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Artificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve
problems by emulating complex biological processes such as learning, reasoning and self-correction. This
paper presents a comprehensive review of the application of AI techniques for improving performance of
optical communication systems and networks. The use of AI-based techniques is first studied in appli-
cations related to optical transmission, ranging from the characterization and operation of network
components to performance monitoring, mitigation of nonlinearities, and quality of transmission esti-
mation. Then, applications related to optical network control and management are also reviewed, in-
cluding topics like optical network planning and operation in both transport and access networks. Fi-
nally, the paper also presents a summary of opportunities and challenges in optical networking where AI
is expected to play a key role in the near future.
& 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Artificial intelligence (AI) entities and systems have the ability
to perform operations analogous to learning and decision making
by imitating biological processes, with special emphasis on human
cognitive processes. AI applications such as virtual personal-as-
sistants, smart vehicles, purchase prediction, speech recognition or
smart home devices, are almost ubiquitous, and similar AI-based
techniques are already changing our daily lives in ways that im-
prove human productivity, safety or health, affecting even the way
we entertain or communicate.

For the most part, AI does not deliver completely autonomous
systems, but instead adds knowledge and reasoning to existing
applications, databases, and environments, to make them friend-
lier, smarter, and more sensitive to changes in their environments.
Each small breakthrough on AI research enables us to expand our
skills to solve new classes and scales of problems, thereby driving
research and innovation in almost every scientific discipline.

As an example, the improvement of the performance of tele-
communication networks by the application of AI-based techni-
ques has become an area under extensive research over the past
decades, affecting areas of transmission, switching and network
management. Optical communication networks and systems have
B.V. This is an open access article
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not stayed on the sidelines, but have started to adopt this dis-
cipline towards AI-based optical networking, from photonic de-
vices to control and management.

The aim of this paper is to review some of the currently con-
sidered approaches to increase the performance of optical net-
works by the use of AI mechanisms, providing a survey of the
current research within this area, as well as an overview of op-
portunities and challenges arising in this context.

The remainder of this paper is organized as follows. Section 2
provides an introduction to the field of AI. Since that is a very
broad area, we review those AI subfields –and their associated
techniques– which have had or are expected to have, in our opi-
nion, a significant role in optical networking. Then, Sections 3 and
4 analyze the role of AI techniques in optical communication
systems and networks. We first survey the use of AI in optical
transmission (Section 3), and then we focus on networking issues
(Section 4). Finally, in Section 5 we describe further opportunities
and challenges, and we conclude in Section 6.
2. An overview of AI and related techniques

AI focuses on the study of intelligent or rational agents, i.e., entities
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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which perceive and act in an environment with the aim of achieving
their goals or maximizing a performance parameter. Moreover, they
can further improve their performance through learning [1].

In this section, we briefly go through some of the subfields of AI
that have been successfully employed in optical networking,
stating the motivation for their introduction, and providing some
examples of their use in the optical networking literature. Fig. 1
shows a diagram with AI subfields and techniques, and classifies
the references reviewed in this survey within those categories.

The simplest type of networking scenarios that we can think of
are deterministic, observable, static and completely known. For
these scenarios, search algorithms and optimization theory are key
elements of the AI area [1], and thus, they have been extensively
used in optical network design and control for a long time. Ex-
amples include the use of breadth-first-search algorithms for
routing, and linear and mixed-integer linear programming for-
mulations for network planning (e.g., [2,3]). However, when some
of the conditions previously mentioned are relaxed, or when the
network size prohibits the use of the former techniques, those
methods have been complemented or replaced by local search al-
gorithms and metaheuristics like simulated annealing, genetic algo-
rithms, swarm optimization, and teaching-learning based optimi-
zation [4,5]. For instance, optical network planning [6,7] and
lightpath establishment [8,9] have benefited from those techniques.

In many cases, the optical network has a single point of in-
telligence (like a centralized control node), i.e., a single agent.
However, in other cases, different intelligent agents are involved,
so that the actions taken by an agent have an impact on the others.
For those scenarios, game theory may come into play, and propo-
sals in the area of optical networking can be found, e.g., in Ref. [10]
(in the context of hybrid radio-frequency/free space optics net-
works), [11] (in the context of elastic optical networks, EONs), or
[12] (a book completely devoted to the topic).

A stride forward towards making agents more intelligent
comes by incorporating the use of knowledge, reasoning and
planning. In this case, intelligent agents keep a knowledge base
(KB) where relevant knowledge about the environment and about
the impact of their actions is stored. That KB is used by the agents
when devising plans of action on how to succeed on decision-
making, and can be updated in order to adapt to changing con-
ditions. Along this line, holistic frameworks, like cognitive optical
networks, which perceive, act, learn, adapt and optimize their
performance, have been proposed by different researchers [13–18].

Three noteworthy topics when it comes to incorporating in-
telligence to optical systems or networks are how to handle un-
certainty, how to tackle decision-making, and how to learn.

For sure, in an optical network there are non-deterministic events
taking place, and lack of full information about the environment is
not a rare issue. Therefore, intelligent agents must be able to operate
under uncertainty in a robust way. The laws of probability and, in
particular, Bayesian networks are useful tools to build those robust
models (e.g. Ref. [19]). Moreover, optical systems and networks are
subject to constant changes. Hence, intelligent agents must include
inference algorithms for temporal models to perform tasks like fil-
tering, prediction or smoothing, relying on techniques like hidden
Markov models (HMM) [20] and Kalman filters [21,22].

A second key element is the use of decision-making algorithms.
The underlying principle for these algorithms is the maximization of
the expected utility, in which a utility function is defined in order to
assign a single number to express the desirability of a state and an
agent makes decisions with the aim of maximizing such a function
(e.g. Ref. [23]). Realistic networking environments, however, must
deal with uncertainty and the utility of an agent usually depends on a
sequence of decisions rather than on a single isolated one. Decision
making in optical network agents can therefore be modelled as se-
quential decision problems in uncertain environments. These
problems can be solved by Markov decision processes (MDPs) if the
agent's actions depend only on the current state of the agent, and not
on its history. MDPs are defined by a transition model, which spe-
cifies the probabilistic outcomes of actions, and by a reward function,
which specifies the reward in each state. The solution of an MDP is a
policy that associates a decisionwith every state that the agent might
reach. An optimal policy maximizes the utility of the state sequences
encountered when it is executed. The use of MDPs in optical net-
working has been shown in Refs. [24–26].

The third issue of paramount importance is learning. Learning
enables an agent to improve its performance on future tasks due
to acquired experience. The inclusion of learning is important for
several reasons. A learning-capable agent can adapt to changes in
the environment and it is even able to adapt to unforeseen sce-
narios that could not be anticipated when the agent was designed.
Moreover, in many cases, learning from existing data may be the
only way to generate a working model, or in other words, as stated
in Ref. [1], sometimes human programmers (or engineers) have no
idea on how to program a solution themselves. Statistical learning
and machine learning provide the theory and tools to learn from
existing data, which can be gathered in optical communications
systems and networks thanks to monitoring techniques.

Although agents can handle uncertainty by using the methods of
probability and decision theory, they must learn their probabilistic
theories from experience. Thus, bayesian learning methods [27] for-
mulate learning as a form of probabilistic inference, using the ob-
servations to update a prior distribution over hypotheses; maximum
a posteriori (MAP) learning [28] selects a single most likely hypothesis
given the data, and maximum-likelihood learning [29] simply selects
the hypothesis that maximizes the likelihood of the data. These
techniques have been used in optical receivers, e.g., in Refs. [30–32].

