIA’s GPUs and their parallel
computing platform CUDAa is one of the most widely used platform, and
we exploit them in this work.

One of the key issues of GPU computing is that programming style is
quite different from the one for ordinary CPUs due to the difference in the
processor architecture, and inappropriate implementations easily deteriorate
the performance. For this reason, choosing appropriate algorithms and data
structures for GPU is important to harness the power of GPUs.

GPUs have hierarchically organized processors and memory architecture.
A GPU has several streaming multiprocessors (SMs), which share L2 cache,
and an SM is composed of hundreds of CUDA cores, which is the smallest
processor in the architecture. In Tesla K40, there are 15 SMs, and each SM
comprises 192 CUDA cores, which results in 2,880 CUDA cores in total.
Regarding the memory architecture, global memory is the largest on GPU,
whose size is around 10 GBs. Shared memory is available in each SM that
the CUDA cores within the SM can share it, and the size is 16 KB to 96 KB,
depending on specific GPUs. Besides, registers are available in each CUDA
core. In terms of access latency, registers are the fastest, followed by shared
memory and global memory. In terms of size, global memory is the largest,
followed by shared memory and registers.

The processing model of GPU is also hierarchical. It consists of thread,
block, and grid. Threads are minimum processing units in GPUs, which
are processed by CUDA cores. Multiple threads are dealt with together; the
processing units are called blocks. Threads in the same block are processed
by an SM, and the resource of the SM is shared. Multiple blocks are grouped
into a grid, which is the maximum processing unit in GPU.

In CUDA environment, exploiting SIMD (single instruction, multiple
data) is important to efficiently perform parallel computing, and there are
several well-known data-parallel primitives. These primitives can be com-
puted efficiently in parallel, because they are frequently used and, therefore,
efficiently implemented as a libraryb.

aParallel Programming and Computing Platform | CUDA | NVIDIA www.nvidia.com/cuda
bCUDA Toolkit Documentation http://docs.nvidia.com/cuda/

Efficient Position Estimation Based on GPU-Accelerated 205

• reduce:
Returns a scalar value a0 ⊕ a1 ⊕ . . . ⊕ an−1 for the input of an array
[a0, a1, . . . , an−1] and operator ⊕.

• scan:
Returns an array [0, a0, a0 ⊕ a1, . . . , a0 ⊕ a1 ⊕ . . .⊕ an−2] for the input
of an array [a0, a1, . . . , an−1] and operator ⊕.

• sort:
Sorts the input array [a0, a1, . . . , an−1].

3 GPU-based Acceleration of CBIR using LSH

We explain in this section the detail of acceleration of CBIR. Our proposed
method takes as input a query image and an image database with position
information and outputs the position where the query image is supposed to
be taken. To obtain the result position, we utilize CBIR. More precisely, we
first perform an ordinary CBIR, and get the most similar image against the
query. Then we extract the position information associated to the query result.
Indeed, the most time-consuming part is the image retrieval part. For this
reason, we propose an efficient algorithm of LSH-based CBIR (Section 2.1.3)
using GPU.

The process can be divided into two phases, database construction and
query processing as in ordinary LSH-based CBIR. Notice that our main target
is query processing phase rather than database construction phase, because
the latter is an offline process, which can be executed in advance. For this
reason, for the database construction, we concentrate on explaining the in-
memory data structure for GPUs, while parallel query execution will be
explained for the query processing.

The technical challenge is how to maximize parallelism among threads by
avoiding read/write contentions. This is because the performance bottleneck
lies on the process of aggregating results from thousands of threads. If
we implement it naively, the performance degrades easily because of the
contentions. To this end, we have carefully designed the data structures and
the algorithm.

3.1 Database Construction

In the database construction phase, the system extracts the features from
given images and compresses them to hash values using LSH. We then store
the hash values using three distinct arrays, which are suitable for parallel

206 Y. Kusamura et al.

processing on GPUs, and send them to the global memory on a GPU.
Concretely, database D′ is created as explained in Section 2.1.3. From D′,
the system generates the following three arrays, and transmits them to the
GPU’s global memory.

• f val :
An array that stores all hash values f ′ in D′, which is sorted according to
the ascending order of the values. Storing hash values f val in ascending
order enables binary search.

• id val :
An array that stores all image IDs associated with f ′ in line with
the order of hash values in f val . Notice that one hash value may be
associated to two or more image IDs.

• id ptr :
An array that represents the correspondence between f val and id val .
Concretely, id ptr [i] is an offset of id val from the initial record.

This process is described in Algorithm 2 and Figure 1 illustrates an example
of the data structure. We will explain the query processing phase according
to the example.

