
Architecture Description leveraging Model Driven
Engineering and Semantic Wikis

Alessandro Baroni, Henry Muccini
Department of Information Engineering,

Computer Science and Mathematics
University of L’Aquila, Italy

{alessandro.baroni, henry.muccini}@univaq.it

Ivano Malavolta
Gran Sasso Science Institute

L’Aquila, Italy
ivano.malavolta@univaq.it

Eoin Woods
Artechra

Hemel Hempstead, Hertfordshire, UK
eoin.woods@artechra.com

Abstract—A previous study, run by some of the authors in
collaboration with practitioners, has emphasized the need to
improve architectural languages in order to (i) make them simple
and intuitive enough to communicate effectively with project
stakeholders, and (ii) enable formality and rigour to allow analysis
and other automated tasks. Although a multitude of languages
have been created by researchers and practitioners, they rarely
address both of these needs.

In order to reconcile these divergent needs, this paper presents
an approach that (i) combines the rigorous foundations of model-
driven engineering with the usability of semantic wikis, and
(ii) enables continuous syncronization between them; this allows
software architects to simultaneously use wiki pages for commu-
nication and models for model-based analysis and manipulation.
In this paper we explain how we applied the approach to an
industry-inspired case study using the Semantic MediaWiki wiki
engine and a model-driven architecture description implemented
within the Eclipse Modeling Framework. We also discuss how
our approach can be generalized to other wiki-based and model-
driven technologies.

I. INTRODUCTION

Software architects create architecture descriptions (ADs)
throughout a system’s life time for a range of purposes,
including documenting and communicating design decisions
to the various stakeholders, as a basis for analyzing and eval-
uating alternative architectures, to support system planning,
scheduling and budgeting activities, and to meet many other
needs (see [12,

∮
4.4] for a comprehensive list).

A primary finding from an industrial study conducted with
practitioners to analyze the perceived strengths, limitations
and requirements of architectural languages [14] emphasizes
the practitioners’ requirement that languages can be both
simple and intuitive to allow effective communication among
stakeholders, and yet also formal and structured to allow
the possibility of analysis and other automated tasks. These
two distinct requirements reflect the so called “extrovert”
(i.e., communication-oriented) and “introvert” (i.e., analytical)
nature of the work of software architects. Yet, despite this
clear need, most academic research efforts so far have mainly
focused on formal and domain-specific architectural languages
(which compromise on the communication requirements) or
on extending the UML (compromising the analytical require-
ments), while industry turns to informal languages that are
easy to use and communicate far more effectively, but cannot
support the analytical needs of architects. Therefore, a major
divergence between research and real needs is evident.

Due to their accessibility, effectiveness for information
sharing, and ease of use, wiki-based architecture descrip-
tions are quite popular in industrial contexts [7]. However,
architecture models are also being used for a multitude of
other purposes, such as assessment and functional and non-
functional analysis (e.g., performance and reliability, testing,
conformance checking [2]).

In this paper, we propose an approach that allows soft-
ware architects to (i) track and share informal (and loosely
structured) architectural knowledge by means of semantic
wikis, (ii) maintain and analyse the architectural design by
means of well-defined MDE-based architecture models within
their own tools, and (iii) automatically and continuously syn-
chronise the information between the wiki and MDE-based
models. The approach builds on the technical foundations of
model-driven engineering (as the analytical model) and on the
communication-oriented nature of wiki-based documents.

The remainder of this paper is organized as follows. Sec-
tion II of the paper provides relevant preliminary information.
Section III presents our proposal from a conceptual perspec-
tive, followed by a description of the technology-specific
implementation. Related work is discussed in Section IV, while
Section V discusses advantages and current limitations of our
approach, and its generalization to other technologies. Finally,
conclusions and future work are presented in Section VI.