Apart from the above mentioned techniques machine learning has
also been widely used. There are three main categories in machine
learning. In supervised learning [1] an agent observes some example
input-output pairs and learns a function that maps from input to
output. Techniques include linear regression, logistic regression, de-
cision trees, artificial neural networks, nearest neighbor models and
support vector machines (SVM) to name just a few. Moreover, dif-
ferent models can be combined in ensemble learning, with the aim
of improving results. Supervised learning has been used, for instance,
for optical performance monitoring [33], to estimate the quality of
transmission (QoT) in optical networks [34–38] and for resource al-
location in data centers [39]. In unsupervised learning [1], an agent
learns patterns from the input even though no explicit output is
supplied. For instance, clustering and principal component analysis
methods, which belong to this type of learning, have been used for
optical performance monitoring, modulation format recognition and
impairment mitigation [40–42]. Finally, in reinforcement learning [43]
an agent learns an optimal (or nearly optimal) policy from a series of
reinforcements (rewards) or punishments received from its interac-
tion with the environment. Some techniques include adaptive dy-
namic programming and temporal-difference (TD) methods.
Q-learning, a well-known technique of the latter type, aims to find an
optimal quality value (Q-Value) of action-selection policy for any
given (finite) Markov decision process [44]. For instance, Q-learning
has been used for path and wavelength selection in the context of
optical burst-switched (OBS) networks [45].
3. Applications of AI in optical transmission

In this section, we describe applications of AI techniques in the
physical layer of optical networks, i.e., in optical transmission-re-
lated issues. AI techniques can help improve the configuration and
operation of network devices, optical performance monitoring,
modulation format recognition, fiber nonlinearities mitigation and
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Table 1
Applications in optical transmission taking advantage of AI techniques.

Applications AI techniques Literature

Transmitters Bayesian filtering and expectation-
maximization

[46]: characterizes laser amplitude and phase noise.

Simulated annealing [47]: determines the optimal settings for optical comb sources for ultradense WDM
passive optical networks.

Machine learning (pattern learning meth-
ods) and genetic algorithms

[48]: self-tuning mechanism for mode-locked fiber lasers.

Optical amplification control Kernelized linear regression [49]: defines regression model to study power excursions in multi-span EDFA
networks.

Linear/logistic regression [50]: uses a ridge regression model to cope with the discrepancy among post-EDFA
channel powers.

Multilayer perceptron neural network [51]: autonomous adjustment of the operating point of amplifiers in an EDFA cascade.
Linear impairments

identification
Kalman filter [21]: carrier phase tracking, polarization tracking, and estimation of the first-order

PMD.
Neural networks [33]: identifies CD, PMD and OSNR provided that bit-rate and modulation format is

known.
Principal component analysis [41]: monitors CD, PMD and OSNR.

OSNR monitoring Deep neural networks (DNN) [52]: uses DNN, trained with asynchronously sampled raw data, for OSNR monitoring.
Neural networks [53]: uses neural networks based nonlinear regression for OSNR estimation.

Modulation format recognition Principal component analysis [41]: identifies modulation formats/bit rates from a known set.
Support vector machines (SVM) [53]: classifies modulation formats using the variance of eye opening width.
Clustering k- means [40]: identifies modulation formats based on the number of levels and clusters in

constellation diagram.
Receivers, nonlinearity

mitigation
Maximum a posteriori [30]: looks for phase estimates feasible to calculate in real-time.

Maximum-likelihood [31]: proposes various equalization schemes for high capacity WDM interconnects.
[54]: Maximum-likelihood detection for phase-modulated systems with linear and
nonlinear phase noise.

Maximum-likelihood and maximum a
posteriori

[32]: proposes various estimators to recover the phase in Offset-QAM-based filterbank
multicarrier systems.

Bayesian filtering and expectation-
maximization

[55]: proposes state-space models for cross-polarization mitigation, carrier synchro-
nization, symbol detection.

Nonlinear support vector machines [56]: SVM is applied to create decision boundaries to avoid errors induced by nonlinear
impairment.

K-nearest neighbors [57]: proposes an algorithm that learns the link properties and generates the nonlinear
decision boundaries for maximizing transmission distance and improving nonlinear
tolerance.

Clustering k-means [42]: proposes a technique to mitigate the effect of time-varying impairments, e.g.,
phase noise.

Nonlinear support vector machines and
Newton method

[58]: uses Newton-method (N-SVM) to reduce inter-subcarrier nonlinear crosstalk
effects.

QoT estimation Case-Based Reasoning (CBR) [34]: presents a QoT estimator to decide whether a lightpath fulfils QoT requirements
or not.

CBR þ learning/forgetting [35]: optimizes previous CBR approach for QoT estimation with learning and forgetting
techniques.

CBR þ learning/forgetting [36]: experimental demonstration of the QoT estimator [35] in a WDM 80 Gb/s PDM-
QPSK testbed.

Random forests classifier [37]: predicts the probability that the BER of a candidate lightpath will not exceed a
given threshold.

Linear regression [38]: uses BER information monitoring and a learning process (based on linear re-
gression) in order to estimate the BER of each new service request.

Support vector machines [59]: proposes a fast and accurate lightpath QoT estimator based on SVM to decide
whether a lightpath fulfils
QoT requirements or not.
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quality of transmission (QoT) estimation. These applications are
summarized in Table 1.

3.1. Characterization and operation of transmitters

AI techniques facilitate statistical modeling of individual optical
components by including the underlying physics. In all these cases
where a deterministic approach results in an impractical compu-
tational load, learning mechanisms are becoming a promising and
accurate performance improvement tool.

With the advent of advanced modulation formats aiming to
increase the spectral efficiency, ranging from 16 quadrature am-
plitude modulation (16 QAM) to 64 QAM and beyond, the need for
robust carrier frequency and phase synchronization becomes
crucial. At this point, a precise characterization of amplitude and
phase noise of lasers is essential. Conventional time-domain
approaches perform coherent detection in combination with di-
gital signal processing (DSP) to cope with this issue [60,61], but as
higher order modulation formats are implemented, the accuracy of
the phase noise estimation is compromised in the presence of
moderate measurement noise. Zibar et al. [46] present a frame-
work of Bayesian filtering in combination with expectation max-
imization (EM) to accurately characterize laser amplitude and
phase noise that outperforms conventional approaches. Results
demonstrate an accurate estimation of the phase noise even in the
presence of large measurement noise.

Additional examples of the use of AI techniques in the opti-
mization of transmitters and lasers include the work by Hragui
et al. [47], who use simulated annealing to determine the optimal
settings in terms of flatness for optical comb sources for ultra-
dense WDM passive optical networks, and the work by Brunton
et al. [48], who jointly use machine learning, genetic algorithms
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and adaptive control techniques to provide a self-tuning me-
chanism for mode-locked fiber lasers.

3.2. Operation of erbium-doped fiber amplifiers (EDFAs)

EDFAs are another optical network component on which AI
techniques have been extensively applied. EDFAs are one of the key
elements of optical transport networks, capable of extending the
reach of the transmitted optical signal by performing amplification of
WDM channels in the optical domain. Machine learning techniques
offer efficient solutions to a wide range of challenges inherent to the
operation of EDFAs within optical fiber transmission.

Specifically, Huang et al. [49] define a regression problem with
supervised machine learning (using a radial basis function) to sta-
tistically model the channel dependence of power excursions in
multi-span EDFA networks, learning from historical data. It provides
the system with accurate recommendations on channel add/drop
strategies to minimize the power disparity among channels. With the
arrival of flex-grid networks, in which dynamic defragmentation is
often applied to reoptimize spectrum assignment to active connec-
tions in order to improve the spectral efficiency, the previous study is
extended in Ref. [50] to cope with the power excursion problem in
dynamically changing spectral configurations. A ridge regression
model is used to determine the magnitude of the impact of a given
sub-channel, and a logistic regression is applied to specify whether
the contribution will result in an increase or decrease in the dis-
crepancy among post-EDFA powers. Additionally, a novel method for
autonomous adjustment of the operating point of amplifiers in an
EDFA cascade by using a multilayer perceptron neural network is
presented in Ref. [51]. The aim of this adjustment is to optimize the
performance of the link by minimizing both the noise figure and the
ripple of the frequency response of the transmission system while
ensuring predefined input and output power levels.

3.3. Performance monitoring

A challenge in network control and management is to adapt to
the time-varying link performance parameters, such as optical
signal to noise ratio (OSNR), nonlinearity factors, chromatic dis-
persion (CD) and polarization mode dispersion (PMD). This sub-
section analyzes the suitability of the application of AI techniques
in monitoring some of the aforementioned factors.