3.2 Query Processing

In the query processing phase, the system retrieves such an image from the
database that matches the best with the query image in terms of the feature
vectors. The proposed method firstly extracts a bag of feature vectors Q from
the query image by CPU, and transmits the vectors to the GPU’s global
memory. The rest of the process is performed in the GPU. To the vector

Algorithm 2 Array construction based on D′.
Input: D′, where (f ′

i , idi) ∈ D′, idij ∈ idi
Output: f val , id val ,id ptr
1: Sort D′ in ascending order of f ′

i .
2: offset = 0
3: id ptr [0] = 0
4: for i = 0 : rows of (D′)− 1 do
5: f val [i] = f ′

i

6: for j = 0 : size of (idi)− 1 do
7: id val [offset ++] = idij
8: end for
9: id ptr [i + 1] = offset
10: end for

Efficient Position Estimation Based on GPU-Accelerated 207

Figure 1 Array construction based on D′.

Q, our method applies LSH in parallel for yielding hash values Q′. After
that, GPU matches the hash values of the query and those in the database in
parallel. Finally, the query result is determined by aggregating the matching
result. The detail will be explained below.

3.2.1 Compressing feature vectors
In this step, we assume that feature vectors are already extracted from the
query image and transmitted to the GPU’s global memory. To these vectors,
we apply LSH to obtain hash values.

Each feature vector qi ∈ Q is 128-dimensional vector, and hundreds to
thousands of features are extracted from an image depending on the contents.
Computations of compression for multiple feature vectors are independent
and therefore can be processed in parallel. Regarding the conversion of each
feature vector qi, predefined number of hash functions hj(qi) (explained in
Section 2.1.3) need to be applied, and the hash functions can be independently
applied to the elements of a feature vector. Thus the conversion of a feature
can be also processed in parallel. In summary, the conversions of each feature
vector qi are processed in block parallel, and the computations of the hash
value hj(qi) are processed in thread parallel. This algorithm is described in
Algorithm 3.

Algorithm 3 Compressing feature vectors of the query.
Input: Q, where qij ∈ Q
Output: Q′, where q′ij ∈ Q′

1: for i = 0 : Q.size()− 1 do in block parallel
2: for j = 0 : k − 1 do in thread parallel
3: q′ij = hk(qij)
4: end for
5: end for

208 Y. Kusamura et al.

3.2.2 Matching process
This step matches hash values for identifying the most similar image. The
system retrieves the hash values from f val which are exactly the same
with one of the hash values extracted from the query image. It then extracts
the image IDs corresponding to the retrieved hash values using id val and
id ptr . Afterwards, the most frequently appearing image ID is identified.

If we implement it naively, one of the easiest ways is to use binary
searching to find the hash value, probe the associated image IDs, and use
atomicAdd to count the occurrences of image IDs. The atomicAdd function
is an atomic addition operation on two numbers on global memory or shared
memory provided by CUDA. It enables multiple threads to concurrently
update the same data by avoiding write contentions. By using atomicAdd,
the naive matching process becomes as follows: We create a counter on global
memory or shared memory for each image ID, and, as soon as an image ID
is detected, we count up the corresponding counter by one using atomicAdd.
However, this suffers from performance degradation for three reasons: 1) the
large access latency to global memory, 2) poor scale up performane due to the
global locking incurred by atomicAdd, and 3) not enough capacity of shared
memory for large scale databases.

Thus, we propose an efficient matching method using multiple arrays,
without atomicAdd. The process is divided into two steps, namely, obtaining
matched list and detecting the most frequent ID.

3.2.2.1 Obtaining matched list
This step generates a matched image ID list (matched list) M for the query
by using Algorithm 4. The matched list M contains all image IDs that match
with the hash values being processed. This can be done by copying the partial
array of id val that corresponds to the hash value. In order to efficiently
parallelize this by blocks in GPU, we compute 1) the beginning position of
the source, 2) the copy size, and 3) the beginning position of destination for
each block in advance, thereby avoiding using expensive operations, such as
atomicAdd. For storing the computed values, we introduce arrays F , N and
T . M can be generated efficiently using these arrays. We explain the details
of the generating process of M in the following.

