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Abstract4

Whether humans are optimal decision makers is still a debated issue in the realm of perceptual5

decisions. Taking advantage of the direct link between an optimal decision-making and the confidence6

in that decision, we o↵er a new dual-decisions method of inferring such confidence without asking for its7

explicit valuation. Our method circumvents the well-known miscalibration issue with explicit confidence8

reports as well as the specification of the cost-function required by ’opt-out’ or post-decision wagering9

methods. We show that observers’ inferred confidence in their first decision and its use in a subsequent10

decision (conditioned upon the correctness of the first) fall short of both the ideal Bayesian strategy,11

as well as of an under-sampling approximation or a modified Bayesian strategy augmented with an12

additional bias term to accommodate global miscalibration of confidence. The observed data are instead13

significantly better fitted by a model positing that observers use only few confidence levels or states, at14

odds with the continuous confidence function of stimulus level prescribed by a normative behavior. These15

findings question the validity of normative-Bayesian accounts of subjective confidence and metaperceptual16

judgments.17

Introduction18

How do we select behavioral responses when interacting with a given environment? According to a popular19

theory – the rational choice theory – human agents evaluate, for each decision to be taken, the expected20

utility of each possible course of action, and select thereafter the one yielding the highest rank. Despite21

the fact that the descriptive adequacy of rational choice theory has long been challenged on empirical as22

well as on theoretical grounds, mainly questioning its biological/psychological plausibility [16, 17,20,29,42],23

the debate is far from settled [5, 6, 19]. In order to maximize expected utility, an agent has to be able to24

associate a subjective probability to each possible consequence of its actions. The characterization of this25

process requires (i) the quantitative assessment of the agent’s ability to attach probabilities to events, and26

(ii) the appraisal of the measured subjective probabilities against those of a Bayesian observer, with the27

same prior knowledge as the agent, would assign to the same events. The experimental instantiation of such28

comparisons has been hindered by serious methodological problems with assessing subjective probabilities.29

Subjective probability is tantamount to the agent’s confidence in the occurrence of an event E [10]. It30

is formally defined as a marginal rate of substitution [10, 40]: the agent’s subjective probability about the31

event E occurring or having occurred would be p(E) if the agent is indi↵erent to gaining one unit of utility32

contingent on E against gaining p(E) units of utility for sure. Current methods for measuring subjective33

probabilities in, for example, perceptual decisions (that is, the confidence about choices being correct) using34

opt-out or post-decision wagering techniques are straightforward operationalizations of the above definition.35

A major, well and long known problem with these methods is that they rely on unverifiable assumptions36

about the utility function of the participant (see, e.g., [40]). Such methods cannot disentangle subjective37

probability from factors such as opportunity cost in waiting-time paradigms. More frequently used, methods38
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Figure 1: Experimental paradigm and results. A. Orientation-orientation (O-O) paradigm. Participants had to make
two consecutive decisions on which of two Gabor-patches was more tilted away from the vertical (hence the signal on which
the participant had to base the decision was the signed di↵erence in orientation between the two Gabors). While the absolute
di↵erence in tilt between the two Gabors (the discriminability) is drawn independently from a uniform distribution in each of
the two Gabor-pairs , the location of the more tilted Gabor in the second Gabor-pair (left/right; indicated by the short thick
black arrows in the right-hand panel) was made dependent on the accuracy of participant’s first response. B. Performance
(proportion of correct responses) plotted as a function of discriminability (measured in units of internal noise) separately for
1st and 2nd decisions (averaged over all conditions and experiments). Note how performance in the 2nd decision is higher,
especially for trials where the sensory evidence (or discriminability, expressed in standard deviations of internal noise) is small
and, in the absence of prior information, performance would be at or near chance. Error bars represents bootstrap 95% CI.

requiring explicit confidence valuation by the decision-maker su↵er from well-documented miscalibrations1

and response biases (see, e.g., [14, 15, 28]).2

Here, we present a novel approach of estimating subjective probabilities which overcomes the problems3

above. Human participants were presented with two consecutive signals and asked to decide whether they4

were above or below some reference value. The key innovation was that the statistics of the second signal was5

made contingent upon the decision-maker having made a correct decision on the first signal (explicit feedback6

is not provided on a trial-by-trial basis): correct/incorrect first decisions resulted into signals above/below7

the reference value for the second decision (a diagram of the experimental protocol is shown in Fig. 1 in the8

context of an orientation discrimination task; the signal here is the di↵erence in orientation between the two9

Gabors). Di↵erences in performance between the second and the first decisions, at signal parity, allow the10

estimation of the subjective probability of being correct on the first decision (i.e., the confidence). Using11

this approach we show that humans are quite accurate in assessing confidence, yet they exhibit systematic12

deviations from optimality, such as global under-confidence and high-confidence errors. These systematic de-13

viations cannot be accounted for either by a biased Bayesian observer (which perform Bayesian computations14

using a biased estimate of the variability of the internal signals) or by a sample-based approximation of the15

optimal Bayesian strategy (see Supplemental information). An alternative non-Bayesian model, character-16

ized by a finite number of discrete confidence levels, provides the best and most parsimonious description of17

the empirical patterns of humans’ choices. These results suggest that the evaluation of subjective confidence18

in human observers is not based on a full posterior distribution, and provide new cues about which kind of19

shortcuts and approximation may be used by the brain to handle meta-perceptual uncertainty.20

Results21

The dual-decision paradigm22

The paradigm is illustrated in Figure 1A with an example of the orientation discrimination task (orientation-23

orientation or O-O condition, see Material and methods and Supplemental information for details). Partici-24

pants are presented with two consecutive Gabor-pairs, and for each pair must decide which of the two Gabors25

was more tilted with respect to the vertical; correct/incorrect first decisions result into displaying the second26
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Figure 2: Bayesian and a class of non-Bayesian models of confidence and of sequential decision-making. A.
Internal beliefs of the Bayesian (top panels) and non-Bayesian observer (bottom panels), for 1st and 2nd decision (from left
to right). The lowest abscissae represent the state of the world (e.g. the physical di↵erence in orientation between the two
Gabors in the orientation task of Fig. 1) while the internal representations of the decision variable (the sensory evidence) are
referred to the upper two abscissae. The first stimulus in this ad-hoc trial (s1) evokes a noise contaminated internal response
(r1 = s1 + ⌘, where ⌘ ⇠ N (0,�2)). The Bayesian observer (top panels) knows about the statistics of its perceptual system
and is able to compute the likelihood function p(r1|s1). Because for the 1st decision the prior is flat (grey lines in the upper
panels), the likelihood (dashed curves) largely overlaps with the posterior (red continuous curves). The Bayesian probability
that represents the subjective confidence c1 that the true value of the signal lies in the positive semi-axis corresponds to the
area of the posterior distribution shaded in red (c1 = p (ŝ1 > 0|s1)). The observer knows that the second signal will be drawn
from the positive interval (right-hand side) after a correct 1st decision, and from the negative semi-interval after an error.
Hence the ideal observer in the 2nd decision assigns a prior probability (grey line) equal to the confidence in the first choice
to positive signal values. Inasmuch as the response to the first task was correct, the true value of s2 for the 2nd decision
is positive (lower mid-panel). s2 being however small (as illustrated), it evokes by chance (due to internal noise) a negative
internal response r2 that would (in the absence of prior information) lead to the erroneous conclusion that s2 was negative.
Nevertheless, given the asymmetrical prior, the posterior distribution is still favouring the correct choice that s2 is positive.
The lower left panel illustrates how a non-Bayesian observer (who does not have knowledge about the statistics of the internal
noise, and only perceives point estimates) could make the same choices as the Bayesian observer by comparing the internal
response r1 with a confidence criterion (the two vertical blue lines symmetrically placed about the decision criterion, dashed
vertical line). By classifying decisions in two discrete levels, ’confident’ vs. ’uncertain’ or ’non-confident’, and by shifting the
2nd decision criterion only after ’confident’ 1st decision, the non-Bayesian ’discrete’ observer can also increase the frequency of
correct second choices. B. Relationship between confidence and internal sensory evidence for the Bayesian and non-Bayesian
models, and for another model of a Bayesian observer that has a biased estimate of the internal variability, and can therefore
display over or under confidence (relative to optimal). For the discrete and the biased Bayesian models the curve is computed
by averaging MLE estimates of the parameters across subjects. Note that the discrete model (blue curve) does not actually
compute probabilities, however it adjusts the criterion for the second decision. This criterion shift can be transformed into the
equivalent confidence level of the ideal Bayesian observer.

