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Abstract 
In this study, we develop a new meta-heuristic-based approach to solve a mul-
ti-objective optimization problem, namely the reliability-redundancy alloca-
tion problem (RRAP). Further, we develop a new simulation process to gen-
erate practical tools for designing reliable series-parallel systems. Because the 
RRAP is an NP-hard problem, conventional techniques or heuristics cannot be 
used to find the optimal solution. We propose a genetic algorithm (GA)-based 
hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), 
to find the optimal solution. A simulation process based on the HGA is de-
veloped to obtain different alternative solutions that are required to generate 
application tools for optimal design of reliable series-parallel systems. Finally, 
a practical case study regarding security control of a gas turbine in the over-
speed state is presented to validate the proposed algorithm. 
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1. Introduction 

Optimization of series-parallel systems is an important aspect of equipment de-
sign strategies. The optimized system characteristics, such as reliability, cost, 
weight, and volume contribute toward designing the best machine. This ap-
proach is challenging because the reliability needs to be maximized whereas the 
other objective functions need to be minimized. In practice, system reliability 
optimization is critical, and over the last two decades, considerable effort has 
been devoted toward the development of reliability criteria for quantifying the 
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nature of generation, transmission, and circulation in composite system frame-
works. To improve component reliability and implement redundancy while 
achieving a trade-off between system performance and resources, reliability de-
sign that aims to establish an optimal system-level configuration has long been 
considered an important advantage in reliability engineering. At present, system 
reliability is of considerable research significance, as engineering fields involve 
continual advancements in fixed systems and applications with increasing levels 
of complexity. Thus, it is imperative for production systems to perform satisfac-
torily during their expected lifespan. However, failure is an inevitable pheno-
menon associated with technological advancement of the equipment used in 
various industries. The reliability-redundancy allocation problem (RRAP) has 
been studied to optimize system reliability on the basis of the redundancy alloca-
tion problem (RAP) [1]. The RRAP has attracted considerable attention from 
the viewpoint of developing heuristic optimization algorithms. This paper fo-
cuses on an RRAP with the objective of maximizing system reliability under 
nonlinear constraints, such as system cost, weight, and volume. The RRAP has 
been shown to be an NP-hard problem, and various optimization approaches 
have been proposed to solve it. These methods, which are called meta-heuristic 
methods, have been widely researched and implemented. They can obtain feasi-
ble solutions within limited computing time. The main goal of RRAPs is to select 
the levels of redundancy and component reliability for maximizing and improv-
ing system reliability and performance. RRAPs are useful for designing not only 
systems that are taken together on a large scale but also systems produced in 
large-scale industrial operation using off-the-shelf components. 

2. Literature Review 

A reliability-redundancy optimization problem can be formulated using com-
ponents and levels of redundancy to maximize some objective function, given 
system-level constraints on reliability, cost, and/or weight. The problem of 
maximizing system reliability through redundancy and component reliability 
selection is called the reliability-redundancy allocation problem (RRAP). Relia-
bility optimization has been the subject of several studies by Kuo et al. [1], [2], 
[3]. Forsthoffer [4], Kundur [5], Hejzlar [6], and Seebgrets [7] conducted studies 
on overspeed protection, such as analysis of the instability of steam turbines and 
analysis of the reliability of wind turbines. Dhingra [8] developed an application 
of the reliability-redundancy optimization problem with regard to overspeed 
protection by using a multi-objective approach to maximize system reliability and 
minimize consumption of resources (cost, weight, and volume). This approach 
involves a goal programming formulation and a goal achievement method for ge-
nerating Pareto optimal solutions. Control and overspeed protection for a gas 
turbine are nearly the same as those for a steam turbine. A gas turbine operates 
at a higher temperature than a steam turbine; hence, it requires closer control, 
called control sequencing. Sequencing allows automatic control of the gas tur-
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bine. Fetanat et al. [9] proposed an optimal design for control and overspeed 
protection of gas turbine by means of reliability-redundancy optimization 
achieved using a new type of harmony search algorithm (HSA) known as the 
elitism Box-Muller harmony search algorithm (EBMHSA). Dhingra and Rao 
[10] used goal programming and goal attainment formulations under fuzziness 
in a multi-objective reliability apportionment problem subject to several design 
constraints. Rao proposed three methods for finding the optimal solution of 
each objective function: a method for determining reliability, a method for mi-
nimizing cost, and a method for controlling weight. Rao’s approach has been 
developed to optimize redundant series-parallel systems, all components of 
which are time-dependent. The proposed model for simulation is the overspeed 
control system for a gas turbine engine. This model, proposed by Dhingra, is a 
combination of mechanical and electrical systems. Overspeed control is the first 
step against excessive speed. In general, the emergency reset of the system is de-
signed independent of the overspeed control. Hence, high-reliability operation 
of control valves is considered. In the normal working mode, the control valves 
are opened sequentially [5]. Luus [11] proposed a new non-linear integer pro-
gramming method that considers the component reliability to be fixed. Howev-
er, a more general problem is one where the optimal redundancy in each stage is 
determined to obtain the maximum system reliability. To solve the RRAP, sever-
al global optimization methods as well as heuristic and meta-heuristic methods 
have been proposed in the literature, including the Lagrangian multiplier me-
thod, branch and bound method, and linear programming [3] [8] [12] [13]. 
These approaches do not guarantee exact optimal solutions but achieve reasona-
bly good solutions for complex problems with relatively short computing time. 
Heuristic techniques, including genetic algorithms, require derivatives for all 
non-linear constraint functions, which are not derived easily because of the high 
computational complexity. Yokota et al. [14] and Hsieh et al. [15] applied genet-
ic algorithms (GA) to mixed-integer reliability optimization problems. Zhao et 
al. [16] developed a hybrid GA with a flexible allowance technique for solving 
constrained engineering design optimization problems. Kanagaraj et al. [17] and 
Ghodrati and Lofti [18] developed a hybrid cuckoo search (CS)/GA algorithm to 
solve reliability-redundancy optimization problems and global optimization 
problems, respectively. Gen and Yun [19] developed a soft computing approach 
for solving various reliability optimization problems. This method combines 
rough search techniques and local search techniques to prevent premature con-
vergence of the solution. Zou et al. [20] proposed a global harmony search algo-
rithm for solving bridge and overspeed protection system optimization problems 
by combining the harmony search algorithm with concepts from particle swarm 
optimization. Different programming and evolutionary optimization techniques 
have been adopted to optimize different types of RRAPs, e.g., GA [15] and a new 
interpretation and formulation of the RRAP [21] using a new mixed strategy and 
a modified version of the genetic algorithm (MVGA), which shows distinct ad-
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vantages compared to traditional approaches. Afonso et al. [22] proposed a 
modified version of the imperialist competitive algorithm (ICA) and demonstrated 
its capabilities by comparing its results with the best-known results of different 
benchmarks. Quy [23] developed a new method to optimize a multi-objective 
model in certain mechanical systems by using the fuzzy multi-objective method. 
His approach is based on the algorithm proposed by Rao [10], and he applied it to 
the modeling and analysis of the overspeed control system of a gas turbine engine. 
All the components of this model are time-dependent. The performance of the 
algorithm was verified by programmed simulation of the above-mentioned 
model. In summary, Dhingra [8], Rao and Dhingra [10], and Quy [23] devel-
oped effective multi-objective fuzzy optimization techniques for engineering de-
sign. In particular, they adopted fuzzy programming, which is a powerful tech-
nique for solving optimization problems with fuzzy parameters. However, the 
use of uncertain information for reliability allocation requires further investiga-
tion. Moreover, they treated component risk/cost functions as continuous. Thus, 
no general method for solving the component reinforcement problem with dis-
continuous risk/cost functions has been proposed thus far. In addition, the three 
above-mentioned studies did not adopt any random-search-based global opti-
mization methods. In other words, the entire family of meta-heuristics that can 
efficiently solve highly nonlinear nonconvex mixed-integer optimization prob-
lems has been overlooked. The major drawback of these studies is that none of 
them has developed a practical tool for designing actual components with dis-
tinct physical properties, such as cost, weight, volume, and reliability. In this pa-
per, we present a hybrid GA (HGA) approach based on the redundancy alloca-
tion problem to find the number of redundant components that either maximize 
reliability or minimize cost, weight, and volume under various resource con-
straints. The computational results of our approach are compared with those of 
previously proposed algorithms. 

