
0

Quality of Service Scheduling
in the Firm Real-Time Systems

Audrey Queudet-Marchand and Maryline Chetto
University of Nantes, IRCCyN UMR CNRS 6597

France

1. Introduction

1.1 What does firm real-time mean?

Real-time systems are those in which the time at which the results are produced is important.
The correctness of the result of a task is not only related to its logical correctness, but also
to when the results occur (Stankovic, 1988). In order to characterize their requirements,
real-time systems are traditionaly classified as follows: hard, soft and firm (Liu, 2000). It is
imperative that all time constraints are met in hard real-time systems. In contrast, firm or soft
real-time systems do not have as stringent timeliness requirements allowing for some degree
of tardiness (soft) or miss ratio (firm). Many researches within the soft and firm real-time area
have focused on minimizing tardiness and/or miss ratio but without quantifying acceptable
levels. In this chapter, we focus on scheduling firm periodic tasks which have additional
requirements. These requirements specify the minimum acceptable completion ratios that
should be met in order to maintain system correctness. In a hard real-time system all
hard deadline tasks must meet their deadlines to maintain system correctness; otherwise,
the system has failed. In contrast, a deadline is considered to be soft if it can be missed
occasionally. A task that misses a single soft deadline is not considered a failure. Correctness
in a soft real-time system is determined by the degree to which timeliness has been enforced
for the entire task set. However, the completion of a tardy firm deadline task is not meaningful
since late delivery of the result is considered to be of no value to the real-time system.

Although firm deadlines can occasionally be missed, there is normally an upper limit to the
number of misses within a defined interval. The hard real-time paradigm is well established
and it has received considerable attention by researchers and practitioners within the academe
and the industry alike. Numerous techniques and algorithms – especially in the area of
scheduling – have been developed. Most scheduling algorithms developed for soft and
firm real-time systems lack the ability to enforce constraints on the upper limit of misses.
Unbounded consecutive time constraint violations may occur without such an enforcement.
Realistically, if consecutive instances of a task fail to complete before their deadlines, then
the system will eventually suffer from a failure. This indicates that there are additional
constraints. These constraints express the minimum degree of timeliness that must be
enforced for firm real-time tasks. This is the subject of this chapter.

9

www.intechopen.com

2 Will-be-set-by-IN-TECH

1.2 Quality of Service (QoS) requirements

Quality of Service (QoS) generally refers to a broad collection of networking technologies and
techniques. QoS refers to the ability of a network to deliver predictable results. Traditional
QoS characteristics include availability, bandwidth, delay or delay jitter (Huston, 2000).
However, QoS demands that no task be late (Krings & Azadmanesh, 1999) in hard real-time
systems. QoS represents the quantified ratio of tasks that may not be executed – i.e. the total
amount of work not contributing to the value of the system – in firm real-time systems. Delay
and delay jitter are eliminated from consideration in both cases. Perfect QoS characterization
proves to be difficult at the application level. It would be desirable that the scheduling policy
adapts to changes in user QoS requirements. Such policy should strive to achieve the desired
QoS in an environment with variable resources as well as complex and variable application
demands. Consequently, this chapter adresses consideration of the control of the deadline
miss ratios as a QoS concern.

1.3 Targeted applications

1.3.1 Typical example: a wireless autonomous surveillance system

Let us consider a real-time monitoring system in charge of sampling key environmental
indicators such as ambient temperature, carbon dioxide levels, relative humidity, wind
speed/direction or solar radiation. Wireless sensor networks are practical and cost effective
solutions for such monitoring. The hardware of a node basically includes various sensors,
analog-to-digital converters, data storage, a radio (transceiver) and a microprocessor.
Environmental data are collected periodically from the sensors and communicated from the
sensor node to a base station as depicted in Figure 1. Note that the sampling rate of sensor
data may vary from 5 seconds to 10 minutes according to the nature of the measurement.

A real-time monitoring system must provide updated data within strict time constraints. It is
essential to have an efficient real-time scheduling of all the periodic sampling tasks.

Fig. 1. Simplified architecture of a real-time wireless surveillance application

1.3.2 Scheduling issue

Such a real-time system is often operated in environments that are subject to significant
uncertainties. Some parameters such as emergency events, asynchronous demands from
external devices (e.g. base station requests for statistical computations on sampled data) or

192 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Quality of Service Scheduling

in the Firm Real-Time Systems 3

even energy starvation cannot be accurately characterized at design time. The occurrence
of such situations will temporarily make the system overloaded (i.e. the processing power
required to handle all the tasks will exceed the system capacity). The scheduling will then
consist in determining the sequence of execution of sampling tasks in order to provide the
best QoS.

The scheduling will play a significant role because of its ability to guarantee an acceptable
sampling rate for all the tasks. The scheduler aims to gracefully degrade the QoS (i.e.
sampling rate) to a lower but still acceptable level – e.g. a recording at 15 values per minute
instead of 30 values per minute for wind speed – in such an overload situation. The execution
of some (least important) tasks will be skipped. For instance, it will be less harmful to an air
quality surveillance system to skip one wind speed record than to interrupt the transmission
of the carbon dioxide level. Given this observation, one gets a better understanding of the
real-time CPU scheduling flexibility needed in such applications.

In this chapter, we address the problem of the dynamic scheduling of periodic tasks with firm
constraints. The scope of this study concerns maximizing the actual QoS of periodic tasks i.e.
the ratio of instances which complete before deadline.

2. Scheduling skippable periodic tasks

2.1 Related work

Different approaches have been proposed in order to specify firm real-time systems. In
(Hamdaoui & Ramanathan, 1995), the concept of (m,k)-firm deadlines permits us to model
tasks that have to meet m deadlines every k consecutive instances. The Distance-Based Priority
(DBP) scheme increases the priority of a job in danger of missing more than m deadlines over
a sliding window of k instances for service. In order to specify a task that tolerates x deadlines
missed over a finite range or window among y consecutive instances, a windowed lost rate is
also proposed in (West & Poellabauer, 2000). In (Bernat et al., 2001), the authors describe
a more general specification of the distribution of met and lost deadlines. Virtual Deadline
Scheduling (VDS) (West et al., 2004) and Dynamic Window-Constrained Scheduling (DWCS)
(Zhang et al., 2004) are other existing schedulers provably superior to DBP for a number of
specific and non-trivial situations.