pair with the more tilted Gabor in the right/left place-holder, respectively, and the participants are told1

so. The very same experimental format was used with a duration discrimination task (duration-duration or2

D-D condition) where participants had to decide which of two Gaussian blob flashes (presented sequentially)3

was displayed for a longer duration. These two conditions were tested both in a first experiment where the4

di�culties of first and second decision were independently drawn from a uniform distribution (random-pairs5

experiment) and, on a di↵erent group of subjects, in another experiment where these di�culties were not6

independent (correlated-pairs experiment): more specifically di�cult/easy first decisions were more likely7

to be followed by easy/di�cult second decisions, respectively (see Material and methods). This correlation8

was introduced to encourage participants to rely more on information provided by the first pair of stimuli9

and exploit the statistical dependence between the signals in the two decision. Additionally, we also tested10

a condition where the two tasks were combined, duration-orientation or D-O condition, to test within our11

paradigm the proposal that confidence may work as a ’common currency’ between di↵erent perceptual judg-12

ments [12, 13].13

14
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Table 1: Results of the logistic analysis that measured the influence of the correctness of the first decision on the probability
of choosing ’right’ in the second decision (after accounting for the e↵ect of stimulus values). The reported odds-ratio is between
the odds of having the observer choosing ’right’ (in the second decision) after a correct first decision and after a wrong one
(given the same set of stimuli). The column p(correct) displays the mean and standard deviations of the proportion of correct
responses in the second decision, computed across observers. The last two columns are 95% CI of the odds-ratio for each
condition.

Condition Experiment p(correct) �2 p odds-ratio 95%LCL 95%UCL

O-O correlated-pairs 0.86(0.05) 12.50 0.0004 6.21 3.09 12.47
O-O random-pairs 0.88(0.05) 1.23 0.27 3.47 0.43 27.97
D-D correlated-pairs 0.88(0.06) 14.16 0.0001 10.12 4.88 21.00
D-D random-pairs 0.87(0.04) 16.02 <.0001 32.75 15.82 67.76
D-O correlated-pairs 0.85(0.07) 14.37 0.0001 9.68 4.59 20.42

Computational models1

Given the specific stimuli presented in the first decision and participant’s trial-by-trial responses, participant’s2

performance in the dual-decision paradigm can be compared with that of an ideal observer that accurately3

estimates the probability of being correct in the first decision and uses it as prior information for the second4

decision, according to the rules of Bayesian decision theory (see Figure 2A top). Assuming that the sensory5

noise is adequately described by a Gaussian distribution, updating prior expectations amounts to shifting the6

decision criterion for the second decision by the same distance observed between the first signal and criterion,7

expressed in standard deviations of sensory noise, � (see Supplemental information for the full derivation).8

We have also compared human’s behavior with that of three other classes of models: (i) a biased Bayesian9

observer model, which also performs probabilistic computations to estimate its confidence, albeit using a10

biased estimate of the variability of its internal response (this allows the model to reproduce patterns of11

over or under confidence, which would correspond respectively to under or over estimation of the variability12

of the internal noise); (ii) a heuristic, or non-Bayesian observer characterized by a finite number of discrete13

confidence levels (this model implements the idea that observers may make perceptual decisions using only14

point estimates of the decision variable, rather than the full probability distribution, see Figure 2A bottom);15

and (iii) a model representing a sample-based approximation of the Bayesian model (where the posterior16

distribution is approximated by finite number of samples; see Supplemental information). These models17

made di↵erent predictions of the relationship between sensory evidence and confidence (see Figure 2B) and18

can be reliably discriminated in synthetic datasets (see Supplemental information, Figure S3). Compared to19

the optimal Bayesian model, the biased Bayesian model is characterized by one additional free parameter,20

a scaling factor that indicates by how much the participants over or under estimate the variability of their21

sensory noise. The non-Bayesian models instead are characterized by two additional free parameters for22

each additional discrete confidence level: the first parameter indicates the location of the confidence criterion23

(vertical blue lines, Figure 2A bottom), and the second parameter indicates by how much the criterion for the24

second decision is shifted following a ’confident’ first decision (black dashed vertical line, in Figure 2A bottom-25

right). A summary of the estimated values of model parameters is reported in Supplemental information,26

Table S2.27

Model-free analyses28

Figure 1B shows the proportion of correct responses as a function of discriminability (measured in units of29

internal noise) in the first and second decision (see Figure S1 for separate plots for each experiment and30

condition). As it can be seen, second decision performance (darker traces) is higher than first decision31

performance, especially for the most di�cult trials (where the di↵erence between the two stimuli in a pair32

was very small and first decision performance was close to chance). Since the more tilted or longer stimuli33

appeared more often in the right placeholder for the second decision (given that task di�culty was adjusted34

so as to yield average first-decision performance above chance), an increase in second-decision performance35

could be the result of a fixed bias (i.e., participants having chosen a ’right’ response more frequently), without36

necessarily involving a trial-by-trial monitoring of uncertainty. To control for this possibility we performed a37
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Figure 3: Model comparison. A.Relative likeli-
hoods L (m|data), averaged across participants (see
main text for details). Models depicted in red
are probabilistic models which use full probabilis-
tic distributions over the decision variable; in blue
are models that only use point-estimates, but still
evaluate the uncertainty heuristically on a trial-
by-trial basis; the model in grey represents an ob-
server that does not monitor uncertainty but sim-
ply adopts a fixed bias, corresponding to the be-
lief of being more frequently correct than wrong
in the first decision. Black lines represent mean
likelihoods and error bars represent bootstrapped
standard errors of the mean (SEM). B. Leave-one-
out (LOO) cross-validated log-likelihood di↵erences
(discrete 2lvl minus Bayesian with a metacognitive
bias) summed over subjects and task (the error bar
is the bootstrapped standard error of the sum).

logistic analysis to measure the influence of the correctness of the first decision on the probability of choosing1

’right’ on the second decision (i.e. reporting that the signal was drawn from the positive semiaxis, that is2

s2 > 0). For each experiment (correlated- and random-pairs) and condition (O-O, D-D, and D-O) we fitted3

a multilevel (mixed-e↵ects) logistic regression, using R [36] and the lme4 package [2], with the absolute4

di↵erence between the two stimuli (in units of �) and the accuracy of the first response as fixed e↵ect5

predictors, and the participant as a grouping factor. We evaluated statistically the e↵ect of the correctness6

of the first response with a likelihood ratio test between the fitted model and a reduced model where the7

e↵ect of the first response was set to 0. This test was significant for all the experiments and conditions (see8

Table 1), with the exception of the O-O condition in the random-pairs experiment. In order to check whether9

a simpler fixed-bias model would really su�ce to describe performance in this latter case, we performed a10

Monte Carlo simulation. For each trial we estimated the expected probability of a ’right’ second response on11

the basis of the stimuli presented and the psychometric function fitted to the first decision responses. This12

results in a set of Bernoulli trials with di↵erent probabilities of success, which we simulated 105 times in13

order to estimate, using the percentile method, a 99.5% confidence interval (corresponding to the Bonferroni14

corrected alpha level 0.005) on the expected proportion of second responses ’right’ given the stimuli and the15

first response. The results revealed that after a wrong first response none of the participants responded ’right’16

more often than what would be expected given the stimuli: all the observed proportions were within the17

confidence intervals. Instead, after a correct response, the observed proportion of responses ’right’ exceeded18

the confidence interval for 3 out of the 5 participants in this experiment. This result suggests that also in19

this condition, where the fixed bias hypothesis could not be rejected at the group level, the evidence favors20

the hypothesis that most participants have monitored the confidence in their first response on a trial-by-trial21

basis.22

Overall, choice accuracies in the second decision revealed only small di↵erences across task (see the23

also table 1). We investigated also whether our manipulation of the statistical relationship between the24

di�culties of first and second decisions did a↵ected performance. We run a multilevel logistic regression,25

with the accuracy of the second decision as dependent variable, and the stimulus di↵erences (absolute values)26

together with the experiment (random vs. correlated pairs) as predictors. This analysis did not reveal any27

significant di↵erence in performance, �2(1) = 0.55, p = 0.46, therefore data from the two experiments28

were collapsed in subsequent analyses. We used the same method to compare conditions where the two29

decisions were made in the same modality (O-O and D-D) with the condition where they were made on30

di↵erent modality (D-O; for this comparison only data from the correlated pairs experiment were used).31