3. Reliability-Redundancy Allocation Problems (RRAPs) 

In this study, a reliability-redundancy allocation problem of minimizing the 
multi-objective function [−f1, f2, f3] subject to several nonlinear design con-
straints can be stated as a nonlinear mixed-integer programming model. The 
multi-objective formulation was obtained by applying cost and weight con-
straints to an objective function. In other words, the general problem of reliabil-
ity and redundancy is assigned to each of the subsystems such that the system 
reliability, cost, and weight are optimized. The problem is overspeed protection 
of a gas turbine system with a time-related cost function, and the multi-objective 
RRAP model is as follows: 

( ) ( ) ( )max , & min , & min ,Rs r n Cs r n Ws r n  

( )Subject to : , , 1, ,j jg r n a j m≤ =   

1 10, 1,2, , 4,i in i n Z +≤ ≤ = ∈  
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60.5 1 10 ,i ir r r− +≤ ≤ − ∈  

Many designers have attempted to improve the reliability of manufacturing 
systems or product components for greater competitiveness in the market. Typ-
ical approaches for achieving higher system reliability include increasing the re-
liability of system components and using redundant components in various 
subsystems of the system [2] [15]. 

4. Mathematical Formulation of the Problem  

The mathematical model of the optimization problem is given by the equations 
below. The system reliability, cost, weight, and product of weight and volume are 
constrained by the design. The resulting multi-objective reliability apportionment 
problem is as follows: find n and r that minimize the multi-objective function [−f1, 
f2, f3] subject to ( ), ,  1, ,j jg r n a j m≤ =  . Figure 1 shows a typical example of a 
series-parallel system configuration with k-out-of-n subsystem reliabilities 
where  

( )1 , is the system reliabilityf r n                   (1) 

( )2 , is the total system costf r n                   (2) 

( )3 , is the total system weightf r n                  (3) 
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Figure 1. General series-parallel redundancy system. 
 

Notation 
ri: Reliability of component in subsystem i; 
ni: Number of redundant components in subsystem i; 
r, n: Vectors of ri and ni; 
Rs: System reliability; 
N: Number of subsystems in the system; 
f1: Objective function for system reliability; 
f2: Objective function for system cost; 
f3: Objective function for system weight; 
gi: (.): Constraint function #j; 
aj: Constraint limit #j; 
m: Number of constraints. 

5. Methodology Framework 

This study aims to propose a new algorithm that can be applied to optimization 
problems such that system reliability is maximized while system cost and system 
weight are minimized. The reliability, cost, and weight are subject to four nonli-
near resource constraints, and the optimal levels of the reliability of component, 
ri, and the number of redundant components, ni, are to be determined at each 
stage i of the mechanical system.  

Before introducing the RRAP, we present the following assumptions and no-
tations that have been used throughout the entire paper. The hybrid function al-
lows the optimization algorithm to identify the solution of the redundancy 
problem that achieves the optimal trade-off between the optimization objectives 
from several optimal solutions. We performed 10 simulations for every experi-
ment and used the best result among the 10 reliability values obtained. The best 
configuration of each point corresponding to the largest reliability value is given 
with the corresponding cost, weight, and weight values. 

Assumptions  
• The supply of components is unlimited. 
• The weight and volume of the components are known and deterministic. 
• All the redundant components of individual subsystems have different val-

ues, and every branch of the system has a different number of components. 
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• The failure rate of the components in each subsystem is constant. 
• Failed components do not damage the system and are not repaired. 
• All redundancies are active: the hazard function is the same regardless of 

whether it is in use. 
• Failures of individual components are independent of one another but de-

pendent on the number of working elements. 
As mentioned above, few studies have reported the use of HGA for reliability 

allocation optimization with time-dependent reliability. We need to check 
whether our approach of using only HGA can guarantee the location of the op-
timal solution and whether the final solution obtained by the proposed HGA is 
superior to that obtained by existing methods.  