The notion of skip factor is presented in (Koren & Shasha, 1995). The skip factor of a task equal
to s means that the task will have one instance skipped out of s. It is a specific case of the
(m,k)-firm model with m = k − 1. Skipping some task instances then permits us to transform
an overload situation into an underload one. Making optimal use of skips has been proved to
be an NP-hard problem. (m,k)-hard schedulers are presented in (Bernat & Burns, 1997). Most
of these approaches require off-line feasibility tests to ensure a predictable service.

Scheduling hybrid task sets composed of skippable periodic and soft aperiodic tasks has been
studied in (Buttazzo & Caccamo, 1999; Caccamo & Buttazzo, 1997). A scheduling algorithm
based on a variant of Earliest Deadline First (EDF) exploits skips under the Total Bandwith Server
(TBS). In our previous work (Marchand & Silly-Chetto, 2005; 2006), we make use of the same
approach with the Earliest Deadline as Late as possible server (EDL). These results led us to
propose a raw version of the Red tasks as Late as Possible (RLP) algorithm (idle time schedule
based on red tasks only) (Marchand, 2006; Marchand & Chetto, 2008).

193Quality of Service Scheduling in the Firm Real-Time Systems

www.intechopen.com

4 Will-be-set-by-IN-TECH

In contrast, tasks with soft real-time constraints still have a value even when completing
after their deadlines. In this case, task overruns can cause overload situations that may be
managed by overrun handling mechanisms such as Overrun Server Method (OSM) (Tia et al.,
1995), CApacity SHaring (CASH) (Caccamo et al., 2000) or Randomized Dropping (RD) (Bello
& Kim, 2007). A more complete survey on overrun handling approaches in soft real-time
systems can be found in (Asiaban et al. , 2009).

2.2 The skip-over model

Each periodic task Ti is characterized by a worst-case computation time ci, a period pi, a
relative deadline equal to its period and a skip factor si – which gives the tolerance of this task
to missing deadlines – 2 ≤ si ≤ ∞. Every periodic task instance can be either red or blue
under the terminology introduced in (Koren & Shasha, 1995). A red instance must complete
before its deadline; a blue instance can be aborted at any time. The operational specification
of a skippable periodic task Ti is composed of four characteristics: (1) the distance between
two consecutive skips must be at least si periods, (2) if a blue instance is skipped, then the
next si − 1 instances are necessarily red, (3) if a blue instance completes successfully, the next
instance is also blue and (4) the first si − 1 instances are red. The assumption si ≥ 2 implies
that, if a blue instance is skipped, then the next one must be red. The assumption si = ∞

signifies that no skip is authorized for task Ti. Skips permit us to schedule systems that might
otherwise be overloaded. The system is overloaded since Up = ∑

n
i=1

ci
pi

= 4
6 + 1

2 = 1.17 as

shown in Figure 2. Allowing T2 to skip one instance over three enables us to produce a feasible
schedule.

✲

✲
� � � �

� � � � � � � � � �
0 6 12 18

0 2 4 6 8 10 12 14 16 18

T1(4, 6, ∞)

T2(1, 2, 3)

skip skip skip

Fig. 2. A schedule with the Skip-Over model

2.3 Feasibility test for skippable periodic task sets

(Liu &Layland, 1973) show that a task set {Ti(ci, pi); 1 ≤ i ≤ n} is schedulable if and only if
its cumulative processor utilization (ignoring skips) is not greater than 1, i.e.,

n

∑
i=1

ci

pi
≤ 1. (1)

(Koren & Shasha, 1995) prove that the problem of determining whether a set of periodic
occasionally skippable tasks is schedulable, is NP-hard. However, they prove the following
necessary schedulability condition for a given set Γ = {Ti(pi, ci, si)} of skippable periodic
tasks:

n

∑
i=1

ci(si − 1)

pisi
≤ 1. (2)

194 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Quality of Service Scheduling

in the Firm Real-Time Systems 5

(Caccamo & Buttazzo, 1997) introduce the notion of equivalent utilization factor defined as
follows.

DEFINITION 1. Given a set Γ = {Ti(pi, ci, si)} of n skippable periodic tasks, the equivalent
utilization factor is defined as:

U∗
p = max

L≥0

∑i D(i, [0, L])

L
(3)

where

D(i, [0, L]) = (⌊
L

pi
−

L

pisi
⌋)ci. (4)

They also provide a sufficient condition in (Caccamo & Buttazzo, 1998) for guaranteeing a
feasible schedule of a set of skippable tasks:

THEOREM 1. A set Γ of skippable periodic tasks is schedulable if

U∗
p ≤ 1. (5)

2.4 Skip-over scheduling algorithms

2.4.1 RTO (Red Tasks Only)

The first algorithm called Red Task Only (RTO) (Koren & Shasha, 1995) always rejects the
blue instances whereas the red ones are scheduled according to EDF. Deadline ties are broken
in favor of the task with the earliest release time. Generally speaking, RTO is not optimal.
However, it becomes optimal under the particular deeply red task model where all tasks are
synchronously activated and the first si − 1 instances of every task Ti are red. The scheduling
decision runs in the worst-case in O(n2) where all the n tasks are released simultaneously.

Figure 3 depicts a RTO schedule for the task set T = {T0, T1, T2, T3}. Table 1 gives the
characteristics of T . Tasks have uniform skip factor si = 2. The total processor utilization
Up = ∑

ci
pi

is equal to 1.19. The equivalent processor utilization U∗
p is equal to 0.79. This

consequently guarantees the feasibility of the task set under minimal QoS.

Task T0 T1 T2 T3

ci 4 6 9 4
pi 36 24 18 12

Table 1. A basic periodic task set

The schedule produced by RTO exhibits the lowest acceptable QoS level for the task set . All
blue instances are systematically rejected every si periods for each task.

2.4.2 BWP (Blue When Possible)

The second scheduling algorithm called Blue When Possible (BWP) algorithm (Koren &
Shasha, 1995) is an improvement of RTO. Blue instances can execute only if there are no red
ready instances. Deadline ties are still broken in favor of the task with the earliest release time.
BWP improves RTO in that it offers a higher QoS resulting from the successful completions of
blue instances.

