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Abstract. This paper explores how spin images can be constructed using shape-
from-shading information and used for the purposes of face recognition. We com-
mence by extracting needle-maps from gray-scale images of faces, using a mean
needle-map to enforce the correct pattern of facial convexity and concavity. Spin
images [4] are estimated from the needle maps using local spherical geometry
to approximate the facial surface. Our representation is based on the spin image
histograms for an arrangement of image patches. We demonstrate how this rep-
resentation can be used to perform face recognition across different subjects and
illumination conditions. Experiments show the method to be reliable and accu-
rate, and the recognition precision reaches 98% on CMU PIE sub- database.

1 Introduction

Face recognition is an active research area that has been approached in many ways.
Roughly speaking the alternative methods can be divided in two categories. The first
of these is the feature-based method, while the second is the model-based method. Re-
cently, it is the model-based method that has attracted the greatest attention [2]. Here
one on the most important recent developments is the work of Blanz and Vetter [3].
In this work a 3-D morphable model matched to face data using correspondences de-
livered by optic flow information. The method gives recognition rates of about 80%
when profiles are used to recognise frontal poses. However, the construction of the
model requires manually marking feature points, which is labour intensive. Hence, the
automatic construction of models remains an imperative in face recognition. There are
related feature-based approaches which are based on the assumption that face images
are the result of Lambertian reflectance. Under this assumption 3D linear subspaces
can be constructed that account for facial appearance under fixed viewpoint but under
different illumination [9,1,7].

In this paper we aim to develop a feature based method for face recognition that
can be used to recognise faces using surface shape information inferred from image
brightness using a Lambertian shape-from-shading scheme. Shape-from-shading is not
widely accepted as a technique for face recognition. The reason is that the surface nor-
mal is commonly believed to be noisy and is unstable under changes in illumination di-
rection or change of pose. However, recently it has been shown that shape-from-shading
can be used to extract useful features from real world face images [8].

One of the problems that hinders the extraction of reliable facial topography using
shape-from-shading is the concave/convex inversions that arise due to the bas-relief
ambiguity. A recent paper [8] have shown how this problem can be overcome using a
statistical model for admissible surface normal variations trained on range data. Here
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we use a simplified version of this algorithm. The surface normals are constrained to
fall on the Lambertian reflectance with axis in the light source direction and apex angle
given by the inverse cosine of the normalised image brightness. The position of the
surface normal on the cone is such that it minimizes the distance to the corresponding
mean surface normal direction.

To construct a surface representation from the surface normals, we turn to the spin
image first developed by Johnson and Hebert [4]. A spin image is a series of histograms
constructed from the polar coordinates of arbitrary reference points on a surface. The
representation can capture fine topographic surface detail. Unfortunately, the compu-
tational overheads associated with the method are high, since a histogram needs to be
generated for each surface location. Moreover, the original spin image representation
was developed for range images and hence relies on surface height rather than sur-
face normal information. We demonstrate how these two problems can be overcome by
computing local spin images on image patches using surface normal information.

2 Mean Needle Map Alignment

The shape-from-shading algorithm used to extract needle-maps from brightness images
is as follows. We follow the work in [10] and place the surface normal on a cone whose
axis is the light source direction and whose opening angle is the inverse cosine of the
normalised image brightness.

This initial field of surface normals typically contains errors, and in particular loca-
tions where the pattern of convexity or concavity is reversed. To overcome this problem
we draw on a model that accounts for the distribution of surface normals across ground-
truth facial surfaces. To construct this model we use a sample of range images of human
faces. From the gradients of the surface height data, we make estimates of surface nor-
mal direction. The resulting fields of surface normals are adjusted so that that the faces
have the same overall centering, scale and orientation. At each location we compute
the mean surface normal direction over the set of training images. Here we use the
Max-Planck data-base which has 200 sample images of male and female subjects.

We use the mean facial needle-map to adjust the positions of the surface normals on
the reflectance cones. Each initial surface normal is rotated on its cone so that it min-
imises the angle subtended with the mean surface normal at the corresponding image
location.

f(x, y) = argmin(tan(θr(x, y) − θmean(x, y))) (1)

where θr and θmean are the azimuth angles of the aligned surface normal nr and the
mean surface normal nmean on the surface point (x, y).

The simplest way to satisfy 1 is to adjust the azimuth angle of the aligned surface
normal nr so that nr becomes parallel to nmean.

In Fig. 3 we illustrate the improvements gained using this simple shape-from-shading
procedure. In the top row of the figure we show the input images of a single subject with
the light source in different directions. In the second row we show the initial estimates
of the surface normal directions. Here we have visualised the needle-maps by taking
the inner product of the surface normal with the light-source vector perpendicular to
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the image plane. This is equivalent to re-illuminating the field of surface normals with
frontal Lambertian reflectance. From the images in the second row it is clear that there
are significant concave/convex inversions in the proximity of the nose and lips when
the face is illuminated obliquely. In the third row of the figure we show the field of
surface normals that result from the adjustment procedure described above. The re-
illuminations reveal that the inversions are removed and the quality of the recovered
facial topography is improved (Fig. 4 illustrates the solution of this inversion problem).