Figure 2 shows the flowchart of the proposed algorithm. The HGA proce-
dures that implement our methodology are illustrated. The proposed algorithm 
involves the following steps:  

1) Define the functions of the design problem (Rs, Ws, Vs, and Cs). 
2) Define the nonlinear constraints. 
3) Define the lower bound and upper bound for ri and ni. 
4) Chose the optimization algorithm (fmincon, fminmax, GA, and HGA). 
5) Solve the optimization problem.  
6) Calculate the optimal values (Rs, Cs, and Ws). 
The hybrid GA is a combination of fmincon and GA. GA is used to find the 

global optima for optimization problems. “Fmincon” uses gradient information 
to facilitate rapid convergence. “HybridFcn” allows the GA to find the valley 
containing the global minimum. Then, fmincon is used to rapidly obtain the 
minimum of this valley. A hybrid function is an optimization function that runs 
after the GA terminates in order to improve the value of the fitness function. 
The hybrid function uses the final point from the GA as its initial point. 

This study consists of two parts. In the first part, we identify the approach for 
solving the problem by using MATLAB code and compare the results with pre-
vious results [23] to determine the number of redundant components in stage i 
and the reliability for each component. The second part involves a novel contri-
bution: we develop a model for the entire system with the desired level of relia-
bility. Specifically, we develop a simulation procedure and implement it with 
different numbers of components for each stage with different values of each 
component. We use this novel approach to determine the converged value of 
system reliability until we obtain the values of ni and ri corresponding to value of 
the maximum reliability. Toward this end, we need to perform optimization. For 
the general structure of the network, we fixed the system reliability to a certain 
level, i.e., greater than or equal to 0.95.  

We implemented a single-objective function with nonlinear constraints and 
tested it using two methods (ni is an integer in our problem). The results are 
summarized in Table 1 and Table 2. In addition, we implemented a mul-
ti-objective function. The initial results were obtained for four functions, and ri 
and ni were randomly set to evaluate each function. 
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Figure 2. Flowchart of proposed simulation procedure. 

 
Table 1. Simulation results for single-objective function using fmincon optimization 
method. 

Objective Stage Reliability Component Simulation Result 

Maximize 
System 

Reliability 

1 
2 
3 
4 

0.8998 
0.8680 
0.9439 
0.8728 

5 
6 
4 
6 

Rs = 0.9999 
Cs = 419.2534 
Ws = 541.2671 

Vs = 217 

Minimize 
System 

Cost 

1 
2 
3 
4 

0.5846 
0.5184 
0.6988 
0.5252 

5 
6 
4 
5 

Rs = 0.9439 
Cs = 36.0616 

Ws = 475.1981 
Vs = 195 

Minimize 
System 
Weight 

1 
2 
3 
4 

0.9534 
0.9313 
0.9770 
0.9351 

1 
2 
1 
2 

Rs = 0.9232 
Cs = 422.7688 
Ws = 60.8431 

Vs = 20 

Multi-objective  
Functions 

1 
2 
3 
4 

0.8493 
0.7980 
0.9147 
0.8060 

3 
3 
2 
3 

Rs = 0.9740 
Cs = 109.3931 
Ws = 147.0485 

Vs = 57 
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Table 2. Simulation results for single-objective function using fminimax optimization 
method. 

Objective Stage Reliability Component Simulation Result 

Maximize 
System 

Reliability 

1 
2 
3 
4 

0.9001 
0.8685 
0.9431 
0.8732 

5 
6 
4 
6 

Rs = 0.9999 
Cs = 420.2802 
Ws = 541.2671 

Vs = 217 

Minimize 
System 

Cost 

1 
2 
3 
4 

0.5846 
0.5184 
0.6988 
0.5252 

5 
6 
4 
5 

Rs = 0.9439 
Cs = 36.0616 

Ws = 475.1981 
Vs = 195 

Minimize 
System 
Weight 

1 
2 
3 
4 

0.9534 
0.9313 
0.9770 
0.9351 

1 
2 
1 
2 

Rs = 0.9232 
Cs = 422.7688 
Ws = 60.8431 

Vs = 20 

Multi-objective  
Functions 

1 
2 
3 
4 

0.8493 
0.7980 
0.9148 
0.8059 

3 
3 
2 
3 

Rs = 0.9740 
Cs = 109.3850 
Ws = 147.0485 

Vs = 57 

 
First step: We implemented a multi-objective function, and we defined the 

general objective function as follows: 

1 2 310 400 500f f f f= + + ; (new definition) 
The above-mentioned has three parts: reliability, cost, and weight. This equa-

tion maximizes reliability but minimizes cost and weight. It is a normalized form 
of the objective function because we consider the upper bound of each objective. 
We penalized the reliability (with a value of 10) for greater emphasis. In addi-
tion, we set the upper bounds for Cs and Ws as 400 and 500, respectively. 
Therefore, if we divide by these values and take the sum, we will always get a 
number less than one. Thus, we normalized the functions (f1, f2, and f3). 

Second step: We used fmincon and fminmax to solve the objective function. 
Third step: We used the GA toolbox and applied this algorithm to our single- 

and multi-objective function problems. The results are summarized in Table 3.  
Fourth step: We applied the GA to a new type of multi-objective function and 

evaluated the results.  
Fifth step: We applied the global multi-objective GA to the problem and ob-

tained 70 sets of Pareto optimal solutions. 
Last step: We applied HGA optimization to single- and multiple-objective 

functions on the basis of our first approach. The results are summarized in Ta-
ble 4. 

Our multi-objective function aims to minimize cost and weight in the first 
approach. The results of our optimization give us ni and ri for each stage as well 
as for the entire system, as shown in the final result table. In this study, we per-
formed optimization using GA and HGA. We used the same approach as that 
for obtaining a constrained minimum of a scalar function of several variables 
starting at an initial estimate. This is generally referred to as constrained nonli-
near optimization or nonlinear programming (fmincon). We used different op-
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timization approaches and finally used HGA. Specifically, we employed GA and 
fmincon to implement HGA using the first approach by varying ri and ni to 
achieve the desired system reliability with the objective function. Further, we 
fixed the system reliability Rs to obtain a system with minimum cost and weight 
in order to determine the structure of our new design in the second approach, 
which minimizes the worst-case value of a set of multivariable functions, starting 
at an initial estimate. The values may be subject to constraints. This is generally 
referred to as the minimax problem (fminmax).  

