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Abstract

In this study, features of financial returns of PSI20 index, related to
market efficiency, are captured using wavelet and entropy based tech-
niques. This characterization includes the following points. First, the
detection of long memory, associated to low frequencies, and a global
measure of the time series: the Hurst exponent estimated by several
methods including wavelets. Second, the degree of roughness, or regu-
larity variation, associated to the Hölder exponent, fractal dimension
and estimation based on multifractal spectrum. Finally, the degree of
the unpredictability of the series, estimated by approximate entropy.

These aspects may also be studied through the concepts of non-
extensive entropy and distribution using, for instance, the Tsallis q-
triplet. They allow to study the existence of efficiency in the financial
market.

On the other hand, the study of local roughness is performed by
considering wavelet leaders based entropy. In fact, the wavelet coeffi-
cients are computed from a multiresolution analysis, and the wavelet
leaders are defined by the local suprema of these coefficients, near the
point we are considering. The resulting entropy is more accurate in
that detection than the Hölder exponent. These procedures enhance
the capacity to identify the occurrence of financial crashes.
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1 Introduction

The purpose of this paper is to analyse two main issues concerning the
Portuguese Index PSI20 daily returns, in the period from 2000 to 2013. The
first issue is market efficiency (see Kristoufek and Vorvsda [15]). A market is
called efficient if prices are adjusted so that they reflect the new information
(see Fama [4] and Samuelson [26]). It is assumed that no investor can
predict any information that isn’t already available in prices. As for the
correlation structure of the series, there should be neither long memory nor
local persistence or anti-persistence reflected in less rough or rougher paths,
respectively. As a consequence, three aspects of the series are symptoms
of efficiency: unpredictability, no long memory and roughness of the series
path (irregularity). These will be evaluated for PSI20 series to check for the
existence of deviations from efficiency.

While long memory, measured by the Hurst coefficient H, is a global
characteristic of the series, roughness, measured by the fractal dimension D,
is a local one. For a self-affine process, given by

X(ct) = cHX(t),

it is verified D+H=2. In these processes, the global long memory character-
istic of the series is a reflection of its local roughness characteristic.

A generalization is given by multifractal processes, given by

E[X(t)] = c(q)tτ(q)+1

where τ(q) is a concave function. In a monofractal process, we have

τ(q) + 1 = Hq,

so that a linear scaling is attained.
The definition of entropy as a measure of uncertainty, or lack of in-

formation, is used not only to measure unpredictability but also to reflect
indirectly the degree of roughness in the path of the series.

As an alternative in the analysis of market efficiency, we will use the
concept of q-triplet, created by Tsallis [29] in the context of nonextensive
statistical mechanics. It is used for the characterization of nonintegrable
dynamical systems where all Lyapunov coefficients vanish. It consists of a
threefold determination of an entropic coefficient q in the context of: a)
sensitivity to initial conditions in a dynamical system, which may be seen as
reflecting unpredictability; b) relaxation of macroscopic variable towards a
stationary state, which in a time series, may be taken to detect the existence
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of long memory; c) the stationary distribution obtained after the constrained
optimization of an entropy function where the departure of this distribution
from the Gaussian distribution is the result of self-organization in the market
leading to rougher path. For several empirical approaches see Pavlos et al.
[19], Ferri et al. [5], de Freitas et al. [6], De Sousa and Rostirolla [27] and,
in the Finance area, Queirós et al. [24].

The second issue is local regularity that is related with the identification
of crisis events. Financial time series evolve showing patterns such as time
varying volatility and abrupt changes. Irregularity presented by a signal
gives information about its behavior. The characterization of irregularity
is given by the quantification of the local regularity of a function f . The
pointwise Hölder exponent is one of the quantifiers proposed to mesure the
local regularity, in fact a low pointwise Hölder exponent reflects an highly
irregular path around the point whereas an high pointwise Hölder exponent
is related to a smooth behavior. Jaffard [13] proposed a characterization of
the local regularity using the wavelet coefficients obtained from the wavelet
decomposition of the signal. Rosenblatt et al. [25] studied the local reg-
ularity of a time series applying an entropy measure based on the wavelet
leaders.

The rest of this paper is organized as follows. In Section 2 we present the
methods for studying market efficiency, using the concepts of long memory,
unpredictability and path roughness (Subsection 2.1) and the concept of
q-triplet (Subsection 2.2). The treatment of the wavelet approach for mea-
suring irregularity is given in Section 3. Results are presented in Section 4.
We provide a brief conclusion in Section 5.

2 Market Efficiency

Analysis of existence of Efficiency in the Financial Markets is an important
issue in Financial Analysis. A capital market is considered efficient if prices,
at each moment, reflect all relevant information. Three types of efficiency
are considered according to the degree of information incorporated: Weak
efficiency if information includes only past prices; semi-strong efficiency if
information includes also the information publicly available in the market
and strong efficiency if it includes all information public or private.