II. BACKGROUND

A. MDE for Architecture Description
Model-Driven Engineering (MDE [13]) is a promising ap-

proach for effectively expressing domain concepts by creating
abstractions of selected aspects of a system and considering
specific properties of the system early in the life cycle. In
MDE, domain-specific modeling languages (DSMLs) are used
to describe the application; they are defined using metamodels,
which define both the relations between concepts within the
domain and their semantics. DSMLs are used to build a
model of the system according to the semantics and constraints
defined in their metamodel (in this case the model is said to
”conform to” the DSML metamodel). A given system may
have n different models, each model representing a specific
aspect of the system (e.g., requirements, design specification,
or even the program code).

In software architecture, MDE can be used to achieve many
different goals. For example, metamodels are used to define
the concepts of architectural languages [10], model trans-
formations are used to transform architecture models among



ALs [6], to define architectural viewpoints for architecture
reconstruction [9] and to build architecture frameworks accord-
ing to the IEEE/ISO/IEC 42010 standard [11]. In this work, an
architectural language can be considered as a metamodel with
its own tool, methodology and process, and an architectural
model is a model conforming to the architectural language
metamodel. By applying the MDE principle that models are
precise artifacts that can be understood by computers and
can be automatically manipulated, this work aims to enable
the automatic exchange and synchronization of architectural
information across MDE-based tools and semantic wikis.

B. Semantic Wikis and Ontologies
A wiki is a web-based system whose content is collab-

oratively added, updated, and organized by its users. With
the addition of an ontology, a semantic wiki ”extends the
application area of a normal wiki by providing improved nav-
igation and search, context dependent presentation, etc.”[16].
A high-profile example that shows the result of applying these
features is Wikipedia, where a the growing number of pages
offer structured content (and need constant maintenance) such
as ’List of urban areas by population” or ’List of banks in
Europe”. This metadata availability provides a good framework
to allow the exchange of data with external applications that
share the same ontology.

In the field of software architecture, wikis have primaryil
been used to produce architecture descriptions [4] and to
manage architectural knowledge throughout the system life
cycle [5]. This work exploits semantic wikis as tools to
record architectural knowledge, and leverages the semantic
technologies of wikis to allow automatic extraction of relevant
information from them.

III. THE PROPOSED SOLUTION
A. Concepts

Keeping track of the architecture knowledge base for a
system (e.g., requirements, ideas, context information, design
decisions, etc.) is important for communication purposes but
this is only part of the story. Beyond this, architecture models
are also a special kind of architecture knowledge element
which can be used to capture the design decisions that have
been made and evaluate them by means of specific tools (e.g.,
doing performance analysis of the architecture or checking
whether the architecture conforms to a reference architecture).

Fig. 1. Usage scenario of our solution

As explained later in Section IV, a system’s architecture
knowledge base and its architecture design models are usually

created separately using different tools and are seldom linked.
This implies extra effort and risk for software architects, who
have to manually synchronise the information in the knowledge
base with the models created using tools. Figure 1 shows
the solution we propose to this problem. Fundamentally, we
propose to use semantic wiki pages as communication-oriented
artifacts, for recording and sharing architecture knowledge, the
use of MDE-based architecture models (M1, M2 and Mn in
the figure) to support analysis and design, and the automatic
synchronisation of information between the two. This kind of
separation allows software architects to:
• access and record the software architecture knowledge

base in a semi-structured manner (i.e. using the struc-
ture dictated by an ontology underlying the wiki);

• create, access, and tune the MDE-based architecture
models directly in their corresponding tools (e.g.,
AADL models can be created, analysed, and manipu-
lated in the OSATE2 tool set1);

• reason about the current architecture design both by
using the architecture models in their corresponding
tools and by referring to the wiki-based architecture
knowledge base at the same time.

For what concerns the usage process of our approach, we
identify two main roles: (i) the MDE expert is in charge of ac-
quiring the metamodel representing the architectural language
and in setting up the linked semantic wiki, and (ii) software
architects are in charge of reasoning on the system being
developed, accessing, and recording architectural knowledge in
either the semantic wiki or MDE-based architecture models. It
is important to note that the architectural knowledge in both the
semantic wiki and the various MDE-based models is automat-
ically and continuously synchronised using the synchonisation
engine developed as part of this work. The engine achieves this
by creating and maintaining a set of relationships between the
metamodelling technical space and the ontological technical
space.