We also varied the level of system reliability to show how we can select the de-
sired system reliability; accordingly, we can change the structure of the entire 
system. In this step, we used GA and MATLAB toolbox. Here, we do not max-
imize the system reliability Rs but we want Rs = A, and we want to determine the 
system structure for achieving the minimum cost and weight. We assumed that 
ni is a continuous value. In this case, the first method of optimization using 
fmincon is summarized in Table 5. In addition, we can see the result of the 
second approach of optimization, i.e., fminmax. The results of our contribution 
are summarized in Tables 6-8, which show the different values obtained after we 
fixed the system reliability.  

We tested various algorithms to identify the best ones, which were found to be 
GA or HGA. 
 
Table 3. Simulation results for single-objective function using GA optimization method. 

Objective Stage Reliability Component Simulation Result 

Maximize 
System 

Reliability 

1 
2 
3 
4 

0.8902 
0.8603 
0.9500 
0.8806 

5 
6 
4 
5 

Rs = 0.9999 
Cs = 389.3556 
Ws = 475.1981 

Vs = 195 

Minimize 
System 

Cost 

1 
2 
3 
4 

0.6106 
0.5550 
0.6509 
0.5465 

5 
5 
5 
5 

Rs = 0.9501 
Cs = 37.4312 

Ws = 471.1963 
Vs = 200 

Minimize 
System 
Weight 

1 
2 
3 
4 

0.8977 
0.9537 
0.9732 
0.8987 

2 
2 
1 
2 

Rs = 0.9511 
Cs = 414.0766 
Ws = 72.9236 

Vs = 23 

Multi-objective  
Functions 

1 
2 
3 
4 

0.8504 
0.7956 
0.9167 
0.8049 

3 
3 
2 
3 

Rs = 0.9740 
Cs = 109.1462 
Ws = 147.0485 

Vs = 57 

 
Table 4. Simulation results for single-objective function using hybrid optimization me-
thod. 

Objective Stage Reliability Component Simulation Result 

Maximize 
System 

Reliability 

1 
2 
3 
4 

0.8971  
0.8659  
0.9358  
0.8769 

5 
6 
4 
5 

Rs = 0.9999 
Cs = 381.5582 
Ws = 475.1981 

Vs = 195 
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Continued 

Minimize 
System 

Cost 

1 
2 
3 
4 

0.7997 
0.7896 
0.7154 
0.8393 

4 
4 
5 
4 

Rs = 0.9939 
Cs = 133.4582 
Ws = 346.2031 

Vs = 155 

Minimize 
System 
Weight 

1 
2 
3 
4 

0.9668 
0.8715 
0.9572 
0.9382 

2 
2 
2 
2 

Rs = 0.9769 
Cs = 440.5520 
Ws = 89.0309 

Vs = 32 

Multi-objective Func-
tions 

1 
2 
3 
4 

0.8536 
0.7977 
0.9189 
0.8133 

3 
3 
2 
3 

Rs = 0.9757 
Cs = 114.0175 
Ws = 147.0485 

Vs = 57 

 
Table 5. Simulation results using fmincon optimization method when system reliability 
Rs = A. 

Objective Stage Reliability Component Simulation Result 

Minimize 
System 

Cost 

1 
2 
3 
4 

0.5846 
0.5184 
0.6988 
0.5252 

5 
6 
4 
5 

Rs = 0.9500 
Cs = 36.0616 

Ws = 475.1981 
Vs = 195 

Minimize 
System 
Weight 

1 
2 
3 
4 

0.9534 
0.9313 
0.9770 
0.9351 

1 
2 
1 
2 

Rs = 0.9500 
Cs = 422.7688 
Ws = 60.8431 

Vs = 20 

Multi-objective  
Functions 

(Cost + Weight) 

1 
2 
3 
4 

0.8326 
0.7755 
0.9053 
0.7840 

3 
3 
2 
3 

Rs = 0.9500 
Cs = 91.7003 

Ws = 147.0485 
Vs = 57 

 
Table 6. Simulation results using fminimax optimization method when system reliability 
Rs = A. 

Objective Stage Reliability Component Simulation Result 

Minimize 
System 

Cost 

1 
2 
3 
4 

0.5846 
0.5184 
0.6988 
0.5252 

5 
6 
4 
5 

Rs = 0.9500 
Cs = 36.0616 

Ws = 475.1981 
Vs = 195 

Minimize 
System Weight 

1 
2 
3 
4 

0.9534 
0.9313 
0.9770 
0.9351 

1 
2 
1 
2 

Rs = 0.9500 
Cs = 422.7688 
Ws = 60.8431 

Vs = 20 

Multi-objective  
Functions 

(Cost + weight) 

1 
2 
3 
4 

0.8325 
0.7755 
0.9054 
0.7841 

3 
3 
2 
3 

Rs = 0.9500 
Cs = 91.7228 

Ws = 147.0485 
Vs = 57 

 
Table 7. Simulation results using GA optimization method when system reliability Rs = 
A. 

Objective Stage Reliability Component Simulation Result 

Minimize 
System 

Cost 

1 
2 
3 
4 

0.6317 
0.5327 
0.6800 
0.5980 

5 
5 
5 
4 

Rs = 0.9500 
Cs = 37.5962 

Ws = 425.1462 
Vs = 182 
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Continued 

Minimize 
System 
Weight 

1 
2 
3 
4 

0.8925 
0.9369 
0.9720 
0.9440 

2 
2 
1 
2 

Rs = 0.9500 
Cs = 426.6653 
Ws = 72.9236 

Vs = 23 

Multi-objective  
Functions 

(Cost + Weight) 

1 
2 
3 
4 

0.8179 
0.7812 
0.8894 
0.7656 

3 
3 
2 
3 

Rs = 0.9500 
Cs = 83.8740 
Ws = 47.0485 

Vs = 57 

 
Table 8. Simulation results using hybrid optimization method when system reliability Rs 
= A. 

