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Abstract-Aquifers are examples of physical systems in which several phenomenologies and non-linear processes 
are developed, and they are highly difficult to be described. This kind of systems are depicted by attributes like 
the interactions between physical processes in a wide variety of scales, lithology and porous media anisotropies, 
heterogeneous patterns of fluid dynamics, and so on. Before this complex scenery, engineers and practitioners 
constantly should make decisions and to build mechanisms for understanding and use aquifers. The following 
manuscript shows some ideas about the analysis of complex systems and exhibiting a few fractal tools, highly 
useful for their applications in geophysics and groundwater systems analysis.  
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I. INTRODUCTION 
 

In the face of growing population, the need to explore and take advantage of water supply sources, alternating with 
traditional surface water sources, is taken for granted. In Colombia, the exploitation of groundwater began several 
years ago by regional autonomous corporations and some private groups. They have been responsible for regulating 
this resource.  However, it has been demonstrated in professional practice that the techniques used for the exploration, 
analysis and modeling of the water resources identified on underground sources are not adjusted to the complexities 
that participate in the dynamics of groundwater flow. For instance, the phenomena associated with the flow and 
transport of solutes from a wetland to aquifers are influenced by a large number of factors, among them there are 
heterogeneities in the porous medium and complex interactions between underground and surface water flows [1]As 
a result of such interactions, intrinsic structures are formed by the flow and the transport of groundwater and complex 
spatial patterns emerge that cannot be clearly discerned and to make decisions about their behavior and preservation 
is very hard [2]. 
 

In order to understand the behavior of physical properties in complex systems such as is identified in groundwater 
sources, new and advances techniques have evolved in the last years in the field of geophysical inspection. Moreover, 
new insights have been discovered into this kind of patterns; for instance, the relationship between spatial and temporal 
scales. These scaling properties represent the dependence of the physical (or mechanical) system to a wide range of 
scales on which their properties interrelate. From the first studies of the scaling properties, they have result important 
constant dimensionless linking the forces acting on a fluid (e.g. the Reynolds number relate viscous forces and inertial 
forces, or the Capillarity number relate viscous forces and surface tension in a porous medium). Another perspective 
of the scaling properties in geophysical patterns can be seen through the study of their geometrical properties. In this 
case, we are interested to understand how they are transformed changing the scales of observation. If the properties of 
study object are unchangeable on the scale, you may be dealing with a fractal object [3] 
 

Fractal objects are defined as evolving symmetries, considering they are self-similar, or invariants on the scales 
they are observed. The physical nature of these fractal objects and how they are formed into geophysical processes 
are current research; however, some studies have determined that there may be a mechanism similar to that of observed 
in the study of phase transitions [4] [5]. Applications of phase transitions into our context provide a group of innovative 
tools for: (i) explaining how preferential flow is formed on a porous medium, ii) understanding how interactions are 
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emerged between the scales of the observed physical process, and iii) providing information on the space organization 
- temporal fractal structures found in the general theory of groundwater flow. 
 

Based on our literature inspection, there is a limited knowledge about the groundwater flow properties and 
applications for modeling sceneries with high precisions are still a scientific challenge. In current deterministic models, 
hydraulics properties of the porous media (i.e. conductivity, porosity, water content) are characterized and they are 
considered to be homogeneous in the whole space. In stochastic models, heterogeneities are better described, but some 
statistical assumptions are necessary to be considered (i.e. stationarity, ergodicity or normality). Another kind of 
models, based on fractal theory, are more efficient and effective to explain heterogeneities and relations among scales. 
These models have a less number of parameters in their mathematical structures and they preserved the geometrical 
properties of observed patterns [6] [7] [8]. In this paper, we are going to show some insight about two models based 
on fractal theory and how they can be approach for understanding heterogeneities and physical properties in aquifers. 
  
