Classification-Driven Search
for Effective SM Partitioning in Multitasking GPUs

Xia Zhao
Ghent University, Belgium

Zhiying Wang

National University of Defense

Lieven Eeckhout
Ghent University, Belgium

Technology, China

ABSTRACT

Graphics processing units (GPUs) feature an increasing number of
streaming multiprocessors (SMs) with each successive generation.
At the same time, GPUs are increasingly widely adopted in cloud
services and data centers to accelerate general-purpose workloads.
Running multiple applications on a GPU in such environments re-
quires effective multitasking support. Spatial multitasking in which
independent applications co-execute on different sets of SMs is a
promising solution to share GPU resources. Unfortunately, how to
effectively partition SMs is an open problem.

In this paper, we observe that compared to widely-used even
partitioning, dynamic SM partitioning based on the characteristics
of the co-executing applications can significantly improve perfor-
mance and power efficiency. Unfortunately, finding an effective
SM partition is challenging because the number of possible com-
binations increases exponentially with the number of SMs and
co-executing applications. Through offline analysis, we find that
first classifying workloads, and then searching an effective SM parti-
tion based on the workload characteristics can significantly reduce
the search space, making dynamic SM partitioning tractable.

Based on these insights, we propose Classification-Driven search
(CD-search) for low-overhead dynamic SM partitioning in multi-
tasking GPUs. CD-search first classifies workloads using a novel
off-SM bandwidth model, after which it enters the performance
mode or power mode depending on the workload’s characteristics.
Both modes follow a specific search strategy to quickly determine
the optimum SM partition. Our evaluation shows that CD-search
improves system throughput by 10.4% on average (and up to 62.9%)
over even partitioning for workloads that are classified for the
performance mode. For workloads classified for the power mode,
CD-search reduces power consumption by 25% on average (and up
to 41.2%). CD-search incurs limited runtime overhead.

CCS CONCEPTS

« Computer systems organization — Single instruction, mul-
tiple data;

KEYWORDS
GPU, multitasking, SM partitioning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS ’18, June 12-15, 2018, Beijing, China

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5783-8/18/06...$15.00
https://doi.org/10.1145/3205289.3205311

ACM Reference Format:

Xia Zhao, Zhiying Wang, and Lieven Eeckhout. 2018. Classification-Driven
Search for Effective SM Partitioning in Multitasking GPUs. In ICS ’18: Inter-
national Conference on Supercomputing, June 1215, 2018, Beijing, China. ,
11 pages. https://doi.org/10.1145/3205289.3205311

1 INTRODUCTION

Graphics Processing Units (GPUs) are increasingly widely used to
accelerate general-purpose computation. GPUs achieve high com-
putational power by exploiting thread-level parallelism across a
number of streaming multiprocessors (SMs). It is remarkable to
note that the number of SMs increases with each successive gener-
ation. Whereas Nvidia’s Fermi and Kepler architecture implement
14 SMs (Tesla M2050) and 15 SMs (Tesla K40), respectively, the
next-generation Maxwell has 24 SMs (Tesla M40), and the latest
Pascal and Volta architectures feature as many as 56 SMs (Tesla
P100) and 80 SMs (Tesla V100), respectively.

This hardware trend coincides with the application trend to-
wards using GPUs as accelerators in cloud services and data centers
to meet the ever-growing demands while maintaining cost effi-
ciency [1-4], as exemplified by Amazon EC2’s offering of GPU
instances in the cloud [5]. In such systems, multiple independent
applications from different users need to be executed as efficiently
as possible.

How to share GPU resources among different applications there-
fore becomes increasingly important. Spatial multitasking and si-
multaneous multitasking (SMK) are two previously proposed tech-
niques to support multitasking on a GPU. In spatial multitasking,
the SMs in a GPU are divided into disjoint subsets to which different
applications are assigned to co-run [6, 7]. SMK on the other hand
employs fine-grained sharing of SM resources by co-executing two
applications on a single SM [8-10]. Commercial GPUs have started
to support spatial multitasking by managing SM resources at the
chip level [11]. Because spatial multitasking is simpler to imple-
ment than SMK, we focus on spatial multitasking in this paper, and
compare against SMK in the evaluation section.

Even SM partitioning, in which all applications are given an
equal share of the available SMs, is a widely used approach in
spatial multitasking [6, 12-15]. The common wisdom is that even
partitioning performs well on average [6, 13]. In this paper, we
observe that because of wildly varying workload characteristics,
uneven SM partitioning can bring substantial performance and
power benefits compared to even partitioning. Unfortunately, with
an increasing number of SMs and co-executing applications, the
number of possible combinations to partition the SMs quickly ex-
plodes. Identifying the optimal SM partition in an effective way is
a major challenge.

Instead of exhaustively exploring all possible combinations, we
find, through detailed offline analysis, that workload classification

https://doi.org/10.1145/3205289.3205311
https://doi.org/10.1145/3205289.3205311

along with workload-specific search significantly reduces the over-
head for identifying the optimal SM partition. Based on this insight,
we propose Classification-Driven search (CD-search) to dynamically
determine the optimal SM partition in a low-overhead way during
run time. In particular, CD-search operates as a two-step process. In
the first step, CD-search classifies the co-executing applications as
memory-intensive versus compute-intensive based on their perfor-
mance sensitivity to SM count. In particular, a memory-intensive
application sees its performance saturate with an increasing num-
ber of assigned SMs; a compute-intensive application on the other
hand benefits an almost linear performance increase with the num-
ber of SMs. After this initial classification step, the second step
steers SM partitioning based on the workload characteristics. For
workloads consisting of a mix of memory-intensive and compute-
intensive applications, CD-search enters the performance mode to
find the SM partition that maximizes performance. For workloads
consisting of memory-intensive applications, CD-search enters the
power mode to find the SM partition that assigns the least number
of SMs to maintain performance while power-gating the remaining
SMs to save power. For workloads consisting of compute-intensive
applications, CD-search maintains even partitioning as there is no
opportunity to optimize performance nor power.

In the initial classification step, applications are classified as
memory-intensive versus compute-intensive based on their sen-
sitivity to the number of assigned SMs. We find that a previously
proposed (and widely used) metric, namely memory bandwidth uti-
lization [12, 16, 17], is not an accurate predictor for SM performance
sensitivity because it only focuses on main memory bandwidth uti-
lization while not considering NoC and LLC bandwidth demands.
To accurately classify workloads, we propose the off-SM bandwidth
model. The model not only considers the bandwidth demands of
the executing applications but it also takes off-SM bandwidth into
account, including NoC, LLC and memory bandwidth.

We make the following contributions in this paper:

e We show that compared to widely-used even partitioning,
uneven SM partitioning can bring substantial performance
and power benefits.

e We propose CD-search to dynamically determine the opti-
mum SM partition at low overhead. CD-search first classifies
the applications in the workload mix, after which the opti-
mum SM partition is determined. The optimization target
(performance versus power) as well as the search strategy to-
wards the optimum SM partition depends on the workload’s
characteristics.

o We find that memory bandwidth utilization is an inaccurate
predictor for how sensitive an application is to the number of
assigned SMs. The newly proposed off-SM bandwidth model
takes NoC, LLC and main memory bandwidth into account
to more accurately classify workloads.

e We comprehensively evaluate CD-search. Compared to a
GPU with even SM partitioning, CD-search improves sys-
tem throughput by 10.4% on average (and up to 62.9%) for
multitasking workloads classified as heterogeneous mixes of
compute-intensive and memory-intensive applications. For
workloads classified as homogeneous mixes including only
memory-intensive applications, we report an average 25%
reduction in power consumption (and up to 41.2%).