Objective Stage Reliability Component Simulation Result 

Minimize 
System 

Cost 

1 
2 
3 
4 

0.5846 
0.5184 
0.6988 
0.5252 

5 
6 
4 
5 

Rs = 0.9500 
Cs = 36.0616 

Ws = 475.1981 
Vs = 195 

Minimize 
System Weight 

1 
2 
3 
4 

0.9534 
0.9313 
0.9770 
0.9351 

1 
2 
1 
2 

Rs = 0.9500 
Cs = 422.7688 
Ws = 60.8431 

Vs = 20 

Multi-objective Func-
tions 

(Cost + Weight) 

1 
2 
3 
4 

0.8326 
0.7755 
0.9053 
0.7840 

3 
3 
2 
3 

Rs = 0.9500 
Cs = 91.7003 

Ws =147.0485 
Vs = 57 

6. Hybrid Genetic Algorithm (HGA) for Multi-Objective  
Optimization  

Most previous studies have focused on several methods for solving redundancy 
optimization problems. In this study, we develop an approach by considering 
some aspects that have not been considered previously. The mathematical model 
represents the multi-objective HGA with a constraint-handling strategy for 
solving the proposed model. HGA is a meta-heuristic method that is used to 
solve optimization problems efficiently. In this method, first, an initial set of 
random potential solutions including a number of particles is created. Each par-
ticle represents a solution of the problem and has a position and velocity that 
change in each iteration so that better solutions can be obtained. 

7. A Case Study: Overspeed Protection System for a Gas  
Turbine  

To evaluate the performance of the HGA in reliability optimization problems, 
overspeed detection continuously provided by the electrical and mechanical sys-
tems is considered in a case study. The benchmark considered is an overspeed 
protection system for a gas turbine. When overspeed occurs, it is necessary to 
cut off the fuel supply using control valves, i.e., the four valve controllers 
(V1-V4) must close. The control system is modeled as a four-stage series-parallel 
system, as shown in Figure 3.  
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Each stage represents a controller that can be considered as a parallel system. 
All the components of the system have the same failure rate. The equivalent cir-
cuit of the overspeed control system is shown in Figure 4. 

Here, vi is the volume of each component in subsystem i, V is the upper limit 
on the sum of the subsystem products of volume and weight, C is the upper limit 
on the system cost, and W is the upper limit on the system weight. The parame-
ters αi and βi are constants representing the physical characteristics of each 
component in stage i. T is the operating time during which a component must 
not fail. The input parameters of the overspeed protection system for a gas tur-
bine are listed in Table 9. 
 

 
Figure 3. Block diagram of overspeed protection system for gas 
turbine with four valves. 

 

 
Figure 4. Equivalent circuit: four-stage series-parallel system. 

 
Table 9. Design values of different parameters used in overspeed protection system of gas 
turbine. 

Number of stages 4 

Lower limit on Rs 0.95 

Upper limit on cost 400 

Upper limit on weight 500 

Upper limit on volume 250 

Operating time 1000 hours 

Stage 105 αi βi vi wi 

1 1.0 1.5 1 6 

2 2.3 1.5 2 6 

3 0.3 1.5 3 8 

4 2.3 1.5 2 7 
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8. Computational Results and Discussion 

We compared our solutions with those obtained in a previous study [23]. From 
Table 10, it is clear that our HGA approach obtains better solutions for the se-
ries-parallel system compared to the other approaches presented in the litera-
ture. The best fitness and mean fitness of the system cost, system weight, and 
multi-objective functions are shown in Figures 5-7, respectively. 

The mathematical model used for calculating the objective function is em-
ployed to define the solution that guarantees an optimal trade-off between the 
two objectives, and the result is shown in Figure 8. Figure 9 shows the average 
distance between individuals. 

These figures show the number of generations in GA. In addition, the values 
of each objective function in each iteration are shown. The toolbox is employed 
to generate these figures, which can be used to determine the most suitable relia-
bility level that minimizes the total cost, weight, and volume subject to various 
constraints. 

The runs of the HGA were continuously monitored throughout the genera-
tions (Figures 5-7). These plots show the best and mean fitness values of the fit-
ness functions after 100, 100, and 300 generations, respectively. For Figure 5, the 
best fitness is in the range of 38.787 and the mean fitness is in the range of 
38.795. For Figure 6, the best fitness is in the range of 55.9112 and the mean fit-
ness is in the range of 55.9136. For Figure 7, the best fitness is in the range of 
0.462836 and the mean fitness is in the range of 0.462929. From these plots, it 
can easily be observed that the fitness value converges toward the optimal value 
from generation to generation.  
 

Table 10. Comparison of simulation results of optimal solutions of single- and multi-objective function for series-parallel system 
using HGA with other results presented in the literature. 

 Results given in Ref. [23] Results given by hybrid genetic algorithm 

Objective Stage Reliability Component Simulation result Reliability Component Simulation result 

Maximize 
System 

Reliability 

1 
2 
3 
4 

0.866288 
0.850029 
0.918417 
0.913049 

6.0 
6.0 
4.0 
4.0 

Rs = 0.999881 
Cs = 381.12183 
Ws = 485.77850 

Vs = 188.0 

0.8971  
0.8659  
0.9358  
0.8769 

5 
6 
4 
5 

Rs = 0.9999 
Cs = 381.5582 
Ws = 475.1981 

Vs = 195 

Minimize 
System 

Cost 

1 
2 
3 
4 

0.559777 
0.599392 
0.685273 
0.703375 

6.0 
6.0 
4.0 
4.0 

Rs = 0.971340 
Cs = 54.472889 

Ws = 485.778504 
Vs = 188.0 

0.7997 
0.7896 
0.7154 
0.8393 

4 
4 
5 
4 

Rs = 0.9939 
Cs = 133.4582 
Ws = 346.2031 

Vs = 155 

Minimize 
System Weight 

1 
2 
3 
4 

0.864883 
0.944821 
0.905934 
0.880399 

3.0 
2.0 
2.0 
2.0 

Rs = 0.971597 
Cs = 295.029388 
Ws = 107.352295 

Vs = 370 

0.9668 
0.8715 
0.9572 
0.9382 

2 
2 
2 
2 

Rs = 0.9769 
Cs = 440.5520 
Ws = 89.0309 

Vs = 32 

Multi- 
Objective 

Optimization 

1 
2 
3 
4 

0.820009 
0.806433 
0.869349 
0.865680 

4.0 
3.0 
3.0 
2.0 

Rs = 0.971641 
Cs = 119.04067 

Ws = 177.234863 
Vs = 69.0 

0.8536 
0.7977 
0.9189 
0.8133 

3 
3 
2 
3 

Rs = 0.9757 
Cs = 114.0175 
Ws = 147.0485 

Vs = 57 
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Figure 5. Best fitness and mean fitness of the system cost. 