The estimation and acquisition of physical parameters of
transmitted optical signals allow network-diagnosis in order to
take actions (repairing damages, driving compensators/equalizers
or rerouting traffic around non-optimal links) against malfunc-
tions [62]. As an example, Wu et al. [33] present an extensive study
of the application of artificial neural networks in optical perfor-
mance monitoring (OPM), which includes the simultaneous
identification of accumulated nonlinearity, OSNR, CD and PMD,
from eye-diagram and eye-histogram parameters, while Szafraniec
et al. [21] propose Kalman filter as an estimator for carrier phase
tracking, polarization tracking, and estimation of the first-order
PMD. However, techniques applied in Ref. [33] and similar ones
[63,64] require prior knowledge about the type of signal (bit-rate
and modulation format), or additional cross-layer communication
is required at the intermediate nodes to acquire this information
from the upper-layer protocols, which would result in a significant
increase in node complexity. In this context, a novel technique for
simultaneous linear impairments identification (OSNR, CD and
PMD) that is independent from bitrate and modulation format,
provided that this information belongs to a known set, is proposed
in Ref. [41]. The study is performed using principal component
analysis-based pattern recognition on asynchronous delay-tap
plots and it yields accurate results in the simultaneous monitoring
of linear impairments.
Another recent work facing the limited scalability of the studies
previously mentioned, which are based on the prior knowledge of
a determined set of signals is presented in Ref. [52], where a deep
neural network (DNN), trained with raw data asynchronously
sampled by a coherent receiver is proposed for OSNR monitoring.
Results show that OSNR is accurately estimated. Yet, this DNN
needs to be configured with at least 5 layers and needs to be
trained with 400,000 samples to achieve accurate results, requir-
ing long training time. Alternately, Thrane et al. [53] propose an
OSNR estimator and a modulation format classifier for systems
employing advanced modulation formats (up to 64 QAM) and
direct detection. The OSNR estimator employs a neural network,
while the modulation format classifier uses a support vector ma-
chine (SVM), both in order to learn a continuous mapping function
between input features extracted from the power eye-diagram
after the photodetector and the reference OSNR and modulation
format, respectively. Although accurate results are obtained for
OSNR estimation and modulation format classification, the study
only considers white Gaussian noise, while ignoring for the mo-
ment linear and nonlinear optical fiber impairments.

3.4. Receivers and mitigation of nonlinearities

Currently, the information capacity of fiber optic systems is
limited by nonlinear effects of the optical fiber. Extensive research
effort has attempted to address mitigation of nonlinearities on the
transmission over optical fiber. Among these nonlinearities, non-
linear phase noise (NLPN) is one of the prominent factors. So far
this issue has been treated with electronic methods relying on the
deterministic information of the fixed fiber link, like maximum
likelihood estimation [54], digital back propagation [65] and sto-
chastic digital back propagation [66], which may be computa-
tionally too heavy for practical implementation.

Currently, machine learning techniques are being incorporated
to digital signal processing to mitigate nonlinearities in a more
efficient way, allowing more accurate symbol detection. As an
example, a cognitive digital receiver is proposed in Ref. [40],
which, by means of clustering algorithms, is able to identify the
incoming signal format, QPSK/8PSK/16QAM, without the need to
receive a prior control message, thus opening the door to the
autonomous modification of the modulation format. In addition,
state-space models in combination with Bayesian filtering and
expectation maximization are presented in Ref. [55] with the aim
of taking into account the underlying physics of the channel and
optical elements in the formulation of signal processing algo-
rithms. As a result, an overall system improvement is achieved,
including cross-polarization mitigation, carrier synchronization
and optimal symbol detection. However, expectation maximiza-
tion depends on the parameters of the transmission link and
consequently it is not applicable to dynamic optical networks.

Furthermore, Wang et al. [56] propose a machine learning al-
gorithm to mitigate NLPN affecting M-ary phase-shift keying (M-
PSK) based coherent optical transmission systems. Specifically, the
algorithm introduced is a nonlinear SVM classifier able to generate
nonlinear decision boundaries that allows to bypass the errors
induced by nonlinear impairments in the constellations of M-PSK
signals, resulting in improvements both in the maximum trans-
mission distance and launch power dynamic range. Notwith-
standing, SVM is basically a binary classifier, so to deal with higher
order modulation formats, many SVMs would be necessary.

Drawbacks derived from both previously mentioned studies are
solved in Ref. [57], where a k-nearest neighbors-based detector is
described and demonstrated. This algorithm only needs a small set of
labeled data in order to learn the link properties and generate the
nonlinear decision boundaries. Moreover, it performs a multi-class
classification and, therefore, it is capable of classifying multiple kinds
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of data simultaneously. In this way, maximum transmission distance
and nonlinear tolerance improvements are demonstrated in a 16
QAM coherent transmission system. Following the same line of
study, Torres et al. [42] propose a non-symmetric demodulation
technique for receivers equipped with DSP based on clustering (using
k-means algorithm), which mitigates the effect of time-varying im-
pairments such as imbalance of in-phase and quadrature signals (IQ
imbalance), bias drift and phase noise. This machine learning-based
demodulator is computationally highly efficient and also transparent
with respect to the nonlinearity source. Finally, a recent study [58]
extends previous approaches by introducing these techniques in
more advanced systems, with greater spectral efficiency, such as
coherent optical orthogonal frequency division multiplexing (CO-
OFDM) systems. The proposed algorithm is a nonlinear equalizer
SVM of reduced classifier complexity using the Newton-method (N-
SVM). It achieves an effective handling of inter-subcarrier nonlinear
crosstalk effects and an increase of the launched optical power with
low computational load.

3.5. Quality of transmission (QoT) estimation

Optical connection (or lightpath) QoT estimation prior to de-
ployment is particularly relevant in impairment-aware optical
network design and operation. Azodolmolky et al. [67] presented a
QoT estimator tool, the Q-Tool, which computes the associated
Q-factors of a set of lightpaths, given a reference topology, by
combining analytical models and numerical methods. These esti-
mates are relatively accurate, but the necessary high computing
time to perform the calculations makes this tool impractical in
scenarios where time constraints are important. Several ap-
proaches propose cognitive techniques to solve this drawback. As
an example, Jiménez et al. [34] present a QoT estimator capable of
exploiting previous experience and thus, provide with fast and
correct decisions on whether a lightpath fulfils QoT requirements
or not. It is based on case-based reasoning (CBR) [68], an artificial
intelligence mechanism that offers solutions to new problems by
retrieving the most similar cases faced in the past whether by
reusing them or after adapting them. Cases are retrieved from a
knowledge base (KB), which can be static [34] or optimized with
learning and forgetting techniques [35]. Results for CBR relying on
an optimized KB show an excellent rate of successful classification
of lightpaths into high/low QoT categories and more important, up
to four orders of magnitude faster than the Q-Tool mentioned
above. Furthermore, this study is experimentally demonstrated in
a WDM 80Gb/s PDM-QPSK testbed [36], where, even with a very
small KB, very high rates of successful classifications of lightpaths
are achieved. One step further, and with the aim of further redu-
cing the prediction time, Mata et al. [59] propose the use of an
SVM classifier to predict if a lightpath fulfils QoT requirements or
not. This classifier proves to be not only significantly faster but also
more accurate than the proposal in Ref. [35].

Another proposal for QoT estimation is that of Barletta et al.
[37], who apply a machine learning-based classifier, specifically a
random forest, to predict the probability that the BER of a candi-
date lightpath will not exceed a given threshold. Finally, Oda et al.
[38] present the concept of “living network”, an optical network
which keeps records of its path-level performance, which takes
advantage of BER information monitoring and of a learning pro-
cess (based on linear regression) in order to estimate the BER of
each new service request.
4. Applications of AI in optical networking

AI presents several opportunities for automating operations and
introducing intelligent decision making in network planning and in
dynamic control and management of network resources, including
issues like connection establishment, self-configuration and self-op-
timization, through prediction and estimation by utilizing present
network state and historical data. In this section, we review these
applications as well as use cases of AI in optical burst-switched
networks (OBS), in passive optical networks (PONs) and intra-data-
center networks. These applications are summarized in Table 2.

