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Abstract

The purpose of this article is to use genetic algorithm for finding two invertible diagonal matrices
D1 and D2 such that the scaled matrix D1AD2 approaches to minimum condition number.
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1. INTRODUCTION

Let ‖.‖ be a subordinate matrix norm and let A be an invertible matrix. The
number

κ(A) = cond(A) = ‖A‖‖A−1‖ (1)

is called the condition number of the matrix A , relative to the given matrix
norm.
The number κ(A) measures the sensitivity of the solution u of the linear system

Ax = b to variations in the data A and b; a feature which is referred to as the
condition of the linear system in question. The preceding, therefore, gives sense to
a statement such as ’a linear system is well-conditioned or ill-conditioned’, according
as the condition number of its matrix is ’small’ or ’large’.

Theorem 1.1. For every matrix A, we have

(1 ) cond(A) ≥ 1

(2 ) cond(αA) = cond(A); for every scalar α 	= 0 .

The property cond(αA) = cond(A) shows that it is futile to expect to be able to
improve the condition of a linear system by multiplying all the equations by a scalar.
On the contrary, it is indeed possible to diminish cond2(A) by multiplying every
row and every column by a suitable number; this is the task of the equilibration
of a matrix which may be stated as follows. Given a matrix A, find two invertible
diagonal matrices D1 and D2 such that

cond(D1AD2) = inf
�1,�2∈Υ

cond(�1A�2) (2)
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(Υ denoting the set of all diagonal matrices) relative to a given matrix norm. With
this step carried out, the solution of the system Ax = b is effected by solving the
system (D1AD2)y = D1b and then calculating x = D2y .

Scaling or equilibration of data in linear systems of equations is a topic of great
importance that has already been the subject of many scientific publications, with
many different developments depending on the properties one wants to obtain after
scaling. It has given rise to several well known algorithms (see [8], [14], for instance).
Scaling consists in pre- and post-multiplying a matrix by two diagonal matrices,
D1 and D2, respectively. Classical scalings are the well known row and column
scaling. A more general purpose scaling method is the one used in the HSL 2000
routine MC29, which aims to make the nonzeros of the scaled matrix close to
one by minimizing the sum of the squares of the logarithms of the moduli of the
nonzeros (see [7]). MC29 reduces this sum in a global sense and therefore should
be useful on a wide range of sparse matrices. Any combination of these scalings
is also a possibility. Scaling can also be combined with permutations (see [9] and
the HSL 2000 routine MC64). The matrix is first permuted so that the product
of absolute values of entries on the diagonal of the permuted matrix is maximized
(other measures such as maximizing the minimum element are also options). Then
the matrix is scaled so that the diagonal entries are one and the offdiagonals are
less than or equal to one. This then provides a useful tool for a good pivoting
strategy for sparse direct solvers, as well as for building good preconditioners for
an iterative method. In the 1960s, Bauer and van der Sluis, in particular, showed
some optimal properties in terms of conditions numbers for scaled matrices with
all rows or all columns of equal norm of 1 ([1], [2], [15]). The problem of optimal
scaling of matrices with respect to the condition number κ2 has been extensively
studied, as seen in papers presented by Bauer [1], Braatz and Morari [3], Businger
[4], Rump [13], Watson [16], Chiang and Chandler [5].
The purpose of this article is to propose genetic algorithm for finding two invert-

ible diagonal matrices D1 and D2 such that the scaled matrix D1AD2, decrease the
condition number of matrix A.

2. GENETIC ALGORITHM

Genetic algorithms (GAs) are stochastic global search and optimization methods
that mimic the metaphor of natural biological evolution. Genetic algorithms oper-
ate on a population of potential solutions applying the principle of survival of the
fittest to produce successively better approximations to a solution. At each gener-
ation of a GA, a new set of approximations is created by the process of selecting
individuals according to their level of fitness in the problem domain and reproduc-
ing them using operators borrowed from natural genetics. This process leads to the
evolution of populations of individuals that are better suited to their environment
than the individuals from which they were created, just as in natural adaptation.
Genetic operators control the evolution of successive generations. The three basic