2.1 Three markers for market efficiency

We analyze three aspects of the return series, which result from the existence
of efficiency. The empirical testing of those aspects correspond to check for
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the existence of efficiency.
Assurance of efficiency in the market is attained by an automatic elim-

ination of arbitrage opportunities. The absence of arbitrage implies that
there will be no long memory, described as a power decay of correlations, in
the return series - the first aspect that characterizes the return series. As
a consequence of the absence of arbitrage opportunities it is expected that
the price series are modeled as a martingale and the corresponding returns
as a martingale difference that is unpredictable - the second aspect of the
return series. This implies an erratic behavior of prices which is quantified
as a high degree of roughness - the third aspect of the return series.

2.1.1 Long Memory

A long memory process was originally defined by Hall as a stationary process
for which autocorrelations are not summable in the discrete case, that is:

+∞∑
h=−∞

|ρ(h)| = +∞, (1)

where ρ(h) is the lag h autocorrelation.
In what follows, we assume that the parameter H verifies 1

2 < H <
1. An alternative definition of a Long Memory process is attained by the
asymptotic characterization of autocorrelations:

ρ(h) ∼ h2H−2`1(h) as h→ +∞, (2)

where `1 is a slow variation function1 and H is called the Hurst coefficient.
We can see that the autocorrelation function has a slow decay, as a power
law function. In the discrete case, this implies the non-summability of au-
tocorrelations.

An alternative definition may be stated in the frequency domain:

f(λ) ∼ λ1−2H`2

(
1

|λ|

)
as λ→ 0. (3)

where `2 is a slow variation function, λ denotes a frequency and f is the
spectral density. So, the spectral density tends to infinity as the frequency
approaches zero.

1A slow variation function is a measurable function which is positive in a neighborhood
of ∞ and for which: ∀c > 0 f(cx)

f(x)
−→ 1 as x→ +∞.
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Remark 1 (i) There is no equivalence between this and the precedent
definition, but it is implied by it if `1 is almost monotone,that is

∃α > 0

∫ x

0
tα|d`1(t)| = O(xα`1(x)), x→ +∞. (4)

A last definition of a discrete time long memory process {yt} based on
Wold’s decomposition:

yt = u+

+∞∑
k=0

Ψkεt−k, (5)

where Ψ0 = 1,
+∞∑
k=1

(Ψk)
2 < +∞ and {εt} is a white noise, states that

Ψj ∼ jH−
3
2 `3(j), (6)

being `3 a slow variation function.

(ii) The condition (6) implies (2),

(iii) If H = 1
2 we have a short memory process; if H ≥ 1, the process

is non-stationary. So the long memory case is an intermediary case
between these two. For H ≤ 1

2 we have an antipersistent behavior.

(iv) Long Memory is characterized by Power Law asymptotic behavior where
Hurst coefficient plays a prominent role.

In alternative definitions of Long Memory, we consider asymptotic rela-
tions based on power functions, either in time or in frequency domain. By
taking logarithm transformation on the variables we obtain linear regres-
sions which may be fitted by a least squares approach. This is the mech-
anism taken to build several estimation methods for the Hurst coefficient,
H.

• Considering a long memory process in the form yt = u+εt(1−L)−H+ 1
2

we have fy(λ) =
[
4 sin2

(
λ
2

)]−H+λ
2 fε(λ), where {εt} is a white noise,

u = E(yt), λ denotes a frequency and L is the lag operator. Taking
logarithms: ln fy(λ) = ln fε(λ)− (H − λ

2 )[4 sin2
(
λ
2

)
]. So, we have the

linear regression:

ln f̂y(λk) = β − (H − λ

2
) ln[4 sin2

(
λk
2

)
] + εk, k = 1, 2, . . . , ηf (T ) (7)
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where β = ln fε(λ) and ηf (T ) is the number of frequencies considered.
This is the regression used to obtain the Geweke and Porter-Hudak’s
estimator [9].

• The periodogram estimator is obtained after (3), which allows to ob-
tain a linear regression of ln f̂y on lnλ, for frequencies λ near zero,
with slope given by 1− 2H.

• The R/S (range over standard deviation) statistic, originally proposed
by Hurst [12] is given by

QT =
1

ST

 max
1≤k≤T

k∑
j=1

(yt − y)− min
1≤k≤T

k∑
j=1

(yj − y)

 , (8)

where y and ST are, respectively, the sample mean and the sample
standard deviation. This is an increasing measure of long memory
and for i.i.d gaussian random variables yt, we have:

QT√
T
⇒ V = Vs − Vs−1, (9)

where {Vt} is a Brownian Bridge and “ ⇒ ” stands for weak con-
vergence. Lo [16] proposed a more robust version which assures the
convergence for short memory processes; here, ST is substituted by
the long run Newey-West standard deviation. Estimation based on
the R/S statistic is obtained after a linear regression of lnQT on lnT
where T is the size of the sub-samples used to estimate the R/S statis-
tic. This regression has slope H.