4.1. Optical network planning

As described in Section 2, search algorithms and optimization
theory have been widely used for optical network planning and
dimensioning (e.g., [2,3]), usually complemented or extended with
local search algorithms and metaheuristics like simulated an-
nealing, swarm optimization and genetic algorithms [5].

Optical network planning involves tasks like designing the phy-
sical topology of the network and ensuring survivability while
minimizing costs. Morais et al. [69] propose the use of genetic al-
gorithms (GAs) to address those issues in an opaque optical transport
network, and de Miguel et al. [72] also rely on a GA for dimensioning
dynamic WDM ring networks. A related optimization problem, like
minimizing the number of all-optical regenerators, is tackled by
Martinelli et al. [6] with a GA, which also jointly solves the routing
and wavelength assignment (RWA) problem while ensuring the QoT
for the lightpaths to be established. The problem of placing re-
generators in optical networks subject to fault tolerance constraints
has also been approached by means of ant colony optimization (ACO)
techniques [7]. This proposal guarantees survivability of the under-
lying network whilst also minimizing the number of regenerators
required. High quality solutions are provided, with reasonable run-
times. Furthermore, a GA aiming to jointly optimize the selection of
nodes performing 3R regeneration, code rate, and routing and
spectrum allocation for lightpaths to be established in flex-grid code-
rate adaptive optical networks is proposed in Ref. [70]. The addition
of the code rate in the classical resource and allocation problem
entails establishing a trade-off between minimizing the number of
regeneration nodes and minimizing the need of spectral resources.
Results indicate that, in general, with just few nodes selected for
regeneration, it is possible to ensure QoT and exploit the advantages
of code-rate adaptiveness. In the context of flex-grid network plan-
ning, it is worthy to note the work by Velasco et al. [71]. They propose
a novel network architecture consisting of a set of IP/MPLS areas
performing routing and flow aggregation, which are interconnected
through a flex-grid optical core. In order to obtain near-optimal so-
lutions for this architecture for real-sized network and traffic in-
stances, they employ GAs (in particular, biased random-key GAs).
Under these circumstances, simulation results reveal that extending
the core toward the edges results in significant savings in both the
core and IP/MPLS networks.

A different approach [73], presents a particle swarm optimi-
zation (PSO) algorithm in order to solve the problem of resource
allocation based on the signal-to-noise plus interference ratio
optimization in a hybrid wavelength division multiplexing/optical
code division multiplexing network (WDM/OCDM) under Quality
of Service (QoS) restrictions and the energy efficiency constraint
problem. The PSO strategy allows the regulation of the transmitted
power in order to maximize the energy efficiency. Results show
interesting trade-offs between performance and complexity. Fol-
lowing the same trend [74], presents an alternative algorithm, a
heuristic ACO scheme, for allocation of transmitted power with
increasing energy efficiency applicable to optical WDM/OCDM
transport networks. In addition, an analytical disciplined convex
optimization approach, taking into account the performance and
complexity metrics, is proposed as comparison. Simulation results
demonstrate that the ACO scheme proves to be useful in order to
obtain spectral-efficient and energy efficient systems suitable for



Table 2
Applications in optical networking taking advantage of AI techniques.

Applications AI techniques Literature

Survivable optical networks Genetic algorithms [69]: designs the physical topology of the network ensuring survivability.
Ant colony optimization [7]: guarantees survivability of the underlying network whilst minimizing the number

of regenerators.
Regenerator placement Genetic algorithms [6]: minimizes the number of all-optical regenerators in order to minimize network cost.

[70]: optimizes the selection of regenerators, code rate, and routing and spectrum al-
location in flex-grid code-rate adaptive optical networks.

Ant colony optimization [7]: guarantees survivability of the underlying network whilst minimizing the number
of regenerators.

Resource allocation Genetic algorithms [71]: proposes a novel network architecture interconnecting a set of IP/MPLS areas,
performing routing and flow aggregation, through a flex-grid optical core.
[72]: proposes a method for joint routing and dimensioning of dynamic WDM ring
networks.

Particle swarm optimization [73]: solves the problem of resource allocation under Quality of Service (QoS) restric-
tions and the energy, efficiency constraint problem.

Ant colony optimization [74]: allocation of transmitted power for energy efficient optical WDM/OCDM networks.
K-means clustering [75]: proposes a message scheduling algorithm that addresses both the message se-

quencing and channel assignment issues for a WDM star network.
Markov decision processes [26]: models the resource allocation problem as a MDP to optimize an objective arbi-

trarily defined by the network operator.
Connection establishment Swarm intelligence [76]: proposes multiobjective algorithms based on swarm intelligence to solve the RWA

problem.
Genetic algorithms [6]: solves the RWA problem while also ensuring QoT of lightpaths to be established.

[8]: solves the Impairment Aware static RWA problem.
[77]: solves the RMLSA problem.
[78]: considers multicast flows for RSA using different selection and crossover strategies.
[79]: solves the RSA problem in flex-grid networking producing useful insights into
network design.
[80]: solves the RSA problem with joint anycast and unicast demands.

Ant colony optimization [9]: RWA solution with great robustness and adaptability to varying network and traffic
conditions.
[81]: reduces network's energy footprint by finding the most energy-efficient routes.
[82]: introduces a heuristic on the way ants choose a request from demand space in
order to find the shortest path.

Case-based reasoning [83]: reduces computing complexity when solving the traditional RWA problem in dy-
namic WRONs.

Simulated annealing [84]: solves the RMLSA problem in elastic networks.
[85]: solves the RMCSA problem in elastic networks with space division multiplexing
(SDM).

Tabu search [86,87]: solve RSA problem providing also dedicated path protection.
Backpropagation neural network [88]: predicts the arrival time and holding time of future connections by considering

past experiences.
Q-learning [45]: solves path and wavelength selection in OBS networks.
Game theory [11]: solves RSA problem by properly balancing the spectrum utilization and security-

level of the domain in multidomain EONs.
Neural networks and principal compo-
nent analysis

[89]: estimates the connection blocking probability.

Kalman filters [22]: reduces blocking ratio by estimating the wavelength occupancy prior to the RWA
decision.

Markov decision processes [24]: derives the optimal lightpath establishment policy for each service class by means
of a MDP.
[25]: proposes the use of an efficient dynamic-preemption call admission control
scheme based on the optimal policy derived from a MDP.

Network reconfiguration Genetic algorithms and ant colony
optimization

[90]: survivable mapping of a given WDM virtual topology.

Genetic algorithms [91]: designs virtual topologies while reducing energy consumption and network
congestion.
[92]: techno-economic study of the introduction of cognitive techniques in virtual to-
pology design.
[93]: addresses reliable multicast Virtual Network mapping for OFDM based EONs.

Genetic algorithms and cognition [94]: produces estimations that can help to anticipate changes in the traffic and
proactively reconfigure the virtual network topology.

Neural networks [95]: performs reconfigurations based on the traffic volume and direction predicted by a
neural network.

Failure/fault detection Bayesian networks, clustering [96]: identifies or locates failures in the virtual network topology to improve quality of
service.

Cognition-based methods [97]: detects failures in centralized SDN-based networks by periodically exchanging the
messages
between controller and switches.

Bayesian inference/networks [19,98]: propose probabilistic modeling and machine learning for fault diagnosis in
optical access networks.
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Table 2 (continued )

Applications AI techniques Literature

Software Defined Networking Cognition-based methods [99]: correct mapping of topologies in considerably low total times.
[100]: introduces a transport SDN controller that facilitates optical network virtualiza-
tion and
autonomic operation.
[101]: proposes a new inter-networking paradigm based on broker agents with cogni-
tive intelligence.

Neural networks [102]: maximizes link capacity after predicting link performance in correlation with the
OSNR.

Reduction/estimation of burst loss Learning automata [103]: achieves self-awareness, self-protection and self-optimization in OBS networks.
Q-learning [45]: solves path and wavelength selection in OBS networks.