195Quality of Service Scheduling in the Firm Real-Time Systems

www.intechopen.com

6 Will-be-set-by-IN-TECH

✲
✲
✲
✲� � �

� � � �
� � � � �
� � � � � � �

0 36 72

0 24 48 72

0 18 36 54 72

0 12 24 36 48 60 72

T0

T1

T2

T3

: processing red instance

�: release time

Fig. 3. A schedule produced by the RTO scheduling algorithm (si = 2)

✲
✲
✲
✲� � �

� � � �
� � � � �
� � � � � � �

0 36 72

0 24 48 72

0 18 36 54 72

0 12 24 36 48 60 72

T0

T1

T2

T3

: processing red instance
: processing blue instance

�: release time

Fig. 4. A schedule produced by the BWP scheduling algorithm (si = 2)

Figure 4 illustrates a BWP schedule for the task set T (see Table 1).

As can be seen, BWP increases the total number of task instances that complete successfully.
Five deadlines of blue instances are missed at instants t = 24 (task T3), t = 36 (task T2), t = 48
(tasks T1 and T3) and t = 72 (task T3). In contrast, all deadlines of blue instances are missed
under RTO which represents a total of seven instances.

3. Superior skip-over scheduling algorithms

3.1 CPU idle times determination under EDL

The basic foundation of our scheduling approach for enhancing the QoS of skippable periodic
tasks relies on the Earliest Deadline as Late as possible (EDL) algorithm (Chetto & Chetto, 1989).
Thus, we will review the fundamental properties of this algorithm. Such an approach is
known as Slack Stealing since it makes any spare processing time available as soon as possible.
In doing so, it effectively steals slack from the hard deadline periodic tasks. A means of
determining the maximum amount of slack which may be stolen without jeopardizing the
hard timing constraints is thus key to the operation of the EDL algorithm. We described in
Chetto & Chetto (1989) how the slack available at any current time can be found. This is
done by mapping out the processor schedule produced by EDL for the periodic tasks from
the current time up to the end of the current hyperperiod (the least common multiple of task
periods). This schedule is constructed dynamically whenever necessary. It is computed from
a static EDL schedule constructed off-line and memorized by means of the following two
vectors:

• K, called static deadline vector. K represents the instants from 0 to the end of the first
hyperperiod – at which idle times occur – and is constructed from the distinct deadlines of
periodic tasks.

196 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Quality of Service Scheduling

in the Firm Real-Time Systems 7

• D, called static idle time vector. D represents the lengths of the idle times which start at
instants of K.

The dynamic EDL schedule is updated at run-time from the static one. It takes into account
the execution of the current ready tasks. It is described by means of the following two vectors:

• Kt, called dynamic deadline vector. Kt represents the instants ki from t in the current
hyperperiod at which idle times occur.

• Dt, called dynamic idle time vector. Dt represents the lengths of the idle times that start at
instants ki given by Kt.

Assume now that, given the task set T = {T1(3, 10, 10); T2(3, 6, 6)}, we want to compute idle
times from instant t = 5 while tasks have been processed by EDF from 0 to t. The resulting
schedule is depicted in Figure 5. Note that f EDL = 1 if the processor is idle at t, 0 otherwise.

✲

✲

✲� � � �

� � � � � �

�

0 10 20 30

0 6 12 18 24 30

k0 k1 k2 k3 k4 k5 k6

T1(3, 10, 10)

T2(3, 6, 6)

f EDL

: processing of periodic tasks according to EDF

: simulated processing of periodic tasks according to EDL

: idle time

� : release time

Fig. 5. EDL computation of dynamic idle times at time t = 5

Next, tasks are scheduled as late as possible according to EDL from time t = 5 to the end
of the hyperperiod. Nonzero idle times resulting from the computation of vectors Kt and Dt

appear at times t = 5, t = 6, t = 12 and t = 20.

Chetto & Chetto (1989) showed that the EDL schedule computation can be efficiently used
for improving the service of aperiodic tasks. By definition, soft aperiodic requests must not
compromise the guarantees given for periodic tasks and should be completed as soon as
possible. No acceptance test is performed for soft aperiodic requests; they are served on a
best-effort basis within the computed idle times, the goal being to minimize their response
times. Concerning hard aperiodic tasks, each task is subject to an acceptance-rejection test
upon arrival. Hard aperiodic tasks can indeed easily be admitted or rejected on the basis of
the knowledge of idle times localization.

In the next sections, we are first interested in using EDL to build a schedule on the red
instances only so as to execute the blue instances as soon as possible in the remaining EDL
idle times (see section 3.2 The RLP algorithm). In a second phase, EDL will allow us to derive
a test for deciding on-line whether a blue instance can be accepted for execution or not (see
section 3.3 The RLP/T algorithm).

197Quality of Service Scheduling in the Firm Real-Time Systems

www.intechopen.com

8 Will-be-set-by-IN-TECH

3.2 The RLP algorithm

BWP executes blue instances in background beside red ones. Processor time is often wasted

due to the abortion of uncompleted blue instances that have reached their deadlines. Figure 4

shows that task T2 is aborted at time t = 36. This leads to 8 units of wasted processor time.

3.2.1 Algorithm description

The Red tasks as Late as Possible (RLP) algorithm (Marchand & Chetto, 2008) brings forward the

execution of blue instances so as to enhance the actual QoS (i.e., the total number of successful

executions). From this perspective, RLP runs as follows:

• if no blue instance waits for execution, red instances execute as soon as possible according

to the EDF scheduling rule.

• else (i.e. at least one blue instance is ready for execution), blue instances execute as soon

as possible according to EDF scheduling (note that it could be according to any other

scheduling heuristic), and red instances are processed as late as possible according to EDL.

Figure 6 gives the pseudo-code of the RLP algorithm. RLP maintains three task lists which are

sorted in increasing order of deadline: waiting list, red ready list and blue ready list.

• waiting list: list of instances waiting for their next release,

• red ready list: list of red instances ready for execution,

• blue ready list : list of blue instances ready for execution.