App1 App2 =

OO0 | | O e
OO0 | OO0 e
OOmEeE| OO
OO ().
(b) Uneven (c) Uneven (d) Uneven

Figure 1: Four examples illustrating how to partition a GPU
with 16 SMs across two applications. (a), (b) and (c) use all
SMs; (d) only uses a subset of the SMs. The number of combina-
tions increases exponentially with the number of SMs and co-executing
applications.

m12_12 w204 m4 20 w4 8 %84

1

5
1

gl i
0 7Z Z

GAUSSIAN_LEU LBM_DWT2D BINO_LEU
Figure 2: System performance (STP) for different SM parti-
tions normalized to even SM partitioning. ‘X_Y’ in the legend
refers to the number of SMs assigned to the left and right ap-
plication in the workload mix, respectively. Uneven SM parti-
tioning affects system performance differently for different workload
mixes.

Normalized STP

2 MOTIVATION

As shown in Figure 1, when multiple applications co-execute on
a GPU, there are many ways to partition the available SMs. One
could evenly partition the SMs across the co-executing applications
(Figure 1(a)). When employing an uneven partition, there are many
possible combinations (Figure 1(b) and (c)). One could even opt to
not use all SMs and leave some SMs idle and power-gate them to
save power (Figure 1(d)). Prior work in spatial multitasking assumes
even partitioning of the available SMs among the co-executing ap-
plications, e.g., for two co-executing applications, each application
is assigned half the number of SMs [6, 12-15]. In fact, Adriaens
et al. [6] and more recently Park et al. [13] argue that even SM
partitioning performs well on average. In this paper, we make the
observation that different workloads show different performance
sensitivity to uneven SM partitioning, which we exploit to signifi-
cantly improve performance and reduce power.

Figure 2 reports performance (normalized system throughput)
for three workload mixes under different SM partitions on a GPU
with a total of 24 SMs. (Details on the experimental setup are pro-
vided in Section 6.) 12_12 represents even SM partitioning, i.e., each
application gets assigned 12 SMs. Uneven partitioning, i.e., 20_4
and 4_20, assigns 20 versus 4 SMs to the lefthand application, re-
spectively. In addition, we also include 4_8 and 8_4 to represent
uneven partitioning while considering only 12 out of 24 SMs; the
remaining 12 SMs are left idle. The key message from Figure 2 is
that the effect of SM partitioning depends on the workload and
leads to three optimization opportunities:

e Performance opportunity: For GAUSSIAN_LEU, a work-
load mix that includes GAUSSIAN and LEU, performance

can be significantly improved through uneven SM parti-
tioning compared to even partitioning, i.e., performance is
the highest for the 4_20 configuration. However, an unsuit-
able uneven SM partition, e.g., 20_4, may degrade perfor-
mance considerably. This indicates that for workloads that
are amenable to uneven SM partitioning, finding an effective
partition is key.

e Power opportunity: For LBM_DWT2D, uneven SM parti-
tioning has no impact on performance. Even reducing the
number of assigned SMs by half (see configurations 4_8 and
8_4) does not affect performance. This indicates that for some
workloads, there is no need to use all SMs, hence we can turn
off a number of SMs and save power. The question then is
how many SMs to turn off to not degrade performance.

e No opportunity: For BINO_LEU, the 20_4 and 4_20 con-
figurations have no impact on overall system performance,
however, halving the number of assigned SMs (see 4_8 and
8_4) degrades performance by nearly 50%. This indicates
that, for some workloads, there are no performance nor power
optimization opportunities beyond even partitioning. In such
a case, there is no need to incur the overhead for searching
an effective SM partition.

In summary, we conclude that uneven SM partitioning creates
an opportunity to improve performance and power efficiency com-
pared to even partitioning. How to decide the optimization goal, i.e.,
optimize for performance or power, and how to find an effective
SM partition in a low-overhead way is the key focus of this paper.

3 WORKLOAD CLASSIFICATION

In this section, we show that workloads can be classified into three
categories depending on the characteristics of the applications that
the workload is composed of. We do so through detailed offline
analysis. Applications can be classified as memory-intensive or
compute-intensive depending on their performance sensitivity to
the number of SMs. When independent applications co-execute on a
GPU, this leads to workload mixes with different characteristics. We
could have a heterogeneous workload consisting of compute- and
memory-intensive applications, or the workload could be homoge-
neous with only compute-intensive applications or only memory-
intensive applications. As we will detail in this section, the opportu-
nity is different for each of these three workload mixes. In addition,
we find that determining the optimum SM partition should follow
a different search strategy for each of the three mixes, hence the
notion of classification-driven search.

3.1 Heterogeneous Workload Mixes

Uneven SM partitioning can significantly improve performance for
heterogeneous workloads consisting of a mix of compute-intensive
and memory-intensive applications. This is illustrated in Figure 3
which reports how system performance changes as a function of the
number of SMs assigned to the memory-intensive versus compute-
intensive applications for three example heterogeneous workload
mixes. The horizontal axis reports the number of SMs assigned to
the memory-intensive application (which is the first application
for each application tuple in the legend); the remaining SMs are
assigned to the compute-intensive application. We observe that
overall system performance, measured using the system throughput

—LBM_DXTC
2
1.6
»n 0.8

0.4
0

1 3 5§ 7 9 11 13 15 17 19 21 23
of SMs assigned to the left application

DWT_LEU —LAVAMD_MERGE

|

Figure 3: System performance (STP) as a function of the
number of SMs assigned to the memory-intensive applica-
tion in three example heterogeneous workload mixes. Het-
erogeneous workload mixes provide opportunity to improve system
performance.

—LAVAMD_LBM
1.6
1.2
E 08

(%)
0.4

0
24 22 20 18 16 14 12 10 8 6 4 2

of SMs assigned to the co-executing applications

LAVAMD_GAUSSIAN —LBM_DWT2D

M

Figure 4: System performance (STP) as a function of the to-
tal number of assigned SMs, assuming even partitioning for
memory-intensive workload mixes. Memory-intensive work-
load mixes provide the opportunity to save power by power-gating
unused SMs while not hurting and in some cases even improving
overall system performance.

(STP) metric, increases with the number of SMs assigned to the
memory-intensive application until it reaches an optimum around
4 to 7 SMs; this implies that the compute-intensive application gets
assigned the remaining 17 to 20 SMs out of a total of 24 SMs. The
obtained performance benefit is significant. Compared to executing
both applications one after the other, i.e., no spatial multitasking,
which leads to an STP of 1, we obtain an improvement in system
performance by up to 64% for the LAVAMD_MERGE workload mix.
Compared to spatial multitasking with even SM partitioning, i.e.,
each application gets assigned 12 SMs, we observe a performance
improvement up to 38% for the DWT_LEU workload mix.

From these illustrative examples, we conclude that (i) overall
system performance can be significantly improved through SM
partitioning for heterogeneous workload mixes, and (ii) system
performance is maximized by assigning a relatively small fraction
of the available SMs to the memory-intensive application (i.e., the
optimum appears on the left-hand side of the graph in Figure 3)
while assigning the remaining SMs to the compute-intensive ap-
plication. This second observation will help us reduce the search
space for finding the optimum SM partition.