3 The Spin Image Approach

The spin image of Johnson and Hebert [4] aims to construct an object-centered repre-
sentation. The representation consists of a series of 2D histograms and is constructed
in the following manner: Commence by selecting an arbitrary point on the surface as
the reference point O, and

→
no is the surface normal at the point O. Then select a second

arbitrary point P on the surface, and
→
np is the surface normal at the point P . Assume

the object resides in a 3D coordinate system with the surface normal
→
no as z axis and

the xy plane perpendicular to
→
no. The Euclidean distance γ = |

→
OP | can be projected

onto the xy plane as α and the z axis as β respectively. After the distances α and β of
all the surface points are calculated, we can use them to construct a 2D histogram. The
above procedure is performed after each point on the surface has been taken as the point
P so that a single 2D histogram is constructed, and then a series of 2D histograms are
constructed using the above steps and taking each point on the surface as the reference
point O. Figure 1 illustrates the spin image construction. Equation 2 shows the struc-
ture of the spin image, in which N is the number of image surface points and n is the
number of histogram bins.

O1 O2⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦

. . . ON

. . .

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦

(2)

This object-centered representation is invariant to translation and rotation since the
spin image is calculated using only relative distances between object surface points.

The spin image representation is based on the availability of surface height data and
can not be applied directly to fields of surface normals or needle maps. Moreover, the
spin image histograms need to be constructed at each image location, and this is com-
putationally demanding in both time and storage. In order to obtain this object-centered
representation for an object with n surface points/image pixels, the computation cost
will be O(n2).
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Fig. 1. Illustration of spin image construction

4 Adapting Spin Images to Needle-Maps

We have adapted a patch based approach to spin-image representation. We segment the
surface into patches and for each patch we use only the geometric center point O to
construct the spin image, rather than use every point of this surface as in the original
spin image approach. Our histograms are constructed on a patch-by-patch basis.

From the GGFI [6] we obtain a surface height

∣∣∣∣
→

OP ′
∣∣∣∣ in the viewing direction

→
nv. The

surface height

∣∣∣∣
→

OP ′
∣∣∣∣ and the horizontal distance

∣∣∣∣
→

P ′P
∣∣∣∣ can not be used to construct the

spin image because they are based on the viewing direction. What we need is the surface
height and the horizontal distance based on the surface normal

→
no direction.

To compute these quantities we proceed as follows. From the surface height

∣∣∣∣
→

OP ′
∣∣∣∣,

the distance

∣∣∣∣
→

OP

∣∣∣∣ is easy to compute since the distance

∣∣∣∣
→

PP ′
∣∣∣∣ on the viewing plane can

be directly measured from the 2D image. From Fig. 2, we are interested in the distance

α, i.e.

∣∣∣∣
→

PP ′′
∣∣∣∣, on the surface normal plane δ and the relative height β, i.e.

∣∣∣∣
→

OP ′′
∣∣∣∣, in

the surface normal direction
→
no between the reference point O and the arbitrary point

P . The quantities are related by the following equations:

→
OP=

→
OP ′ +

→
P ′P (3)

→
P ′′O= (

→
OP · →

no)× →
no (4)
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Fig. 2. Illustration of how to obtain the distance α and the relative height β

→
P ′′P=

→
P ′′O +

→
OP (5)

We now have all the ingredients to construct the 2D histogram of α and β for the
surface patch centered at the point O. Equation 6 shows the structure of the patch based
spin image, in which M is the number of surface patches and n is the number of his-
togram bins.
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(6)

In our experiment we construct a 10 by 10 bin 2D histograms of α and β for an image
patch of 32 by 32 pixels. The histogram is also normalised so as to be scale invariant.

As an additional step, we have performed PCA on the spin image histograms to
reduce the dimensionality of the data. The idea is as follows. We normalise the contents
of each spin image histogram to unity. The normalised bin contents of the histograms
are concatenated as a long-vector as follows.



114 Y. Li, W.A.P. Smith, and E.R. Hancock

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

{O1 : a11} , {O1 : a12} , . . . , {O1 : a1n} , . . . ,
{O1 : an1} , {O1 : an2} , . . . , {O1 : ann} ,
{O2 : a11} , {O2 : a12} , . . . , {O2 : a1n} , . . . ,
{O2 : an1} , {O2 : an2} , . . . , {O2 : ann} ,
. . . ,
{OM : a11} , {OM : a12} , . . . , {OM : a1n} , . . . ,
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Dimensionality reduction is effected by projecting the long-vector onto the leading
eigenvectors of the long-vector covariance matrix.

In the adaptation of spin image on surface normal, the computation cost is reduced
to O(n) instead of O(n2) in the original approach.