[104]: exploits the feedback loop to control the retransmission rate of bursts that are
lost.
[105]: introduces a low-complexity solution to resolve contention in OBS networks

Hidden Markov model and expectation-
maximization

[23]: proposes variations of the TCP protocols to enhance the performance of OBS
networks.

Bayesian networks [106]: decreases the burst loss ratio (BLR) in a OBS network.
Feed-forward neural network and
Q-learning

[107]: proposes deflection routing protocols that achieve smaller burst-loss probabilities
than previous approaches while deflecting bursts less frequently.

Extreme learning machine [108]: estimates burst loss probability.
Ant colony optimization [109]: proposes an ACO approach to reduce burst loss ratio, enhancing at the same time

the delay.
Statistical solutions for prediction Hidden Markov model (HMM) [20]: uses HMM based traffic prediction along with QoS aware light path establishment

in WDM networks.
Bayesian methods and game theory [10]: utilizes a Bayesian game-theoretic model to guarantee cooperativeness in RF/FSO

networks.
Intelligent ROADM Linear regression [38]: autonomously keeps record of path-level performance.
Splitter placement in PONs Genetic algorithms [110–112]: these papers optimize the location of splitter to achieve various objectives in

PON.
QoS guarantees and dynamic

bandwidth allocation in PONs
Genetic algorithms and neural networks [113–117]: use genetic algorithms or neural networks to assure QoS in PON.

Bayesian estimation [118]: proposes estimation and prediction-based Just-In-Time dynamic bandwidth al-
location algorithm.

Placement of ONUs Teaching learning-based optimization [119]: reduces the required Optical Network Units (ONUs) that assure connectivity
among wireless routers and ONUs in a Fiber-Wireless network.

Genetic algorithms [120]: another non-deterministic approach for placement of ONUs.
Cognitive optical networks Cognition-based methods [13–18]: these papers propose cognitive optical network architectures.
Intra-Datacenters Multilayer perceptron [39]: allocates resources (optical circuits/electrical switches) to flows according to their

requirements.
Neural networks [121]: presents a flow classifier at the edge of the network combined with an SDN

centralized controller.
Markov decision processes [122]: makes scheduling decisions in all-optical data center networks guaranteeing

throughput optimality
under a zero reconfiguration delay.
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WDM/OCDM networks, with promising performance–complexity
trade-offs in comparison with the analytical approach.

Another example of the use of AI in resource allocation is the
work by Petridou et al. [75]. They propose a message scheduling al-
gorithm, based on the k-means clustering algorithm, which ad-
dresses both message sequencing and channel assignment for a
WDM star network. Based on the produced clusters, the scheduling
algorithm manages to avoid scheduling consecutive messages to the
same destination which harms the channels' utilization.

4.2. Connection establishment

Metaheuristics like simulated annealing and evolutionary
methods like genetic algorithms or particle swarm optimization,
are effective in solving hard optimization problems because they
are less likely to become trapped in local optima. Therefore, these
methods are useful to solve the optical connection (lightpath)
establishment problem in optical networks. In WDM networks,
this involves searching a combination of route and available wa-
velength, and is so called the routing and wavelength assignment
(RWA) problem. In elastic optical networks (EONs), it involves
searching for a route and a portion of available spectrum and even
a modulation format, i.e., solving the routing and spectrum allo-
cation (RSA) or the routing, modulation level and spectrum allo-
cation (RMLSA) problems.
A multi-objective GA for solving the impairment-aware static
RWA problem is presented in Ref. [8], and Rubio-Largo et al. [76]
present a comparative study among three multiobjective evolu-
tionary algorithms (MOEAs) based on swarm intelligence to solve the
RWA problem in real-world optical networks: artificial bee colony
algorithm, gravitational search algorithm and firefly algorithm, con-
cluding that swarm intelligence is very suitable for this task.

Wang et al. [9] include considerations of mixed line rate, phy-
sical impairments and traffic grooming functionality to solve the
RWA problem by means of an ACO algorithm. Different config-
urations of this distributed solution are compared to each other
and also with a centralized grooming adaptive shortest path al-
gorithm. Although the centralized solution shows better efficiency
in terms of blocking probability, ACO shows great robustness and
adaptability to varying network and traffic conditions. Ad-
ditionally, in Ref. [83], a cognitive approach (case-based reasoning)
is introduced into the traditional RWA algorithm for dynamic
WRONs with the aim of reducing computing complexity. Simula-
tion results indicate that taking advantage of similar past experi-
ences or cases stored in a knowledge base (KB) can reduce com-
putational time by 25% over classical RWA algorithms, while
maintaining or even improving performance. In addition, Kyr-
iakopoulos et al. [81] propose a heuristic method based on ACO to
reduce network energy footprint by exploiting the basic principles
of swarm intelligence for finding the most energy-efficient routes
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from source to the destination node per traffic request. A different
ACO-based proposal [82], which introduces a heuristic on the way
ants choose a request from demand space (those that can be
served with shorter route first), outperforms both regular ACO and
shortest-path and most-used algorithms. Additionally, Araújo et al.
[89] present a mechanism to estimate the blocking probability
when establishing lightpaths in an optical network. It consists of
an artificial neural network which uses as inputs topological
properties and general physical layer characteristics (on which a
principal component analysis is previously carried out). Results
show a speed-up greater than 7500 times than that of a discrete
event simulator, and accurate estimates are obtained except when
very small blocking probabilities are evaluated.

The RSA problem in EONs is NP-hard [123], and has also been
considered an appropriate candidate to be solved by metaheuristics.
In fact, in the seminal paper by Christodoulopoulos et al. [84] on
elastic bandwidth allocation, simulated annealing is used to solve the
RMLSA problem. Simulated annealing has been also used by Perelló
et al. [85] in elastic networks with space division multiplexing (SDM),
where not only route, modulation format, and spectrum have to be
assigned but also a fiber core, finally solving the route, modulation
format, core, and spectrum assignment (RMCSA).

In the context of evolutionary methods, the RMLSA problem
has been solved by means of a GA where two populations evolve
in parallel and use a migration operation to exchange individuals
between them [77]. Furthermore, the RSA problem has also been
solved in Ref. [78] with GAs for multicast flows considering dif-
ferent selection and crossover strategies, and in Ref. [86] with tabu
search techniques with the aim of providing dedicated path pro-
tection. Another coevolutive approach is introduced in Ref. [80] to
solve the RSA problem with joint anycast and unicast demands,
outperforming previous proposals based on tabu search [87] and
simulated annealing [124] approaches.

An alternative approach to solve the RSA problem in EONs is
presented in Ref. [88], where a backpropagation neural network is
proposed to improve the RSA algorithm by predicting the arrival time
and holding time of future connections by considering past experi-
ences. Results confirm this approach outperforms RSA algorithms
that do not make use of historical information. Another work [79],
applies a Shannon entropy-based fragmentation metric to the RSA
problem in flex-grid networking by utilizing two complementary
approaches: minimum and maximum entropy. The former allows to
increase the number of demands that can be served before reaching
critical blocking levels by reducing as much as possible spectrum
fragmentation. The latter, where source-destination pair bandwidth
demands are located as far apart from one another as possible across
the optical spectrum solved, employs a GA-based optimization in
order to produce useful insights into network design.

4.3. Network reconfiguration: virtual topologies

The virtual topology is the set of optical connections (or light-
paths) established in a network. It does not have to be statically
configured, but it can be dynamically reconfigured in order to better
adapt to evolving traffic demands with some objectives like reducing
energy consumption, network congestion, end-to-end delay or
blocking probability or trying to ensure quality of transmission (QoT),
etc. For that purpose, two nature inspired heuristics, GA and ACO, are
used in Ref. [90] to obtain a survivable mapping of a given WDM
virtual topology. Feasible solutions are obtained even for large
topologies when integer linear programming methods cannot. Also, a
multiobjective genetic algorithm to design virtual topologies with the
aim of reducing both the energy consumption and the network
congestion is presented by Fernández et al. [91]. The GA proposed
there is enhanced with the capability of remembering solutions
successfully used in the past, as well as connections with low QoT.
The incorporation of those mechanisms leads to improvements in
performance. Furthermore, the introduction of cognitive techniques
in virtual topology design also exhibits significant savings in terms of
the total cost of ownership compared to conventional methods. As a
matter of fact, savings up to 20% and 25% in capital and operational
expenditures, respectively, via a GA-based method, are demonstrated
in Ref. [92]. One step forward, the extension presented in Ref. [94]
uses monitored data to produce estimations that can help to antici-
pate changes in the traffic and proactively reconfigure the virtual
network topology.