3.2 Memory-Intensive Workload Mixes

For workload mixes consisting of memory-intensive applications,
uneven SM partitioning provides an opportunity to save power,
without affecting performance; and, in some cases, even improving
performance. This is illustrated in Figure 4, which reports system

—BINO_LEU DXTC_MERGE —LEU_DXTC

STP

o000
ohNvPr-aN

23 21 19 17 156 13 11 9 7 5 3 1

of SMs assigned to the left application
(a) STP as a function of the number of SMs assigned to the left application

—BINO_LEU DXTC_MERGE —LEU_DXTC

23 21 19 17 15 13 11 9 7 5 3

of SMs assigned to the co-executing applications
(b) STP as a function of the total number of allocated SMs

Figure 5: System performance as a function of the total num-
ber of assigned SMs for compute-intensive workload mixes:
There is no opportunity to improve performance and power efficiency
through SM partitioning and allocation.

performance (STP) as a function of the number of SMs allocated
for three example memory-intensive workload mixes. We assume
even partitioning but we decrease the total number of allocated
SMs from left to right. We observe that performance remains stable
or even increases with decreasing number of allocated SMs until
we reach the saturation point after which performance quickly
deteriorates. This point of saturation is reached for a relatively
small (7 to 11) total number of SMs. This provides an opportunity
to power-gate the remaining (17 to 13, respectively) unallocated
SMs to save power. Note that the optimum number of SMs depends
on the co-executing applications. When co-executing LBM with
DWT2D, the optimum number of SMs per application equals 3;
however, when co-executing LBM with LAVAMD, the optimum
number of SMs equals 5. For LAVAMD, when co-executed with
GAUSSIAN, optimum performance is achieved with 4 SMs rather
than 5; this is a result of significant cache contention due to the
GAUSSIAN benchmark.

From these illustrative examples, we conclude that (i) when
co-executing memory-intensive applications, there is no need to
allocate all available SMs in the GPU — optimum performance is
achieved when allocating a fraction of the available SMs, which cre-
ates an opportunity to save power; (ii) the number of SMs assigned
to each memory-intensive application depends on the co-executing
application and hence needs to be determined dynamically; and
(iii) reducing the number of active SMs sometimes leads to a per-
formance boost due to reduced cache contention.

3.3 Compute-Intensive Workload Mixes

Finally, for workload mixes consisting compute-intensive applica-
tions, there is no need to search for an effective SM partition as

there is no opportunity to improve performance or save power.
Compute-intensive application performance is linear in the num-
ber of assigned SMs. De-allocating SMs from one application de-
grades its performance proportionally, whereas the other applica-
tion improves its performance proportionally — this leads to a net
(system-wide) performance-neutral operation. This is illustrated in
Figure 5(a) which shows system performance (STP) as a function of
the number of SMs assigned to one of the two compute-intensive
applications; the other application gets allocated the remaining set
of SMs. We observe a flat performance curve — there is no oppor-
tunity to improve system performance. Figure 5(b) shows system
performance as a function of the total number of SMs assigned
to both applications. Here we observe a linear decrease in perfor-
mance — there is no opportunity to save power without severely
degrading performance.

3.4 Towards Classification-Driven Search

The key take-away message from the discussion so far is that work-
load classification can help us to decide the optimization goal, to
either improve performance or save power. Moreover, the above dis-
cussion also provides us a way to steer the search for the optimum
SM partition in an efficient way based on the workload’s character-
istics. Based on these insights, we next propose classification-driven
search.

4 CLASSIFICATION-DRIVEN SEARCH

Classification-Driven search (CD-search) dynamically finds an ef-
fective SM partition that optimizes either performance or power de-
pending on the characteristics of the workload at hand. CD-search
includes an initial phase during which the co-running applications
are characterized; next, depending on the workload mix’s character-
istics, we enter the performance mode (for workload mixes that are
classified as heterogeneous) or the power mode (for workload mixes
that are classified as memory-intensive); or we employ even parti-
tioning for workload mixes that are classified as compute-intensive.
CD-search incurs low runtime overhead.

The initial workload characterization phase works because al-
though GPU applications exhibit phase behavior at the warp level [18,
19], this gets leveled out as several TBs execute concurrently [20].
After the classification phase, CD-search chooses to enter the per-
formance mode or the power mode. After finding the effective SM
partition, SMs are preempted; preempted SMs are then re-assigned
or power-gated depending on whether CD-search enters the per-
formance or power mode. Upon the arrival of a new application,
CD-search restarts the classification phase to profile the newly
arrived application and adjust the SM partition accordingly. We
now describe the two phases in CD-search in more detail. Note we
assume two applications in this description but the algorithm is
trivially extended to more than two applications.

4.1 Workload Classification

The first phase in CD-search is to classify applications based on their
characteristics. This is a critical step because misclassification may
lead to a performance penalty and/or excess power consumption.

4.1.1 Need for a novel, low-overhead solution. The main goal
of the workload classification phase is to determine which mode
to enter in the next phase. One straightforward way to classify

BW Utilization
LLC Miss Rate

SC =

LBM esss—
DWT2D s

GESUMMV =

PVC msssss—

0.8 1
0.6 0.8
0.6
0.4 € 4
0.2 0.2
0 0 _

(LIS L

2 £

o i

= =

DXTC
TPACF
BINO !
LEU
CP
MERGE =
PATHFINDER =
LAVAMD
GAUSSIAN

(a) Memory Bandwidth Utilization

PATHFINDER

(b) LLC Miss Rate

10 18.2g §15.2 §120.7
E 8
< 6
9 4
a4 2]

T T T T T T 1T T T1T°7T 0 I I
0zZsQa>00 owLooow Q0zZsQa>00
S<mmN=>0n FOzwooOuw S<noN=>0n
<pn-ESt XLF- xao In-EsSa
>0 25 oo w=z S0 25
<3S 0o = <3S 0Onm

< L T —< L
O o = O o
<<
Q
(c) LLC APKI

Figure 6: Memory-related performance characteristics: (a) memory bandwidth utilization, (b) LLC miss rate, and (c) LLC APKI.
Memory bandwidth utilization by itself is not an accurate application classifier.

~-DXTC -=-TPACF -+-BINO =«<LEU -+CP MERGE ——PATHFINDER
1 —
g ™ ’/‘//
° i
S e
N i
5 05 v
O
E s
8 o
z e
0

of SMs

(a) Compute-intensive applications

—-LAVAMD -#-GAUSSIAN =+-LBM =<DWT2D -+GESUMMV
1.5

PVC—-SC

12345678 9101112131415161718192021222324

Normalized IPC

#of SMs
(b) Memory-intensive applications

Figure 7: Performance as a function of the number of al-
located SMs. Performance improves linearly with increasing SM
count for the compute-intensive applications (a) but saturates for the
memory-intensive applications (b).

workloads would be to try out different SM counts, measure perfor-
mance, and determine its type based on the performance sensitivity
to SM count. Unfortunately, this is too high overhead as it may
take several iterations to reach the optimum, with each iteration
requiring preempting a number of SMs.