Fig. 2. Conceptual overview of our solution

As shown in Figure 2, the metamodelling technical space
is concerned with the MDE-based architecture models, their
metamodels and all the other artifacts within the metamod-
elling stack (see Section II-A). The ontological stack con-
cerns ontologies, their classes, individuals (i.e., instances of
ontological classes), and so on. The relationships between the
metamodeling and the ontological technical spaces exist at two
different levels of abstraction, specifically:
• the semantic mapping, which relates classes, attributes
and references in a metamodel with classes, properties and

1https://wiki.sei.cmu.edu/aadl/index.php/Osate 2



associations in its corresponding ontology (c1, c2, c3, and c4
is shown in Figure 2). Without explaining all of the details,
in this part of the solution we build upon existing work on
integrating metamodels and ontologies [15] which allows us
to use a model transformation t which is able to produce a set
of ontological classes starting from a metamodel. A summary
of the mappings implemented by t is summarized in Table 3.
It is worth noting that many semantic wiki engines are able
to generate wiki page templates reflecting the structure of the
classes belonging to their underlying ontology. This allows
software architects to exploit that structure to semantically
organize architectural information in accordance with the con-
cepts of the architectural language being used for producing
the MDE-based models of the architecture being developed.
Also, the presence of bidirectional transformations does not
limit the kinds of models being represented.

Fig. 3. Mapping ontologies and (meta) models

• the instance-level correspondences consists of a set corre-
spondences between (i) the objects within the models (con-
forming to the above mentioned metamodel) and (ii) individu-
als (i1, i2, i3 in Figure 2) within the corresponding ontology .
A high-level overview of those correspondences is summarized
in Figure 3. As part of this work, we developed a module which
is able to automatically enforce these correspondences across
ontological entities in the semantic wiki and their correspond-
ing objects within the MDE-based models. Clearly, given the
different purposes of semantic wikis and MDE models, we
expect that only a subset of the information contained in the
wiki will need to be synchronized with MDE models, and
only a subset of the information in the models will need to be
synchronised with the wiki.

Once an ontology has been generated from the metamodel
of the AL, our engine is able to synchronise the architectural
information across the two technical spaces. By building on
the semantic wiki, our engine extracts the relevant information
from the semantically structured data in order to continuously
synchronize the wiki pages and the MDE-based models. More-
over, it is important to note that instance-level correspondences
are bidirectional and continuous; that is, our approach is able
to instantly reflect updates performed on a wiki page back to
the MDE-based architecture models, and vice versa.

B. Implementation
The first prototype of our approach2 is implemented by

building on the Eclipse platform. We decided to use Eclipse
because many extensions already exist covering some aspects
of our approach; in particular, metamodels can be defined using
the Eclipse modelling Framework (EMF), a Java framework
and code generation facility for MDE-based tools. Also, many
architectural languages (in particular AADL and UML) are

2Implementation of the approach: http://goo.gl/mVZsT4

supported by the EMF modelling framework. For the semantic
wiki engine, we chose to use MediaWiki3 and its Semantic
MediaWiki plugin (SMW4). This decision was based on the
fact that SMW is very well documented, widely used, and has
a very active support community both in academia and in in-
dustry. However the approach is not dependent on MediaWiki
and a plan to generalize it is outlined in Section V.

From an abstract point of view, our prototype implemen-
tation is made up of two main components. The Wiki2Model
component is responsible for updating the architecture models
every time it receives a new update operation from the Wiki.
Update operations are created for each change to portions of
wiki pages that represent at least one element in one of the
MDE model (i.e., pages belonging to model-related categories
in the wiki). The Model2Wiki component is responsible
for updating the wiki pages when updates are made to the
corresponding architecture models. When a new version of
an architecture model is produced this component compares
the new version of the modified model with the previously
synchronized one and generates a set of update operations to
be propagated to the MediaWiki engine corresponding to the
changes in the model.