An algorithm to identify/locate failures in the virtual network
topology that can lead to an unacceptable quality of service is
proposed by Ruiz et al. [96]. They first perform the experimental
characterization of several causes of failure (which is done with
the help of a clustering algorithm), and then use those character-
izations to train a Bayesian network (BN). This trained BN is used
to localize and identify the most probable cause of failure im-
pacting a given service.

A virtual network topology reconfiguration approach is in-
troduced in Ref. [95]. It performs reconfigurations based on the traffic
volume and direction predicted by an artificial neural network pro-
posed for every origin-destination pair. Periodically, collected mon-
itoring data are transformed into modelled data and the artificial
neural networks are used to predict the next-period traffic. Results
show savings in both capital and operational expenditures.

A different approach is followed in Ref. [93], where an efficient
virtual network (VN) mapping for multicast services over both
general IP networks and orthogonal frequency division multi-
plexing (OFDM)-based EONs, is presented. This proposal takes into
consideration the max-min fairness in terms of reliability among
distinct VNs. In the IP networks case and with the aim to globally
optimize the reliability and fairness of all the multicast VN re-
quests, a mixed integer linear programming (MILP) model to de-
termine the upper bound on the reliability is presented, as well as
a GA that addresses reliable multicast VN mapping. For OFDM
based EONs, this solution is extended by considering the most
efficient modulation format selection strategy, spectrum con-
tinuity, and conflict constraints.

4.4. Software defined networking

The software defined networking (SDN) paradigm [125], which
decouples control and data planes, and enables programmability on
the former plane, has aroused the interest of both industry and
research communities by allowing networks managers to manage,
configure, automate and optimize network resources via software.
In the context of SDN over optical networks, a correct mapping of
the underlying topology at the control plane level is crucial. Fol-
lowing this requirement, a novel SDN-based cost-effective topology
discovery method, allowing transparent optical networks to auto-
matically learn physical adjacencies between optical devices, is in-
troduced in Ref. [99]. This is achieved by means of a test-signal
mechanism –by exchanging and verifying identifier information
between discovery agents– and the OpenFlow protocol, resulting in
correct mapping of the topologies in low total times. In relation to
this paradigm, fault tolerance is of paramount importance when it
comes to characterizing optical networks. In Ref. [97], an efficient
cognitive process for failure detection in centralized SDNs is pro-
posed. Specifically, a network controller interacts with optical cross-
connects (OXCs) exchanging messages periodically to efficiently
detect failures by using the link layer discovery protocol (LLDP). Fast
and accurate communication of these link events to the controller
allows a dynamic routing algorithm to update the topology and
restore the optical path in a significantly short space of time.

Furthermore, Oliveira et al. [100] introduce a transport SDN
controller that facilitates optical network virtualization and



J. Mata et al. / Optical Switching and Networking 28 (2018) 43–5752
autonomic/cognitive operation by means of two adaptive algorithms
that allow to reconfigure, on one hand, the transmission modulation
format and spectrum utilization according to network conditions and
on the other hand, the attenuation applied at the ROADMs to im-
prove the OSNR of the signals at the reception. Yan et al. [102] pro-
pose and demonstrate in a field trial the planning of an SDN-based
optical network utilizing neural network-based methods, which are
able to predict link performance in correlation with the OSNR. By
means of probabilistic-shaping bandwidth variable transmitters
(BVTs), which are configured by the SDN controller based on these
predictions, spectral efficiency can be adapted, maximizing the link
capacity. Additionally, a new inter-networking paradigm based on
broker agents with cognitive intelligence that compete to provide
desirable inter-networking services to autonomous systems through
market-driven incentives, is proposed in Ref. [101].

4.5. Applications in optical burst switching

Optical burst-switched (OBS) networks [2, Chap. 18] have also
taken advantage of artificial intelligence, and in particular, of ma-
chine learning techniques. Praveen et al. [103] propose a novel OBS
architecture which takes advantages of learning automata to achieve
self-awareness, self-protection and self-optimization, consequently
reducing burst loss probability significantly. Work done in Ref. [103]
has been extended in different studies by using other machine
learning techniques, such as Q-learning, in order to solve the path
and wavelength selection problem [45], or by exploiting the feedback
loop to control the retransmission rate of bursts that are lost [104].
Moreover, variations of the TCP protocols to enhance the perfor-
mance of OBS networks, including supervised and unsupervised
learning techniques, are also proposed in Ref. [23].

Burst blocking or loss probability –the ratio of the number of lost
bursts to the total number of transmitted bursts– is commonly used
for the performance measurement of OBS network technologies. So
far, proposed techniques have proven to be too slow or not accurate
enough to estimate this parameter. New approaches based on ma-
chine learning have outperformed previous studies, especially in
terms of computation time. Leung et al. [108] present two models for
burst loss ratio (BLR) estimation employing neural networks based
on the extreme learning machine (ELM) framework. By using these
models, estimates can be obtained much faster than by means of
simulations. Moreover, the accuracy of the BLR estimates outper-
forms that obtained with an existing analytical approach and are
very close to the values obtained by simulation. Three cognitive
mechanisms –Bayesian networks, closed loop control and open loop
control– to decrease BLR in an OBS network are introduced in Ref.
[106]. Simulation results confirm that the application of these
methods in the admission process leads to a BLR reduction in OBS
networks. Similarly, in Ref. [105] a novel node degree dependent
signalling algorithm in combination with Q-learning is proposed as a
low-complexity deflection routing protocol with the aim to resolve
contention in OBS networks. This solution scales well for large net-
works, since its complexity depends on the node degree rather than
network size. Simulation results show that despite its lower com-
plexity, burst loss probability of the proposed algorithm is compar-
able to other existing reinforcement learning-based deflection rout-
ing algorithms. The previous work is extended in Ref. [107], where a
framework that adds intelligence to deflection routing in buffer-less
architectures is presented. In particular, by means of the combination
of the node degree-dependent signalling algorithm with a feed-for-
ward neural network (NN) and a feed-forward NN with episodic
updates, both containing Q-learning-based decision-making mod-
ules, the proposed deflection routing protocols are proved to achieve
smaller burst-loss probabilities than previous approaches while de-
flecting bursts less frequently. In addition, the solution requires less
memory and CPU resources, which are more significant as the size of
the network grows. Additionally, Coulibaly et al. [109] propose an
ACO approach to reduce burst loss ratio, enhancing at the same time
the delay, by means of an adaptive and quality of service (QoS)-aware
route, wavelength and timeslot assignment algorithm.

4.6. Applications in passive optical networks (PONs)

Network planning of passive optical networks (PONs) [2, Chap.
5] has also taken advantage of AI techniques. Villalba et al. [110]
propose a GA for topology searching and splitter placement in
these networks. A graph representation scheme, associated with a
street map, is used as a reference, and the formulation minimizes
the amount of optical cabling and number of splitters and power
budget. Besides, Kokangul [111] proposes a GA and mathematical
modeling techniques to optimize the position of the primary and
secondary nodes (i.e., the points where the signal is split the first
and the second time, respectively), their split levels, the associa-
tion of customers to secondary nodes, and the association of sec-
ondary nodes to primary nodes. This placement is done under
constraints such as attenuations and characteristics of the optical
devices. Liu et al. [112] propose a topology optimization model in
long-reach passive optical networks (LR-PON) using a nested ge-
netic algorithm (NGA). The outer-loop of the NGA algorithm deals
with the location of splitters and the inner-loop of the algorithm
builds the spanning tree. Bhatt et al. [119] propose a teaching-
learning based optimization (TLBO) algorithm to reduce the re-
quired optical network units (ONUs) that assure connectivity
among wireless routers and ONUs in a Fiber-Wireless network.
Results of the simulations carried out for different grid sizes of the
geographical area and variable wireless routers confirm that the
implemented scheme requires less ONUs, reaching a globally op-
timum solution that previous random and deterministic ap-
proaches failed to provide. Along the same line, other non-de-
terministic approaches for placement of ONUs also provide desired
levels of performance, e.g., using genetic algorithms [120].