Interestingly, we found that the di↵erence in accuracy between these two conditions, although small (⇡32

2% see table 1), resulted statistically significant �2(1) = 8.24, p = 0.004. We will discuss the possible33

implications of this finding in the Discussion.34
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Figure 4: Comparison of model predictions and empirical data. A. The predicted (colored lines) and observed (black
lines, with error bars representing ±1bootstrapped SEM) proportion of correct choices (i.e. reporting s2 > 0), split according to
the correctness of the first decision and averaged across all observers and conditions, are plotted on a probit scale as a function
of the discriminability of the second pair of stimuli (expressed in units of internal noise, �). B. Di↵erences in the proportion
of choices ’right’ of the biased Bayesial model (left panels), and of the discrete model with 2 levels of confidence (right panels).
The upper panels demonstrate the under-confidence (relative to optimal), present in the data and reproduced by both models.
The lower panels display choices after a wrong first decision, demonstrating the pattern of high confidence errors: after a wrong
first response, subjects do not show the same pattern of under-confidence as after a correct first response. Instead, they tend
to choose ’right’ (and therefore commit an error) almost as often as the ideal, particularly for easy second decisions.

Model comparison1

We compared the models using the Akaike Information Criterion, AIC [1], to account for the di↵erent number2

of free parameter. For ease of interpretation, AIC scores were converted to a probability scale by taking the3

di↵erence with respect to the AIC of the best fitting model (separately for each participant) and transforming4

the result into relative likelihoods of the model given the data, L (m|data) / exp
⇥
� 1

2 (AICm �minAIC)
⇤
[8].5

We also included into the model comparison a fixed-bias model, which corresponds to the hypothesis that6

observers did not monitor their own uncertainty on a trial-by-trial basis, but simply increased the frequency7

of responses ’right’ in the second decision by shifting their decision criterion by a fixed amount. Although8

this hypothesis was rejected by model-free analyses, it is useful to see how it compares to the other models.9

We find that the model with the higher relative likelihood was the non-Bayesian observer with 2 discrete10

confidence levels (Figure 3A). In particular, the relative likelihood (averaged across tasks and conditions)11

of the non-Bayesian observer with 2 confidence levels was higher than the ideal Bayesian observer for 1312

out of 14 observers. Most interestingly, it was also higher than the second best model (the Bayesian model13

with metacognitive bias) for 11 out of 14 observers. As an additional test we run a leave-one-out (LOO)14

cross-validation of the two best fitting models, and found again that the non-Bayesian model was on average15

better at predicting the actual behavior of the participants (Figure 3B).16

Given the results of the model comparison, it is important to understand the di↵erences between the17

predictions of the Bayesian and non-Bayesian models. Figure 4A displays on a probit scale the observed pro-18

portion of correct second decision choices as a function of the di�culty of the first decision, averaged across19

observers, tasks and conditions. The examination of this plot reveals several interesting features. First, the20

left panel in Figure 4A indicates that the main di↵erence between the data and the prediction of the ideal21

Bayesian observer is that human observers make more frequent errors than the ideal after a correct first deci-22

sion, which implies that they choose ’right’ less frequently than ideal. Because in our task the bias favouring23

’right’ responses in the second decision is a function of the confidence in the first decision (see Supplemental24

information and Figure 2), this pattern denotes under confidence, i.e. human observers consistently under-25

estimate their probability of being correct in the first decision. The finding of a global under-confidence bias26

allows us to reject the alternative models based on a sampling scheme, in which probability distributions27

6
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are approximated by a finite number of samples. We find that sampling-based approximations of the ideal1

Bayesian model cannot adequately describe the data, at least not without a number of additional assump-2

tions, because for a small number of samples they produce a marked overconfidence bias (see Supplemental3

information), opposite to the one found in the data. Note that as the number of samples increases the4

sampling models converge to the ideal Bayesian model. The biased Bayesian observer instead can account5

for this pattern, by assuming that participants use a biased estimate of their sensory noise (figure 4A, middle6

panel); maximum likelihood estimation of this parameter indicates that the under confidence bias in the data7

could be explained by assuming that they over-estimate their sensory noise approximately by a factor of 3.8

The biased Bayesian observer is less confident than the ideal also after wrong first decisions, leading to9

less frequent errors in the second decision1. This implies that after an error, human observers respond more10

frequently ’right’ than predicted by the biased Bayesian model, indicating that they make more frequent11

high-confidence errors (or alternatively that they are on average more confident when they make a wrong12

choice). This can be appreciated better in Figure 4B, where the predicted and observed rates of ’right’ second13

decision choices are represented as di↵erences from the ideal. The upper panels show the under-confidence14

pattern (after correct first decisions). This is predicted by both the biased-Bayesian and the alternative, non-15

Bayesian discrete model. The lower panels of Figure 4B show that the under-confidence is not systematically16

present after a wrong first decision; instead, observers deviate from the predictions of the biased Bayesian17

observer and respond more frequently ’right’; in particular they chose ’right’ as frequently as the ideal for18

trials where the intensity of the second signal was high. This implies that they were less sensitive than the19

biased Bayesian observer to the evidence provided by the second pair of stimuli when their first decision was20

wrong.21

Only the discrete model predicts rates of ’right’ responses that are closer to the observed ones, simulta-22

neously showing underconfidence after correct first decisions, and more high-confidence errors. According to23

the discrete model, high-confidence errors are to be expected whenever the internal signal not only has oppo-24

site sign with respect to the physical stimulus (due to random noise fluctuations), but is also large enough to25

exceed the confidence threshold (see Figure 2) and consequently elicit a ’confident’ wrong decision. The rela-26

tionship between the internal signal, or sensory evidence, and the confidence predicted by the ideal Bayesian27

observer and the two best fitting models is plotted in Figure 2B: high confidence errors occur whenever the28

signal upon which the wrong decision is based falls in the high-confidence region of the discrete model (blue,29

stepwise curve). With our behavioral task we cannot measure the trial-by-trial internal signals, however we30

can compute their expected value as the mean of their probability distribution conditioned on the stimulus31

and the choice (this amounts to taking the mean of a truncated Gaussian distribution centered on the true32

value of the stimulus with upper or lower boundary at 0, depending on whether the observer decided ’left’ or33

’right’, respectively) and compare it to the individual confidence thresholds estimates. This analysis revealed34

that even for wrong first decisions, the internal signal was expected to exceed the confidence criterion in ⇡35

42% of the trials (and in ⇡ 77% of correct first decisions), supporting the idea that a substantial proportion36

of high confidence errors is to be expected given the stimuli and the observed pattern of choices.37

Discussion38

We developed a novel approach where in a sequence of two dependent perceptual decisions humans could39

improve their second decision performance by taking advantage of the fact that the statistics of the stimuli40

presented for this second decision depended on the correctness of their first decision. This experimental41

protocol can be regarded as a laboratory proxy of more complex environments in which confidence is used42

to guide behavior in cases where a current decision depends on the unknown outcome of a previous one. We43

developed a normative Bayesian observer model for this task, i.e., an ideal observer who performs Bayesian44

inference to estimate the posterior probability of being correct in the first decision (the confidence), and uses45

it optimally (i.e., maximizes the probability of a correct second decision) as a prior probability distribution46

for making the second decision. By comparing participants’ performance with the predictions of the Bayesian47

model, we were able to test the hypothesis that human observers are able to evaluate probabilistically their48

1Since observers are, overall, more frequently correct than wrong in the first decision (observers made ⇡ 80% correct first
decisions), the ideal Bayesian model attains an overall better performance (based on the totality of trials).
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own uncertainty and make meta-perceptual judgments according to a Bayesian-probabilistic strategy.1