To construct F ,N and T , first, the system retrieves the hash values
in f val which are matched to one of the hash values of the query by
binary searching, and gets the matched index of f val as index (line 2 in
Algorithm 4). If the matching fails, the value of index is −1. Second, F

Efficient Position Estimation Based on GPU-Accelerated 209

Algorithm 4 Obtaining matched list.
Input: Q ′, f val , id ptr , id val
Output: M
1: for i = 0 : Q ′.size()− 1 do in thread parallel
2: index = binary search(q ′

i , f val)
3: if index == −1 then
4: F [i] = −1
5: else
6: F [i] = id ptr [index]
7: end if
8: if index == −1 then
9: N [i] = 0
10: else
11: N [i] = id ptr [index + 1]− id ptr [index]
12: end if
13: end for
14: T = scan(N)
15: for i = 0 : Q ′.size()− 1 do in block parallel
16: for j = 0 : N [i]− 1 do in thread parallel
17: M [T [i] + j] = id val [F [i] + j]
18: end for
19: end for

is generated by copying the value of id ptr [index] (line 3–7). Third, N is
generated by calculating the difference between the value of id ptr [index]
and id ptr [index + 1] (line 8–12). These computations are processed in
thread parallel for each hash value of the query. Finally, T is generated by
applying scan to N (line 14). Figure 2 illustrates an example of this process.

M can be created based on these arrays F ,N and T . Concretely, the
elements of M are computed as follows:

M [F [i] : F [i] + N [i]− 1] = id val [T [i] : T [i] + N [i]− 1]. (3)

This part is described in lines 15–19 in the algorithm, and Figure 3 shows an
example.

In terms of the process model, this is processed by assigning a block for
a matched hash value and by assigning threads for distinct image IDs. Notice
that no write conflict happens in this algorithm because write addresses are
predetermined and different threads write different addresses. Consequently,
it can be executed efficiently in parallel.

210 Y. Kusamura et al.

Figure 2 Generating F, N, T.

Figure 3 Copying matched IDs using F, N, T.

3.2.2.2 Detecting the most frequent ID
Having generated matched list M , this step finds the most frequently
appeared image ID (most frequent ID). This can be simply computed by
sorting the matched ID list and counting the lengths of contiguous runs of
the same elements. Here, we define borders and sections. In a sorted list, a
border refers to a position where the adjacent elements store different values
and a section refers to a sublist between two consecutive borders.

The algorithm for detecting ID is shown in Algorithm 5 and an example is
shown in Figure 4. Firstly, M is sorted, and M ′ refers to the sorted list (line 1).
Secondly, the borders are detected by comparing adjacent elements in M ′
and the results are stored in an array B where a border is represented as “1”
(line 2–5). Thirdly, section numbers are detected by applying scan primitive
to B , and the results are stored in an array I (line 6). After that, for each
border, the position is obtained and stored in an array O . Now, I keeps the
positions where the results of image IDs should be stored (line 7–11), and O
describes the offsets to end position of each section. Subsequently, the system
can obtain the size for each section by comparing adjective elements in O

Efficient Position Estimation Based on GPU-Accelerated 211

Figure 4 Detecting frequency of the image IDs using matching list.

Algorithm 5 Detecting frequency of the image IDs using matching list.
Input: M
Output: id
1: M ′=sort(M)
2: for i = 0 : M ′.size()− 2 do in thread parallel
3: B [i] = M ′[i] ! = M ′[i+ 1]
4: end for
5: B [M ′.size()− 1] = 1
6: I = scan(B)
7: for i = 0 : B .size()− 1 do in thread parallel
8: if B [i] == 1 then
9: O [I [i]] = i
10: end if
11: end for
12: S [0] = O [0] + 1
13: for i = 1 : O .size()− 1 do in thread parallel
14: S [i] = O [i]−O [i− 1]
15: end for
16: r = reduce with index(S)
17: id = M ′[O [r]]

(line 12–15). Since each calculation is independent with respect to image
ID, these calculations can be parallelized by threads. The sort and scan

primitives are available in library, so these process are efficiently executed in
parallel on GPU.

The result can be detected by finding the section whose length is the
longest, followed by finding the corresponding image ID. The system obtains
such a section number using reduce_with_index and define it as r
(line 16). Although reduce_with_index is a function, similar to reduce,
which returns the position obtained the result of standard reduce. Since this

212 Y. Kusamura et al.

function is not in library for GPU, we implemented it by slightly modifying
an existing reduce implementation. After that, the image ID associated to the
section r can be determined by M ′ and O (line 17), and this image ID is the
result.

4 Accuracy Improvement Considering Spatial Locality

We try to improve accuracy considering spatial locality of pedestrians, based
on the method explained in Section 3. Query images are assumed to contin-
uously be input in pedestrian’s position estimation applications. The interval
of query image inputs is very short because the position estimations are
performed in real time. For this reason, the positions where two consecutive
query images are taken are supposed to be very closed. We define this
property as spatial locality, and we propose the method leveraging it for
improving accuracy. Our method assumes that the position information is
associated with a query image. The latest estimated position can be used for it
because query images are assumed to continuously be input, as we explained
above.