At every instant t, the scheduler performs the following actions:

1. it updates all the three lists: instances may be released or aborted according to their current

state (i.e. waiting or ready red/blue instances),

2. if t belongs to an EDL idle time, it selects the first instance in the blue ready list for

execution. Otherwise it selects the first instance in the red ready list.

The main idea of this approach is to take advantage of the slack of red instances. The

determination of the latest start time for every red instance requires preliminary construction

of the schedule by a variant of the EDL algorithm taking skips into account (Marchand &

Silly-Chetto, 2006). We assume in the EDL schedule established at time τ that the instance

following immediately a blue one - which is part of the current periodic instance set at time τ

- is red. Indeed, none of the blue instances is guaranteed to complete within its deadline.

We proved in (Silly, 1999) that the online computation of the slack time is required only at

instants which corresponds to the arrival of a request while no other is already present on the

machine. The EDL sequence is constructed here not only when a blue instance is released - and

no other one was already present - but also after a blue task completion, if blue tasks remain

in the system. The next task instance of the completed blue task has then to be considered

as a blue one. Note that blue instances are executed in the EDL idle times with the same

importance as red instances, contrary to BWP which always assigns higher priority to red

instances.

198 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Quality of Service Scheduling

in the Firm Real-Time Systems 9

Algorithm RLP(t : current time)
begin

/*checking blue ready list in order to abort tasks*/
while (task=next(blue ready list)=not(∅))

if (task→release time+task→critical delay<t)
break

endif
Pull task from blue ready list
task→release time+= task→period
task→current skip value=1
Put task into waiting list

endwhile
/*checking waiting list in order to release tasks*/
while (task=next(waiting list)=not(∅))

if (task→release time>t)
break

endif
if ((task→current skip value < task→max skip value)
and (f_EDL(t)=0))

/*red task release*/
Pull task from waiting list
Put task into red ready list

else
if (blue ready list=∅)

Compute EDL_schedule
endif
if (f_EDL(t)!=0)

/*blue task release*/
Pull task from waiting list
Put task into blue ready list

endif
endif
task→current skip value+=1

endwhile
if ((blue ready list=not(∅)) and (f_EDL(t)!=0))

/*checking red ready list in order to suspend task*/
while (task=next(red ready list)=not(∅))

Pull task from red ready list
Put task into waiting list

endwhile
endif

end

Fig. 6. RLP scheduling algorithm

199Quality of Service Scheduling in the Firm Real-Time Systems

www.intechopen.com

10 Will-be-set-by-IN-TECH

3.2.2 Illustrative example

Consider the periodic task set T defined in Table 1. The relating RLP scheduling is illustrated
in Figure 7. The number of deadline misses has been reduced to four. Missed deadlines occur
at instants t = 36 (task T3), t = 54 (task T2) and t = 72 (tasks T1 and T3). Observe that the
first blue instance T2 which failed to complete within its deadline under BWP scheduling (see
Figure 4) has enough time to succeed under RLP scheduling. The execution of the first red
instances of T1 and T0 is postponed. Red instances are scheduled as soon as possible until
time t = 12 and execute as late as possible in the presence of blue instances from time t = 12
up to the end of the hyperperiod. This enhances the actual QoS of periodic tasks.

✲
✲
✲
✲� � �

� � � �
� � � � �
� � � � � � �

0 36 72

0 24 48 72

0 18 36 54 72

0 12 24 36 48 60 72

T0

T1

T2

T3

: processing red instance
: processing blue instance

�: release time

Fig. 7. A schedule produced by the RLP scheduling algorithm (si = 2)

3.3 The RLP/T algorithm

3.3.1 Algorithm description

The Red tasks as Late as Possible with blue acceptance Test (RLP/T) algorithm (Marchand & Chetto,
2008) is an improvement of RLP designed to maximize even more the actual QoS.

RLP/T runs as follows: red instances enter the system directly at their arrival time whereas
blue instances integrate the system upon acceptance. A blue instance is scheduled as soon
as possible together with red ones once accepted. All the ready instances are of the same
importance. Deadline ties are broken in favor of the task with the earliest release time.

Processor idle times are computed according to the EDL strategy once a new blue instance
is released. We assume that the instance immediately following a blue instance is also blue
in the EDL schedule established at time τ. All blue instances previously accepted at τ are
guaranteed by the schedulability test. It ensures there are enough idle times to accommodate
the new blue instance within its deadline, as described hereafter.

3.3.2 Acceptance test of blue instances under RLP/T

The question we ask now can be formulated as follows: "Given any occurring blue instance
B, can B be accepted?". B will be accepted provided a valid schedule exists, i.e. a schedule
in which B will complete within its deadline while all periodic instances previously accepted
will still meet their deadlines. Let τ be the current time which coincides with the release of
a blue instance B. B(r, c, d) is characterized by its release time r, its execution time c and its
deadline d, with r + c ≤ d. We assume that the system supports several uncompleted blue
instances at time τ previously accepted. Let’s denote by B(τ) = {Bi(ci(τ), di), i=1 to blue(τ)},

200 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Quality of Service Scheduling

in the Firm Real-Time Systems 11

the blue instance set at time τ. The value ci(τ) is called dynamic execution time and represents
the remaining execution time of Bi at τ. B(τ) is ordered such that i < j implies di ≤ dj.

Theorem 2 presents the acceptance test of blue instances within a system involving RLP
skippable tasks. This test is based on theoretical results established in (Silly-Chetto et al., 1990)
for the acceptance of sporadic requests that occur in a system composed of non-skippable
periodic tasks.

THEOREM 2. Instance B is accepted if and only if, for every instance Bi ∈ B(τ) ∪ {B} such that
di ≥ d, we have δi(τ) ≥ 0, with δi(τ) defined as:

δi(τ) = ΩEDL
T (τ)(τ, di)−

i

∑
j=1

cj(τ) (6)

δi(τ) is called slack of instance Bi at time τ. It defines the maximum units of time during which
Bi could be delayed without violating its deadline. ΩEDL

T (τ)
(τ, di) denotes the total units of time

that the processor is idle in the time interval [τ, di]. The total computation time required by

blue instances within [τ, di] is given by ∑
i
j=1 cj(τ).