The present results revealed clearly that the participants engaged in this task exhibited systematic devia-2

tions from the predictions of the normative Bayesian model. While they were clearly able to take trial-by-trial3

uncertainty into account (a simple fixed bias model was not su�cient to account for the observed behavior:4

see Results, Model-free analyses), their pattern of second decisions revealed the presence of a marked, global5

miscalibration of confidence, more frequently in the form of under-confidence, as indexed by lower rates of6

responses ’right’ in the second decision with respect to ideal. We developed an alternative ’biased’ Bayesian7

model, designed to reproduce global miscalibration of confidence such as the observed under-confidence by8

assuming that observers use a Bayesian-probabilistic strategy but may have a biased estimate of the vari-9

ability of the internal signals. This model is in line with recent work showing that transcranial magnetic10

stimulation (TMS) on the visual cortex can degrade performance in a visual discrimination task without11

a↵ecting comparative judgments of uncertainty made over multiple decisions [34]. Peters and colleagues [34]12

explained the results by assuming that human observers rely on a learned statistical model of their own per-13

ceptual system that may become invalid under specific conditions, such as the external disturbances elicited14

by means of the TMS. In that case subjects are metacognitively blind to the additional noise introduced by15

the TMS and therefore under-estimate their internal variability. In our case, the biased Bayesian observer16

model can reproduce the under-confidence bias by assuming that, on average, participants over-estimate17

their internal noise approximately by a factor of 3.18

Although the biased Bayesian outperformed the ideal, unbiased Bayesian model in predicting the actual19

behavior, we found additional discrepancies between predictions and empirical data that question the biased-20

Bayesian’s descriptive accuracy. Specifically, we found that on average the biased Bayesian model predicts21

less frequent (with respect to behavior) ’right’ choices after a wrong first decision, see Figure 4, indicating22

that human observers made more frequent high confidence errors. Overall, our results show that (i) human23

observers show less confidence than the ideal Bayesian observer after a correct first decision, but at the same24

time (ii) after a first wrong decision are more confident than the alternative Bayesian model augmented25

with a bias parameter to account for the underconfidence (relative to ideal). Taken together, these findings26

indicate that the relationship between the internal signals (the sensory evidence) and the confidence does not27

have the shape that should be expected if subjective confidence were computed as by a Bayesian observer,28

namely as the posterior probability of being correct.29

The pattern found in our data could be accounted for by our non-Bayesian model, in particular the simple30

model with only two discrete confidence levels2. From a psychological point of view, the non-Bayesian class31

of models posits that confidence is discretized in a number of distinct levels, as also suggested by previous32

work [44]. For example, in the one-criterion variant of our model there would be two discrete confidence33

states: confident - i.e more likely that the response was correct - vs. non-confident - i.e., equally likely34

that the response was correct or wrong (see Figure 2). This one confidence criterion variant of our model35

provided the best and most parsimonious description of the empirical data (see Results, Model comparison).36

It is important to note that because this model does not assume any knowledge about the variability of the37

internal decision variable, these confidence levels are defined only on an ordinal scale and do not convey a38

precise numerical information about the probabilities involved.39

Although our heuristic class of models may seem too simplistic to represents an accurate algorithmic40

description of the mechanisms underlying subjective confidence valuation, we argue that the specific way41

in which the relationship between sensory evidence and confidence is realized in this class of models - as a42

discrete step function - must capture some aspects of the actual mechanism implemented by the brain. More43

specifically, we propose that confidence grows with sensory evidence according to a piecewise function: more44

slowly than ideal for a certain range of values, or sub-domains, of sensory evidence (e.g., for values close to45

the decision boundary 0, contributing to produce the global under confidence bias), but at the same time it46

also grows faster than ideal in other sub-domains, resulting in more frequent high confidence wrong decisions.47

This proposal implies that subjective confidence does not match the Bayesian posterior probability of the48

ideal Bayesian observer, but instead is based on di↵erent computational processes that may require only49

point estimates, as opposed to full probability distribution. This pattern where subjective probabilities both50

overestimate and underestimate the objective probability in distinct sub-domains of the same task resemble51

2Our analysis indicates that the increase in log-likelihood obtained by adding more than two confidence levels is small and
does not compensate the parallel increase in model complexity (number of free parameters), suggesting overfitting.
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the distortions of subjective probability that have been found also in non-perceptual task, such as those1

involving decisions from experience [45].2

Given that participants’ performance was slightly lower in the D-O condition (see Results, Model-free3

analyses), where first and second decisions were made in di↵erent modalities, it is reasonable to ask whether4

di↵erences of the observed data from the predictions of the Bayesian models were mostly driven by this5

specific condition. Interestingly, looking at the model likelihoods separately for each condition, see Figure S46

it becomes evident that this was not the case as the D-O condition was instead the only one where the7

likelihood of the biased-Bayesian resulted slightly higher than that of the non-Bayesian model with two8

confidence level. Taken together, both the pattern of model likelihoods, and the slightly lower performance,9

suggest that participants may have used a slightly di↵erent strategy in this condition. While our current10

data do not allow to pinpoint exactly what caused these di↵erent outcomes, they do suggest that claims of11

confidence as a ’common currency’ between di↵erent perceptual judgments [12, 13] should be re-evaluated12

using a more diverse set of experimental protocols.13

Taken together, our behavioral and modelling results suggest that humans can use sensory evidence to14

perform probabilistic judgments, but ultimately cannot assign numerically precise subjective probabilities15

to perceptual interpretations. These comparative probability judgments, not linked to precise numerical16

values, are the essence of qualitative probability reasoning [39], a weakened but more pragmatic and intuitive17

counterpoint of classical probability theory. The notion of qualitative probability lies at the foundations of18

the notion of subjective (or Bayesian) probability since its early formulation [11, 39]. Much of the early19

work on the theory of Bayesian probability has been dedicated to identifying the conditions that allow the20

departure from the qualitative probability toward the quantitative (numerically precise) probability, defined21

according to the classical Kolmogorov axioms [24]. Several propositions have been put forward, but all22

of them ultimately assume that the decision-maker’s knowledge allows the partition the probability space23

associated with the event space into a uniform and arbitrarily large collection of disjoint states or events [39].24

While this assumption can be used to provide a formal framework for exact reasoning under uncertainty,25

it may be too fine-grained for a realistic, biological decision-maker. Indeed, in the real world assigning26

exact numerical probabilities is often di�cult or impossible, and the ability to compare the likelihood of two27

events without having to provide exact probabilities may be su�cient. Our results support this idea, as the28

performance of the heuristic observer with two discrete confidence levels, despite its relative simplicity, shows29

a marked increase in the probability of correct second decisions relatively to a simpler model which does30

not consider any prior information (the expected proportion of second correct choices in the absence of any31

criterion shift was ⇡80%), while the ensuing performance benefit obtained by the Bayesian model may not32

be enough to justify its increased computational complexity [25] and costs. Indeed, it is known that e�cient33

adaptive decisions can be taken also by means of simple heuristics, which may outperform more rigorous34

Bayesian strategies once the costs of information acquisition and processing are taken into account [18].35

Our findings suggest that subjective confidence does not match the Bayesian posterior probability of being36

correct, even after taking into account the possibility that observers have a biased estimate of the internal37

noise or approximate the subjective probabilities with a finite set of samples. These results have important38

implications for the current investigation of the neural substrate of metacognition, given that many of the39

relevant studies assume, more or less explicitly, that subjective confidence corresponds to the Bayesian40

posterior probability (e.g., [23, 30]). Although Bayesian decision theory provides a general and logic way41

of processing information, the evidence supporting the hypothesis that it is algorithmically implemented42

in the brain is debated [26, 37]. We argue that to achieve real progress in the understanding of human43

decision-making and metacognition, it is fundamental that researchers consider also alternative hypotheses44

and models. Moreover, the view that Bayesian decision theory is always a normative description of rational45

decision making (sometimes referred to as ”Bayesianism”) has been criticized also on purely theoretical46

grounds [3]: while Bayesian decision theory is demonstrably optimal in the context of ”small” worlds [4, 39]47

where all relevant alternatives, consequences and probabilities can be meaningfully estimated and assigned,48

it is unclear to what extent it can be considered rational in the context of ”large” worlds, where not all49

the alternatives, consequences and probabilities are known. While simple perceptual inference problems50

can, under certain conditions, be e↵ectively considered ”small world” problems, there is no real reason for51

why this should be the case of perception in general. This line of reasoning thus undermines the proposal52

that subjective confidence should necessarily be operationalized as the Bayesian posterior probability, and53
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motivates the need of empirical studies and novel approaches to test the descriptive accuracy, as well as the1

ecological rationality [9] of applying Bayesian decision theory as a process model [27] to explain the behavior2

of imperfect, biological decision makers. In the present study we have not only found further evidence3

that brain processes subtending meta-perception do not conform to the ideal benchmark represented by the4