The system detects images which are taken near the position of query
image using R-tree [13] as described in Figure 5 (define these images as
neighbors), and targets neighbors as candidates of CBIR. R-tree is one of
the spatial index, which supports range query searching for a given point.
The R-tree construction is performed in database construction phase, and
the neighbors detection and candidate reduction are performed in query
processing.

.

Figure 5 Detecting neighbors using R-tree.

Efficient Position Estimation Based on GPU-Accelerated 213

4.1 Database Construction

R-tree against positions is constructed in database construction phase of
proposed method. The data points of R-tree are position information cor-
responding to the each image in the image database, and the labels are the
image ID. The longitude-latitude space of positions is set as R-tree’s 2-
dimensional space. While several errors occur because the earth is a sphere, it
is acceptable because we suppose position estimation to be performed in short
distance.

4.2 Query Processing

Given a query, the system detects the neighbors using R-tree, and retrieves the
similar image using CBIR with targeting only neighbors. In order to perform
query processing on GPU efficiently, we extend the method explained in
Section 3 to select the candidate based on neighbors. Concretely, the image
IDs which are not included in neighbors are converted into “NA” (=INT_MAX)
at the time of generating matched list, and NA is not counted in the detecting
the most frequent ID process. The algorithm of detection process can be
described in Algorithm 6. The extended parts from the original algorithm
are the processes of line 2, 5–7 and 10, which reduce the NA from M ′ and B
using last, which describes the border position between NA and real image
IDs. The lines 5–7 detect last, which detects the border whose right element
is NA as last. Then the section of NA in M ′ and B is resized using last in
the process of line 10. After that, the most frequent ID can be detected in the
same procedure of original algorithm. Figure 6 is an example of the detection
process.

Figure 6 An example of detecting most frequent ID excluding NA.

214 Y. Kusamura et al.

Algorithm 6 Detecting most frequent ID excluding NA.
Input: M
Output: id
1: M ′=sort(M)
2: last = M ′.size()− 1
3: for i = 0 : M ′.size()− 2 do in thread parallel
4: B [i] = M ′[i] ! = M ′[i+ 1]
5: if B [i] == 1 && M ′[i+ 1] == NA then
6: last = i
7: end if
8: end for
9: B [M ′.size()− 1] = 1
10: Reduce the size of M ′ and B to last + 1
11: I = scan(B)
12: for i = 0 : B .size()− 1 do in thread parallel
13: if B [i] == 1 then
14: O [I [i]] = i
15: end if
16: end for
17: S [0] = O [0] + 1
18: for i = 1 : O .size()− 1 do in thread parallel
19: S [i] = O [i]−O [i− 1]
20: end for
21: r = reduce with index(S)
22: id = M ′[O [r]]

5 Experiments

We conducted experiments in order to verify the performance of proposed
method.

5.1 Dataset

In the experiments, we used an original video dataset with GPS information.
This dataset consists of two videos, which are taken in the almost same time.
They ware taken by walking in the University of Tsukuba with putting a video
camera on the front of chest. We used OLYMPUS STYLUS TG-Trackerc as
the video camera, which can record GPS information every two seconds.

The two videos ware taken on the almost same route and the time, for
the reason that the position estimation applications are performed in such

cSTYLUS TG-Tracker | T (Tough) Series | Olympus http://asia.olympus-imaging.

com/product/compact/tgtracker/index.html

Efficient Position Estimation Based on GPU-Accelerated 215

situations. One consists of 26,401 frames, and the other consists of 25,980
frames. The experiments used the former for a database and the latter for a
query set.

There are the frames without GPS information because the camera can
record the information only every two seconds. For this reason, we comple-
mented GPS information by linear complement for every frame. It should
be noticed that the positions are described as longitude and latitude because
of GPS information. In experiments, we calculated the distance between two
points in order to verify the performance. To calculate the distance, we used
Hubeny’s formulad, which can calculate the distance with low-error, if the
distance is relatively short.

5.2 Experimental Environment

We used a PC running CentOS release 6.7 (final) having two Intel Xeon Pro-
cessor E5-2687W v2 CPUs and 128 GB main memory. The CPUs have eight
cores and the clock frequency is 3.4 GHz. Also the machine has NVIDIA
Tesla K40 GPU, which has 2,880 cores and 12 GB device memory. The clock
frequency of the GPU cores is 745 MHz.

The programs were written in C++ and CUDA, compiled by nvcc 8.0 with
optimization option -O3. We used OpenMPeand OpenCVf for parallelization
on CPU and extraction of SIFT feature vectors, respectively.