Other approaches may be taken, for instance, the Whittle estimator is
obtained by maximum likelihood on the frequency domain, considering
frequencies near to zero.

2.1.2 Fractal dimension

It is a measure of roughness and by opposition to the Long Memory char-
acterization, it measures the local memory of the series (Kristoufek and
Vorvsda, [15]). When modeling the dynamic behavior of a variable, by the
solution of deterministic equations, the set of all instantaneous states of the
system is the phase space. The subset of the phase space towards which the
system converges, called attractor, may be a fractal (Theiler, [28]). A frac-
tal is an irregular geometric form, being the patterns of evolution similar at
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different time scales (self-similar). In this context, the fractal dimension of
attractor measures the number of degrees of freedom of the system. When
the self-similarity of the geometric form through scales is not perfect, it is
called statistical. The fractal dimension can be obtained as an exponent
of a scaling behavior of a quantity, measuring the bulk of an object (here
bulk may correspond to the mass of the object) with respect to another
measuring the corresponding size (linear distance):

bulk∼ sizedimension

(see Theiler, [28]) from which we obtain

ln(bulk) ∼ dimension× ln(size),

so that dimension is given by:

lim
size→0

ln(bulk)

ln(size)
. (10)

This is a local quantity from which a global definition of fractal dimension
can be found by averaging.

1. The classical Box-Counting dimension is defined as follows. We take a
partition of the state space in a grid where each box has size ε. Then,
count the non empty boxes (that is, those containing points attained by
the attractor). The scaling of this counting number N(ε) with respect

to size ε leads to dimension: Df = lim
ε→0

ln( 1
N(ε))

lnε
, which is an upper

bound of Hausdorff dimension (under weak regularity conditions they
coincide). This definition is global since the bulk, 1

N(ε) , is the average
proportion that each non-empty box has of the whole fractal.

2. The Hall-Wood estimator is a version of the Box-Counting estima-
tor, being this obtained from (10) (see Gneiting et al. [10]). In fact,
considering the boxes of size (scale) ε that intersect with the linearly
interpolated data graph {(t,Xt) : t = i

n , i = 0, 1, . . . , n}, these are
N(ε) such boxes with a total area A(ε) ∝ N(ε)ε2. So the dimension
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is given by

D = lim
ε→0

ln( 1
N(ε))

ln ε

= − limε→0
lnN(ε)

ln ε

∝ − limε→0
ln
A(ε)

ε2

ln ε

= limε→0
2 ln(ε)−lnA(ε)

ln ε

= 2− limε→0
lnA(ε)

ln ε .

(11)

The Hall-Wood estimator is based on an ordinary least squares regres-
sion fit of ln Â( `n) on ln `

n

D̂HW = 2−

L∑
`=1

(s` − s) ln Â(
`

n
)∑L

`=1(s` − s)2
, (12)

where n + 1 is the number of observations and ` takes the values 2k,
k = 0, 1, . . . ,K being K = ln2(n). Â( `n) is an estimator of A( `n) at

scale ε` = `
n (` = 1, 2, . . .) given by

Â(
`

n
) =

∑bn
`
c

`=1 |Xi `
n
−X(i−1) `

n
|

n
`

and bn` c denotes the greatest integer smaller or equal to n
` , s =

∑L
`=1 s`
L

and s` = ln
(
`
n

)
, L ≥ 2. It is recommended that L = 2 so that bias is

minimized:

D̂HW = 2−
ln Â(

2

n
)− ln Â(

1

n
)

ln 2
(13)

(see Hall et al. [11]).

3. The Genton estimator is based on the variogram given by 2γ2(t) where

γ2(t) =
1

2
E
[
(Xu −Xu+t)

2
]
. (14)

for which we have γ2(t) ∝ |ct|α, as t → 0. The graph of a sample
path has fractal dimension given by D = d + 1 − α

2 , where d is the
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dimension of the considered random vector. When we study a single
random variable, we have d = 1 so that

D = 2− α

2
. (15)

The ordinary least squares regression fit of

V̂2(
`

n
) =

1

2

n∑
i=1

(X i
n
−X i−`

n
)2

n− `

on ln( `n) leads to the following estimator for α:

α̂ =

L∑
`=1

(s` − s) ln V̂2(
`

n
)∑L

`=1(s` − ŝ)2
. (16)

Remark that `, L, s` and s are defined as in (12). Substituting (16)
into (15), we obtain the variogram estimator for the fractal dimension:

D̂V,2 = 2− 1

2

L∑
`=1

(s` − s) ln V̂2(
`

n
)∑L

`=1(s` − ŝ)2
. (17)

The mean squared error of the estimator is minimized for L = 2, so
the following estimator is chosen:

D̂V,2 = 2− 1

2

ln V̂2( 2
n)− ln V̂2( 1

n)

ln 2
. (18)

When the method of moments estimator V̂2( `n) is replaced by the
highly robust variogram estimator proposed by Genton [8], we have

the Genton estimator for the γ2(h), γ̂2(h) = (
Q2
Nh
2 ), (h ∈ <d), where

QNh = 2.2191{|Vi(h)− Vj(h)|; i ≤ j}(k),

k =

(
bNh2 c+ 1

2

)
which is approximately equal to 1

4 for large Nh, V (h) = X(t+h)−X(t),
Nh is the number of points (xi, xj) such that {(xi, xj) : xi − xj = h},
and {·}(k) denotes the kth quantile of the quantity inside the brackets.
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2.1.3 Approximate Entropy (ApEn)

As Kristoufek and Vosvrda [15] refer, entropy can be seen as measuring the
complexity of the system so that the greater the entropy the greater the
randomness. Approximate Entropy was introduced by Pincus [21]. First,
we consider a time series u(1), . . . , u(N) of observations equally spaced in
time. Then we fix the parameters m and r, where m (integer) is the length
of runs of data considered, and r is an upper threshold for a distance defined
below. A sequence

x(1), . . . , x(N −m+ 1)

is build by making x(i) = [u(i), . . . , u(i+m− 1)]. Then ApEn is defined as

ApEn = Φm(r)− Φm+1(r) (19)

where

Φm(r) =

N−m+1∑
i=1

lnCmi (r)

N −m+ 1
(20)

being

Cmi (r) =
number{x(j) : d[x(i), x(j)] ≤ r, 1 ≤ i, j ≤ N +m+ 1, j 6= i}

N −m+ 1
(21)

and d a distance between x and x∗ given by

d[x(i), x(j)] = maxk=1,2,...,n(|u(i+ k − 1)− u(j + k − 1)|).

As referred by Pincus et al. [22], a heuristic interpretation of ApEn is that
it measures the logarithm likelihood that runs of patterns that are close for
m observations remain close on next incremental comparisons. Note that
ApEn may be written as

N−m∑
i=1

ln

(
CmN−m+1(r)

Cmi (r)

)
(N −m+ 1)(N −m)

. (22)

Typically, it is chosen m = 2 or m = 3, the number of input data points N
between 10m and 30m, and the parameter r depends on the application.

Remark 2 This entropy is related to the more abstract Kolmogorov-Sinai
entropy given by

lim
r→0

lim
m→+∞

lim
N→+∞

[Φm(r)− Φm+1(r)]. (23)

10



Remark 3 Pincus and Kalman [23] point out that the irregularity or un-
predictability of the time series is another way by which it may deviate from
constancy as an alternative to volatility which refers to the magnitude of
variations from observation to observation.

2.2 q-triplet

The concept of q-triplet created by Tsallis [29] arose in the context of nonex-
tensive statistical mechanics for the characterization of nonintegrable dy-
namical systems where all Lyapunov coefficients vanish, concerning (i) sen-
sitivity to initial conditions; (ii) relaxation of macroscopic variable towards
an anomalous stationary state; (iii) the stationary distribution obtained
after the constrained optimization of an entropy function. These three as-
pects leads to a threefold determination of the entropic coefficient q, and
are related to the three aspects of efficiency referred before, respectively (i)
unpredictability, (ii) long memory, (iii) roughness.

2.2.1 q-sens

This indicator allows to stress the power-law sensitivity to initial conditions
(Lyra and Tsallis [17]). This sensitivity represents the deviation of two
initially nearby paths:

ξ(t) = lim
∆x(0)→0

∆x(t)

∆x(0)
.

In the exponential deviation case we have, ξ(t) ∼ eλ1t, where λ1 is the
Liapunov exponent. The power-law sensitivity to initial conditions is given
by:

ξ(t) = [1 + (1− q)λq(t)]
1

1−q , q ∈ <. (24)

It is a generalization of the classical exponential case, the limit case as q → 1
recovers the exponential sensitivity. The expression for ξ(t) is the solution
of dξ

dt = λqξ
q while, in the exponential case, it is the solution of dξ

dt = λ1ξ.
The entropic index q is expressed as a function of the fractal scaling

properties of the attractor. These properties are expressed through the
Multifractal Formalism. In this context, we take for each scale a partition
of the attractor with N boxes for which a probability measure is defined (pi
is the probability attributed to box i, given by the proportion of points of
the path in box i). As N → ∞ we have, for a generic q, a subset of boxes
visited by the trajectory (at least once) for which:

• the number of such boxes Nq, scales as Nq ∝ Nf(q),
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• the partition function χq(N) =

N∑
i=1

pqi , scales as χq(N) ∝ N−τ(q),

• the content of each box is roughly constant and scales as pq ∝ N−α(q).
Note that α(q) is the local Hölder exponent in the scaling relation
between the probability pq and the size of the box.