The acceptance test is based on the computation of EDL idle times which gives the slack
of any blue instances. Then, this slack is compared to zero. The acceptance test runs in
O(⌊ R

p ⌋n + blue(τ)) in the worst-case, where n is the number of periodic tasks, R is the longest

deadline and p is the shortest period. blue(τ) denotes the number of blue instances at time
τ whose deadline is greater or equal to the deadline of Bi. A specific updating of additional
data structures with slack tables may reduce the complexity to O(n + blue(τ)) as proved in
(Tia et al., 1994).

3.3.3 Illustrative example

Figure 8 gives an illustration of RLP/T scheduling for the periodic task set T defined in
Table 1. Clearly, RLP/T improves on both RLP and BWP. Only three deadline violations
relative to blue instances are observed: at instants t = 36 (task T3), t = 54 (task T2) and t = 72
(task T3). The acceptance test contributes to compensating for the time wasted in starting the
execution of blue instances which are not able to complete before deadline. The blue instance
T2 released at time t = 36 is aborted at time t = 54 – 8 units of time were indeed wasted –
in the RLP case (see Figure 7). This rejection performed with RLP/T permits us to save time
recovered for the successful completion of the blue instance T1 released at time t = 48.

4. Performance analysis

4.1 Simulation details

We report part of a performance analysis composed of three simulation experiments in order
to evaluate RLP/T with respect to RTO, BWP and RLP.

We successively measure:

• the QoS (i.e. the ratio of instances that complete within their deadline),

• the CPU wasted time ratio (i.e. the percentage of useless processing time),

201Quality of Service Scheduling in the Firm Real-Time Systems

www.intechopen.com

12 Will-be-set-by-IN-TECH

✲
✲
✲
✲� � �

� � � �
� � � � �
� � � � � � �

0 36 72

0 24 48 72

0 18 36 54 72

0 12 24 36 48 60 72

T0

T1

T2

T3

: processing red instance
: processing blue instance

�: release time

Fig. 8. A schedule produced by the RLP/T scheduling algorithm (si = 2)

• the CPU idle time ratio (i.e. the percentage of time during which the processor is not
processing any task).

We make the processor utilization Up vary. The simulator generates 50 sets of periodic
tasks. Each set contains 10 tasks with a least common multiple of periods equal to 3360 time
units. The tasks have a uniform skip factor si. Worst-case computation times depend on Up.
Deadlines are equal to periods and greater than or equal to computation times. Simulations
have been processed over 10 hyperperiods.

4.1.1 Experiment 1

Figure 9 depicts the simulation results for si=2. The results are given for an actual computation
time (ACET) equal to 100% and 75% of the worst-case computation time (WCET) respectively.
Let us recall that the tasks have variable actual computation times assumed to be less than
an estimated worst-case computation time. The assumption that a task consumes its WCET
in every activation is not necessarily true. This implies that the actual CPU utilization never
exceeds the estimated one used in the schedulability test.

(a) ACET=WCET (b) ACET=0.75*WCET

Fig. 9. QoS for si=2

BWP and RLP outperform RTO – for which the QoS is constant and minimal – for any
processor workload. Both BWP and RLP succeed in completing all blue instances that
respectively execute after and before red instances for Up ≤ 1. RLP and BWP give
almost the same performances under overload. Nevertheless, RLP/T provides a significant
improvement in performance compared with RLP.

202 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Quality of Service Scheduling

in the Firm Real-Time Systems 13

The QoS observed for BWP, RLP and RLP/T is higher for a given processor utilization when
the task’s computation time is less than the task’s worst-case execution time. As the amount
of time given by WCET − ACET is not used by each instance, additional CPU time permits
us to successfully complete a higher number of instances.

Moreover, note that BWP and RLP outperform RLP/T for low overloads with ACET=0.75*
WCET. This comes from the admission test in RLP/T which uses WCET values and not
ACET ones. Consequently, RLP/T rejects instances that after all could have been accepted
on the basis of their ACET. This is exactly what we observe for Up equal to 130%: RLP/T
temporarily offers lower performances than BWP and RLP. Note that this phenomenon is no
longer observable once the skip factors are higher (e.g. si = 6).

Finally, other tests (Marchand, 2006) – not reported here – show that the higher the skip factor
is, the more significant the advantage of RLP/T over the other scheduling algorithms.

4.1.2 Experiment 2

We study here the CPU time wasted in incomplete executions of blue instances. The
simulation results for si = 2 and si = 6 are depicted in Figure 10.

(a) si = 2 (b) si = 6

Fig. 10. Wasted CPU time for low and high skips

The wasted CPU time is equal to zero for RTO since all red instances execute successfully. It
is also equal to zero under RLP/T for any CPU utilization. This is due to the admission test
that prevents from the abortion of blue instances. A blue instance is accepted if and only if it
can complete before deadline.

The wasted CPU time is always positive under BWP and RLP once the system is overloaded
(Up > 1). BWP and RLP involve the largest wasted CPU time – 24% et 26% respectively – for
Up = 115% and si = 2. The BWP and RLP curves present a decline beyond that load. More red
instances have to be executed under high overload. Less available CPU time is consequently
available for the execution of blue instances.

Additional results reported in (Marchand, 2006) show that wasted CPU time is all the less
significant as skip factors grow.

203Quality of Service Scheduling in the Firm Real-Time Systems

www.intechopen.com

14 Will-be-set-by-IN-TECH

4.1.3 Experiment 3

Finally, we study the CPU idle time ratio given by the percentage of time during which the
processor is not processing any task. This measure quantifies the ability to face a dynamic
processing surplus (e.g. the arrival of an aperiodic task). Simulation results for si = 2 and
si = 6 are presented in Figure 11.

(a) si = 2 (b) si = 6

Fig. 11. CPU idle time for low and high skips

We note that the CPU idle time ratio under RTO is the highest one compared with all
strategies. This ratio declines in a linear fashion according to Up. It varies from 55% for
Up = 90% to 10% for Up = 180% and si = 2. Note the singular points of the curves si = 2 and

si = 6: when Up = 100% idle time ratios are respectively equal to 1
2 = 50% and 1

6 = 16.7%
which correspond exactly to the skip factors.