5.3 Comparative Methods

To evaluate the performance of our proposed method, we implemented six
comparative methods including our proposed method as follows:

• Raw-SIFT-based method (RS):
The CBIR method described in Section 2.1.2. This program is run in
parallel (32 threads) on CPU.

• LSH-based method @ CPU (LC):
The CBIR method described in Section 2.1.3. The program is run in both
of serial and parallel (32 threads) on CPU.

• LSH-based method @ GPU with atomicAdd (LG with Atomic):
The CBIR method described in Section 3, which is a simple method on

dKashmir / Calculation Formula http://www.kashmir3d.com/kash/manual-e/std_

siki.htm
eOpenMP www.openmp.org/
f OpenCV | OpenCV opencv.org

216 Y. Kusamura et al.

GPU using atmicAdd. The program is run in parallel on GPU and the
hash function is l2 norm-based.

• LSH-based method @ GPU (LG):
The CBIR method described in Section 3, which avoids conflicts of
threads.

• LSH-based method @ CPU with spatial locality (LC with SL):
The CBIR method extended for spatial locality from LC.

• LSH-based method @ GPU with spatial locality (LG with SL):
The CBIR method extended for spatial locality from LG.

5.4 Experimental Methodology

We conducted four experiments and the experimental methodologies are
shown in this section.

5.4.1 Experiment 1
In order to evaluate processing time, we measured the average time of
retrieving multiple queries from the database. The comparative methods are
all methods except spatial locality-aware methods: RS, LC, LG with Atomic
and LG. The queries are 100 images randomly selected from the query set.

5.4.2 Experiment 2
We evaluate the accuracy of estimation through experiment 2, while it is
supposed that the accuracy of LSH-based methods decreases because of the
data compression. The evaluation is performed using position information
considering the real position estimation applications. We define success or
failure of an estimation according to the distance between the position of a
query image and the estimated position. If the distance is less than 15 m,
the estimation is regarded success; otherwise, it is failure. We examine the
success rates (i.e., the fraction of successful estimations) as the accuracy
measure. The comparative methods are LG and RS, which are LSH-based
method and not, respectively. Note that, the results of LC, LG with Atomic
and LG are all same.

5.4.3 Experiment 3
In order to evaluate the performance of spatial locality-aware methods, we
examined the results against continuous queries. The evaluation was based
on Kameda and Ohta’s [1] evaluation. The comparative methods are LG and
LG with SL. To consider spatial locality, the position information of latest

Efficient Position Estimation Based on GPU-Accelerated 217

query result is given with the next query. We compared the path distance—
distance between certain position and the start position of the route—of both
query position and estimated position.

We need to give the search radii of R-tree used for detecting neighbors as a
parameter. Multiple search radius are tested in order to verify the performance
against parameters. Also, we examined the performance against non-spatial
locality-aware method in same settings. Note that, the parameters of LSH are
k = 64 and W = 900.

5.4.4 Experiment 4
We investigated the processing time of spatial locality-aware methods
because the algorithms are extended from the original methods to apply
spatial locality. The comparative methods are LC Parallel, LG, LC Parallel
with SL and LG with SL. We set the parameters of LSH k = 64 and W = 900
and the search radius 0.001. The other evaluation settings and methodologies
are same as experiment 1.

5.5 Results

We show the experimental results in this section.

5.5.1 Experiment 1
Figures 7–9 describe the result of experiment 1. Each figure describes the
result for each parameter k, whose horizontal axis is parameter W and
vertical axis is processing speed in log scale. In order to analysis the result, we
examine the average number of matched IDs (same as the length of matched
list) and describe it in the Table 1.

We will analyze the result through the figures and the table. LG is the
fastest method in the case of k = 16 and k = 32. In particular, the speed
up ratio for k = 16 and W = 900 is largest: The speed of LG is about
95 times faster than LC Serial and about 5 times faster than LC Parallel.
Moreover, the processing time of LG is 10–20 ms in almost all situations,
while the time of LC Serial or LC Parallel are several seconds or several

Table 1 The average number of matched IDs.
W = 300 W = 600 W = 900

k = 16 83,808.3 1,826,044.3 17,906,974.3
k = 32 3,649.8 77,689.2 600,641.2
k = 64 36.7 1,696.4 9,233.2

218 Y. Kusamura et al.

Figure 7 The processing time for k = 16.

Figure 8 The processing time for k = 32.

Figure 9 The processing time for k = 64.