An alternative approach would be to use bandwidth utilization, a
widely used metric, see for example [12, 16, 17]. Bandwidth utiliza-
tion is defined as the fraction of DRAM cycles during which a read
or write request is serviced. We find that bandwidth utilization is
not enough though to accurately classify memory-intensive versus
compute-intensive applications. Figure 6 shows three memory-
related performance metrics for the different applications con-
sidered in this study: (a) memory bandwidth utilization, (b) LLC
miss rate, and (c) LLC accesses per kilo instructions (LLC APKI).
LAVAMD, a memory-intensive application, has nearly zero memory

12345678 9101112131415161718192021222324

bandwidth utilization (Figure 6), however, its performance saturates
with increasing number of SMs (Figure 7(b)). The reason is that
LAVAMD has a very high LLC APKT; its LLC miss rate is close to
zero which explains the low memory bandwidth utilization, yet still
the available LLC bandwidth is not enough to satisfy the demand
when engaging all SMs. Take another example, namely MERGE
which is a compute-intensive application: its bandwidth utilization
equals 13.3%, which is slightly higher than for some of the memory-
intensive applications (Figure 6). However, its performance does
not saturate with the number of SMs, in fact, it increases linearly
(Figure 7(a)). The reason is that its LLC APKI is low, hence to-
tal bandwidth demand from all SMs cannot saturate the memory
system. This indicates that focusing on the attained memory band-
width alone is not accurate; LLC cache utilization and bandwidth
demand should also be considered when classifying applications.

4.1.2 Off-SM Bandwidth Model. To accurately classify applica-
tions with respect to their sensitivity to the number of assigned
SMs, we propose the off-SM bandwidth model which builds upon
two metrics, namely SM bandwidth demand (BWry:.1 spps) @and off-
SM bandwidth (BWOﬁr spp)- As shown in Figure 8, in a conventional
GPU, many SMs connect to the LLC and DRAM through a network-
on-chip (NoC). The NoC, LLC and DRAM make up the ‘off-SM’
system which supplies the data for the application executing on
the SMs. If the off-SM system cannot meet the bandwidth demands
of a memory-intensive application, performance will saturate with
an increasing number of SMs.

BWTotal_SMs = BWper sp X #SMs

BWpe, sp = IPCmax X APKILp 0 X Sizecgepel ine X Freqsy
(1)

BWog sm = min{BWnoc. BWLL.c MEM!

BWLLCfMEM = BWy 1 X HitRatejjc + (2)
BWaiem X MissRateLLC X BWUtil

In Equation 1, BWpy01 spfs Tepresents the total bandwidth de-
mand for a particular number of SMs in the ideal case where the SMs
can issue instructions without any stalls. BWp,,- s is the band-
width demand of a single SM and is a function of I PCmax (max num-
ber of instructions issued per cycle without any stalls), APKIj ~
(LLC accesses per kilo instructions), Size o, .peLine (cache line size)
and Freqgy, (SM operating frequency). IPCmax, Size cychel ine 204

Off-SM System

'NoC BW i
SM — LLC BW .DRAM Bw- 3
SM— ; =
u— E—=m

Figure 8: GPU off-SM bandwidth model.

Freqgy are related to the GPU hardware, whereas APKIy [- is a
function of both the application and the hardware. Equation 2
represents the bandwidth that the off-SM system can supply. The
available off-SM bandwidth is computed as the minimum of the
NoC bisection bandwidth and the available LLC/DRAM bandwidth.
The latter is computed as the raw LLC bandwidth derated by the
LLC cache hit rate (to obtain the effective LLC bandwidth) plus
the raw main memory bandwidth derated by the LLC miss rate
times the effective main memory bandwidth utilization (which is
assumed to be 50% in this work for simplicity). All the values in the
above equations are hardware related and are determined ahead of
time, except for APKIy| o, HitRater [- and MissRatey j ~ which
are determined through online profiling and can be collected using
hardware performance counters. If the application’s bandwidth
demand is higher than the available off-SM bandwidth, we classify
the application as memory-intensive. Otherwise, the application is
classified as compute-intensive.

Application classification is done online, while the workload is
running on the GPU. Classification is a two-phase process including
a warmup phase followed by a profiling phase; both phases take 20K
cycles. The warmup phase serves two purposes: it warms up the
microarchitecture structures for the profiling phase, and in addition,
it is used to determine the preemption policy. If a application can
finish a TB’s execution during the warmup phase, it is reasonable to
assume that other TBs will also finish soon, hence a draining policy
will be followed to preempt the SMs occupied by this application. If
not, CD-search will employ context switching [7, 21]. We assign half
the total number of SMs to each of the co-executing applications
during the classification phase and we compute the above two
equations for each of the co-executing applications. This enables
us to classify the applications as memory-intensive or compute-
intensive.

4.2 Performance Mode

CD-search enters the performance mode for heterogeneous work-
load mixes. The goal is to find an effective SM partition by assigning
the minimum number of SMs to the memory-intensive application
to maintain its performance, while assigning the remaining SMs to
the compute-intensive application to maximize its performance.
We iteratively stall an increasing number of SMs (in steps of
two) for the memory-intensive application in subsequent iterations
and measure its performance impact in terms of IPC. Each iteration
takes 40K cycles (20K cycles for warmup followed by 20K cycles for
profiling). This profiling phase ends when the performance loss for
the memory-intensive application is no more than a predetermined
threshold compared to running with half the total number of SMs.
We empirically set the threshold to 5%. After this profiling phase,

CD-search determines the optimum SM partition and preempts the
stalled SMs from the memory-intensive application and allocates
these SMs to the compute-intensive application.

The profiling overhead is greatly reduced by gradually stalling,
and not preempting, an increasing number of SMs for the memory-
intensive application. Compared to even SM partitioning, this strat-
egy incurs minimal performance loss because the memory-intensive
application is insensitive to the number of assigned SMs anyway up
until the saturation point. An alternative implementation would be
to preempt and re-assign SMs among the co-running applications
during each iteration of the profiling phase. Gradually stalling SMs
greatly reduces the profiling overhead.

Note that this algorithm is simple, yet effective. The reason
why it works is because we accurately classify applications in the
workload classification phase. Without the workload classification
phase, one would need to explore all possible combinations, or at
least a lot more combinations, to identify the optimum SM partition,
which would incur significant overhead, up to the point where
the overhead offsets the performance benefit. Through workload
classification, we are able to dramatically reduce the search space
and quickly reach the optimum SM partition.

4.3 Power Mode

CD-search engages the power mode for homogeneous workload
mixes consisting of only memory-intensive applications. CD-search
aims at finding the SM partition that assigns the least number of
SMs to both the memory-intensive applications to not degrade their
performance compared to even SM partitioning; the unused SMs
are then power-gated to save power.

It is important to quickly determine the optimum number of
SMs for each memory-intensive application — an inefficient pro-
filing phase incurs excess power consumption for no performance
benefit. To do so, we employ a more aggressive strategy than for
the performance mode. Instead of gradually increasing the number
of stalled SMs, we try to converge more quickly. In particular, we
identify two stages. In the first stage, we stall all but one of the SMs
for both applications, and measure their respective performance.
(This takes 40 K cycles: 20 K cycles for warmup and 20 K cycles for
profiling.) Based on the performance ratio for 12 SMs versus 1 SM,
we compute a tentative optimum number of SMs for each applica-
tion, and measure performance (again, this takes 40K cycles). In
the second stage, if performance is within 95% of the performance
at half the total number of SMs, we preempt the stalled SMs and
power-gate them. If not, we iteratively resume one SM at a time
until the application’s performance is within the 95% range, after
which we preempt and power-gate the unused SMs.