 
  

II. METHODS. 
 

a. Fractal – Multifractal Approach  
 

Concepts of fractals and multifractals were formally introduced by Mandelbrot [9] in order to explain the behavior 
of complex geometric shapes. Fractals are defined as geometric patterns repeating themselves over a wide range of 
scales (self-similarity) and their scaling properties are represented by power laws. Moreover, multifractals are also 
geometric objects with self-similar properties but those properties cannot be described by a unique power law [10]. 
Either fractals or multifractals are used for the description of physical systems heterogeneity or they have been very 
useful in a wide number of applications related to the study of porous media [6] [11] [12] [13] 
 

Among the models that use concepts from the fractal and multifractal theory, the Fractal – Multifractal (FM) 
approach is highlight here. This model was introduced by Puente, (1996), [10].  For the deterministic description of 
rainfall fields but its applications have been extended to the study of solute transport processes in porous media [11]. 
In the FM approach, observations are constructed through projections from a multifractal measure which lies in the 
geometrical space of a Fractal Interpolation Function (FIF). These functions were initially worked by Barnsley [2] as 
an application of Iterated Function Systems (IFS). However, [10] took Barnsley’s ideas exploring the behavior of the 
statistical distribution of points that form the IFS. As a result, a new approach for geophysical patterns was evolved.  
 

During the construction of FIF in the Թଶ plane, two statistical measure are generated when the relative frequencies 
of the x and y axes are counted. Given the continuity of the FIF, the y-axis frequencies are interpreted as a generated 
measure from the x-axis frequencies through the transformation equation f୸ሺxሻ ൌ y. This interpretation is alike to the 
concept of generated probability distributions, commonly used for engineering applications (e.g. for getting random 
numbers). Depending on how the FIF points are distributed in the Թଶ (Equation 1) plane and the parameters are stated, 
these generated measured can possess multifractals properties highly well defined. 
 

In order to get a unidimensional generated measure with the FM model, the FIF should be defined for the N ൅ 1 
points in the Թଶ (Equation 2) plane and for all N affine contractile maps of the form:  
 

W୬ ቀ
x
yቁ ൌ ൬

a୬ 0
c୬ d୬

൰ ⋅ ቀ
x
yቁ ൅ ቀ

e୬
f୬
ቁ ൌ A ⋅ x ൅ t					for				n ൌ 1…N 

Equation 1 

Under the following restrictions: 
 
 

W୬ ቀ
x଴
y଴
ቁ ൌ ቀ
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ቁ 																			0 ൑ d୬ ൑ 1 

Equation 2 
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In this model, ሼa୬, c୬, d୬, e୬, f୬ሽ are the FM-approach parameters which can be derived by the model restrictions. 
However, the parameter  d୬ is bounded on ሾ0,1ሿ and defined by the modeler. When all the model conditions are 
satisfied, there exists a unique “fix point” representing by the G-plot (Equation 3) of the FIF f: x → y, such that G ൌ
ሼሺx, fሺxሻሻ|x ∈ Թ, y ∈ Թሽ is obtained by an iterative procedure defined under the construction of affine contractile maps: 
 

G ൌ ⋃
୬ୀଵ

୒
W୬ሺGሻ 

Equation 3 

 
If a rotation θ  is applied to the points defined by the affine contractile maps, a new parameter evolves in the model 

and also new complex patterns emerge. The definitions of projections of (multifractal) generated measures for 
different values of the angle θ (Equation 4), can be understood as an affine transformation in the Euclidean plane 
W:Թଶ → Թଶ, where W୬ሺxሻ is defined by: 
 

W୬ሺxሻ ൌ A୬ ⋅ x ൅ t୬ 
and 
 

A୬ ൌ ൬
cosሺθሻ െsinሺθ
sinሺθ cosሺθሻ൰ ⋅ ൬

a୬ 0
c୬ d୬

൰
୘

 

Equation 4 

is a matrix which changes the relative space through rotation and contractions. Similarly, the FM approach can be 
extended to the Թଷ (Equation 5) plane if the FIF is defined for the N ൅ 1 points onf Թଷ  (Equation 6) and for the N 
contractile maps of the form: 
 

௡ܹ ቆ
ݔ
ݕ
ݖ
ቇ ൌ ൭

ܽ௡ 0 0
ܿ௡ ݀௡ ݄௡
݇௡ ݈௡ ݉௡

൱ ⋅ ቆ
ݔ
ݕ
ݖ
ቇ ൅ ൭

݁௡
௡݂
݃௡
൱ ൌ ܣ ⋅ ݔ ൅ ݊														ݐ ൌ 1…ܰ 

Equation 5 

 
Under the restrictions: 

 