Efficient Position Estimation Based on GPU-Accelerated 219

Figure 10 The legend of Figures 7–9.

hundreds milliseconds. On the other hand, LG is slower than LC Parallel in
some conditions in k = 64. The reason why LG is slower is that the number
of matched IDs is relatively small in such situation. If the number of matched
IDs is small, the performance of GPU is decreased because there are less data
which can be processed in parallel.

5.5.2 Experiment 2
Figure 11 describes the result of experiment 2 as a heat map. This figure
indicates the success rate in each cell, whose horizontal axis is parameter W
and the vertical axis is parameter k. The color density expresses the degree
of success rate: The color is darker if the success rate is higher.

From the figure, we can observe that the parameters affect the success rate.
In particular, the success rate is highest in case of k = 64 and W = 900. The
rates on cells on the diagonal line from upper left to lower right are relatively
high. We can see that from this, an appropriate parameter setting is necessary
because the parameters affects ambiguity of LSH. Note that, the success rate
of RS is 95%.

5.5.3 Experiment 3
Figure 12 is the result against non-spatial locality-aware method and
Figures 13–16 are the results of spatial locality-aware method. The hori-
zontal axis describes the path distance of query position, and the vertical
axis describes the path distance of estimated position. The points in the
figures correspond to queries. If the estimation is performed correctly, the
distance between two path distances is 0. Therefore, speaking intuitively,
the estimation accuracy is high if the graph is similar to y = x. Also, the
mean absolute errors of path distance at estimated position are described in
Table 2.

220 Y. Kusamura et al.

Figure 11 The success rate for each parameters [%].

Table 2 Mean absolute errors of path distance at estimated position [m].

Without spatial locality
Search radius of neighbors

0.0005 0.001 0.0015 0.002
33.3 46.2 11.9 12.4 51.1

We will analyze the result. Comparing the methods which are applied
spatial locality, the accuracy is highest in case of the search radius is
0.001. Comparing the result with the search radius of 0.001 and without
spatial locality, it can be indicated that the former is higher. Therefore,
spatial locality can improve the accuracy with setting appropriate search
radius.

5.5.4 Experiment 4
Figure 17 is the result of experiment 4. The horizontal axis is search method
and vertical axis is processing time. In order to apply spatial locality, it can
be supposed that the processing speed become slow. However, the processing
time of LG and LG with SL are almost same. The reason is that the data size
is decreased due to size reduction of arrays in query processing. On the other
hand, comparing LC Parallel and LC Parallel with SL, the processing time
of LC Parallel with SL is 1.3 times longer than LC Parallel. It can be said
that the processing cost increases by applying spatial locality.

Efficient Position Estimation Based on GPU-Accelerated 221

Figure 12 The path distance without spatial locality.

Figure 13 The path distance in the case of the search radius is = 0.0005.

222 Y. Kusamura et al.

Figure 14 The path distance in the case of the search radius is = 0.001.

Figure 15 The path distance in the case of the search radius is = 0.0015.

Efficient Position Estimation Based on GPU-Accelerated 223

Figure 16 The path distance in the case of the search radius is = 0.002.

5.6 Discussion

We have shown that efficient position estimation based on high-speed CBIR
can be realized by using GPU and LSH. The estimation can be performed
on GPU in about 10–20 milliseconds, while the estimation costs several hun-
dreds of milliseconds. It is demanded that the estimation can be performed
in several tens of milliseconds because the queries are continuously input in
real time position estimation. Therefore, the retrieval using GPU and LSH is
useful from the point of view of processing time.

We proposed the extended method applied spatial locality of pedestrians
because the accuracy of LSH-based methods is lower than a naive method.
Through experiment 3, we demonstrate that spatial locality improves the
accuracy of estimation. Moreover, spatial locality hardly affects the process-
ing time on GPU because the cost of applying spatial locality is small due to
size reduction of arrays in query processing.

For these reasons, our proposed method is useful for position estimation
against raw-SIFT based method or CPU implementations. Raw-SIFT based

224 Y. Kusamura et al.

Figure 17 The processing time for each method including spatial locality-aware method.

method is not able to perform in real time because the processing cost of raw-
SIFT based method is large. On the other hand, our proposed method is faster
than the other methods in most conditions. As for accuracy, LSH decreases
it due to data reduction, but this issue can be overcome by exploiting the
spatial locality. Therefore, our proposed method can estimate the pedestrian’s
position with higher accuracy in real time.

6 Related Work

In this section, we review related research work. Since our research deals with
the problem of position estimation in pedestrians using CBIR, we explain the
ones that deal with position estimation in Section 6.1, followed by the ones
for accelerating CBIR in Section 6.2.