5 REAL HARDWARE VALIDATION

It is impossible to evaluate CD-search on current hardware. How-
ever, we can verify whether applications exhibit compute-intensive
versus memory-intensive execution behavior similar to what we ob-
serve in simulation. This is to verify that the observed performance
phenomena are not an artifact of our simulation infrastructure. We
consider the NVIDIA Tesla P100 (Pascal GPU architecture) [22]
which features 56 SMs and 732 GB/s memory bandwidth. Similar
to what we do in the simulator, we change the number of allocated
SMs and quantify the impact on performance. We consider larger

—-DXTC

TPACF -+-BINO =<LEU —CP

MERGE PATHFINDER

1
£os
06
0.4

Normalized |

0.2

0
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56
of SMs

(a) Compute-intensive applications

—-LAVAMD

1.4
1.2

1
0.8
0.6
0.4
0.2

0

GAUSSIAN -#LBM -<DWT2D -+GESUMMV -+ PVC—+-SC

Normalized IPC

1 4 8 12

16 20 24 28 32 36 40 44 48 52 56
of SMs
(b) Memory-intensive applications
Figure 9: Performance as a function of the number of allo-
cated SMs on the NVIDIA P100 GPU. Similar performance trends
are observed on real hardware compared to simulation, see Figure 7.

input data sets in the real hardware measurements than what we
use in simulation because of the larger the on-chip caches in the
real hardware.

Listing 1: Controlling SM count on real GPU hardware.

__device__ uint get_SMid(void)

{
uint ret;
asm ("mov.u32 %0, %SMid;"
return ret;

"=r'(ret));

__global__
{

// SM_count decides the number of SMs
// assigned to the MAIN_KERNEL

if (get_SMid () < SM_count)

void gpu_uSleep ()

else
Sleep ();
}

int main(void)

{
cudaStream_t cuda0, cudal;
cudaStreamCreateWithFlags(&cuda0, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&cudal, cudaStreamNonBlocking);
// 1024 is the maximum threads per TB in P100
dim3 block_uSleep (1024);

// 112 is number of TBs which just occupies 56 SMs in P100

dim3 grid_uSleep (112);
gpu_uSleep <<< grid_uSleep, block_uSleep, 0,
MAIN_KERNEL<<< #GRID, #BLOCK, 0, cudal>>>;

cuda0 >>>;

Table 1: Benchmarks used in this study.

Benchmark Grid Dim Type

DirectX Texture Compressor (DXTC) [25] (16384,1,1) Compute
Two Point Angular Correlation Function (TPACF) [26] (201,1,1) Compute
BinomialOptions (BINO) [25] (512,1,1) Compute
Leukocyte (LEU) [27] (596,1,1) Compute
Coulombic Potential (CP) [23] (32,128,1) Compute
MergeSort (MERGE) [25] (4096,1,1) Compute
PATHFINDER [27] (9260,1,1) Compute
LAVAMD [27] (1000,1,1) Memory
Gaussian Elimination (GAUSSIAN) [27] (512,512,1) Memory
Lattice-Boltzmann Method (LBM) [26] (120,150,1) Memory
DWT2D [27] (97824,1,1) Memory
GESUMMYV [28] (128,1,1) Memory
Page View Count (PVC) [29] (46875,1,1) Memory
Streamcluster (SC) [27] (512,1,1) Memory

Controlling the number of SMs assigned to an application is an
interesting problem by itself. We exploit concurrent streaming to
do so and create a shadow kernel that occupies a specific number
of SMs. Listing 1 shows the (simplified) source code. The shadow
kernel, gpu_uSleep, assigns a number of SMs to the application
of interest while putting the other SMs to sleep. MAIN_KERNEL
is the application for which we want to measure its performance
sensitivity to SM count. The application and the shadow kernel
are assigned to two different CUDA streams for execution. In the
gpu_uSleep kernel, a TB checks the ID of the SM on which it runs,
and determines whether to sleep, while occupying the SM, or leave
the SM to the MAIN_KERNEL. If the SM ID is smaller than a
predetermined number of assigned SMs (SM_count), the SM is
assigned to MAIN_KERNEL; otherwise the SM is put to sleep. This
mechanism enables us to control the number of SMs assigned to
the application of interest and evaluate its sensitivity to SM count.

Figure 9 reports performance as a function of the number of
assigned SMs from 1 to 56, in steps of 4. Note that the results
reported here on real hardware are quite similar to the results ob-
tained through simulation as shown in Figure 7. This confirms that
the performance phenomena observed in simulation also occur on
real hardware, i.e., performance increases linearly with increasing
SM count for the compute-intensive applications whereas it satu-
rates for the memory-intensive applications. These real hardware
validation results further motivate CD-search.

6 EXPERIMENTAL SETUP

Simulated System. We use a modified version of GPGPU-sim
v3.2.2 [23] to evaluate CD-search. The modifications allow GPGPU-
sim to run multiple applications concurrently through spatial mul-
titasking. We consider a GPU with 24 SMs with a private 16 KB L1
cache connected through a crossbar to 6 memory controllers with
two 128 KB LLC slices each. To estimate power consumption, we
rely on GPUWattch [24] assuming a 40 nm technology node.

Workloads. We use a wide range of GPU-compute benchmarks
implemented in CUDA. These benchmarks are selected from Ro-
dinia [27], Parboil [26], CUDA SDK [25], PolyBench [28], GPGPU-
sim [23], and Mars [29], and are listed in Table 1. We classify these
benchmarks into two categories based on how performance changes
with SM count, see Figure 7. The multi-application workloads are

constructed by pairing all the benchmarks, i.e., we consider all pos-
sible combinations; this yields a total of 91 multi-application work-
load mixes. Among these 91 workload mixes, 49 are heterogeneous,
21 are homogeneous memory-intensive and 21 are homogeneous
compute-intensive.

Performance and Power Metrics. During multi-program execu-
tion, we simulate two million cycles for each benchmark — this is in
line with prior GPU multitasking research [9, 10], and we confirm
that this is representative. If a benchmark finishes before others, it is
re-launched and re-executed from the beginning. The reported per-
formance results are gathered only for the first run for each of the
benchmarks. Throughout the evaluation, we use the metrics named,
system throughput (STP) and average normalized turnaround time
(ANTT) [30], to measure multi-application performance. STP takes
a system’s perspective and quantifies overall system performance
(higher-is-better). ANTT takes a user’s perspective and quantifies
average per-application execution time (lower-is-better).

7 EVALUATION

We now evaluate CD-search. We first focus on the performance
mode and the power mode. We then quantify profiling overhead,
and perform a number of sensitivity studies with respect to memory
bandwidth, number of SMs and number of co-executing applica-
tions. Finally, we compare against SMK.

Before diving into the performance and power numbers it is
important to note that CD-search accurately classifies workloads.
For the 91 multi-program workload mixes considered in this work,
the off-SM bandwidth model achieves 100% accuracy for classify-
ing applications as either memory-intensive or compute-intensive.
Because of the accurate workload classification, we can now con-
fidently focus on the 70 workload mixes that are amenable to the
performance and power modes, and exclude the homogeneous
workload mixes consisting of only compute-intensive workloads.
Note, that memory bandwidth utilization, assuming the best per-
forming threshold for our set of benchmarks, would miss-classify
36 out of 91 workload mixes.