 

 
Figure 6. Best fitness and mean fitness of the system weight. 
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Figure 7. Best fitness and mean fitness of the multi-objective functions. 

 

 
Figure 8. Overall best Pareto front obtained by multi-objective optimization and 
HGA: cost vs. weight and distance of individuals. 

 

 
Figure 9. Average distance between individuals. 
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The upper plot function in Figure 8 is the HGA Pareto function, which plots 
the Pareto front (limited to any three objectives) at every generation. This plot 
shows the trade-off between the two components of f. It is plotted in the objec-
tive function space. The lower plot shows the histogram distances of individuals. 

The upper plot in Figure 9 shows the average distance between individuals for 
each objective, which is a good measure of the diversity of the initial population 
that affects the performance of the HGA. In general, if the diversity is too high 
or too low, the HGA might not perform well. Here, it is obvious that the distance 
does not reach extreme values, so it is considered that the performance is good. 
The lower plot shows the histogram of the parents, which indicates the parents 
that contribute to each generation of children populated by each individual.  

We considered only the case of multi-objective optimization with the HGA 
technique for our contribution, and we generated/calculated the values of Ws, 
Cs, and Vs for 19 values of Rs = A (A = 0.9900, 0.9905, 0.9910, 0.9915, …, 
0.9980, 0.9985, and 0.9990). The results are summarized in Table 11(a). On the 
basis of these tables, we plotted the curves ri for each stage and Cs, Ws, and Vs as 
functions of Rs. Further, we determined the mathematical equation of each of 
these curves. We used the nonlinear regression technique. If the utility of these 
equations is good, we can use them to estimate/calculate the values of r1, r2, r3, r4, 
Cs, Ws, and Vs for any value of Rs (Rs = 0.9900 to 0.9990). Thus, from a practic-
al point of view, these equations are extremely useful. We also obtained the non-
linear regression fitted line plot, which can be used to investigate the relation-
ship between two continuous variables, namely a response variable and a pre-
dictor variable. Thus, we can derive a regression equation and plot the regression 
line. For the copper expansion data, the method determines the type of rela-
tionship with these graphs and the line is fitted as per the requirement of data 
points. Minitab uses the Gauss-Newton algorithm, imposes a maximum of 200 
iterations, and employs a tolerance of 0.00001 to achieve convergence. It displays 
a plot of the data overlaid with a curve illustrating the best-fitting equation based 
on our expectation function. The plot of the copper expansion data indicates 
that the specified rational polynomial is a good fit for the data. The points are 
fairly close to the curve and follow the curve without any systematic deviations 
from it. If we fit these models, differences will be observed in the desired values 
as well as in the corresponding points in the graph. This is because the fitted 
value is given, not the original one. Therefore, it is called the expected value or 
return of the model. The values of the parameters can be obtained using Mini-
tab. We simply put the values of the parameters in the following regression equ-
ation. 

2 3Explained variable a b Rs c Rs d Rs= + ∗ + ∗ + ∗ . 

With the parameter estimates in Table 12, we obtain r1New, r2New, r3New, 
r4New, CsNew, WsNew, and VsNew, as with each value of Rs obtained pre-
viously. Then, we obtain a scatter plot between Rs and r1New, r2New, r3New, 
r4New, CsNew, WsNew, and VsNew, as shown in Figure 10. There will be  
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Figure 10. Scatter plot of r1, r2, r3, r4, Cs, Ws, and Vs vs. Rs - (Rs) = 0.9900 - 0.9990. 
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(b) 

 Reliability ri for the stage (1, 2, 3, 4) Component ni Simulation Result 

Rs r1 r2 r3 r4 n1 n2 n3 n4 Cs Ws Vs 

0.9900 0.8549 0.8057 0.9178 0.8134 3 4 3 3 133.7041 198.6198 86 

0.9905 0.8555 0.8065 0.9182 0.8142 3 4 3 3 134.6502 198.6198 86 

0.9910 0.8561 0.8073 0.9185 0.8150 3 4 3 3 135.5692 198.6198 86 

0.9915 0.8567 0.8082 0.9189 0.8159 3 4 3 3 136.6158 198.6198 86 

0.9920 0.8574 0.8091 0.9193 0.8168 3 4 3 4 150.4994 230.2647 100 

0.9925 0.8582 0.8101 0.9197 0.8177 3 4 3 4 151.7831 230.2647 100 

0.9930 0.8589 0.8111 0.9201 0.8187 3 4 3 4 153.1025 230.2647 100 

0.9935 0.8597 0.8122 0.9206 0.8198 3 4 3 4 154.608 230.2647 100 

0.9940 0.8606 0.8134 0.9211 0.8209 3 4 3 4 156.2153 230.2647 100 

0.9945 0.8615 0.8146 0.9216 0.8221 3 4 3 4 157.9011 230.2647 100 

0.9950 0.8625 0.8160 0.9221 0.8234 3 4 3 4 159.7984 230.2647 100 

0.9955 0.8636 0.8175 0.9227 0.8248 3 4 3 4 161.912 230.2647 100 

0.9960 0.8648 0.8191 0.9234 0.8264 4 4 3 4 173.4566 257.3974 107 

0.9965 0.8661 0.8209 0.9242 0.8281 4 4 3 4 176.295 257.3974 107 

0.9970 0.8676 0.8229 0.9250 0.8301 4 4 3 4 179.5854 257.3974 107 

0.9975 0.8693 0.8252 0.9260 0.8323 4 4 3 4 183.4539 257.3974 107 

0.9980 0.8714 0.8280 0.9271 0.8350 4 4 3 4 188.3124 257.3974 107 

0.9985 0.8739 0.8314 0.9285 0.8383 4 4 3 4 194.5076 257.3974 107 

0.9990 0.8773 0.8370 0.9304 0.8428 4 4 3 4 204.0998 257.3974 107 

 
Table 12. Explained variable with parameters when Rs = 0.9900 - 0.9990. 