Idle time ratios are identical and positive – e.g. idle time = 10% for Up = 90% – when
Up < 100% under BWP, RLP and RLP/T. They decline in a linear fashion until reaching a zero
value for Up = 100%.

Results differ for overloaded systems (Up > 100%). RLP involves no CPU idle time whatever
the skip factors are. We observe that BWP involves a low idle time ratio only under low skip
ratios. RLP/T clearly appears as the most efficient strategy, still offering idle time under light
overloads. For example, the idle time ratio under RLP/T for si = 2 and Up = 115% is equal
to 9%. RLP/T gives a low and still positive idle time ratio even when the system is highly
overloaded.

In summary, RLP/T proves to be the most suitable scheduling strategy to cope with transient
overloads while providing the highest Quality of Service.

4.2 Integration into an open-source operating system

4.2.1 The CLEOPATRE Library

From 2002 until 2006, we developed a library of free software components within the French
National project CLEOPATRE (Software Open Components on the Shelf for Embedded Real-Time
Applications). This project aims to provide efficient services to real-time applications (Silly et
al., 2007). It enriches real-time Linux variants with enhanced real-time facilities.

204 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Quality of Service Scheduling

in the Firm Real-Time Systems 15

CLEOPATRE components have been prototyped under Linux/RTAI (Real-Time Application
Interface) (Racciu & Mantegazza, 2006) and distributed under the LGPL license. The LGPL
allows proprietary code to be linked to the GNU C library, glibc. When a program is linked
with a library – whether statically or using a shared library – the combination of the two is
legally speaking a combined work, a derivative of the original library. Companies do not have
to release the source to code that which has been dynamically linked to an LGPLed library.
This makes the use of such codes much more attractive.

The CLEOPATRE library offers selectable COTS (Commercial-Off-The-Shelf) components
dedicated to dynamic scheduling, aperiodic task servicing, resource control access,
fault-tolerance and QoS scheduling. An additional task named TCL (Task Control Logic)
interfaces all the CLEOPATRE components and has the highest priority. It has been added
as a dynamic module in $RTAIDIR/modules/TCL.o and interfaces with the legacy RTAI
scheduler defined in $RTAIDIR/modules/rtai_sched.o, as depicted in Figure 12.

The CLEOPATRE interface is totally independent from the RTAI core layer. It can be directly
used with Xenomai – which supports the RTAI API – and easily adapted to any other real-time
Linux extension.

Fig. 12. Cleopatre Library within Linux/RTAI

CLEOPATRE applications are highly portable to any new CPU architecture thanks to this
OS abstraction layer which makes the library of services generic (Silly et al., 2007). The
CLEOPATRE Off-the-Shelf components are optional except for the OS abstraction layer (TCL)
and the scheduler. At most one component per shelf can be selected. Since all components
of a given shelf have the same programming interface, they become interchangeable.
Everything needed to use or extend CLEOPATRE can be downloaded from the project web
site http://cleopatre.rts-software.org.

4.2.2 Overheads and footprints

The memory and disk footprints of the operating system turn out to be key issues for
embedded real-time applications as well as the time overhead incurred by the operating
system itself. Table 2 gives the footprints for the schedulers provided by CLEOPATRE.

205Quality of Service Scheduling in the Firm Real-Time Systems

www.intechopen.com

16 Will-be-set-by-IN-TECH

QoS components Hard disk size (KB) Memory size (KB)

RTO 3.2 2.3

BWP 4.1 3.2

RLP 9.7 7.6

RLP/T 13.3 10.8

Table 2. Footprints of QoS components

The smallest footprint of an application using a QoS scheduler comes to 52.4 KB in memory
(65.2 KB on hard disk). This corresponds to the total load due to RTAI, the TCL task and the
RTO scheduler. On the contrary, the greatest footprint corresponds to the RLP/T scheduler
(i.e. 60.9 KB in memory and 75.3 KB on hard disk). Any QoS scheduler, including RLP/T
scheduler, easily fits into the flash memory of an embedded system.

We conducted experiments to obtain a quantitative evaluation of the overhead led by the QoS
schedulers. We measured the overhead for various numbers of tasks (5, 10, 15, 20,...) with
all periods equal to 10 milliseconds. Periods are harmonic with a hyperperiod equal to 3360
timer ticks. The measurements were performed over a period of 1000 seconds on a computer
system with a 400 MHz Pentium II processor with 384 Mo RAM. Figure 13 shows the resulting
overhead.

Fig. 13. Dynamic overhead of the QoS schedulers

The average overhead led by the QoS schedulers scales with the number of installed tasks.
BWP exhibits an average execution time that is substantially higher than the RTO. This comes
from the management of blue instances under BWP. The curve obtained for RLP and RLP/T
mainly comes from the amount of time spent on the EDL schedule (performed only when
a blue instance is released or completed). As a matter of fact, we observe that overhead is
closely related to efficiency. An interesting feature of the component approach lies in that the
selected scheduler can be tuned to balance performance versus complexity, and thus easily
conforms to implementation requirements.

206 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Quality of Service Scheduling

in the Firm Real-Time Systems 17

5. Conclusion

5.1 Summary

While it is imperative that all time constraints – generally expressed in terms of deadlines
– are met in hard real-time systems, firm real-time systems do not have as stringent
timeliness requirements since they allow for some degree of miss ratio. Video reception and
multimedia-oriented mobile applications are typical firm real-time applications that require
the need for a suitable real-time scheduler which represents the central key service in any
operating system. The proliferation of these applications has motivated many research
efforts over the last twenty years in order to produce a scheduling framework that explicitly
addresses their specific requirements and improves the global Quality of Service.

A firm real-time system is typically characterized by dynamic changes in workloads (tasks
have variable actual execution times). It consequently needs a scheduler able to handle
possible overload situations and to allow the system to achieve graceful degradation by
skipping some tasks. The scheduler has to supply a dynamic mechanism that determines
on-line the task to be shed from the system. Multimedia systems are typically systems
in which performance is sensitive to the distribution of skips: if skips occur for several
consecutive instances of the same task, then the system performance may be totally
unacceptable leading to some form of instability. To overcome the shortcoming of the Quality
of Service metrics only based on the average rate of dropped tasks, Koren and Shasha
proposed the skip-over model in which a periodic task with a skip factor of s is allowed to
have one instance skipped out of s consecutive instances (Koren & Shasha, 1995).