7.1 Performance Mode

Recall that the performance mode is engaged for workloads that
are classified as heterogeneous mixes of memory-intensive and
compute-intensive applications. Under the performance mode, a
smaller number of SMs is assigned to the memory-intensive appli-
cation, which does not affect its performance. The unused SMs
are then assigned to the compute-intensive application, boost-
ing its performance. This leads to an improvement in overall sys-
tem throughput and per-application performance. Note that the
memory-intensive application does not (unfairly) slow down.
Figure 10 reports STP and ANTT delta compared to even SM par-
titioning. (A positive STP delta and negative ANTT delta is desirable
because this means that system throughput and per-application
performance is improved, respectively.) The workloads are sorted
along the horizontal axis. These workload mixes substantially ben-
efit from SM partitioning; there is a slight performance degradation
(because of profiling overhead) for a couple workload mixes that do
not benefit from partitioning. Overall, CD-search improves system
performance by 10.4% on average (and up to 62.9%) compared to
even SM partitioning. For only a few workloads does CD-search

—STP —ANTT

1
0.5
0
-0.5
-1
-1.5
-2

STP & ANTT delta

Sorted workloads

Figure 10: Performance mode: STP and ANTT delta over
even SM partitioning. The performance mode significantly im-
proves STP (positive STP delta) and ANTT (negative ANTT delta) for
heterogeneous workload mixes.

—STP —ANTT

OSO666S ooo
AP WN_O-NW

STP & ANTT delta

Sorted workloads
Figure 11: Power mode: STP and ANTT delta over even SM
partitioning. The power mode is performance-neutral on average.
—Power
0
-0.1
-0.2
-0.3
-0.4
-0.5

Power delta

Sorted workloads
Figure 12: Power mode: power delta over even SM partition-
ing. The power mode significantly reduces power consumption.

lead to a small performance degradation of at most 2.1%. At the
same time, CD-search substantially improves per-application per-
formance, i.e., ANTT improves by 22% on average (and up to 199%).

7.2 Power Mode

The power mode is engaged for homogeneous memory-intensive
workload mixes. The goal here is to find the effective SM partition
and save power by power-gating unused SMs while preserving per-
formance. On average across all memory-intensive workload mixes,
CD-search is performance-neutral (and even slightly improves STP
and ANTT on average, by 2.2% and 2.8%, respectively), see Figure 11.
For some workloads, CD-search degrades performance (by 10.3% at
most), and for some workloads, CD-search significantly improves
performance (up to 28.3%). The latter is due to cache contention
for the GAUSSIAN and GESUMMY benchmarks as previously dis-
cussed in Section 3.2, i.e., better performance is achieved with fewer
active SMs. Performance degradation is observed for workloads,
e.g., LBM, for which the IPC measured during the workload classifi-
cation phase is a somewhat inaccurate prediction for the subsequent
execution because of time-varying execution behavior.

The real purpose of the power mode is to find an effective SM
partition that saves power. On average, CD-search power-gates half
the total number of SMs, which leads to a significant reduction in
power consumption as shown in Figure 12. On average, the SM

M Even Partitioning = 0.75 BW = 1 BW ®1.25 BW m 1.5 BW

STP

ANTT
(a) Performance mode: Average STP and ANTT

Normalized STP & ANTT
© o o o =
o N A O O =~ N

H Even Partitioning = 0.75 BW = 1 BW m1.25 BW m 1.5 BW

o o =
o ® =~ N

0.4

Normalized Power & STP
o o

Power STP
(b) Power mode: Average power and STP

Figure 13: Sensitivity analysis: memory bandwidth. The op-
portunity to improve performance and save power increases as mem-
ory bandwidth is constrained.

partition found by CD-search reduces power consumption by 25%
on average (and up to 41.2%).

7.3 Profiling overhead

Recall CD-search incurs a runtime profiling phase to classify work-
load mixes and determine the optimum number of SMs for each
application in the mix. Because each of the co-executing applica-
tions is making forward progress during profiling, we consider
the following procedure to quantify the profiling overhead. We
compare CD-search against a setup in which we determine the
optimum SM partition through offline analysis. The relative perfor-
mance difference then is a measure for the profiling overhead. We
find the profiling overhead to be small though: 0.92% on average
for performance and 2.5% for power.

7.4 Sensitivity Analyses

We now perform a number of sensitivity analyses to better under-
stand CD-search’s effectiveness.

7.4.1 Memory bandwidth. To evaluate the impact of memory
bandwidth, we vary memory bandwidth in relation to the avail-
able memory bandwidth in our baseline architecture, i.e., 75%, 100%,
125% and 150% of the baseline memory bandwidth; the other parts of
the system are kept unchanged. Figure 13a reports STP and ANTT
for the performance mode; Figure 13b reports STP and power con-
sumption for the power mode. The overall conclusion is that the
opportunity is larger for constrained memory bandwidth: the per-
formance gain and power gain decreases with increasing memory
bandwidth. At reduced memory bandwidth, the memory-intensive
application gets assigned fewer SMs, leaving more SMs for the

compute-intensive application, which leads to a higher overall sys-
tem throughput. The inverse is true when more memory bandwidth
is available. At 75% the default memory bandwidth, CD-search im-
proves STP by 14.4% on average (and up to 69%) and improves
ANTT by 26.9% on average (and up to 229%). At 150% the default
memory bandwidth, STP and ANTT improve by 5.9% and 15.6%
on average, respectively. A similar trend is observed for the power
mode: power saving decreases from 30.6% (at 75% bandwidth) to
21.3% (at 150% bandwidth), while maintaining system performance.

7.4.2 Number of SMs. We now vary the number of SMs. Fig-
ure 14a reports average performance under the performance mode.
The opportunity for CD-search clearly increases with an increasing
number of SMs. The reason is that the memory-intensive applica-
tion is limited by the available memory bandwidth, hence there
are more SMs available for the compute-intensive application to
use, further improving overall system performance. On average,
compared to even SM partitioning, CD-search improves STP by
19.4% on average for a GPU with 30 SMs.

Figure 14b shows the power and performance implications for
the power mode. As expected, power consumption is significantly
reduced while not negatively affecting performance. What is inter-
esting here though — and unexpected — is that also system per-
formance significantly improves at 30 SMs (by 19.5% on average),
even in power mode. The reason is that as the number of SMs in-
creases, cache contention also increases under even SM partitioning.
As a result, reducing the number of active SMs and power-gating
the remaining SMs reduces cache contention and leads to signif-
icant performance improvements for several memory-intensive
workloads. Note the improvement in performance, which leads to
higher dynamic power, offsets the power benefit of power-gating —
however, we still observe an average 19.7% power saving.

7.4.3 Four co-executing applications. We now consider four co-
executing applications. The CD-search algorithm employed here
for 4 co-running applications is a straightforward extension upon
the one described in Section 4: we first find the least number of SMs
to be assigned to the memory-intensive applications to maintain
performance and then assign the remaining SMs through even par-
titioning to the compute-intensive application(s) in performance
mode or power-gate them in power mode. Figure 15a summarizes
average normalized STP and ANNT results for the heterogeneous
workloads. Co-executing four aplications with different SM de-
mands improves the overall resource utilization of even SM parti-
tioning. As a result, the opportunity of CD-search decreases. Yet,
CD-search still improves STP by 6.2% on average (and up to 42.3%),
while at the same time reducing ANTT by 14.2% for the hetero-
geneous workload mixes in performance mode. In power mode,
CD-search reduces power consumption by 16.4% on average.