5 Recognition

In our preprocessing of the images to extract needle-maps, we perform alignment. This
means that we can apply a patch template to the extracted needle-maps to decompose
the face into regions. The patch template is constructed from the mean facial needle
map, and consists of regions that are either wholly concave or wholly convex. The con-
vexity/concavity test is made using the sign of the changes in surface normal direction.
By performing the spin image analysis on these regions, we avoid problems associated
with inflexion points when the approximations outlined in Sect. 2 are employed.

As an alternative to constructing the template from the mean needle-map, we have
explored constructing it from the needle map extracted from each facial image.

Our measure of facial similarity is based on the normalised correlation of the spin-
image histograms for corresponding template patches.

Johnson and Hebert use normalised correlation to evaluate spin image similarity[4].
The method assumes that spin-images from proximal points on the surface for different
views of an object will be linearly related. This is because the number of points that fall
into corresponding bins will be similar (given that the distribution of points over the
surface of the objects is the same). In our case, this assumption still holds. We hence
use normalised correlation to compare the patch-based spin images. The correlation is
given by

rxy =
n

∑
xiyi −

∑
xi

∑
yi√

(n
∑

x2
i − (

∑
xi)2)(n

∑
y2

i − (
∑

yi)2)
(8)

where rxy is the correlation of two spin images x and y. n is the bin number of the spin
image, xi and yi is the bin contents of two spin images respectively.

rsum =
min(M,N)∑

i=1

rmini (9)
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6 Experiments

We apply our method to the CMU PIE face database. We use cropped frontal-viewed
face images (without background) in this paper. The sub-database contains 67×7 = 469
(67 subjects (1-67) and 7 lights (3,10,7,8,9,13,16)) images. We apply the two different
patch segmentation strategies outlined above.

For the 7 images of the same subject illuminated by different lights, we use 3 for
training sets and 4 for testing. To perform recognition for the 67 subjects, we select
a probe image from the test set and the closest image in the training set. The results
of our experiments are summarised using the precision-recall curves shown in Fig. 5.
The star-dotted curve shows the result of patch-based similarity, the circle-dotted curve
shows the result of comparing the vectors extracted using PCA and the cross-dotted
curve shows the result of using a global histogram of curvature attributes extracted
from the needle-maps [5]. The best results are obtained by applying PCA to the spin
image histograms.

In Table 1 we compare the recognition results obtained using the spin-image and
applying PCA to the spin image long-vectors. Performance is improved using PCA,
and this can be ascribed to the fact that PCA effectively discards the histogram bins that
are associated with insignificant variance.

Please notice the face component performance is obtained by only comparing the
similarity of a single face component (eye, nose, mouth, etc.) instead of the whole face,
so the recognition rate will be reasonably low and can only be used to compare the
performance of two methods.

Table 1. Recognition performance using the spin image and the dimension-reduced spin image
vector

Spin Image Spin Image Vector
Face Components 27.81% 29.69%
Whole Face 87.50% 98.75%

In Table 2 we show the effect of applying the different shape-representations to the
initial needle maps and the adjusted needle maps obtained using the mean needle map.
In each case there is a significant improvement.

Table 2. Recognition performance using the surface normal aligned to mean needle map and and
the original surface normal

Original MNMA
Global Histogram 47.50% 62.50%
Spin Image 85.00% 87.5%
Spin Image Vector 95.00% 98.75%
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Fig. 3. The images in the first row are real images illuminated by the light sources from different
directions. The images in the second row are the original needle maps rendered by the light
source different from the real one [10]. The images in the third row are the needle maps after
Mean Needle Map Alignment (Sect. 2) rendered by the light source different from the real one.
The images in the third row are more photo-realistic and carry less noise than the ones in the
second row.

Fig. 4. The first image is the original needle map projected to the x direction of the viewing
plane. The second image is the mean needle map that we use as the template. The third image
is the needle map projected to the x direction of the viewing plane after the Mean Needle Map
Alignment (Sect. 2). The third image compensate the concave/convex problem of the first one.
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Fig. 5. There are three precision-recall curves of different approaches in this figure: the basic
patch-based spin image approach, the spin image vector approach and the previous global his-
togram approach [5]. All these results are based on the surface normal processed by the Mean
Needle Map Alignment because that approach has been proved improving the distinguishing
ability in Table 2. Among them the spin image vector approach gives the best performance.



Face Recognition with Region Division and Spin Images 117

7 Conclusion and Future Work

In this paper we have explored how spin images can can extracted from 2D facial images
using shape-from-shading. We make a number of contributions. First, we show how the
spin-image histograms can be computed from needle-maps. Second, we show how the
complexity of the spin image computation can be reduced using patches, and how the
dimensionality of the histograms can be reduced using PCA. Third, we show how the
problems of concave/convex inversions in the needle map can be overcome using a
mean facial needle-map. The performance of the method is encouraging and can give
recognition rates as high as 98.75%.
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