6.1 Position Estimation Using CBIR

Kameda and Ohta [1] proposed a position estimation method using CBIR
of first-person vision mainly for visually impaired people, and our work
is inspired by this work. Although estimated positions can be obtained by
retrieving a query image from video images with geographical locations,
the accuracy might be affected by several reasons. In order to improve

Efficient Position Estimation Based on GPU-Accelerated 225

the accuracy, they proposed seven verification criteria for examining image
matching; candidate images are verified by seven criteria and the ones that
satisfy all of them are regarded as the result. However, this method is too
computationally expensive and cannot be executed in the time of video frame
speed.

Kamasaka et al. [14] proposed an estimation method, which is an
extended version of Kameda and Ohta’s method, for multiple videos that are
recorded in different conditions. According to Kameda and Ohta’s method,
the accuracy can be improved by multiple videos as a database. However,
the accurate position is necessary for every frame in the videos, and the
processing cost is large. The method proposed by Kamasaka et al. integrates
two videos, namely, main video and sub video in preprocessing, and reduce
the processing cost. The main video has position information and the other
has not. The integration can be performed by retrieving images in the sub
video from frames in the main video, and the position information is attached
to the query image according to the result. This can increase the accuracy
with low cost.

6.2 Accelerating CBIR

One of the most famous approaches for CBIR is BoVW (bag-of-visual-
words) framework proposed by Sivic et al. [15]. In this framework feature
vectors are quantized into clusters, and the vectors in the same cluster are
dealt as the same vector. The quantized vectors are called visual words,
whereby CBIR is enabled by matching them between query image and
images being queried. Specifically, standard techniques for information
retrieval (IR), such as inverted index and TF-IDF, are used.

To accelerate this method and related ones as well, there have been several
methods that exploit GPUs. Cevahir et al. [16] proposed a 2-step matching
method on GPU to extract feature vectors efficiently. In the first step, hierar-
chical k-means is applied to feature vectors which in turn are divided in some
clusters. In the query processing, the system retrieves the nearest cluster to
the feature vectors extracted from the query. Then the nearest feature vectors
in the cluster are retrieved, thereby reducing the search space. This process is
executed in parallel using multiple threads.

Data compression of SIFT is important for accelerating due to the fact
that volume significantly increases when dealing with many images. Chan-
drasekhar et al. [17] surveyed SIFT compression schemes. They compared
several schemes by experiments. The schemes are divided into three types,

226 Y. Kusamura et al.

hashing, transform coding, and vector quantization. LSH is one of the hash-
ing methods introduced as a popular hashing technique for high dimensional
descriptors without training.

7 Conclusion

In this paper, we have proposed an efficient position estimation method based
on content-based image retrieval over video images. The main ideas are 1)
proposing appropriate data structures and algorithms for GPU computing, 2)
compressing feature vectors, and 3) utilizing spatial locality of pedestrians.
In order to exploit the parallel processing power of GPU, we proposed appro-
priate data structure and algorithms. Also, the feature vectors are compressed
by using LSH because the compression is important due to the capacity of
GPU. Moreover, we extended the implementation on GPU by applying spatial
locality of pedestrians.

In order to evaluate the performance of our proposed method, we con-
ducted experiments. The experiments indicated that it is possible to estimate
pedestrian’s position by consistent high-speed CBIR for multiple parameter
settings, using LSH and GPU. We also showed that the accuracy of position
estimation can be improved using spatial locality while keeping processing
speed. Then, we discussed usefulness of our proposed method for position
estimation application.

We introduce two problems as future work. One is the performance
evaluation on the multiple videos, which are different in conditions such
as lighting or weather. In position estimation applications, it is assumed
that multiple videos are used, which are different in conditions, in order to
improve the accuracy, while we examined the performance on the only one
video in this paper. Therefore the evaluation is important in the point of view
of practicality. The other is improvement of data structure and compression.
If multiple videos are used, it may suffer from lack of capacity of device
memory. To address this problem, it is necessary to reduce the data size or
reading the data only when needed.

References

[1] Kameda, Y., and Ohta, Y. (2010). Image retrieval of first-person
vision for pedestrian navigation in urban area. In 20th International
Conference on Pattern Recognition (ICPR), pp. 364–367.

Efficient Position Estimation Based on GPU-Accelerated 227

[2] Kurata, T., Kourogi, M., Ishikawa, T., Kameda, Y., Aoki, K., and
Ishikawa, J. (2011). Indoor-outdoor navigation system for visually-
impaired pedestrians: Preliminary evaluation of position measurement
and obstacle display. In 15th Annual International Symposium on
Wearable Computers (ISWC), pp. 123–124.