7.5 Comparison against SMK

As mentioned in the introduction, simultaneous multikernel (SMK)
execution [9, 10] is another approach to improve resource utiliza-
tion in a fine-grained way within an SM. Although previous work
showed that SMK works well for mixes of applications with dif-
ferent execution characteristics [9, 10, 13], Hongwen et al. [31, 32]
more recently pointed out that even under a state-of-art intra-SM
sharing scheme, performance still suffers due to interference among
concurrent applications. Here we implement SMK following [10]

H Even Partitioning 18 SMs m24SMs |30 SMs

1.2
E
z 1
<
s 0.8
£ 06
n
2 0.4
N
T 0.2
E o
= STP ANTT
(a) Performance mode: Average STP and ANTT
B Even Partitioning 18 SMs m24 SMs m 30 SMs
& 1.2
n 1
o3
5 0.8
g 06
a
B 04
N
® 0.2
E
s O
z Power STP

(b) Power mode: Average power and STP
Figure 14: Sensitivity analysis: number of SMs. The opportu-
nity to improve performance and reduce power increases with increas-
ing SM count.

® Even Partitioning = CD-Search B Even Partitioning = CD-Search

1.2 1.2
E =
z 1 @ 1 —
; 0.8 § 0.8 —
» 0.6 £ 06 —
B °
So4 @ 04 —
T ®
g 02 £ 02 —
S <}
Z 0 Z 0

STP ANTT Power STP

(a) Performance mode (b) Power mode

Figure 15: Sensitivity analysis: four concurrent applications.
CD-search improves performance and reduces power consumption
even with four applications.

which improves performance by dynamically partitioning SM re-
sources. We also exploit a loose round-robin warp scheduler, which
first selects kernels in a round-robin way and then selects warps
within a kernel using the GTO policy. This guarantees fairness and
achieves high STP [13].

SMK outperforms even SM partitioning for many workloads,
however, SMK degrades performance severely for nearly one fourth
of the workloads, see Figure 16. Ideally, SMK enables the compute-
intensive application to execute instructions while the memory-
intensive application is stalled. However, when co-executing two
applications with different characteristics on an SM, if the memory-
intensive application stalls the load/store unit due to serious cache
or memory contention, the compute-intensive application cannot
make forward progress even it is highly optimized for the shared
memory or local cache. Park et al. [13] exploit this observation in
Maestro by combining SMK with spatial multitasking (assuming

0.6

04 -
802 o ccocess==—=====2
[0]
Z 0 - —CD-search
E .02 SMK
9D .04 —Maestro
-0.6 - - - Maestro (CD-search)
-0.8
Sorted workloads

Figure 16: Comparing CD-search against SMK for heteroge-
neous workload mixes. SMK leads to severe performance degra-
dation for one fourth of the workloads due to intra-SM resource con-
tention. Employing CD-search on top of Maestro achieves the highest
performance.

even SM partitioning) to achieve the best of both worlds. CD-search
achieves similar performance as Maestro, see Figure 16, however it
does not require SMK support. Moreover, Maestro assumes even SM
partitioning. Adding CD-search (uneven SM partitioning) on top of
Maestro further improves performance by 8.9% and outperforms
all other designs as shown in Figure 16.

8 RELATED WORK

Spatial Multitasking. Commercial GPUs support spatial multi-
tasking to increase GPU resource utilization. Adriaens et al. [6]
argue that uneven SM partitioning does not provide a significant
performance improvement over even partitioning on average. How-
ever, in this paper, we show that different optimization opportu-
nities (performance versus power) can be exploited based on the
characteristics of the multitasking workload. To guarantee fairness,
Aguilera et al. [33] adjust SM allocation between co-executing ap-
plications to balance individual per-application performance. To
improve throughput, Jog et al. [12] design a novel memory sched-
uler driven by an analytical performance model. To support pre-
emption, Tanasic et al. [7] propose context switching and draining
mechanisms and demonstrate their importance to improve sys-
tem responsiveness and fairness. Chimera [21] combines different
preemption approaches to reduce overall preemption overhead.
Ausavarungnirun et al. [14] propose application-transparent mul-
tiple page size support to solve the address translation and de-
mand page challenges in GPU spatial multitasking. Wang et al. [15]
propose application-aware TLP management to improve fairness
among co-executing applications. None of these prior works discuss
nor propose a dynamic mechanism to determine an effective SM
partition to optimize performance and/or power.

Simultaneous Multitasking (SMK). Several prior works explore
the notion of multitasking within an SM. Wang et al. [9] propose
Simultaneous Multikernel (SMK) execution, which exploits a TB
dispatch mechanism and a warp scheduling algorithm to ensure fair
resource allocation among applications within an SM. Xu et al. [10]
propose Warp-Slicer, a run-time method to partition SM resources
among different applications to maximize performance. To better
share the resources in a single SM, Li et al. [34] combine TLP adjust-
ment and cache bypassing. Dai et al. [32] balance memory accesses
by limiting the number of in-flight memory requests issued from
different applications. These SMK techniques are used to partition
resources within an SM. Nevertheless, applications may still inter-
fere with each other, especially in the L1 cache and load/store units.

Maestro overcomes this limitation by reverting to spatial multitask-
ing for such cases [13]. However, Maestro is limited to even SM
partitioning. As shown in this paper, CD-search outperforms SMK
and is orthogonal to Maestro by further improving performance
through uneven SM partitioning.

9 CONCLUSION

How to effectively multitask independent applications on a GPU
begins to attract wide attention. In this paper, we show that un-
even SM partitioning can bring substantial performance and power
benefits. However, with an increasing number of SMs and co-
running applications, a key challenge is how to determine an ef-
fective SM partition. This paper presents CD-search which dy-
namically classifies workloads based on a novel off-SM bandwidth
model and then chooses the performance mode in case of heteroge-
neous workload mixes or the power mode in case of homogeneous
memory-intensive workload mixes. Then in each mode, CD-search
determines the optimum SM partition following a pre-determined
search strategy, making dynamic SM partitioning tractable and
low-overhead. Experimental results show that CD-search improves
system throughput by 10.4% on average (and up to 62.9%) compared
to even partitioning for heterogeneous workload mixes. For homo-
geneous memory-intensive workload mixes, CD-search reduces
power consumption by 25% on average (and up to 41.2%).

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feedback.
We thank CalcUA for letting us use the NVIDIA P100 GPU. This
work is supported by the European Research Council (ERC) Ad-
vanced Grant agreement No. 741097, FWO projects G.0434.16N and
G.0144.17N, NSFC under Grant No. 61572508 and 61672526, NUDT
Research Project No. ZK17-03-06. Xia Zhao is supported through a
CSC scholarship and UGent-BOF co-funding.

REFERENCES

[1] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: QoS Awareness and Increased
Utilization for Non-Preemptive Accelerators in Warehouse Scale Computers,” in
Proceedings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pp. 681-696, April 2016.

[2] V.T.Ravi, M. Becchi, G. Agrawal, and S. Chakradhar, “Supporting GPU Sharing
in Cloud Environments with a Transparent Runtime Consolidation Framework,”
in Proceedings of the International Symposium on High Performance Distributed
Computing (HPDC), pp. 217-228, June 2011.