Then we have

χq(N) =

Nq∑
i=1

pqi (25)

'
Nq∑
i=1

pq = Nqp
q (26)

∝ Nf(q) ×
(
N−α(q)

)q
= Nf(q)−qα(q) (27)

so that N−τ(q) = Nf(q)−qα(q), and we obtain the Legendre transformation:

τ(q) = qα(q)− f(q). (28)

Considering f∗(α(q)) = f(q), f∗ is defined as the Multifractal Spectrum,
i.e. the fractal dimension of the subset of the boxes with Hölder coefficient
α, that is the subset of boxes whose number scales with N as Nf∗(α). Note
that τ(q) is equal to (q−1)D∗q where D∗q is the generalized fractal dimension
of Renyi:

1

q − 1
lim
ε→0

ln
∑

i p
q
i

ln ε
, (29)

and ε is the scale.
We take the α values at the end points of the multifractal spectrum:

αmin = α(q = +∞) (resp. αmax = α(q = −∞))) is associated with the most
concentrated (resp. rarified) region of the set. Our goal is to measure the
power-law divergence of nearby orbits. Let B be the number of time steps
over which the set of points in the attractor are generated. The measure on
the i-box is roughly 1

B , and the typical size of a box in the most concentrated
(resp. rarified) regions in the attractor is `+∞ (resp. `−∞). Note that for
a given q, we have p = B−1. Then recalling that α is the exponent in the
scaling relation between the probability of a cell and its size, we have

` ∝ B−
1
α , (30)
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and consequently

` ∝ B−
1
α = elnB−

1
α = e−

1
α

lnB. (31)

So ln ` ∝ − lnB
α . Taking into account that the smallest splitting between two

nearby orbits is of order `+∞ and it can become at most a spliting of order
`−∞, we can express (24) as

`−∞
`+∞

∝ B
1

1−q .

On the other and, after (30) we have

`−∞
`+∞

∝ B−
1

αmax

B
− 1
αmin

= B
1

αmin
− 1
αmax . (32)

Finally, 1
1−q = 1

αmin
− 1

αmax
, which is the relation that allows to obtain qsens

after the multifractal spectrum. The power-law sensitivity to initial condi-
tions may be seen as a mechanism generating a certain degree of uncertainty,
associated to the divergence of nearby orbits.

2.2.2 q-rel

This indicator is defined in the context of the relaxation of an observable
variable Zt towards a stationary state. The variable Ω(t) is defined as

Ω(t) =
Z(t)− Z(∞)

Z(0)− Z(∞)
(33)

which behaves as a function of time t:

Ω(τ) ' e−bτqrel
,

where exq is the q-exponential function given by exq = [1+(1−q)x]
1

1−q . Then,

lnq Ω(τ) ' −bτ,

where lnq x = x1−q−1
1−q is the inverse function of exq .

In a time series context, the relaxation variable is the autocorrelation
function of Z:

C(τ) =
E[(Z(t)− E(Z(t)))(Z(t+ τ)− E(Z(t+ τ)))]

E[(Z(t+ τ)− E(Z(t+ τ)))2]
(34)
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To estimate qrel we fit the regressions of lnq C(τ) on τ , for each of the values
of q in the interval[1, 1.5] with δq = 0.01 and choose the q-value for which
the corresponding coefficient of determination is maximized (see Ferri et al.
[5], Pavlos et al. [19]). An high value for qrel is a symptom of long-range
memory.

2.2.3 q-stat

This is the q parameter associated with a probability distribution which

arises by maximizing the Tsallis Entropy Sq = k
1−
∫

[P (x)]qdx
q−1 (continuous

version) under some adequate constraints (see Tsallis [29]). In the original
context, considered by Tsallis (continuous version), these constraints are:∫

P (x)dx = 1 (35)

(normalizing condition so that we have a probability distribution) and

Eq(x) =

∫
x

[P (x)]q∫
[P (y)]qdy

dx = µq (36)

(the mean value under the escort distribution [P (x)]q∫
[P (x)]q

= Pq(x) is known to be

µq). In this case, a q-exponential distribution is obtained, it is a general-
ization of the standard exponential distribution which arises when we make
q → 1.