IV. RELATED WORK
ADDSS, the Architecture Design Decision Support Sys-

tem [3], was one of the first solutions to exploit web-based
technologies for recording architecture-related information.
ADDSS is based on a metamodel and a web-based tool that
allows software architects to record, maintain and manage
design decisions, requirements and other information such as
architectural styles and patterns. Architecture models can be
added to the ADDSS tool as plain figures.

PAKME [1] is a web-based knowledge management tool
for capturing design decisions and their contextual information
and recording them according to a data model tailored to the
software architecture domain. The main focus of PAKME is on
requirements (via scenarios), architectural design decisions and
architectural patterns; it also contains a wiki-based component
to support collaborative decision making.

The authors of [8] explored the applicability of wikis
for supporting software architects in their typical architecting
activities. Wikis performed well in managing non-architectural
knowledge, in supporting the integration with other tools and
in providing intuitive interfaces with a shallow learning curve.
However, an important limitations found was the difficulty of
codifying architectural knowledge with respect to dedicated
tools for architectural knowledge management.

In [5], authors describe their experiences in using semantic
wikis for architectural knowledge management. The semantic
wikis used are based on Semantic MediaWiki and OntoWiki5.
A common feature of this work and our approach is that both
support the integration of wiki-based architectural information
with structured architecture models, however in [5] the seman-
tic wiki is integrated only with the ArchiMate architectural
language, while our approach is agnostic to the architectural
language being used.

Summing up, the main novel aspects of our approach
with respect to related work can be summarized as (i) the

3http://www.mediawiki.org
4http://semantic-mediawiki.org
5http://aksw.org/Projects/OntoWiki.html



ability to keep structured architecture models (rather than plain
images, for example) continuously synchronized with wiki-
based documentation (even after modification of the models or
the wiki pages); (ii) the independence of the proposed approach
with respect to the architectural language used for architecture
description; and (iii) the usage of well-established technologies
like wikis and MDE (reducing the learning curve for our users).
A more complete description of the strengths and limitations
of our approach is provided in Section V.

V. DISCUSSION

A. Strengths of the Approach
The proposed approach allows architects to achieve contin-

ual synchronisation of wiki-based documentation and model-
driven engineering artifacts. It is important to highlight two
important aspects of our approach: (i) once the mapping
between the architecture language metamodel and the se-
mantic wiki ontology is established, the ”‘wiki-to-models”’
synchronisation is automatic and requires no user interaction
to be maintained, and (ii) our engine is able to preserve
the synchronisation in a continuous manner by triggering the
synchonisation procedure every time a relevant portion of
either the semantic wiki or a modelling artifact is changed.

In contrast to most other research reported in recent years
(see Section IV), the proposed approach is totally agnostic to
the architectural language used for representing the software
architecture of the system and to the kind of project being
developed. Indeed, once the mapping between the architecture
language metamodel and the ontology underlying the semantic
wiki is established, that mapping is automatically preserved by
our engine when dealing with the wiki-based documentation
and the modeling artifacts. It is important to note that the initial
mapping between the architecture language metamodel and the
semantic wiki ontology is automatically generated too.

Our approach is process independent. That is, it does not
force software architects to follow a specific and potential
unfamiliar development process. In particular, the proposed
approach focuses on the continuous alignment of wiki-based
documentation and architectural models, and is independent
of the other activities involved in the system life-cycle (e.g.,
requirements, implementation, testing, etc.).

B. Current Limitations of the Approach
We assume that no concurrent modifications will be per-

formed to a wiki page and the corresponding portion of an
architectural model. We are aware that this assumption is quite
limiting, but we introduced it in order to keep the complexity
of the proposed solution manageable. One of the top priorities
of our future work is to extend our approach for supporting
concurrent modifications.

Currently, in each software project only a single architec-
ture language can be used for the models being synchronised
by our engine. Again, we accepted this limitation in order to
reduce the complexity of the solution. At this stage of our
work we judged that this limitation is acceptable, since in our
recent survey [14] about the usage of architecure languages in
industry, it emerged that about 79% of software architects do
not use multiple ALs within the same project.