[3] Takizawa, H., Orita, K., Aoyagi, M., Ezaki, N., and Mizuno, S.
(2017). A Spot Reminder System for the Visually Impaired Based on
a Smartphone Camera. Sensors, 17(2), 291.

[4] Lowe, D. G. (1999). Object recognition from local scale-invariant fea-
tures. In Proceedings of the 7th International Conference on Computer
Vision (ICCV 1999), pp. 1150–1157.

[5] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded
up robust features. In European conference on computer vision,
(pp. 404–417). Springer, Berlin, Heidelberg.

[6] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and
Phillips, J. C. (2008). GPU computing. In Proceedings of the IEEE,
96(5), 879–899.

[7] Indyk, P., and Motwani, R. (1998). Approximate nearest neighbors:
towards removing the curse of dimensionality. In Proceedings of
the Thirtieth Annual ACM Symposium on Theory of Computing,
pp. 604–613.

[8] Baeza-Yates, R., and Ribeiro-Neto, B. (2011). Modern Information
Retrieval: The Concepts and Technology Behind Search, volume 2.
Addison Wesley: Boston.

[9] Alcantarilla, P. F., Nuevo, J., and Bartoli, A. (2013). Fast explicit diffu-
sion for accelerated features in nonlinear scale spaces. In Proceedings
of the British Machine Vision Conference (BMVC 2013), pp. 1–11.

[10] Cheng, J., Leng, C., Wu, J., Cui, H., and Lu, H. (2014). Fast and accurate
image matching with cascade hashing for 3d reconstruction. In 2014
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1–8.

[11] Andoni, A., and Indyk, P. (2008). Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. Commun. ACM,
51(1), 117–122.

[12] Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004).
Locality-sensitive hashing scheme based on p-stable distributions. In
Proceedings of the Twentieth Annual Symposium on Computational
Geometry, pp. 253–262.

228 Y. Kusamura et al.

[13] Guttman, A. (1984). R-trees: A dynamic index structure for spa-
tial searching. In Proceedings of the 1984 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’84, pp. 47–57,
New York, NY, USA.

[14] Kamasaka, K. and Kitahara, I., and Kameda, Y. (2017). Image based
location estimation for walking out of visual impaired person. In Pro-
ceedings of the 14th European Conference on the Advancement of
Assistive Technology, AAATE Conf. 2017, Sheffield, UK, September
12–15, pp. 709–716.

[15] Sivic, J., and Zisserman, A. (2003). Video google: A text retrieval
approach to object matching in videos. In Proceedings of the 9th
IEEE International Conference on Computer Vision (ICCV 2003),
pp. 1470–1477.

[16] Cevahir, A., and Torii, J. (2012). GPU-enabled high performance
online visual search with high accuracy. In 2012 IEEE International
Symposium on Multimedia (ISM), pp. 413–420.

[17] Chandrasekhar, V., et al. (2010). Survey of SIFT compression schemes.
In Proceedings of the International Workshop Mobile Multimedia
Processing, pp. 35–40.

Biographies

Yuta Kusamura received B.Eng. and M.Eng. from University of Tsukuba
in 2016 and 2018, respectively. His research interest covers accelerating
content-based image retrieval using GPU.

Efficient Position Estimation Based on GPU-Accelerated 229

Toshiyuki Amagasa received B.E., M.E., and Ph.D degrees from the Depart-
ment of Computer Science, Gunma University in 1994, 1996, and 1999,
respectively. Currently, he is a professor at the Center for Computational Sci-
ences, University of Tsukuba. His research interests cover database systems,
Web mining, and database application in scientific applications. He is a senior
member of IEICE and IEEE, and a member of IPSJ, DBSJ, and ACM.

Hiroyuki Kitagawa received the B.Sc. degree in physics and the M.Sc. and
Dr.Sc. degrees in computer science, all from the University of Tokyo. He is
currently a full professor at Center for Computational Sciences, University
of Tsukuba. His research interests include databases, data integration, data
mining, stream processing, information retrieval, and scientific databases.
He served as President of DBSJ and Chairperson of ACM SIGMOD Japan
Chapter. He is a Fellow of IPSJ and IEICE, and a member of ACM, IEEE,
and JSSST.

230 Y. Kusamura et al.

Yusuke Kozawa is a postdoctoral researcher at Artificial Intelligence
Research Center, National Institute of Advanced Industrial Science and Tech-
nology (AIST), Japan. He received B.Inf.Sc., M.Eng., and Ph.D. degrees
from University of Tsukuba, Japan, in 2011, 2013, and 2016, respectively.
His research interests include databases, data mining, and parallel computing,
especially GPU computing and its application to data analysis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