Explained  
variable r1N r2N r3N r4N CsN WsN VsN 

Parameter 

a −30601.9 −47481.2 −17136.2 −39862.7 −180794266 −212968023 −88910519 

b 92528.1 143535 51814.3 120529 546466156 643748903 268766970 

c −93254.8 −144634 −52221.3 −121476 −550583510 −648634663 −270819890 

d 31329.5 48581.2 17544.1 40810.6 184911867 217854114 90963580 

 
non-linear parameters when we fit the models given previously.  

The results obtained using multi-objective optimizations with the HGA are 
summarized in Table 11(a). It can be seen that the number of components ni 
and the individual component reliability ri in various stages are different. How-
ever, in practice, ni must be an integer. Therefore, must approximate the values 
of ri and adjust the values of ni to integer values. The new results with this ap-
proximation are summarized in Table 11(b). It can be seen that when the num-
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bers of components in different stages, ni, are modified to integer values, the 
cost, weight, and volume of the system are reduced slightly. 

In this study, we must ensure that the number of simulations (n) for each time 
is sufficient to achieve convergence. To this end, we changed the value of n (0, 1, 
2, 3, …, 75), and for the simulation with different values of Rs, we can say that 
for all values of Rs, the simulation process converges at n = 30, and for the case 
of Rs = 0.9900, the converged values of r1, r2, r3, and r4 are 0.8724, 0.9567, 0.8838, 
and 0.8668, respectively, as shown in Figure 11. In summary, we have discussed 
our novel approach, i.e., design of system reliability using the simulation 
process. The advantage of our approach is that the reliable regression curves 
have been generated using the proposed simulation process (Figure 10) and the 
utility of these curves for the system design is that they can help the designer to 
determine any level of reliability ri of the system components, the corresponding 
value of cost, weight, and volume depending on the chosen value of Rs.  

9. Conclusions 

In this study, we proposed a hybrid genetic algorithm and presented a novel sys-
tem design for the entire system with the desired level of reliability. Thus, we 
achieved two objectives. First, we evaluated our approach to determine the ro-
bustness of our method by comparing it with another method in the literature. 
The results indicated that our approach yields better results. Second, we used 
this approach to develop a new simulation process for system design. We varied 
Rs and obtained different r1, r2, r3, r4, Cs, Ws, and Vs. Then, we plotted the 
curves, which are of great practical significance because they enable the designer 
of the system to determine the values of r1, r2, r3, r4, Cs, Ws, and Vs correspond-
ing to the value of Rs. Using Rs = 0.9904, the designer could directly use the 
curves to obtain all the required values. Some values converge after several itera-
tions in some cases. The performance and robustness of the proposed approach 
can easily be evaluated. Rapid convergence can be achieved using our model and 
approach, as shown in Figure 11. Moreover, robustness can be confirmed on the 
basis of similar results obtained under different initial conditions, as shown in 
Figure 11. In addition, Figure 10 illustrates the practical utility of our approach, 
i.e., the designer can determine the reliability of each component corresponding 
to any value of system reliability Rs. 

Finally, we fixed the system reliability to obtain a satisfactory system with 
minimum cost and weight. Comparison of the simulation results indicates the 
superiority of HGA over other algorithms in terms of searching quality and ro-
bustness of the solution. The main advantage of the proposed multi-objective 
approach is that it offers greater flexibility to system designers for testing prob-
lems. Our HGA improves the objective function values and gives the best-known 
solutions for benchmark suites. Thus, to the best of our knowledge, HGA is an 
effective algorithm for application to the RRAP. It is especially useful when the 
optimization problem under consideration is complex.  
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Figure 11. Scatter plot of r1, r2, r3, and r4 versus number of simulations (n). 

 
In the future, we will focus on extending our approach to other algorithms, 

such as hybrid nonlinear mixed integer programming, to achieve better results. 

References 
[1] Kuo, W. and Wan, R. (2007) Recent Advances in Optimal Reliability Allocation. 

IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Hu-
mans, 37, 143-156. https://doi.org/10.1109/TSMCA.2006.889476 

[2] Kuo, W. and Prasad, V.R. (2000) An Annotated Overview of System-Reliability Op-
timization. IEEE Transactions on Reliability, 49, 176-187.  
https://doi.org/10.1109/24.877336 

[3] Kuo, W., Hwang, C.L. and Tillman, F.A. (1978) A Note on Heuristic Methods in 
Optimal System Reliability. IEEE Transactions on Reliability, 27, 320-324.  
https://doi.org/10.1109/TR.1978.5220401 

[4] Forsthoffer, W.E. (2005) Forsthoffer’s Rotating Equipment Handbooks: Funda-
mentals of Rotating Equipment. Elsevier, New York. 

[5] Kundur, P. (1994) Power System Stability and Control. McGraw-Hill, New York. 

[6] Hejzlar, P., Ubra, O. and Ambroz, J. (1993) A Computer Program for Transient 
Analysis of Steam Turbine Generator Overspeed. Nuclear Engineering and Design, 
144, 469-485. https://doi.org/10.1016/0029-5493(93)90043-9 

[7] Seebregts, A.J., Rademakers, L.W.M.M. and Van Den Horn, B.A. (1995) Reliability 
Analysis in Wind Turbine Engineering. Microelectronics Reliability, 35, 1285-1307.  
https://doi.org/10.1016/0026-2714(95)99378-V 

[8] Dhingra, A.K. (1992) Optimal Apportionment of Reliability and Redundancy in Se-
ries Systems under Multiple Objectives. IEEE Transactions on Reliability, 41, 
576-582. https://doi.org/10.1109/24.249589 

[9] Fetanat, A., Shafipour, G. and Ghanatir, F. (2012) Reliability Redundancy Optimi-
zation for Optimal Designing in Gas Turbines’ Overspeed Protection Using Elitism 
Box-Muller Harmony Search Algorithm. Journal of Theoretical and Applied Infor-

https://doi.org/10.4236/wjet.2018.63032
https://doi.org/10.1109/TSMCA.2006.889476
https://doi.org/10.1109/24.877336
https://doi.org/10.1109/TR.1978.5220401
https://doi.org/10.1016/0029-5493(93)90043-9
https://doi.org/10.1016/0026-2714(95)99378-V
https://doi.org/10.1109/24.249589


E. A. A. Saleem et al. 
 

 

DOI: 10.4236/wjet.2018.63032 554 World Journal of Engineering and Technology 
 

mation Technology, 46, 991-1000. 