[3] C.Margiolas and M. F. P. O’Boyle, “Portable and Transparent Software Managed
Scheduling on Accelerators for Fair Resource Sharing,” in Proceedings of the
International Symposium on Code Generation and Optimization (CGO), pp. 82-93,
March 2016.

[4] Y. Suzuki, S. Kato, H. Yamada, and K. Kono, “GPUvm: Why Not Virtualizing GPUs
at the Hypervisor?,” in Proceedings of the USENIX Annual Technical Conference
(ATC), pp. 109-120, June 2014.

[5] Amazon, “Amazon web services”” https://aws.amazon.com/cn/ec2/.

[6] J.T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The Case for GPGPU
Spatial Multitasking,” in Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), pp. 1-12, February 2012.

[7] L Tanasic, L. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero, “Enabling
Preemptive Multiprogramming on GPUs,” in Proceeding of the International Sym-
posium on Computer Architecture (ISCA), pp. 193-204, June 2014.

[8] M. Awatramani, J. Zambreno, and D. Rover, “Increasing GPU Throughput using
Kernel Interleaved Thread Block Scheduling,” in Proceedings of the International
Conference on Computer Design (ICCD), pp. 503-506, October 2013.

[9] Z.Wang,]J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo, “Simultaneous
Multikernel GPU: Multi-tasking Throughput Processors via Fine-Grained Shar-
ing,” in Proceedings of the International Symposium on High Performance Computer

Architecture (HPCA), pp. 358-369, March 2016.
[10] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-Slicer: Efficient

Intra-SM Slicing through Dynamic Resource Partitioning for GPU Multiprogram-
ming,” in Proceedings of the International Symposium on Computer Architecture

[
it

(13]

[14]

=
=

[19

[20

[21]

[22

[23]

[24

(28]

[29]

[30]

(31]

(32]

(33]

[34

(ISCA), pp. 230-242, June 2016.

“NVIDIA Tesla V100 Volta Architecture”

A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S. W. Keckler,
M. T. Kandemir, and C. R. Das, “Anatomy of GPU Memory System for Multi-
Application Execution,” in Proceedings of the International Symposium on Memory
Systems (MEMSYS), pp. 223-234, October 2015.

J.J. K. Park, Y. Park, and S. Mahlke, “Dynamic Resource Management for Efficient
Utilization of Multitasking GPUs,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pp. 593-606, April 2017.

R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi, C. J. Rossbach,
and O. Mutlu, “Mosaic: A GPU Memory Manager with Application-transparent
Support for Multiple Page Sizes,” in Proceedings of the International Symposium
on Microarchitecture (MICRO), pp. 136-150, October 2017.

H. Wang, F. Luo, M. Ibrahim, O. Kayiran, and A. Jog, “Efficient and Fair Multi-
programming in GPUs via Effective Bandwidth Management,” in Proceedings of
the International Symposium on High Performance Computer Architecture (HPCA),
March 2018.

A. Jadidi, M. Arjomand, M. T. Kandemir, and C. R. Das, “Optimizing Energy
Consumption in GPUS Through Feedback-driven CTA Scheduling,” in Proceedings
of the High Performance Computing Symposium (HPC), pp. 12:1-12:12, April 2017.
A. Jadidi, “Kernel-Based Energy Optimization In GPUs,” Master’s thesis, The
Pennsylvania State University, December 2015.

N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha, S. Ghose, A. Jog,
P. B. Gibbons, and O. Mutlu, “Zorua: A Holistic Approach to Resource Virtualiza-
tion in GPUs,” in Proceedings of the International Symposium on Microarchitecture
(MICRO), pp. 1-14, October 2016.

H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram, “GPU Register File Virtualiza-
tion,” in Proceedings of the International Symposium on Microarchitecture (MICRO),
pp. 420-432, December 2015.

J. Lee and H. Kim, “TAP: A TLP-Aware Cache Management Policy For a CPU-
GPU Heterogeneous Architecture,” in Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA), pp. 1-12, February 2012.

J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative Preemption for
Multitasking on a Shared GPU,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pp. 593-606, March 2015.

Nvidia, “NVIDIA TESLA P100 GPU ACCELERATOR” https://images.nvidia.com/
content/tesla/pdf/nvidia-tesla-p100-PCle-datasheet.pdf, 2016.

A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing
CUDA Workloads Using a Detailed GPU Simulator,” in Proceeding of the Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS),
pp. 163-174, April 2009.

J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J.
Reddi, “GPUWattch: Enabling Energy Optimizations in GPGPUs,” in Proceedings
of the International Symposium on Computer Architecture (ISCA), pp. 487-498,
June 2013.

“NVIDIA CUDA SDK Code
cuda-downloads.

J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D.
Liu, and W.-m. W. Hwu, “Parboil: A Revised Benchmark Suite for Scientific and
Commercial Throughput Computing,” tech. rep., March 2012.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A Benchmark Suite for Heterogeneous Computing,” in Proceedings of
the International Symposium on Workload Characterization (ISWC), pp. 44-54,
October 2009.

S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos, “Auto-
tuning a High-Level Language Targeted to GPU Codes,” in Proceedings of Innova-
tive Parallel Computing (InPar), pp. 1-10, May 2012.

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: A MapReduce
Framework on Graphics Processors,” in Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques (PACT), pp. 260269, October
2008.

S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multipro-
gram Workloads,” IEEE Micro, vol. 28, no. 3, pp. 42-53, 2008.

H.Dai, Z.Lin, C. Li, C. Zhao, F. Wang, N. Zheng, and H. Zhou, “POSTER:Accelerate
GPU Concurrent Kernel Execution by Mitigating Memory Pipeline Stalls,” in Pro-
ceedings of the International Conference on Parallel Architectures and Compilation
(PACT), pp. 144-145, September 2017.

H. Dai, Z. Lin, C. Li, C. Zhao, F. Wang, N. Zheng, and H. Zhou, “Accelerate GPU
Concurrent Kernel Execution by Mitigating Memory Pipeline Stalls,” in Proceed-
ings of the International Symposium on High Performance Computer Architecture
(HPCA), March 2018.

P. Aguilera, K. Morrow, and N. S. Kim, “Fair Share: Allocation of GPU Resources
for Both Performance and Fairness,” in Proceedings of the International Conference
on Computer Design (ICCD), pp. 440-447, October 2014.

X. Liand Y. Liang, “Efficient Kernel Management on GPUs,” in Proceedings of the
Design, Automation Test in Europe Conference Exhibition (DATE), pp. 115:1-115:24,
March 2016.

Samples” https://developer.nvidia.com/

https://aws.amazon.com/cn/ec2/
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

	Abstract
	1 Introduction
	2 Motivation
	3 Workload Classification
	3.1 Heterogeneous Workload Mixes
	3.2 Memory-Intensive Workload Mixes
	3.3 Compute-Intensive Workload Mixes
	3.4 Towards Classification-Driven Search

	4 Classification-Driven search
	4.1 Workload Classification
	4.2 Performance Mode
	4.3 Power Mode

	5 Real Hardware Validation
	6 Experimental Setup
	7 Evaluation
	7.1 Performance Mode
	7.2 Power Mode
	7.3 Profiling overhead
	7.4 Sensitivity Analyses
	7.5 Comparison against SMK

	8 Related Work
	9 Conclusion
	References