Other research works focus on the diagnosis and the self-diag-
nosis of PONs. As an example, Gosselin et al. [19,98] propose prob-
abilistic modeling and machine learning for fault diagnosis in optical
access networks. The proposal is based on a Bayesian network which
encodes expert knowledge. Indeed, they develop a Bayesian in-
ference engine, named probabilistic tool for GPON-FTTH access net-
work self-diagnosis (PANDA), to efficiently allow fault diagnosis in
GPONs. Sarigiannidis et al. [126] propose a 10-gigabit-capable PON
(XG-PON) together with multiple long term evolution (LTE) radio
access networks in the fronthaul. The mechanism receives traffic-
aware knowledge from the SDN controllers and it modifies the up-
link-downlink configuration in the LTE radio communication. This
strategy allows to calculate an optimal configuration based on the
traffic dynamics in the global network, allowing for an improvement
in the packet latency and jitter.

Additional research is focused on assuring quality of service (QoS)
requirements and media access control (MAC) issues in PONs. Some
approaches apply GAs to deal with these issues. As an example,
Huang [113] proposes to balance asymmetric traffic load between
ONUs in PON architectures using a GA, which also decreases con-
gestion in ONUs. Besides, Hwang et al. [116] formulate a genetic
expression programming (GEP) algorithm for the QoS traffic predic-
tion integrated with the limited packet transmission strategy to deal
with the queue variation and as a consequence with the reduction of
the delay of high priority traffic. In addition, Moradpoor et al. [114]
propose a dynamic excess bandwidth allocation algorithm for an
integrated hybrid PONwith wireless technology employing a GA. The
algorithm is able to provide optimal/near-optimal solutions for the
excess bandwidth assignment in this converged network scenario.

Other approaches implement proportional-integral-derivative
(PID) controllers combined with GA or ANN techniques to comply
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with QoS requirements. Thus, Jiménez et al. [115] develop an auto-
matic tuning technique based on GA to tune a proportional controller
to provide delay guarantees. In addition, they integrate a dynamic
admission control module to transmit or drop packets in order to
achieve a better delay control. Besides, same authors in Ref. [117]
propose a PID controller integrated with an ANN to efficiently ensure
QoS bandwidth requirements in EPONs. Finally, Dias et al. [118]
propose a dynamic bandwidth allocation algorithm which uses
Bayesian estimation to estimate the average interarrival time of
packets at the ONUs, with the aim of minimizing the queuing delay
introduced by the sleep- and doze-mode operations.

4.7. Applications in intra-datacenter networking

Intra-datacenter (DC) networks are also embracing machine
learning techniques in order to improve performance. For in-
stance, in hybrid-switching-based DCs, where an electrical packet-
switched and an optical circuit-switched network live together,
machine learning-based flow classification may be a decisive so-
lution to improve speed and accuracy, besides improving adapt-
ability to traffic dynamics. As an example, Rastegarfar et al. [39]
have proposed a multi-layer perceptron to allocate resources to
TCP flows according to their requirements (e.g., allocating optical
circuits to bulk data transfer and mapping short mice flows to
electrical switches), and have obtained very significant improve-
ments in network throughput due to both optical channel band-
width consolidation and adaptive flow classification. Furthermore,
a neural network flow classifier at the edge of the network,
combined with an SDN centralized controller able to take ad-
vantage of this classification outcome along with its global view of
the resources has been proposed in Ref. [121]. Finally, Wang and
Javidi [122] have also recently considered the end-to-end sche-
duling problem in all-optical data centers networks, whose main
challenges are the bufferless nature and the nonzero re-
configuration delay of optical switches, making it necessary to use
a centralized controller that can efficiently schedule the end-to-
end transmissions. The proposed method employs an adaptive
Markov scheduling policy, which makes decisions every time slot,
and determines both the schedule and the time to reconfigure the
schedule based on the most recent queue length information.
5. New opportunities and challenges for the use of AI in op-
tical networks

In this section, we describe a number of new opportunities and
challenges that we envision in the area of optical systems and
networking. We envision increasingly challenging roles of the use
of AI in the physical layer, where it will continue being a useful
tool not only in the framework of emerging optical transmission
technologies but also in helping increasing security by means of
attack or intrusion detection and localization. We also describe the
relevant role of AI in the automation of network management
operations, and in the support of emerging networking paradigms.

5.1. Optical transmission systems, and attack and intrusion detection

Many control decisions in a network are made based on accurate
measurement or estimation of physical parameters. Thus, in line with
the advances reported in Section 3, we expect AI will continue
playing an important role in supporting emerging transmission
technologies like space division multiplexing, multimode/multicore
fibers and advanced modulation formats and constellation shaping.
We also expect further progresses in the use of AI techniques for QoT
estimation and performance monitoring. However, a key area closely
related to monitoring where we see a significant opportunity for AI
techniques, but have not yet emerged (to the best of our knowledge)
in the optical arena, is that of attack and intrusion detection.

Increasing Internet proliferation has driven businesses and
other institutions to provide essential services over the Internet
infrastructure. As a result, these entities have to contend with
higher risk and potential costs associated with data breaches,
which is currently estimated to be as high as $3.6 million [127] on
average. The optical network layer is also susceptible to attacks by
malicious entities, which can be broadly classified as disruption
and eavesdropping attacks. Disruption attacks attempt to exploit
physical characteristics of optical transmission to degrade the
operation of existing services and/or block incoming service re-
quests, while eavesdropping attacks are targeted towards gaining
unauthorized access to the data transmitted over the optical net-
work. A variety of attack vectors for both these attack categories
have been outlined in Refs. [128–130].

Addressing attacks on optical infrastructure consists of mechan-
isms to detect and localize an attack on the optical infrastructure, and
the mitigation mechanisms in response to a detected attack. Statis-
tical approaches using optical measurements to identify and localize
attacks in optical networks have been proposed in Refs. [131,132] and
can be employed to detect a range of attacks on the optical network
infrastructure. However, the computation complexity involved in
applying the proposed techniques in a large-scale network is non-
trivial. Therefore, AI techniques could be applied in this context to
identify and localize optical attacks.

On successful identification of attacks, mitigation techniques,
especially in the context of optical telecommunication networks
involves all-optical encryption or re-routing of traffic away from
attack locations. The application of AI for network optimization
and RWA problems has already been discussed in Sections 4.1–4.3,
and can be employed to move vulnerable optical traffic away form
attack locations.

5.2. Automating network management operations

In the area of optical network operation, heterogeneous (multi-
technology and multi-vendor) network devices make operation,
administration and maintenance of optical networks a complex
and challenging process. This is due to the fact that network state
information, e.g., topology, congestion, failure discovery, etc., col-
lected from different devices have different and limited state in-
formation, which pose a big challenge in data collection, proces-
sing and decision making. Thus, process automation has been
identified as a key enabler for driving down operational costs, and
also to help move human intelligence away from repetitive tasks
[133]. AI-based techniques are seen as a key enabler for auto-
mating network management operations [134,135], and cognitive
optical networks were in fact proposed with that aim [13–18] but
many open issues remain. The primary pre-requisite for auto-
mating network operations is the capability to efficiently collect
and analyze telemetry information from the network. SDN and
related standards have introduced streaming telemetry which can
be used to efficiently collect information from the network all the
way to the network edge. The scale of information collected in a
large telco [136] poses a challenge for processing and identifying
anomalies such as network mis-configurations, alarm-correlation,
failure localization and prediction. AI-based techniques can be
efficiently used to target these problems at scale, especially when
combined with Big Data frameworks like the Apache Hadoop [137]
or Spark [138] ecosystems. Another key enabler for automating
network management involves the use of declarative intents which
provide a syntax for users to describe their requirements to net-
work orchestration platforms [139,140]. Intents are widely em-
ployed in natural language processing (NLP) and AI-based tech-
niques from these domains can be used to integrate user
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interaction platforms such as chatbots, voice command devices,
etc., to interpret user requests into intents for network orches-
tration platforms. As discussed in Ref. [135] AI-based techniques
can also be used to learn and automate the process orchestration
workflow for incoming intent requests, while retaining the pos-
sibility of human intervention in the control loop.