[10] Rao, S.S. and Dhingra, A.K. (1992) Reliability and Redundancy Apportionment 
Using Crisp and Fuzzy Multiobjective Optimization Approaches. Reliability Engi-
neering & System Safety, 37, 253-261.  
https://doi.org/10.1016/0951-8320(92)90131-4 

[11] Luus, R. (1975) Optimization of System Reliability by a New Nonlinear Integer 
Programming Procedure. IEEE Transactions on Reliability, 24, 14-16.  
https://doi.org/10.1109/TR.1975.5215316 

[12] Hikita, M., Nakagawa, Y., Nakashima, K. and Narihisa, H. (1992) Reliability Opti-
mization of Systems by a Surrogate-Constraints Algorithm. IEEE Transactions on 
Reliability, 41, 473-480. https://doi.org/10.1109/24.159825 

[13] Gopal, K., Aggarwal, K.K. and Gupta, J.S. (1978) An Improved Algorithm for Relia-
bility Optimization. IEEE Transactions on Reliability, 27, 325-328.  
https://doi.org/10.1109/TR.1978.5220403 

[14] Takao, Y., Mitsuo, G., Yinxiu, L. and Chang, E.K. (1996) A Genetic Algorithm for 
Interval Nonlinear Integer Programming Problem. Computers & Industrial Engi-
neering, 31, 913-917. 

[15] Hsieh, Y.C., Chen, T.C. and Bricker, D.L. (1998) Genetic Algorithms for Reliability 
Design Problems. Microelectronics Reliability, 38, 1599-1605.  
https://doi.org/10.1016/S0026-2714(98)00028-6 

[16] Zhao, J.Q., Wang, L., Zeng, P. and Fan, W.H. (2012) An Effective Hybrid Genetic 
Algorithm with Flexible Allowance Technique for Constrained Engineering Design 
Optimization. Expert Systems with Applications, 39, 6041-6051.  
https://doi.org/10.1016/j.eswa.2011.12.012 

[17] Kanagaraj, G., Ponnambalam, S.G. and Jawahar, N. (2013) A Hybrid Cuckoo Search 
and Genetic Algorithm for Reliability-Redundancy Allocation Problems. Comput-
ers & Industrial Engineering, 66, 1115-1124.  
https://doi.org/10.1016/j.cie.2013.08.003 

[18] Ghodrati, A. and Lotfi, S. (2012) A Hybrid CS/GA Algorithm for Global Optimiza-
tion. Proceedings of the International Conference on Soft Computing for Problem 
Solving, Roorkee, 20-22 December 2011, 397-404.  
https://doi.org/10.1007/978-81-322-0487-9_38 

[19] Gen, M. and Yun, Y. (2006) Soft Computing Approach for Reliability Optimization: 
State-of-the-Art Survey. Reliability Engineering & System Safety, 91, 1008-1026.  
https://doi.org/10.1016/j.ress.2005.11.053 

[20] Zou, D., Gao, L., Li, S. and Wu, J. (2011) An Effective Global Harmony Search Al-
gorithm for Reliability Problems. Expert Systems with Applications, 38, 4642-4648.  
https://doi.org/10.1016/j.eswa.2010.09.120 

[21] Abouei Ardakan, M., Sima, M., Zeinal Hamadani, A. and Coit, D.W. (2016) A Nov-
el Strategy for Redundant Components in Reliability—Redundancy Allocation 
Problems. IIE Transactions, 48, 1043-1057.  
https://doi.org/10.1080/0740817X.2016.1189631 

[22] Afonso, L.D., Mariani, V.C. and dos Santos Coelho, L. (2013) Modified Imperialist 
Competitive Algorithm Based on Attraction and Repulsion Concepts for Reliabili-
ty-Redundancy Optimization. Expert Systems with Applications, 40, 3794-3802.  
https://doi.org/10.1016/j.eswa.2012.12.093 

[23] Quy, N. (1998) Reliability Optimization in Mechanical System Design by Fuzzy 
Logic. Master’s Thesis, École de Technologie Supérieure, Université du Québec, 
Québec. 

https://doi.org/10.4236/wjet.2018.63032
https://doi.org/10.1016/0951-8320(92)90131-4
https://doi.org/10.1109/TR.1975.5215316
https://doi.org/10.1109/24.159825
https://doi.org/10.1109/TR.1978.5220403
https://doi.org/10.1016/S0026-2714(98)00028-6
https://doi.org/10.1016/j.eswa.2011.12.012
https://doi.org/10.1016/j.cie.2013.08.003
https://doi.org/10.1007/978-81-322-0487-9_38
https://doi.org/10.1016/j.ress.2005.11.053
https://doi.org/10.1016/j.eswa.2010.09.120
https://doi.org/10.1080/0740817X.2016.1189631
https://doi.org/10.1016/j.eswa.2012.12.093


E. A. A. Saleem et al. 
 

 

DOI: 10.4236/wjet.2018.63032 555 World Journal of Engineering and Technology 
 

Abbreviations and Acronyms 

MOO: Multi-objective optimization; HGA: Hybrid genetic algorithm; GA: Ge-
netic algorithm; RAP: Redundancy allocation problem; RRAP: Reliabili-
ty-redundancy allocation problem; HAS: Harmony search algorithm; EBMHSA: 
Elitism Box-Muller harmony search algorithm; MVGA: Modified version of the 
genetic algorithm; ICA: Imperialist competitive algorithm; Fmincon: Find 
minimum of constrained; Fminimax: Solve minimax constraint problem.  
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