Bayesian observer, but also provided a novel, general experimental protocol that we believe will be a valuable5

tool for future investigations of confidence and metacognition. The availability of a rich set of new protocols6

for assessing cognitive functions is also important for translating advances in neuroscience and cognitive7

science into concrete, theory-driven, clinical applications [21].8
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Material and methods12

Participants (5 for the random-pairs experiment, and 9 for the correlated-pairs experiment) performed a sequence of two decisions13

on each trial, with the statistics of the second decision stimuli being conditioned on the correctness of the first decision, with14

this dependence made explicit to the observers. All experiments were performed in accordance with French regulations and15

the requirements of the Helsinki Convention. The protocol of the experiments was approved by the Paris Descartes University16

Ethics Committee for Non-invasive Research (CERES).17

We describe here the general structure of the protocol, with the details of the implementation and of the analysis being provided18

in the Supplemental information. At the beginning of each trial, two stimuli were presented in two placeholders on the left and19

right of the fixation point. The two stimuli di↵ered along one physical dimension [orientation of the Gabor-patches – spatial20

frequency 1.5 cycles/dva (degrees of visual angle), standard deviation of the envelope 0.7 dva, contrast 25%, – or duration –21

Gaussian blobs with a pick intensity of ⇡ 25.3 cd/m2 and a standard deviation of 0.65 dva]. The participant was required to22

indicate which of the two stimuli was characterized by a higher value along the given dimension by pressing the left/right arrow23

keys. The di↵erence between the two stimuli was uniformly distributed within 2 JNDs (just noticeable di↵erences), measured24

in preliminary sessions (see below). 400 ms after providing the first response, a second pair of stimuli was presented and the25

participant was again asked to indicate which of the two has a higher value. The di↵erence in value between the stimuli in26

the second pair was also randomly sampled from a uniform distribution. However the location of the higher-value stimulus27

depended this time on the correctness of the first response: if the first response was correct, the higher-value stimulus was28

presented on the right, and on the left otherwise. Participants were informed about this rule, and were asked to use it in order29

to achieve the best possible second decision accuracy. Before starting the experimental trials, participants were explained the30

rule and were familiarized with a version of the task where the di↵erence between the two stimuli to be compared could go31

up to very high values (up to 45� in the orientation task, and up to 1 second in the duration task, uniformly distributed).32

The large di↵erences in the practice session were intended to make the rule clear and unambiguous for all participants. In33

one first experiment discrimination di�culties in the first and second decisions were drawn independently (random-pairs). In a34

second experiment we biased the probability of association between discrimination di�culties in the first and second decision35

(correlated-pairs, see Supplemental information, Figure S5). Specifically, when the di↵erence in intensity in the first pair was36

less than 1 JND, there was a 0.7 probability that the di↵erence in the second pair would be larger than 1 JND, and vice versa.37

This was intended to encourage participants to make use of the rule. The random-pairs experiment was tested in two conditions,38

run in di↵erent sessions on di↵erent days (order balanced), where the two decisions involved both an orientation discrimination39

(O-O) or a discrimination of duration (D-D). Each of these sessions comprised 500 trials. The correlated-pairs experiment was40

declined in three di↵erent conditions, O-O, D-D and D-O (where the two decisions involved a duration discrimination followed41

by an orientation discrimination). Each of the three sessions comprised 300 trials, each consisting of two consecutive perceptual42

decisions. The di↵erent number of total trials in the correlated- and random- pairs experiments was designed so that they43

resulted in similar number of easy (di�cult) decisions followed by di�cult (easy) decisions. Each testing session was divided44

in 10 blocks of trials. At the end of each block participants were given a feedback about the overall accuracy of their second45

decisions in that block. Additionally, to help participants keep track of their performance, starting with the end of the second46

block they were also informed on whether their accuracy had increased or decreased with respect to the previous block.47

Analysis48

For each participant we estimated the standard deviation of the internal noise, �, by fitting on the proportion of ’right’ choices in49

the first decision four di↵erent psychometric models that made di↵erent assumptions about whether participants were biased or50

made frequent attention lapses (i.e., stimulus independent errors), and by combining the 4 estimates of the standard deviation51

by weighting them according to the Akaike weight of each model [8] (see Supplemental information for details). Next, we used52

the estimated � to transform the values of the stimulus from raw units (e.g. degrees and seconds) to units of internal noise.53

Finally, we fitted the non-Bayesian models using maximum likelihood estimation, and compared the predictions of Bayesian and54

non-Bayesian models with the observed pattern of second decisions (all models make similar predictions for the first decision).55

Because these models di↵er in the number of free parameters, in order to prevent overfitting we compared the models on the56
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basis of the Akaike Information Criterion [1]. Additionally we performed a leave-one-out cross-validation of the two best-fitting1

models. All analyses were performed in the open-source software R [36]; the data and the code of the analysis are available2

upon request. The mathematical details of the computational models are provided in Supplemental information.3
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Supplemental information1

Material and methods2

Apparatus3

Participants sat in a quiet, dimly lit room, with the head positioned on a chin rest at a distance of 60 cm from the display4

screen, a gamma-linearized Mitsubishi Diamond Plus 230SB CRT monitor (screen resolution 1600x1200, vertical refresh rate5

85 Hz). Stimuli were generated by a computer running Matlab (Mathworks) with the Psychophysics Toolbox [7, 33].6

Stimuli and procedure7

All experiments were run with the same visual display, consisting of a central fixation point and four placeholders, continu-8

ously visible on a uniform gray background (luminance ⇡ 13.6 cd/m2). The four placeholders were circles measuring 2.8 dva9

(degrees of visual angle) in diameter, whose centers were placed at 1.8 dva from the fixation point. Two placeholders were10

grey (⇡ 15.5 cd/m2), and were placed above the horizontal mid-line; the other two were placed below the mid-line and were11

colored in red the one on the left, and in green the one on the right (their luminance was matched with the grey placeholders,12

⇡ 15.5 cd/m2).13

In the orientation (O-O) task the stimuli were two Gabor gratings (sinusoidal luminance modulation presented within a Gaussian14

contrast envelope) of di↵erent orientations, presented for 200 ms. The spatial frequency of the Gabors was set at 1.5 cycles/dva,15

the phase was drawn randomly, and the standard deviation of the Gaussian envelope was 0.7 dva. The Gabor displayed in the16

left placeholder was always tilted to the left, and the one appearing in the right placeholder was always tilted to the right. The17

task of the participants was to indicate which Gabor was more tilted from the vertical; the less tilted of the two Gabors was18

always tilted by 15�; the minimum di↵erence was 0.1�.19

In the duration (D-D) task the two stimuli consisted of white Gaussian blobs (standard deviation 0.65 dva), presented sequen-20

tially in the two placeholders (left/right). The order of presentation (left/right stimulus first) was balanced with respect to21

the longer/shorter duration of presentation. Participants were asked to indicate the location (left/right) of the longer duration22

blob. The shorter duration was always set to 600 ms, and the di↵erence between shorter and longer durations was discretized23

in bins determined by the vertical refresh of the monitor (⇡ 12 ms). The minimum duration di↵erence was one single monitor24

refresh interval.25

Pre-test JND measurement26

Before the orientation and duration task, we measured individual JNDs using a weighted up-down staircase procedure [22].27

The purpose of this pre-test was to quickly obtain a measure of the JND in order to adapt the range of stimuli in the main28

experiment to individual sensitivities. The staircase procedure continued until 30 reversals were counted. The initial step size29

(the size of the decrease/increase of the di↵erence between the two stimuli) was 2� in the orientation task and 4 refresh intervals30

in the duration task (⇡ 50ms), and was diminished to 0.5� and 1 refresh after the second reversal. Stimuli in these pre-test31

measurements were presented only in the top placeholders.32

Participants33

5 subjects (2 female; mean age 30.8, standard deviation 3.1) participated in both conditions of the random-pairs experiment34

(D-D, and O-O; see Main text, Material and methods). 9 participants (4 female, 2 authors; mean age 33.9, standard deviation35

9.6) participated in the 3 conditions of the correlated-pairs experiment (D-D, O-O, D-O). All participants (except the author)36

were näıve to the specific purpose of the experiment. All conditions were performed in separate session on di↵erent days. The37

order of the D-D and O-O conditions was counterbalanced across subjects, while the D-O condition was always performed in38

the last session. All participants had normal or corrected-to-normal vision and gave their informed consent to perform the39

experiments.40

Computational models41

Bayesian observer42

To model the performance in our task, we considered that the observer to make a decision estimates the di↵erence in the43

intensity between the left and right stimuli, s
i

= s

(right)
i

� s

(left)
i

, where the subscript i = 1, 2 indicates the decision at hand44

(first and second) and s

(right)
i

and s

(left)
i

denotes the stimuli (unsigned deviations from vertical of the two Gabor gratings in the45

orientation task, or durations of the two blobs in the duration task). Hence the task amounts to deciding whether s
i

is greater46

or less than 0. We assumed that the observer has only access to a corrupted version of s
i