In the financial context (see Queirós et al. [24]) it makes sense to add a
constraint concerning the variance under Pq(x):∫

(x− µq)2 [P (x)]q∫
[P (x)]q

dx = Eq[(X − Eq(x))2] = σ2
q (37)

In this case,we attain the q-Gaussian distribution, having density function:

P (x) = Aq [1 + (q − 1 )βq(x − µq)2 ]
1

1−q (q < 3 ), (38)

where

Aq =



Γ
[
5−3q
2−2q

]
Γ
[
2−q
1−q

]√1−q
π βq if q < 1

Γ
[

1
q−1

]
Γ
[

3−q
2q−2

]√1−q
π βq if q > 1

(39)

and βq = [(3 − q)σ2
q ]
−1. In the limit case, q → 1, we have the standard

Gaussian distribution.
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Remark 4 When maximizing the classical Boltzman-Gibbs-Shannon en-
tropy, we obtain the Gaussian distribution.

Remark 5 In the context of Information Theory, the entropy measures the
uncertainty associated with the variable X (see Daroneeh et al., 2010). Tsal-
lis entropy which is given, in the discrete case, by

Sq = k
1−

∑N
i=1 P

q
i

q − 1
,

is nonextensive, that is, it doesn’t, in general, verify the additivity axiom:

S(P ∗Q) = S(P ) + S(Q),

where P and Q are probability distributions P ∗ Q : pi ∗ qj, i = 1 . . . ,m,
k = 1, . . . ,m. This relation is verified in the classical Boltzmann-Gibbs-
Shannon entropy:

S = −
w∑
i=1

pi ln pi,

the limiting case of Sq as q → 1.
In the general case, (q 6= 1), we have:

Sq(P ∗Q) = Sq(P ) + Sq(Q) + (1− q)Sq(P )Sq(Q).

Darooneh et al. [2] interpret this nonextensive case as reflecting the incom-
pleteness of our knowledge represented by the escort distribution given by:

P qi∑N
i=1 P

q
i

.

Remark 6 Queirós et al. [24] refer that returns r follow a q-Gaussian
law if its underlying dynamics are represented by the Stochastic Differential
Equation:

dr = −krdt+
√
θ[p(r, t)]1−qdWt (40)

where Wt is a Wiener process and p(r, t) the probability density function of
r. The deterministic term reflects a mean-reversion mechanism while the
stochastic term reflects, for q > 1, the inverse relation between volatility and
the density of the returns, so that the occurrence of rare returns (with high
magnitude) causes higher instabilities in the market.

15



By reparametrization, it can be seen that q-Gaussian distribution is in fact
a t-student distribution where, being n the (non-integer) degrees of freedom:

−n+ 1

2
=

1

1− q
⇔ (1− q) = − 2

n+ 1
⇔ q = 1 +

2

n+ 1
=
n+ 3

n+ 1
.

Parameters can be estimated by maximum likelihood, or minimizing the
mean square deviation between this distribution and the empirical distribu-
tion (see Cortines et al. [1]).

Alternatively, the following procedure may be applied. The range of
values for X is subdivided into little cells of width δx centered at xi and
we find the relative frequency of each cell. We estimate the probability
distribution for x, p(xi) through the histogram properly normalized. For

1 < q < 3, we rewrite p(x) as Gq(βq, x − µq) =

√
βq
Cq

e
−βq(x−µq)2
q where

Cq =

√
πΓ
(

3−q
2q−2

)
√
q−1Γ( 1

q−1
)

and exq = [1 + (1 − q)x]
1

1−q . So, we have for c =

√
βq
Cq

and

z = −βq(x− µq)2.

lnq(p(x)) = lnq(ce
z
q) =

(cezq)1−q−1

1−q

=
c1−q

[
(1+(1−q)z)

1
1−q

]1−q
−1

1−q

= c1−q(1+(1−q)z)−1
1−q

= c1−q−1
1−q + c1−q(1−q)z

1−q

= lnq c+ c1−qz,

(41)

where lnq(x) = xq−1
1−q . Taking a grid of values for q, with δq = 0.01 for

q ∈ [1, 1.5], we obtain the best linear fit of lnq(p(x)) over (x − x)2 (that is
the one with higher coefficient of determination). Then we select the β-value

which minimizes
∑
i

(Gqstat(βq, xi)− p(xi))2.

The q-Gaussian distribution may be seen as the one associated to a
stationary state. The q-stat coefficient reflects the sensibility of volatility
to the occurrence of higher variations such as crashes, resulting from self-
organization in the market (see Pavlos et al. [19] and Ferri et al. [5])

Remark 7 SDE (40) expresses a mechanism to explain the clustering of
high volatility based on a leverage effect which may be linked to the fat tails
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of the q-exponencial distribution. On the other hand underlying this mech-
anism is the idea that market has some self-organization which causes a
”roughness” on the financial series.