The proposed approach synchronises semantic wiki pages
and architectural models, but it is not integrated with analysis
engines that can be used to process those models. It may be
interesting to investigate the possibility of performing analyses

of architectural models directly from their corresponding wiki
pages and, more interestingly, on managing the feedback and
results of those analyses in the semantic wiki.

VI. CONCLUSIONS AND FUTURE WORK

This work proposes an approach for representing architec-
tural information in terms of wiki-pages and MDE models;
these two technical spaces are kept continuously aligned, so
that they can be used interchangeably, depending on the nature
of the activity being carried out.

We aim to continue our work in this direction in several
ways. Firstly, we will work to deal with the current limitations
discussed in Section V. Then, a thorough experimental valida-
tion will be carried out, both in terms of application to real case
studies, and subsequent evaluation of the opinions of practicing
software achitects as to the usefulness and practicality of the
tool (and the underlying approach). In the longer term, we
aim to explore the use of sketch-based approaches with the
aim of automatically building and synchronizing sketch-based
approaches with MDE-based models.

REFERENCES

[1] M. A. Babar and I. Gorton. A tool for managing software architecture
knowledge. In Shark, SHARK-ADI ’07, pages 11–, Washington, DC,
USA, 2007. IEEE Computer Society.

[2] A. Bertolino, P. Inverardi, and H. Muccini. Software architecture-based
analysis and testing: a look into achievements and future challenges.
Computing, 95(8):633–648, 2013.

[3] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas. A web-based tool for
managing architectural design decisions. SIGSOFT SEN, 31(5), Sept.
2006.

[4] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Mer-
son, R. Nord, and J. Stafford. Documenting Software Architectures:
Views and Beyond. Addison-Wesley, 2nd edition, 2010.

[5] R. de Boer and H. van Vliet. Experiences with semantic wikis for
architectural knowledge management. In Software Architecture, 9th
Working IEEE/IFIP Conference on, pages 32–41, 2011.

[6] D. Di Ruscio, I. Malavolta, H. Muccini, P. Pelliccione, and A. Pieran-
tonio. Model-driven techniques to enhance architectural languages
interoperability. In Fundamental Approaches to Software Engineering,
FASE, pages 26–42. Springer Berlin/Heidelberg, 2012.

[7] G. H. Fairbanks. Just Enough Software Architecture: A Risk-Driven
Approach. Marshall and Brainerd, 1st edition, August 2010.

[8] R. Farenhorst and H. van Vliet. Experiences with a wiki to support
architectural knowledge sharing. In Wiki4SE, Porto, Portugal, 2008.

[9] J.-M. Favre. Cacophony: metamodel-driven software architecture re-
construction. In Reverse Engineering, 2004. Proceedings. 11th Working
Conference on, pages 204–213, 2004.

[10] P. Feiler and D. Gluch. Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language. SEI
Series in Software Engineering. Pearson Education, 2012.

[11] R. Hilliard, I. Malavolta, H. Muccini, and P. Pelliccione. On the
composition and reuse of viewpoints across architecture frameworks. In
Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), pages 131–140. IEEE, 2012.

[12] ISO. ISO/IEC/IEEE 42010, Systems and software engineering - Archi-
tecture description, Dec. 2011.

[13] S. Kent. Model driven engineering. In Proceedings of the Third
International Conference on Integrated Formal Methods, IFM ’02,
pages 286–298, London, UK, UK, 2002. Springer-Verlag.

[14] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang. What in-
dustry needs from architectural languages: A survey. IEEE Transactions
on Software Engineering, 39(6):869–891, 2013.

[15] F. S. Parreiras, S. Staab, and A. Winter. On marrying ontological and
metamodeling technical spaces. In ESEC/FSE, 439–448. ACM, 2007.

[16] S. Schaffert, F. Bry, J. Baumeister, and M. Kiesel. Semantic wikis.
software, IEEE, 25(4):8–11, 2008.