, r
i

= s

i

+ ⌘, where ⌘ is Gaussian47

noise with variance �

2. The ideal Bayesian observer has full knowledge of the statistics of the internal noise, and to make a48

decision computes a posterior probability over the variable s. Since the internal noise is assumed to be Gaussian, the likelihood49

function giving the probability of observing r

i

given s

i

is p(r1 | s1) = N (s
i

, �

2), where N (s
i

, �

2) is a normal distribution with50

mean s

i

and variance �

2.51
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In first decision, the prior probability of s1 is uniform with the range (�R,R), that is p(s1) = 1/(2R) if –R  s  R and 0
otherwise. Combining the prior and the likelihood function, the unconditioned probability of observing r1 can be expressed as:

p (r) =
R

s
�R

p (r1|s1) p (s1) ds1 (1)

=
1

4R


erf

✓
R+ r1

�

p
2

◆
+ erf

✓
R� r1

�

p
2

◆�

The posterior probability of s1 after having observed r1 is obtained applying Bayes rule:1

p (s1 | r1) =
p (r1 | s1) p (s1)

p (r1)
(2)

Finally, the decision variable c

+
1 (r1), corresponding to the probability that the s1 was greater than 0 is given by2

c

+
1 (r1) =

R

s
0
p (s1|r1) ds1 =

erf
⇣

r1

�

p
2

⌘
+ erf

⇣
R�r1

�

p
2

⌘

erf
⇣

R+r1

�

p
2

⌘
+ erf

⇣
R�r1

�

p
2

⌘ (3)

When c

+
1 (r1) � 1/2 the observer chooses ’right’ (i.e. he decides to report that s10 was positive, an outcome hereafter indicated3

with the notation d

+
1 ) otherwise he choses ’left’ (i.e. he reports that s10 was negative, notated as d�1 ). The posterior probability4

of being correct in the first decision, that is the confidence of the ideal observer, is given by c1 = max
h
c

+
1 (r1) , 1� c

+
1 (r1)

i
.5

The ideal observer would use the probability c1 to adjust prior expectations for the second decision, specifically by assigning a6

prior probability equal to c1 to the possibility that s2 will be drawn from the positive interval:7

p (s2) =

8
><

>:

c1
R

, if 0 < s2  R

1�c1
R

, if �R  s2 < 0

0, otherwise

(4)

By applying the same calculation as above with the updated prior p(s2), one obtains the decision variable c

+
2 (r2) for the second8

decision:9

c

+
2 (r2) =

c1

h
erf

⇣
r2

�

p
2

⌘
+ erf

⇣
R�r2

�

p
2

⌘i

(1� c1) erf
⇣

R+r2

�

p
2

⌘
+ c1erf

⇣
R�r2

�

p
2

⌘
+ (2c1 � 1) erf

⇣
r2

�

p
2

⌘ (5)

This equation reduces to the one for the first decision variable when c1 = 1/2, as it should. The range R on which s1 and s210

takes values is immaterial. It is possible to simplify Eqs (3) and (5) by taking the limit R ! 1. In this limit one obtains:11

c

+
1 (r1) =

1

2


1 + erf

✓
r1

�

p
2

◆�
(6)

12

c

+
2 (r2) =

c1

h
1 + erf

⇣
r2

�

p
2

⌘i

1 + (2c1 � 1) erf
⇣

r2

�

p
2

⌘ (7)

The decision rules described by these equations amount to comparing the internal signal r
i

to a criterion ✓, and decide accordingly13

(i.e., if r
i

� ✓, chose d

+
2 , otherwise chose d

�
2 ). The criterion for the first decision, ✓1, can be expressed as:14

c

+
1 (✓1) =

1

2
) erf

✓
✓1

�

p
2

◆
= 0 (8)

which is satisfied for ✓1 = 0. Similarly, the criterion for the second decision, ✓2, can be expressed as:15

c

+
2 (✓2) =

1

2
) erf

✓
✓2

�

p
2

◆
= 1� 2c1 (9)

which indicates that ✓2 is a function of c1 (see Main text, Figure 2B).16

17

The likelihood of the Bayesian observer choosing d

+
2 (after having choosen d

+
1 in the first decision) can be expressed as:

p

⇣
d

+
2

��� s2, d+1 , s1

⌘
=

Z +1

0
p

⇣
d

+
2

��� ✓2 = �r1, s2

⌘
p

⇣
r1

��� d+1 , s1

⌘
dr1

=
1

2
+

1

2p
⇣
d

+
1 | s1

⌘ ·
1

p
2⇡�2

Z +1

0
erf

✓
r1 + s2

�

p
2

◆
exp

"
�
✓
r1 � s1

�

p
2

◆2
#
dr1 (10)

When the observer has chosen d

�
1 in the first decision instead the likelihood takes the form:

p

⇣
d

+
1 |s2, d�1 , s1

⌘
=

Z 0

�1
p

⇣
d

+
2

��� ✓2 = r1, s2

⌘
p

⇣
r1

��� d�1 , s1

⌘
dr1

=
1

2
�

1

2p
⇣
d

�
1 | s1

⌘ ·
1

p
2⇡�2

Z 0

�1
erf

✓
r1 � s2

�

p
2

◆
exp

"
�
✓
r1 � s1

�

p
2

◆2
#
dr1 (11)

The integrals in the two equations 10 and 11 do not have closed form solutions, so they were evaluated numerically using the18

adaptive quadrature algorithm as implemented in the function integrate() in R [36].19
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Biased-Bayesian observer1

Similarly to the ideal Bayesian observer presented in the previous section, the biased-Bayesian observer makes decisions based2

on an internal signal corrupted by Gaussian noise with variance �

2. However he does not know exactly the value of � so when3

asked to assess his confidence he uses �̂ = m� (with m > 0). Therefore, after having chosen d

+
1 in the first decision, his4

confidence can be expressed as:5

c1 =
1

2


1 + erf

✓
r1

m�

p
2

◆�
(12)

The adjusted criterion for the second decision is given by the same relationship that was found for the Bayesian observer6

erf

✓
✓2

�

p
2

◆
= 1� 2c1 (13)

However in this case solving for ✓2 gives7

✓2 = �
r1

m

(14)

This means that when m > 1 the internal noise � is overestimated (�̂ > �) and the criterion is shifted away from zero less8

than in the optimal Bayesian model, leading to an under-confidence bias (i.e. in the second decisions the observer choses in9

agreement with the belief that the first decision was correct more frequently than what expected if performance was optimal).10

Conversely the criterion is shifted more than ideal when � is underestimated (m < 1), leading to an opposite over-confidence11

bias.12

Non-Bayesian observer13

As an alternative to the optimal Bayesian model we considered a class of models that do not assume any knowledge about the14

nature of the internal stochastic process linking the stimulus s

i

with the internal observation r

i

. These non-Bayesian models15

perform similarly to the Bayesian model for the first decision, that is when r1 � 0 they chose d

+
1 , and d

�
1 otherwise. However,16

they cannot estimate a full probability distribution over the values of s
i

, and therefore can assess confidence only by comparing17

the internal response r

i

(which can be described as a point-estimate) to a set of one or more fixed criteria (Main text, Figure 2).18

In the case of a single confidence criterion, the non-Bayesian observer is confident in the response when the internal signal exceed19

the confidence criterion, and uncertain otherwise. When confident about the first response, he shifts the decision criterion for20

the second decision by a fixed amount (thereby increasing the probability of choosing d

+
2 ). If only one criterion is used, then21

the model has 2 discrete confidence levels (e.g., uncertain vs confident). In such a model, if the confidence criterion is w1, the22

probability of the observer being confident about his first decision, after having responded d

+
1 , can be expressed as:23

p

⇣
confident

��� s1, d+1
⌘
=

1� �
⇣

s1�w1
�

⌘

1� �
⇣

�w1
�

⌘ (15)