3 Wavelets

Wavelet transform is a possible representation for time series so that the
information given by the data can be captured in a clarified way. In order
to capture the features of the time series, a basic function, called mother
wavelet, is used. The mother wavelet is shifted and stretched so that the
different frequencies, at different times, can be revealed and the events that
are local in time are captured. This enables the wavelet transform to study
nonstationary time series.

Wavelets can be used to decompose a time series showing its different
components. The analysis using wavelets converts the original signal into
different domains with different levels of resolution, so that the time series
can be analyzed and processed. In fact, while Fourier transforms decompose
the signal as a linear combination of sine and cosine functions, the wavelet
transform explain the signal as a sum of flexible functions that allow a lo-
calization in frequency and time. Depending on the purposes of the study
we have different wavelet transforms: continuous and discrete. In partic-
ular, the discrete wavelet transform (DWT) allows to decompose a time
series, originating a set of coefficients that are obtained using the shifted
and stretched versions of the mother wavelet. The DWT of a time series
can be a way to represent a signal using a small number of terms. General
references on wavelet transforms include, among others, [20], [18], [14], [7].

The multiresolution pyramidal decomposition allows to decompose a sig-
nal into detailed and approximated signals. The detailed signals express the
high frequency components while the approximated signals express the low
frequency components. In order to check for the regularity we should con-
sider an orthogonal decimated discrete wavelet transform with fast decay
derivatives and an appropriate number of vanishing moments.

In order to quantify the local regularity of a function f we can use,
among others, the pointwise Hölder exponent. If we have a low pointwise
Hölder exponent it means that there is high irregularity, on the other hand
an high Hölder exponent is related to a smooth behavior of the function.

Jaffard [13] proposed a new way to characterize the regularity variation
of f through the local suprema of the wavelet coefficients, this information
is summarized in the wavelet leaders coefficients.
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Consider Ψ0 a real valued function with compact support and∫ +∞

−∞
Ψ0(t)dt = 0. (42)

Define the number N ≥ 1 such that

1.

∫
IR
tkΨ0(t)dt = 0, ∀k = 0, 1, 2, . . . , N − 1

2.

∫
IR
tNΨ0(t)dt 6= 0,

N is the number of vanishing moments of Ψ0.
Let’s consider translations and dilations of Ψ0 :

Ψj,k(t) = 2−jΨ0(2−jt− k), j ∈ N, k ∈ N. (43)

The set {Ψj,k(t) : j ∈ N, k ∈ N} forms an orthonormal basis of L2(IR).
Given a signal X(t), t ∈ [0, n[, the wavelets coefficients CX(j, k) are given
by the inner products

CX(j, k) = 〈Ψj,k|X〉, (44)

and the signal can be written as

X(t) =
∑
j,k∈N

CX(j, k)Ψj,k(t). (45)

Assuming that Ψ0(t) has a compact time support let’s consider the interval
Ij,k = [k2j , (k + 1)2j [ and the union of the three adjacent intervals:

3Ij,k = Ij,k−1 ∪ Ij,k ∪ Ij,k+1 = [(k − 1)2j , (k + 2)2j [. (46)

The wavelet leaders are

dX(j, k) = sup |CX(u, v)|.
Iu,v ⊂ 3Ij,k

(47)

Considering x0 ∈ IR and a level j, we can determine the unique interval Ij,k
that contains x0, denoted by Ij(x0), and define the wavelet leader for x0 as

dj(x0) = sup |CX(u, v)|.
Iu,v ⊂ 3Ij(x0)

(48)

To study the local regularity of a time series, Rosenblatt et all [25], pro-
posed a pointwise leaders entropy based on the wavelet leaders. If we have
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a signal Y (y1, y2, . . . , ym) with probability of occurrence {p1, . . . , pm, } the

quantity S = −
m∑
i=1

pi log2(pi) is the Shannon entropy (if pi = 0 we consider

pi log2(pi) = 0).
Given a bounded function f and x0 ∈ Df , we define a discrete prob-

ability distribution Px0 , in order to present the pointwise leaders entropy.
Considering m resolution levels, we have for i = 1, . . . ,m,

ρi =


d2i (x0)

m∑
j=1

d2
j (x0)

if di(x0) 6= 0

0 if di(x0) = 0

(49)

where di(x0) is the wavelet leader coefficient for x0 and resolution level i.
The probability distribution is given by Px0 = (ρ1, . . . , ρm). The pointwise
wavelet leaders entropy for x0 ∈ Df is

Sf (x0) = S(Px0) = −
m∑
i=1

ρi log2(ρi) (50)

(if ρi = 0 we consider log2(ρi) = 0). We can see that if the biggest wavelet
coefficients, in a neighborhood of x0, belong to the highest resolution level
(indicating more roughness) then the wavelet coefficients for x0 are equal and
Sf (x0) is maximum (equal to log2(m)). If, on the other hand, the wavelet
coefficients for the neighborhood of x0 are near to zero then Sf (x0) ≈ 0

4 Numerical experiments

In this section we report some numerical experiments, related to the mar-
ket efficiency topics and local regularity presented in the paper, applied to
the portuguese PSI20 Index data. The data was collected from the Yahoo
Finance publicly available database. We store settlement prices from 2000
to 2013. Index continuously compounded returns are then computed:

r(t) = ln(x(t+ 1))− ln(x(t)). (51)

See Figure 1.