௡ܹ ൭
଴ݔ
଴ݕ
଴ݖ
൱ ൌ ൭

௡ିଵݔ
௡ିଵݕ
௡ିଵݖ

൱,								 ௡ܹ ൭
ேݔ
ேݕ
ேݖ
൱ ൌ ൭

௡ݔ
௡ݕ
௡ݖ
൱ 

And the spectral norm of, 
 

߰ ൌ ൬
݀௡ ݄௡
݈௡ ݉௡

൰ 

Equation 6 

 
should be less than one, i.e. root square of the maximum value in the product of ߰ (Equation 7) and its transpose ்߰ 
should be less than one: 
 

||߰||ଶ ൌ ඥߣ௠௔௫ሺ்߰߰ሻ ൏ 1 
Equation 7 

 
If the aforementions restrictions are fullfiled, a unique plot ܩ of the FIF results and ܩ ൌ ሼሺݔ, ,ݕ ௭݂ሺݔ, ݔ|ሻሻݕ ∈ Թ, ݕ ∈

Թ, ݖ ∈ Թሽ  (Equation 8) should satisfy 
 

ܩ ൌ ⋃
௡ୀଵ

ே

௡ܹሺܩሻ 

Equation 8 
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The FIF is built with 4 free parameters ሼ݀௡, ݄௡, ݈௡݉௡ሽ and ܰ ൅ 1 points. Nonetheless, the generated measure can 

be also transforms by a rotation parameter ߠ( Equation 9), which is applied the free parameters, such that 
 

௡ܣ ൌ ൬
cosሺߠሻ െsinሺߠ
sinሺߠ ܿosሺߠሻ൰ ⋅ ൬

݀௡ ݄௡
݈௡ ݉௡

൰
்

 

Equation 9 

 
The FM-approach can now be applied in groundwater hydrology to describe highly heterogeneous and intermittent 

observed patterns. In figure 1 is illustrated a generated solute concentration field which exhibits heterogeneity of 
solutes through the porous media (see tridimensional frame). Some other projections of the tridimensional patterns 
are also exhibit in figure 1. One of them is a multifractal pattern (see the ݂ሺݔሻ projection). 
 
To identify the connection between the FM-approach parameters and the physics of porous media is still a research 
problem, however getting a parsimonious (i.e. less parameters) and geometric representation of patterns is already an 
advantage. The kind of geometry that exhibits the FM-approach shows a non-linear dynamics of groundwater 
processes and their representation can optimistically replace the complex non-linear differential equations that are 
used initially to explain their physics. The new stages of the FM-approach should be guided to face more complex 
problems; for instance, getting a space-time framework for describing evolving patterns and of course, the physics of 
parameters.  
 
 

III. RESULTS. 
 

a. Multiplicative Random Cascades 
 

Many of the multifractal models are mathematical constructions that seek to capture the intermittence and irregular 
behavior of natural observables. One of them are the multiplicative random cascades which were initially applied to 
the study of turbulence [14] [15] [16].  These ideas about the description of complex patterns based on multiplicative 
processes allows to be extended to others field of physics. The concept of multiplicative processes is also based on 
the idea of self-similarity, i.e. physical quantities that are composed of themselves. In the construction of multiplicative 
random cascades, the generated measures ܯ௡ሺݔሻ (Equation 10) with density ߩ௡ሺݔሻ are defined by 
 

ሻݔ௡ሺߩ ൌ ∏
௞ୀଵ

௡

ݔ௝భ,…,௝ೖۧۦܹ ∈ Δ௡ሺ ଵ݆, … , ݆௞ሻ 

Equation 10 

 
where ܹۦ௝భ,…,௝ೖۧ are positive iid r.v. (independent and identically distributed random variable). Being  ܹۦ௝భ,…,௝ೖۧa 

random variable, the name of multiplicative random cascade is now well defined. 
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Fig. 1. The tridimensional frame shows a solute concentration field in a porous media which is generated by the 
parameters ߠ ൌ 90∘, ݀௡ ൌ 0.5, ݄௡ ൌ 0.0, ݈௡ ൌ 0.0, ݉௡ ൌ 0.5 and FIF points:  ݌ଵ ൌ ሼ0,0,0ሽ, ݌ଶ ൌ ሼ0.5,0.2,1ሽ, ݌ଷ ൌ
ሼ1,0,0ሽ. To the left and below the tridimensional frame are exhibited generated measured ݂ ௭ሺݔሻ ൌ ݂ሺݔሻ, ௭݂ሺݕሻ ൌ ݂ሺݕሻ 
y ௫݂,௬ሺݖሻ ൌ ݂ሺݖሻ (Equation 11), and they result during the building process of the FIF. 
  