Note that this probability do not denote the confidence of the observer about his choice, which instead is assumed here to be a24

discrete binary state. Applying the law of total probability, the probability of the observer reporting d

+
2 in the second decision25

can be expressed as:26

p

⇣
d

+
2

��� s2
⌘
= p

⇣
confident

��� s1, d+1
⌘
�

✓
s2 � ✓2

�

◆
+

h
1� p

⇣
confident

��� s1, d+1
⌘i

�
⇣
s2

�

⌘
(16)

where ✓2 is the shift in criterion for the second decision applied by the observer when he is confident in his first decision. w127

and ✓1 are free parameters that we fit to the data by maximum likelihood estimation. It is straightforward to extend the28

model in order to have more than two confidence levels. In our analysis we considered models with 2, 3, 4 discrete levels of29

confidence, which had 2,4 and 6 free parameters, respectively. The parameters w1, w2, w3 and ✓2, ✓3, ✓4 were constrained so30

that 0  w1  w2  w3 and 0 � ✓2 � ✓3 � ✓4.31

Model fitting32

In the first decision s1 is uniformly chosen from an interval centered around 0 (i.e., s1 will be above 0 with probability 1/2),33

and there is no prior information about the sign of s1. Therefore, for all the models presented in the previous sections, the34

probability p

⇣
d

+
1 | s1

⌘
of the observer choosing d

+
1 can be expressed as:35

p

⇣
d

+
1

��� s1
⌘
=

1

2


1 + erf

✓
s1

�

p
2

◆�
= �

⇣
s1

�

⌘
(17)

where � is the cumulative distribution function of the standard normal distribution. We fitted this function by maximum36

likelihood to estimate �̂, for each participant and task (duration and orientation), taking into account only the first decisions. We37

estimated also other psychometric models, that extended this simple model to account for the possibility that the observer were38

biased, p(d+1 | s1) = �
⇣

s1�b

�

⌘
(where b indicate the bias), or made stimulus-independent errors (e.g. attention lapses) with non-39

zero probability, p(d+1 | s1) = �+(1� 2�)�
�
s1
�

�
(where � is the lapse probability); or both p(d+1 | s1) = �+(1� 2�)�

⇣
s1�b

�

⌘
.40

To avoid committing to any of these models, for each participant we averaged the estimates of �̂ according to the Akaike41

weights [8] of each psychometric model, and used the model-averaged estimate for transforming the stimuli from physical units42
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to units of internal noise. The same was done for the estimates of the bias term, b̂, which was then subtracted from the stimuli1

value to take into account subjective decision biases in the computation of models’ likelihoods. The remaining free parameters2

for the biased-Bayesian and the non-Bayesian observer were estimated by numerically maximizing the (log) likelihood of the3

data (the observed patterns of second decisions). Maximum likelihood fits were obtained via the BOBYQA algorithm [35] as4

implemented in the optimx package [31,32] in R [36].5

Sampling-based approximation of Bayesian observer6

An interesting alternative to the models presented in the previous sections is represented by models where the observer does not7

have access to the full probability distribution of his internal signals, but bases his decision on a limited number of samples. In8

these models the posterior probability that the choice is correct (the confidence) is approximated on the basis of a fixed number9

n of samples x1, x2, ..., xn

drawn from the posterior distribution p (s
i

| r
i

). The performance of these sampling-based models10

will approach the optimal Bayesian model as n ! 1, however they are expected to display systematic biases and deviations11

from the optimal model for small number of samples [38]. Here we show, and confirm by simulation, that the sampling-based12

approximation of the Bayesian observer will display a systematic over-confidence bias, that is in the opposite direction with13

respect to what we found for most of our subjects, and is thus inconsistent with our behavioral results.14

Sampling bias and over-confidence15

It has been demonstrated that when a probability p is estimated from a small sample as the empirical frequency of successes k16

out of n random trials, p̂ = k/n, the probability of overestimation, that is when p̂ > p, or underestimation, p̂ < p, depends in17

a complex way on both the probability p and the sample size n [41]. This is however for estimating a single fixed probability18

p. What would be instead the expected bias, over many repeated estimations, when the probability p varies randomly within a19

given range? In our experiments confidence is the posterior probability that a binary choice is correct, and as such it varies from20

complete uncertainty, p = 0.5, to complete certainty, p = 1, hence p 2 [0.5, 1]. We show here that when a set of probabilities21

p1, ..., pm uniformly distributed in the interval [0.5, 1] is estimated using a limited number of samples n, the predominant bias22

is one of over-estimation.23

For a given n and p the probabilities of over- and under- estimation can be expressed as:24

p (p̂ > p|n, p) =
nX

k=bnpc+1

⇣
n

k

⌘
p

k(1� p)n�k (18)

25

p (p̂ < p|n, p) =
dnpe+1X

k=1

⇣
n

k

⌘
p

k(1� p)n�k (19)

Where d.e and b.c are the ceiling and the floor operators, i.e. functions that map a number to the smallest following integer or26

the largest previous integer, respectively. Following Shteingart and Loewenstein [41] we consider the di↵erence between these27

two, denoted as probability estimation bias, which takes the form:28

�p = p (p̂ > p|n, p)� p (p̂ < p|n, p) (20)

When �p is positive, it indicates that the probability p is more likely to be overestimated than underestimated, and viceversa29

for negative values. Assuming that all values of p in the interval are equally likely, the expected bias can be computed by30

integrating �p over the range of p (that is [0.5, 1]):31

E [�p] =

1Z

0.5

�p

0.5
dp (21)

A positive value of the expected probability estimation bias (that is E [�p] > 0) indicates that, on average, the probabilities in32

this interval are more frequently overestimated rather than underestimated. This integral can be evaluated numerically, and in33

Figure S2A we plotted the expected probability estimation bias as a function of the number of samples, for two di↵erent ranges.34

When p varies within the range of confidence, [0.5, 1], the value of the probability estimation bias is always positive, although35

modulated by the number of samples, indicating that in the range [0.5, 1] overestimation is more likely than underestimation.36

Fixed-n Bayesian sampler37

Here we confirm by simulation the intuition presented in the previous paragraph. We consider a fixed-n policy, where the38

observer draws a fixed number of samples for each decision. Although alternative decision policies are possible (such as an39

accumulator policy, where the decision is taken after a minimum number of samples is accumulated in favor of one of the40

options), these have been shown elsewhere to result in very similar performances as the fixed-n policy [43].41

We start by providing the mathematical details of the model. Similarly to the previous cases, we assume that the observer42

has only access to r1, a corrupted version of the stimulus s, r1 = s1 + ⌘, where ⌘ is Gaussian noise with variance �

2. In the43

first decision the prior is flat and, taking the limit of the stimuli range R ! 1, the posterior distribution p (s|r) results in a44

Gaussian distribution centered on the internal observation r1. The probability that a sample from this distribution is above 045

(the criterion for the first decision) can be computed as:46

p (x
n

> 0|r1) =
1

2


1 + erf

✓
r1

�

p
2

◆�
= �

⇣
r1

�

⌘
(22)
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The conditional probability that the observer chooses d

+
1 given r1 is obtained by summing the probability of all the set of1

samples with at least
⌃
n

2

⌥
samples above 0 and can be expressed as:2

p

⇣
d

+
1

��� r1
⌘
=

nX

k=dn
2 e

⇣
n

k

⌘
�
⇣
r1

�

⌘
k

h
1� �

⇣
r1

�

⌘i
n�k

(23)

where p (x
i

> 0|r) is the probability that a single sample x

i

is above 0. In other words the observer choses d+1 when the majority3

of samples is above 0. The observer’s confidence in his decision, c1 = max
h
c

+
1 , 1� c

+
1

i
, is given by the proportion of samples4

in favor of the choice made, which can be expressed as:5

c

+ =
1

n

nX

i=1

1
xi>0 (24)

where 1
xi>0 denotes the indicator function (1

x>0 = 1 if x > 0, and 0 otherwise). The probability that the observer chooses d+16

given s1 can be calculated by integrating the probability p

⇣
d

+
1

��� r1
⌘
over all possible values of r1:7

p

⇣
d

+
1

��� s1
⌘
=

nX

k=dn
2 e

⇣
n

k

⌘ 1Z

�1

�
⇣
r1

�

⌘
k

h
1� �

⇣
r1

�

⌘i
n�k

p (r1 | s1) dr1 (25)