19



Figure 1: PSI 20 index returns

PSI 20 returns Squared PSI 20 returns

Hall-Wood 1,94 2,02

Genton 1,96 1,99

Box-Count 1,7 1,59

Table 1: Fractal dimension

4.1 Market efficiency

Fractal dimension results are presented in table 1. We consider different
approaches such as Hall-Wood, Genton and Box-Counting estimators, ap-
plied to the PSI20 returns and to the square of these returns. The reference
value for fractal dimension is 1.5, which stands for absence of either local
persistence or local anti-persistence. If the fractal dimension is greater (resp.
smaller) than 1.5, it means that there is local anti-persistence (resp. persis-
tence) and the series path is rougher (resp. less rough) than in the reference
case.

The values we found are much greater than 1.5, for both returns and
squared returns, indicating a significant existence of roughness (irregularity)
in PSI20 path.

Hurst coefficient was computed with different approaches such as the
Geweke Porter-Hudak, Periodogram and R/S estimators. We considered
the PSI20 returns and the square of these returns, the results are shown in
table 2. The reference value for the Hurst coefficient is 0.5 which stands
for absence of either positive long memory or negative long memory. If the
Hurst coefficient is greater (resp. smaller) than 0.5, then there is positive
(resp. negative) long memory in the series.
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Hurst PSI 20 returns Squared PSI 20 returns

GPH 0.5483 (conflo=0.3148, confhi=0.6852 0.799

Periodogram 0.528 0.7456

R/S 0.5774 0.8845

Table 2: Hurst coefficient

Figure 2: Approximate entropy comparison

In our data, there is long memory in the squared return series (repre-
senting volatility) but not in the returns series (as observed in general, in
the empirical literature).

In Figure 2 we compare the Approximate Entropy from the returns series
to the Approximate Entropy from a white noise process, form = 2 and r = 1.
The nearness of the curves indicates that PSI20 returns have a high degree
of unpredictability.

For the q-triplet, the reference value is 1 and we have:

• qrel = 1 for the PSI20 returns (the fact that there are negative cor-
relations in the returns indicates that there is no long memory) and
qrel = 1.5 in the squared returns, indicating long memory in volatility;
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Figure 3: Multifractal spectrum
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• qstat = 1.44 (either using a maximum likelihood method or using
the scaling based method), which indicates rougher paths than in the
Gaussian reference case;

• qsens = 0.541 (obtained using the Multifractal Spectrum estimated
for the PSI20 returns and a third order polynomial approximation,
presented in Figure 3); we have qsens < 1 which means that the return
series is sensitive to initial conditions (as opposed to insensitivity if
qsens > 1).

4.2 Wavelet Leaders Entropy

There is an inverse relation between the pointwise Hölder exponent and
the pointwise wavelet leaders entropy as we pointed out before. We com-
puted the wavelet coefficients considering an orthogonal decimated discrete
wavelet transform, our mother wavelet is a Daubechies with three vanish-
ing moments. After computing the wavelet leader coefficients for the return
series, we estimate the temporal evolution of the pointwise wavelet leaders
entropy.

The entropy is considered to be the maximum when we have the most
uncertain situation. Wavelet leaders values near log2(8) (8 is the number of
scales from the wavelet decomposition) indicate high regularity in the signal,
while values near zero indicate low regularity. The temporal evolution of
regularity allows to identify crisis: financial crisis of 2008 and subsequent
local minimums in PSI20 returns. Those dates are indicated in the figure. In
fact, this entropy presents sharp peaks at these temporal moments, (when
we obtain values near log2 8 for the pointwise wavelet leaders entropy, we
expect an irregularity in the signal).

5 Concluding remarks

In our estimations, we find that the PSI20 returns series is highly unpre-
dictable, rougher than a normally distributed series and has no long memory
(but has a persistent volatility). These characteristics are typical findings
in an efficient market.

The analysis of local regularity, using wavelet leaders, allows to identify
the moments of crash in the Portuguese market as those where a peak, in
the degree of irregularity, is attained. So, this technique may be seen as a
mean to identify those kind of events.
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Figure 4: Wavelet leaders entropy
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