genetic operators are reproduction, crossover and mutation. The probability of a
given solution’s being chosen for reproduction is proportional to the fitness of that
solution. Crossover implies that parts of two randomly chosen chromosomes will be
swapped to create a new individual. Mutation involves randomly changing an allele
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in a solution to look for new points in the solution space. Although there are more
elaborate versions of these operators, the basic principles remain similar for most
Genetic algorithms. A genetic algorithm starts by generating a number of possible
solutions to a problem, evaluates them and applies the basic genetic operators to
that initial population according to the individual fitness of each individual. This
process generates a new population with higher average fitness than the previous
one, which in turn will be evaluated. The cycle is repeated for the number of
generations set by the user, which is dependent on problem complexity.
We use GAs algorithm because:

—An easily understood approach that can be applied to a wide range of problems
with little or no modification. Other approaches have required substantial al-
teration to be successfully used in building applications. For example, dynamic
programming was applied to the problem of selecting the number, location, and
power of lamps along a hallway to minimize the electrical power needed to pro-
duce the required illuminance [10]

—The choice of the location and power of a lamp affected decisions made about
previous lamps, the sequential decision-making approach inherent in dynamic
programming could not be made. It was necessary to suspend earlier decisions
and reconsider them, substantially increasing computation time and data storage.

—Publicly available, easily implemented GA codes. Reduced set-up time makes
them attractive relative to other optimization methods that may offer better
performance but must be identified, obtained and properly configured.

—Inherent capability to work with complex simulation programs. Simulation does
not need to be simplified to accommodate optimization.

—Methods to permit Genetic algorithms to handle constraints that would make
some solutions unattractive or entirely infeasible.

—Proven effectiveness in solving complex problems that cannot be readily solved
with other optimization methods. The mapping of the objective function for
a daylighting design problem showed the existence of local minima that would
potentially trap a gradient-based method[6].

3. NUMERICAL RESULTS

We start with a simple example to show that GA can find invertible diagonal
matrices D1 and D2 such that the scaled matrix D1AD2 , has the cond(D1AD2)
close to 1.

Example 3.1. Let

A =

(
105 0
0 10−5

)
,

then κ2(A) = 1010. Applying GA (number of generations=1000 and Population
size =200), we obtain

D1 =

( −0.0014899606376 0
0 261.6031905051186

)
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D2 =

(
0.0046900908854 0

0 −267.1240676478366

)

where κ2(D1AD2)) = 1.000000010883026.

Example 3.2. From BAUER[1] we know that the Optimal scaling of

A =

⎛
⎝ 1 1 1

1 2 3
1 3 6

⎞
⎠

is κ2(A) = (3+
√
10)2 = 37.973665961010283. This is the minimum possible condi-

tion number following scaling. In GA we obtain κ2(D1AD2)) = 37.973666669263956,
where

D1 =

⎛
⎝ 978.1747835410918 0 0

0 892.8483795597657 0
0 0 461.1142062448835

⎞
⎠

and

D2 =

⎛
⎝ −947.1370305923301 0 0

0 864.4901198012243 0
0 0 −446.3812683112591

⎞
⎠

Example 3.3. The matrix

A =

⎛
⎜⎜⎝

0.0926612 17.0784926 0.3127063 12.7526810
1.7811361 54.0213314 1.4953060 14.7655003
0.3460217 0.0680433 0.2626770 0.0227214
1.3745248 45.1500312 0.0505958 1.4314422

⎞
⎟⎟⎠

has the condition number equal to 460.2704442412975. Chiang and Chandler [5]
reduced the condition number of this matrix to 14.4856257 by an iterative algorithm
which is called SCALGM. Our result using GA is κ2(D1AD2)) = 14.485476520157350
where

D1 =

⎛
⎜⎜⎝

−1022.446636286579 0 0 0
0 495.973718177785 0 0
0 0 2743.200397567089 0
0 0 0 545.478809477854

⎞
⎟⎟⎠

and

D2 =

⎛
⎜⎜⎝

2335.779656989865 0 0 0
0 74.778044753772 0 0
0 0 −2923.32215707509 0
0 0 0 −209.320088460085

⎞
⎟⎟⎠

4. CONCLUSION

Genetic algorithms supply a very good opportunity for reducing the condition num-
ber of a given ill condition matrix.
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