In this chapter, we have considered the skip-over model where independant tasks run
periodically on a uni-processor architecture and can be preempted at any time. Additionally,
they have a skip factor. We described two on-line scheduling algorithms respectively named
RLP and RLP/T, the latter being based on an admission control mechanism. The results
of an experimental study indicate that improvements with both RLP and RLP/T are quite
significant compared with the two basic algorithms introduced by Koren and Shasha. We have
integrated all the QoS schedulers presented in this chapter as software components which are
part of the CLEOPATRE open-source library. We have performed their evaluation under a
real-time Linux-based operating system, namely Linux/RTAI. The observed overheads and
footprints enabled us to state their ability to be used even for embedded applications with
severe memory and timeliness requirements.

5.2 Future work

5.2.1 QoS and energy harvesting

Many embedded systems work in insecure or remote sites (e.g. wireless intelligent sensors).
The new generation of these systems will be smaller and more energy efficient while still
offering sufficient performance. A typical example is data farming where sensors are spread
over an area to supervise the environment and send collected data for further processing to a
base station. Sensors are deployed and then must stay operational for a long period of time,
in the range of months or even years.

One way to prolong the lifetime of such autonomous systems is to harvest the required energy
from the environment. Energy Harvesting is defined as the process of capturing energy from
one or more natural energy sources accumulating it and storing it for later use (Priya & Inman,

207Quality of Service Scheduling in the Firm Real-Time Systems

www.intechopen.com

18 Will-be-set-by-IN-TECH

2009). Energy harvesting from a natural source where a remote application is deployed and
where energy is inexhaustible appears as an attractive alternative to inconvenient traditional
batteries. Energy harvesting with solar panels is one of the most popular technologies.
Nowadays, many real life applications using energy harvesting are operational. Wireless
sensor network systems, including ZigBee systems, benefit from this technology.

A wireless sensor has timing constraints that must be satisfied and consume only as much
energy as the energy harvester can collect from the environment. But the harvested energy
is highly dependent on the environment and the power drained from most environmental
energy sources is not constant over time. Consequently, energy consumption coming from
the execution of tasks should be continuously adjusted in order to maximize the Quality of
Service and not only to minimize the energy consumption. The main challenge of research is
to provide an energy-aware scheduling algorithm that will schedule tasks so as to consider
jointly two kinds of constraints: time (i.e. deadlines) and energy availability.

To address the above problem, we proposed in a recent paper (El Ghor et al., 2011) an
efficient scheduling algorithm called EDeg which is based on both the energy stored and
the energy estimated to be harvested in the future. We performed a series of experiments
based on the rate of missed deadlines in order to compare EDeg with other scheduling
methods. Experimental results show that EDeg significantly outperforms the classical greedy
schedulers, including EDF.

We are now extending this scheduling strategy to the skip-over model. The objective is to
reduce the rate of missed deadlines when the system lacks either time or energy, by taking into
account skip factors. To summarize, our current work focuses on the same problem studied
in this chapter but considers the specific issue of real-time energy harvesting systems.

5.2.2 QoS and multicore systems

While real-time applications are becoming more and more concurrent and complex, the drive
toward multicore systems seems inevitable. Multicore processors solve the problem of heat
that has been slowing processor growth in the past while providing increased performance.
We propose in a recent paper (Abdallah et al., 2011) to tackle the problem of distributing
skippable periodic tasks over such platforms. Our contribution is twofold. First, we design
a schedulability test for multicore task sets under QoS constraints. Second, based on this
test, we propose new partitioned scheduling heuristics to assign tasks with QoS constraints to
processors so as to minimize the number of processors used. In conclusion, this new line of
investigation extends the work presented in this chapter to multicore platforms.

6. References

Abdallah, N., Queudet, A., Chetto, M. & Chehade, R.-H. (2011). Partitioned EDF Scheduling
in Multicore systems with Quality of Service constraints. Proceedings of IEEE
International Conference on Electronics, Circuits, and Systems, December 2011, Beirut
(Lebanon).

Asiaban, S., Moghaddam, M.-E. & Abbaspour, M. (2009). A Real-Time Scheduling Algorithm
for Soft Periodic Tasks. International Journal of Digital Content Technology and its
Applications, 3(4):100–111.

208 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Quality of Service Scheduling

in the Firm Real-Time Systems 19

Bernat, G. & Burns, A. (1997). Combining (n/m)-hard deadlines and dual priority scheduling,
Proceedings of the 18th IEEE Real-Time Systems Symposium, pp 46-57, December 1997,
San Francisco (USA).

Bernat, G., Burns, A. & Llamosi, A. (2001). Weakly-hard real-time systems, IEEE Transactions
on Computers, 50(4):308-321.

Bello, L.-L. & Kim, K. (2007). Overrun handling approaches for overload-prone soft real-time
systems. Advances in Engineering Software, 38(11-12):780–794.

Buttazzo, G.-C. & Caccamo, M. (1999). Minimizing Aperiodic Response Times in a Firm
Real-Time Environment, IEEE Transaction on Software Engineering, 25(1):22–32.

Caccamo, M. & Buttazzo, G.-C. (1997). Exploiting skips in periodic tasks for enhancing
aperiodic responsivess, Proceedings of the 18th IEEE Real-Time Systems Symposium,
December 1997, San Francisco (USA).

Caccamo, M., & Buttazzo, G.-C. (1998). Optimal Scheduling for Fault-Tolerant and
Firm Real-Time Systems. Proceedings of the IEEE Real-Time Computing Systems and
Applications, October 1998, Hiroshima (Japan).

Caccamo, M., Buttazzo, G. & Sha, L. (2000). Capacity sharing for overrun control. Proceedings
of the 21st IEEE Real-Time Systems Symposium, November 2000, Orlando (USA).

Chetto, H. & Chetto, M. (1989). Some Results of the Earliest Deadline Scheduling Algorithm.
IEEE Transactions on Software Engineering, 15(10):1261–1269.