The widespread deployment of SDN, coupled with a telemetry-
driven feedback loop, would reduce the barrier for automating net-
work control operations. AI-based techniques presented in Section 4.2
can then be used to optimize RWA/RMLSA/RMCSA problems, per-
forming in-operation planning to optimize resources based on existing
optical service demands. As AI-based techniques in the area of net-
work control and management mature, we can also expect advanced
applications such as preemptive relocation of services away from a
predicted failure in the network, a topic in which first steps have al-
ready been taken [141–144]. As outlined in Section 4, network vir-
tualization and reconfiguration could also take advantage of AI-based
techniques by utilizing traffic prediction and classification, with or
without SDN controller in the loop. Nevertheless, the introduction of
flex-grid devices, such as bandwidth-variable sliceable transponders
andWSSs, and space division multiplexing techniques based onmulti-
core or few-/multi-mode fibers have further increased the computa-
tion complexity of AI-enabled RWA/RMLSA/RMCSA optimization so-
lutions [135]. Nevertheless, AI-based techniques, especially deep
learning, will play a major role in optical network planning and re-
configuration, since optical devices are expected to imbibe more au-
tonomous programmability features in the next decade.

5.3. Efficient joint operation of networks and computing resources

Emerging paradigms like the Internet of things (IoT), Industry
4.0 or the tactile Internet [145], impose stringent requirements on
networks, such as low latency, and high bandwidth, availability and
security, thus posing a significant challenge. The combination of 5G
mobile communications systems with high-speed fault-tolerant fiber
backhaul infrastructures will be key enabling technologies for these
networks [145]. End-to-end latency for some applications can be
limited to few milliseconds (e.g., 1ms for tactile internet). Thus, the
distance between the edge and computing resources must be limited
to some tens of kilometers [146], and a decentralized service plat-
form architecture based on Mobile Edge Computing (MEC) or Fog
Computing (FC) is required. However, the integration of various
computing paradigms (MEC, Fog and cloud) involves the develop-
ment of integrated resource management, task allocation and failure
handling techniques, to name just a few. Therefore, the joint alloca-
tion of computing and networking resources (also including inter-
datacenter networking) is receiving increasing attention.

AI is expected to play a key role to facilitate efficient joint op-
eration of network and computing devices, performing tasks like
virtual network function (VNF) distribution, task allocation, pre-
dictive caching and interpolation/extrapolation of human actions,
and thus enhancing performance and providing better support for
IoT and tactile Internet applications. For instance, along this line, a
recent work by Wong et al. [146] has proposed a novel tactile In-
ternet capable PON and a dynamic wavelength and bandwidth
allocation method, which incorporates a mechanism to predict the
traffic load to vary the number of active wavelength channels in
the network, and prioritize the transmission of tactile Internet
traffic (vs. other traffic) to comply with delay requirements. Due to
the huge expansion of IoT applications and services, we envision
more advances to come along this line in the next years.

5.4. Applications in on-chip networks

Finally, another promising field of application in our opinion is
that of on-chip networks. Today, major tech companies like Google,
Microsoft, Intel, etc. are pushing chip manufacturing to enable AI
computing on a single chip. On-chip networks provide communica-
tion substrates for the constantly increasing number of cores on a
single chip. Generally, on-chip networks are designed to enable ef-
ficient computing in less timewhile consuming less power. Though it
is early days in chip manufacturing to bring AI-enabled on-chip
networks in market, recently Google has come up with its own AI
chip, known as Tensor Processing Unit (TPU), which allows Tensor-
Flow (a deep neural network software) to run. Similarly, Intel an-
nounced an experimental chip called “Loihi”, which is designed based
on neuromorphic technology that uses neurons instead of logic gates.
AI algorithms are known for time and computation complexity, thus
requiring multiple central and graphical processing units, therefore
AI-enabled optical network on-chip (ONoC) is an alternative to the
electronic NoC which will further reduce the power consumption
and computation time. For instance, Gu et al. [147] have recently
proposed an optical network on-chip architecture by combining TDM
and WDM technologies. This novel architecture allows to solve the
blocking problem faced by previously proposed optical circuit-
switching (OCS) based ones [148]. Specifically, as an aspect of special
interest for the subject of this article, the number of wavelength
groups and time slots is optimized by using a genetic algorithm,
which helps TDM-WDM-based ONoC to outperform results from
equivalent proposals based on OCS-mesh.
6. Summary

This paper has provided a comprehensive survey of the current
research within the application of Artificial Intelligence (AI) tech-
niques in optical networks, as well as an overview of opportunities
and challenges arising in this context.

In order to provide the reader with a clear and general vision of
the numerous techniques and methods that make up this scientific
discipline, we have first described those AI subfields that have been
successfully employed in optical networking: (1) search methods and
optimization theory, (2) game theory, (3) knowledge-based, reason-
ing and planning methods, (4) statistical models, (5) decision-making
algorithms, and (6) learning methods, and have classified relevant
literature in the diagram shown in Fig. 1.

Later on, we have extensively reviewed the application of these
techniques in order to improve the efficiency of both optical
transmission (Table 1), and the design and control of optical net-
works (Table 2). Specifically, in relation to optical transmission, we
have addressed the suitability of AI techniques when dealing with
the characterization and operation of transmitters, EDFAs and re-
ceivers, as well as for performance monitoring, mitigation of
nonlinearities, and for QoT estimation, which is particularly re-
levant in impairment-aware optical network operation. In many
cases, AI techniques have proven to be more efficient than classical
approaches, which are typically limited by the complexity, lack of
adaptability, and/or scalability of the deterministic or semi-ana-
lytical models on which they rely. AI techniques provide similar
advantages in issues related to the control and design of optical
networks. The thorough review of the state of the art in this
matter has included numerous applications in the following fields:
optical network planning, connection establishment (i.e., the
pursuit of the optimal solution for the RWA, RSA, RMLSA or RMCSA
problems), network reconfiguration, software-defined networking
and applications in specific types of networks such as OBS net-
works, Passive Optical Networks and data centers.

In general, AI techniques' ability to find optimal or near-optimal
solutions in highly complex scenarios (i.e., problems with very
high dimensionality, fed with huge amounts of data) without the
need to develop exhaustive analytical or semi-analytical models,
makes them essential to meet the challenge posed by the
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increased complexity and dynamism of current optical commu-
nication networks, which need to face, among other impairments,
the physical limitations imposed by noise and nonlinear distor-
tions. No less important is AI techniques' ability to adapt to
changing conditions, to learn from them and to propose solutions
to unexpected situations or cases, turning them into promising
candidates to, for example, reconfigure these dynamic networks in
short time scales in order to meet changing demand patterns.

Last but not least, we have described a number of opportunities
and challenges that we envision in the area of optical networking.
In the context of optical transmission, we expect AI will continue
playing a crucial role in supporting technologies like space division
multiplexing, multimode/multicore fibers, advanced modulation
formats and constellation shaping, etc. Notwithstanding, the role
that AI can play in attack and intrusion detection in optical net-
works seems of special relevance and has not yet been sig-
nificantly explored to the best of our knowledge. Furthermore, the
automation of network management operations, especially in the
current context of networks becoming increasingly hetero-
geneous, and the efficient joint operation of networks and MEC/
fog/cloud computing resources, together with on-chip networking
are, in our opinion, fields where AI can be decisive.
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