ܾ ൌ ∏
௜ୀଵ

ௗ
ܾ௜								݀ ൏ 1 

Equation 11 

 
Where  ௜ܾ represents the number of subdivisions in every step of the cascade constructions. The sub-cubes under 

݊ subdivisions are denoted by Δ௡௜  and its length by ܮ௡. Initially, the ݀-dimensional ሾ0, ଴ܮ଴ܯ ଴ሿௗ cube have a massܮ
ௗ 

and to the first sub-divisions of cubes are assigned a mass ߤଵሺΔଵ
௜ ሻ ൌ ଴ܮ଴ܯ

ௗ
ଵܹ
௜/ܾ for ݅ ൌ ሼ1,2,… , ܾሽ. In this 

mathematical expression, ௡ܹ
௜ represents the generator of iid r.v. For every subdivision Δ௡௜  of the cascade, a mass 

௡ሺΔ௡௜ߤ ሻ is associated and it is defined by the product between the starting mass ܯ଴ܮ଴
ௗ and the mathematical product 

of every ௡ܹ
௜ related to the sub-subes Δ௡௜  (Equation 12), such that: 

 

௡ሺΔ௡௜ߤ ሻ ൌ
଴ܮ଴ܯ

ௗ

ܾ௡
∏
௝ିଵ

௡

௝ܹ
௜ 

Equation 12 

 
The limit mass ߤஶሺΔ௡௜ ሻ is obtained when ݊ → ∞	(Equation 13), satisfying the recursive equation: 

 

ஶሺΔ௡௜ߤ ሻ ൌ ௡ሺΔ௡௜ߤ ሻ
,ஶሺሾ0ߤ ଴ሿௗሻܮ

ܴ଴ܮ଴
ௗ ൌ ௡ሺΔ௡௜ߤ ሻܼஶሺ݅ሻ														݅ ൌ ሼ1,2, … , ܾ௡ሽ 

Equation 13 
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Where ܼஶሺ݅ሻ is statistically independent of ߤ௡ሺΔ௡௜ ሻ and represents the high-frequency component in the structure 
of the random cascade (small scale elements). On the other hand, ߤ௡ሺΔ௡௜ ሻ represents the low-frequency elements in 
the random cascade and joint to ܼஶሺ݅ሻ, highly intermittent patterns are built. In Over and Gupta’s model, the mass is 
conserved during the cascade construction and for getting such a conservation is necessary that the expected value of  
the random generator equals one, i.e. . ܧሾܹሿ ൌ 1 and ܧሾܼஶሿ ൌ 1.  
 

The theory of random cascades can be also applied in the study of transport processes in aquifers, in the same way 
as it was illustrated for the FM approach. In figure 2 is illustrated an application case of multiplicative random cascade 
with Over and Gupta’s model. This cascade is simulated for the parameters ݀ ൌ 2 and ܾ ൌ 4. Based on the results of 
the model high spatial intermittency of the solute concentration field is also obtained, likewise, high heterogeneity of 
the physical medium is also achieved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2. Ilustration of a multipicative random cascade simulation with the Over and Gupta’s model for getting a solute 
concentration field in a porous media. This simulation was generated for a re-scale range ݖ ൌ ሾ0, 10ሿ and the used 
parameters were ݀ ൌ 2, ܾ ൌ ଴ଶܮ଴ܯ ,4 ൌ 1 and ܧሾܹሿ ൌ 1. The upper frame shows a plan view of the tridimensional 
object illustrated in the lower frame. Both frames are illustrating the intermittency and heterogeneity of a solute 
concentration field. 
 
 

IV. CONCLUSIONS. 
 

Multifractal formalism for aquifer systems modelling have been widely applied by scientists and practitioners for 
characterizing groundwater observations. From the results of various studies in this research field, the progress has 
been outstanding for understanding nonlinear physical processes with high heterogeneity as the porous media fields 
exhibit. However, the progress of the models is still under construction and several weaknesses should be solved for 
getting a better insight of how groundwater processes work. As an example of the challenges is to understand the 
transport of porous media and its relationship on different observations scales. 
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Some of the conceptual models that have been introduced here for understanding heterogeneity in aquifers and 
this intro have been shown in order to generate concerns in readers and to anticipate questions about the usefulness of 
them to face problems in groundwater engineering. Nevertheless, it is important to have on consideration that the 
simplicity of these models and their connection with the geometric properties of patterns are attractive and innovative. 
Perhaps through a clear understanding of the geometric and symmetry breaking properties of the physical system, we 
will be able to improve our capability for prediction.  
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