El Ghor, H., Chetto, M. & Chehade, R.-H. (2011). A real-time scheduling framework for
embedded systems with environmental energy harvesting. Computers & Electrical
Engineering Journal, 37(4):498–510.

Hamdaoui, M. & Ramanathan, P. (1995). A Dynamic Priority Assignment Technique for
Streams with (m,k)-firm deadlines. IEEE Transactions on Computers, 44(4):1443–1451.

Huston, G. (2000). Quality of Service - Fact or Fiction? The Internet Protocol Journal, 3(1):1–40.
Krings, A.W. & Azadmanesh, M.H. (1999). QoS Considerations In Real-Time Scheduling,

Proceedings of the 2nd International Conference on Parallel Computing Systems, August
1999, Ensenada (Mexico).

Koren, G. & Shasha, D. (1995). Skip-Over Algorithms and Complexity for Overloaded Systems
that Allow Skips. Proceedings of the 16th IEEE Real-Time Systems Symposium, December
1995, Pisa (Italy).

Liestman, A-L. & Campbell, R-H. (1986). A fault tolerant scheduling problem. Proceedings of
the IEEE Transaction on Software Engineering, 12(10):1089–1095.

Liu, J.-W.-S. (2000). Real-Time Systems, Prentice-Hall.
Liu, C-L. & Layland, J-W. (1973). Scheduling Algorithms for Multiprogramming in a

Hard Real-Time Environment. Journal of the Association for Computing Machinery,
20(1):46–61.

Marchand, A. (2006). Ordonnancement Temps Réel avec Contraintes de Qualité de Service -
De la théorie à l’intégration. PhD Thesis, University of Nantes (France), October 2006.

Marchand, A. & Chetto, M. (2008). Quality of Service Sccheduling in Real-Time Systems.
International Journal on Computers, Communications & Control, 3(4):354–366.

Marchand, A. & Silly-Chetto, M. (2005). QoS Scheduling Components based on Firm
Real-Time Requirements, Proceedings of the ACS/IEEE International Conference on
Computer Systems and Applications, January 2005, Le Caire (Egypt).

Marchand, A. & Silly-Chetto, M. (2006). Dynamic Real-Time Scheduling of Firm Periodic Tasks
with Hard and Soft Aperiodic Tasks. Journal of Real-Time Systems, 32(1-2):21–47.

Priya, S., Inman, D.-J. (2009). Energy Harvesting Technologies, Springer.

209Quality of Service Scheduling in the Firm Real-Time Systems

www.intechopen.com

20 Will-be-set-by-IN-TECH

Racciu, G. & Mantegazza, P. (2006). RTAI User Manual 3.4 rev 0.3. URL:www.rtai.org
Silly, M. (1999). The EDL Server for Scheduling Periodic and Soft Aperiodic Tasks with

Resource Constraints. The Journal of Real-Time Systems, 17(1): 87-111.
Silly-Chetto, M., Chetto, H. & Elyounsi, N (1990). An Optimal Algorithm for Guranteeing

Sporadic Tasks in Hard Real-Time Systems. IEEE Symposium on Parallel and
Distributed Processing, December 1990, Dallas (USA).

Silly-Chetto, M., Garcia-Fernandez T. & Marchand-Queudet, A. (2007). CLEOPATRE:
Open-source Operating System Facilities for Real-Time Embedded Applications. The
Journal of Computing and Information Technology, 15(2): 131-142.

Stankovic, J.-A. (1988). Misconceptions about real-time computing: a serious problem for
next-generation systems. IEEE Computer, 21(10):10–19.

Tia, T., Liu, J., Sun, J. & Ha, R. (1994). A Linear-Time Optimal Acceptance Test for Scheduling of
Hard Real-Time Tasks, Tech. report, University of Illinois, Urbana-Champaign (USA).

Tia, T.-S., Deng, Z., Shankar, M., Storch, M., Sun, J., Wu, L.-C. & Liu, J.-W.-S. (1995).
Probabilistic performance guarantee for real-time tasks with varying computation
times, Proceedings of the IEEE Real-Time Technology and Applications Symposium, May
1995, Chicago (USA).

West, R. & Poellabauer, C. (2000). Analysis of a Window-constrained scheduler for real-time
and best-effort packet streams, Proceedings of the 21st IEEE Real-Time Systems
Symposium, December 2000, Orlando (USA).

West, R., Zhang, Y., Schwan, K. & Poellabauer, C. (2004). Dynamic window-constrained
scheduling of real-time streams in media servers, IEEE Transactions on Computers,
53(6):744–759.

Zhang, Y., West, R. & Qi, X. (2004). A virtual deadline scheduler for window-constrained
service guarantees, Technical Report, No. 2004-013, Boston University (USA).

210 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application
Edited by Dr. Seyed Morteza Babamir

ISBN 978-953-51-0510-7
Hard cover, 334 pages
Publisher InTech
Published online 11, April, 2012
Published in print edition April, 2012

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

This book is a rich text for introducing diverse aspects of real-time systems including architecture, specification
and verification, scheduling and real world applications. It is useful for advanced graduate students and
researchers in a wide range of disciplines impacted by embedded computing and software. Since the book
covers the most recent advances in real-time systems and communications networks, it serves as a vehicle for
technology transition within the real-time systems community of systems architects, designers, technologists,
and system analysts. Real-time applications are used in daily operations, such as engine and break
mechanisms in cars, traffic light and air-traffic control and heart beat and blood pressure monitoring. This book
includes 15 chapters arranged in 4 sections, Architecture (chapters 1-4), Specification and Verification
(chapters 5-6), Scheduling (chapters 7-9) and Real word applications (chapters 10-15).

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Audrey Queudet-Marchand and Maryline Chetto (2012). Quality of Service Scheduling in the Firm Real-Time
Systems, Real-Time Systems, Architecture, Scheduling, and Application, Dr. Seyed Morteza Babamir (Ed.),
ISBN: 978-953-51-0510-7, InTech, Available from: http://www.intechopen.com/books/real-time-systems-
architecture-scheduling-and-application/quality-of-service-scheduling-for-firm-real-time-systems

© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Attribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