In the second decision the prior probability of the stimulus s2 is di↵erent for stimuli above or below 0. From the point of8

view of the observer, the prior probability that the stimulus for the second decision s2 is above 0 corresponds to the confidence9

c1 that the first decision was correct and, conversely, p (s2 < 0) = 1� c1. Updating the prior probability for the second decision10

amounts to a shift in the decision criterion, as demonstrated for the full Bayesian model. The shift in criterion for the second11

decision ✓2 is a function of the confidence in the sampling model as in the full Bayesian model12

✓2 = �

p
2 erf�1 (1� 2c1) (26)

However, and di↵erently from the full Bayesian model, the confidence is limited to a finite set of values determined by the13

number of samples n. The number of possible confidence levels is
⌃
n+1
2

⌥
, and each of these corresponds to a value of ✓. If the14

observer’s first decision was d

+
1 , then the probability of the confidence level c

j

15

p

⇣
c

j

��� s1, d+1
⌘
=

⇣
n

k

⌘ 1Z

�1

�
⇣
r1

�

⌘
k

h
1� �

⇣
r1

�

⌘i
n�k

p (r1|s1) dr1 (27)

where j 2
�
1, ...,

⌃
n+1
2

⌥�
is an index linked to the number of samples above the criterion, k, according to k =

⌅
n�1
2

⇧
+ j. A level16

of confidence c

j

would result in a shift in decision criterion ✓

j

, calculated according to Eq (26). The probability of choosing17

(+) in the second decision is18

p

⇣
d

+
2

��� s2, s1, c
j

⌘
=

nX

k=dn
2 e
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n

k

⌘ 1Z

�1

�

✓
r2 � ✓

j

�

◆
k


1� �

✓
r2 � ✓

j

�

◆�
n�k

p (r2|s2) dr2 (28)

Taking everything together, the probability of the observer choosing d

+
2 given s2, s1 and the first decision can be expressed as:19

p

⇣
d

+
2

��� s2, d+1 , s1

⌘
=

l
n+1
2

m

X

j=1

p (c
j

|s1) p

⇣
d

+
2

��� s2, d+2 , s1, c
j

⌘
(29)

Simulation20

We simulated the model for values of n ranging from 2 to 9. In order to compare the model with the full Bayesian observer,21

the value of � for each n are adjusted so as to obtain the same proportion of correct responses in the first decision. For each22

value of n and for 5000 iterations we: (1) generated a random set of stimuli for 500 trials; (2) simulated the Bayesian model on23

those trials; (3) estimated � for the sampling models based on the set of first responses produced by the Bayesian model (this24

was done using maximum likelihood estimation and equation 25); (4) simulated the sampling model. The average values of �25

obtained are shown in table S1.26

This approach ensured that all models resulted in similar proportion of first correct decisions, see figure S2B. The proportion27

of responses ’right’ (d+2 ) in the second decision are plotted in Figure S2C. As expected, they show a pattern of marked over-28

confidence: all sampling models tended to respond d

+
2 more often than the optimal model, despite similar accuracy in the first29

decision. The bias is larger for models with smaller number of samples, and decreases approaching the optimal Bayesian model30

as n increases. Importantly, this bias is incompatible with the observed behavioral data, which showed on average a marked31

under-confidence bias (see Main text, Results).32
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Table S1: Estimated values of � (and their standard errors) that result in similar performance as the Bayesian model with
� = 1.

n. of samples � se
2 0.74 0.06
3 0.83 0.06
4 0.84 0.06
5 0.88 0.07
6 0.89 0.07
7 0.91 0.07
8 0.91 0.07
9 0.93 0.07

Table S2: Maximum likelihood parameter estimates. For each experiment, condition and model the table shows the mean
and the standard deviation (within parentheses) of the parameter estimates across participants.

Condition Experiment Model m w1 ✓2 w2 ✓3 w3 ✓4
D-D correlated-pairs biased-Bayesian 2.06 (1.58)
D-O correlated-pairs biased-Bayesian 2.13 (3.01)
O-O correlated-pairs biased-Bayesian 3.01 (2.47)
D-D random-pairs biased-Bayesian 1.27 (0.68)
O-O random-pairs biased-Bayesian 5.97 (3.75)
D-D correlated-pairs fixed-bias -0.67 (0.24)
D-O correlated-pairs fixed-bias -0.9 (0.94)
O-O correlated-pairs fixed-bias -0.63 (0.3)
D-D random-pairs fixed-bias -0.84 (0.46)
O-O random-pairs fixed-bias -0.23 (0.22)
D-D correlated-pairs discrete (2 lvl) 0.81 (0.66) -2.11 (1.52)
D-O correlated-pairs discrete (2 lvl) 0.64 (0.45) -1.55 (1.12)
O-O correlated-pairs discrete (2 lvl) 1.06 (0.97) -2.34 (1.77)
D-D random-pairs discrete (2 lvl) 0.55 (0.32) -1.66 (0.86)
O-O random-pairs discrete (2 lvl) 1.63 (0.47) -2.85 (2.28)
D-D correlated-pairs discrete (3 lvl) 0.58 (0.56) -0.73 (0.71) 0.56 (0.54) -2.11 (2.1)
D-O correlated-pairs discrete (3 lvl) 0.43 (0.5) -0.83 (0.71) 1.04 (0.83) -1.56 (1.39)
O-O correlated-pairs discrete (3 lvl) 0.61 (0.53) -1.04 (1.31) 0.92 (1.35) -1.59 (1.68)
D-D random-pairs discrete (3 lvl) 0.44 (0.4) -0.76 (0.27) 0.47 (0.73) -1.04 (0.74)
O-O random-pairs discrete (3 lvl) 1.08 (0.27) -0.07 (0.16) 0.69 (0.43) -2.78 (2.27)
D-D correlated-pairs discrete (4 lvl) 0.53 (0.55) -0.61 (0.51) 0.54 (0.5) -1.06 (0.9) 0.43 (0.47) -1.42 (1.53)
D-O correlated-pairs discrete (4 lvl) 0.42 (0.51) -0.84 (0.59) 0.76 (0.8) -0.76 (1.07) 0.7 (0.67) -1.08 (1.12)
O-O correlated-pairs discrete (4 lvl) 0.94 (0.91) -0.67 (0.58) 0.8 (1.62) -1.46 (1.72) 0.44 (0.66) -1.05 (1.63)
D-D random-pairs discrete (4 lvl) 0.43 (0.41) -0.67 (0.24) 0.4 (0.69) -0.93 (0.78) 1.3 (1.52) -0.6 (0.65)
O-O random-pairs discrete (4 lvl) 1.31 (0.44) -0.64 (1.44) 1.11 (0.9) -1.62 (1.86) 0.39 (0.55) -1.65 (2.18)
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Figure S1: Performance. Same conventions as Figure 1B.
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Figure S2: Sampling-based approximation of the Bayesian model. Expected probability estimation bias �p plotted
as a function of the number of samples when the probability p varies randomly (uniformly) either in the range [0.5, 1], plotted
in grey, or in the range [0, 1] (A). It can be seen that when p varies within the range of confidence, from chance to certainty
[0.5, 1] the predominant bias is one of over-estimation (because �p is always positive, grey line). Only when p varis over the
whole domain of probability, [0, 1], the expected bias is on average zero and over-estimation and under-estimation are equally
likely (black line). Proportion of correct first decision in the sampling model as a function of the number of samples n; the
horizontal black line indicates the average performance of the full Bayesian model; error bars represents SEM (B). Proportions
of responses ’right’ (d+2 ) in the second decision as a function of the di�culty of the first decision, as predicted by the full
Bayesian model (black line) and the fixed-n Bayesian sampler model (C).
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Figure S3: Model recovery analysis. In order to ensure that the models were distinguishable, and to verify that their
implementation did not contain errors, we performed a model recovery analysis for our three main computational models:
Bayesian (optimal), biased-Bayesian and discrete (2 lvl.). We generated synthetic data (10 simulated observes, for 1000 trials
each), with parameters randomly generated from a Gaussian distribution with mean and standard deviations set to the mean
and standard deviation of the parameters fitted to our empirical data. Each panel indicate a di↵erent generative model, while
di↵erent lines represent the mean and bootstrapped standard error of the models fit to the synthetic dataset. In each case the
model with the highest relative likelihood is the one that generated the data, indicating that the model are correctly recovered
and confirm that they are distinguishable.
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Figure S4: Model likelihoods split according to condition and experiment. Same conventions as Figure 3 in the
main text..
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