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Abstract: Indoor localization is becoming one of the most important technologies for smart mobile applications with different 
requirements from conventional outdoor location estimation algorithms. Fingerprinting location estimation techniques based on 
neural networks have gained increasing attention from academia due to their good generalization properties. In this paper, we 
propose a novel location estimation algorithm based on an ensemble of multiple neural networks. The neural network ensemble has 
drawn much attention in various areas where one neural network fails to resolve and classify the given data due to its' inaccuracy, 
incompleteness, and ambiguity. To the best of our knowledge, this work is the first to enhance the location estimation accuracy in 
indoor wireless environments based on a neural network ensemble using fingerprinting training data. To evaluate the effectiveness of 
our proposed location estimation method, we conduct the numerical experiments using the TGn channel model that was developed 
by the 802.11n task group for evaluating high capacity WLAN technologies in indoor environments with multiple transmit and 
multiple receive antennas. The numerical results show that the proposed method based on the NNE technique outperforms the 
conventional methods and achieves very accurate estimation results even in environments with a low number of APs. 
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I. INTRODUCTION 
Location aware technology has become an important element 

for smart mobile devices, enabling services such as healthcare, 
personal navigation, and location-based marketing. Until recently, 
most of the localization research has been focused on outdoor 
environments based on global positioning system (GPS) 
technology. However, with the current trend toward increasing 
indoor wireless usage time, due to the proliferation of wireless 
local area networks (WLANs), the need for indoor localization 
technology is growing [1,2]. Unfortunately, the indoor location 
estimation is a very challenging problem for conventional outdoor 
localization methods that are based on GPS due to effects such as 
reflections, diffractions, and scattering due to number and type of 
objects between the indoor transmitters and receivers and resulted 
in problems such as poor indoor coverage, low accuracy, 
specialized hardware requirements [3-7].  

To overcome the limitations of the GPS based outdoor 
localization technologies in indoor environments, various 
solutions targeted for indoor localization have been proposed. An 
overview of the commercial technologies for localization in 
wireless indoor systems can be found in [8]. The fingerprinting 
method based on the received signal strength (RSS) information is 
the most popular method in indoor WLAN environments due to 
the simplicity in RSS measurement collection process [9-11]. One 
of the most popular fingerprinting localization method is RADAR 
method based on the RSS information and K-nearest neighbor 
(KNN) algorithm proposed in [12] due to its simplicity. The RSS 
serves as the unique pattern feature corresponding to a position in 

an indoor environment. Therefore, a database called radio map is 
constructed that contains RSS information of known reference 
points from different access points (APs) during the offline stage. 
During the online stage, the location is estimated by averaging R 
reference points with the shortest signal space between the 
observed and stored RSS values. Another popular fingerprinting 
method is the area based probability (ABP) method [13]. Based 
on the radio map, ABP calculates the user location probability at 
all the reference points or areas and returns the area with the 
highest probability. Furthermore, authors in [14], proposed to 
reduce the RSS variation by averaging the effect of small-scale 
fading through the use of multiple antennas and, thus, improving 
the indoor localization performance. The impact of multiple 
antenna usage for localization was evaluated by analyzing various 
popular algorithms such as RADAR [12], area based probability 
(ABP) [13], and Bayesian network (BN) [15] under multiple 
antennas on an IEEE 802.11 testbed in a real office building. 
Experimental results have shown that the multiple antenna based 
location estimation methods reduce the location estimation error 
up to 70% and improve the localization stability up to 100% 
compared to the single antenna case.  

Unfortunately, the RSS based signature pattern map that 
characterizes a user's location is highly nonlinear and may result 
in large location estimation error for certain locations [13,16]. To 
overcome this challenge, various artificial neural networks (NNs) 
based indoor localization solutions have been proposed due to the 
NN's good generalization properties with flexible modeling and 
learning capabilities. The multilayer perceptron neural network 
(MLPNN) [17] is a traditionally popular neural network and was 
first applied for outdoor code division multiple access (CDMA) 
mobile subscriber location estimation in [18]. This scheme uses 
the MLPNN with one input layer, two hidden layers, and an 
output layer structure as a parallel data fuser based on time of 
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arrival (TOA), direction of arrival (DOA), time difference of 
arrival (TDOA), and their confidence information. Another 
approach in [19] also used the MLPNN as a network-based 
outdoor mobile location estimation technique, but based on radio 
signal strength. Indoor fingerprinting algorithm based on MLPNN 
was proposed in [20] based on channel impulse response 
characteristics achieving distance location accuracy of 2 meters 
for 80% probability range. The radial basis function neural 
network (RBFNN) is another popular NN that was introduced in 
1988 as a multivariate interpolator [21] and due to its simple 
network structure and computational complexity, it has been 
applied to many areas such as image processing, equalization, and 
localization. In [22], outdoor mobile user localization is 
performed by utilizing the RBFNN. The proposed RBFNN based 
estimator employs the RSS and the DOA as the input data to 
achieve location estimation error value of less than 100 meters in 
80 percent probability range. Authors in [23] proposed the 
RBFNN based location estimation method for indoor wireless 
WLAN environments. The proposed RBFNN based technique 
was shown to be less complex and easier to train compared to the 
MLPNN based techniques. Furthermore, the RBFNN estimator 
achieved localization performance of median error equal to 3 
meters. 

One disadvantage of the NN based location estimation methods 
is that the performance is very dependent on the amount of 
training data available to the system and may result in poor 
localization accuracy in indoor environments with small number 
of APs resulting in insufficient amount of location data for 
successful NN configurations. Neural network ensemble (NNE), 
which is one of the emerging key technologies in the field of 
neural networks, [24-26] has drawn much attention in various 
areas where one neural network fails to resolve and classify the 
given data due to its' inaccuracy, incompleteness, and ambiguity. 
The NNE overcomes this problem by combining a set of neural 
networks that learn to decompose a complex problem into simple 
sub-problems and then solve them efficiently. By combining 
multiple neural network outputs, the ensemble of neural network 
provides improved performance through collective decision rule 
compared to single neural network decision output. To improve 
the generalization capability and the location estimation 
performance of the conventional NN based fingerprinting location 
estimation methods, we propose a novel method based on 
ensemble of NNs. To evaluate the effectiveness of our proposed 
location estimation method, we conduct the numerical 
experiments using the TGn channel model [27] that was 
developed by the 802.11n [28, 29] task group for evaluating high 
capacity WLAN technologies in indoor environments with 
multiple transmit and multiple receive antennas. The experimental 
results show our proposed location estimation algorithm based on 
the NNE technique outperforms the conventional KNN and NN 
based algorithms in indoor wireless environments with single and 
multiple antennas. 

The remainder of the paper is organized as follows. Section 2 
provides an overview of the IEEE 802.11 TGn Model as well as 
our simulation methodologies. In section 3, we describe our 
proposed localization algorithm based on single NN and multiple 
NNs techniques. The experimental results are presented in section 
4. Finally, conclusions are given in Section 5. 

II. CHANNEL MODEL 
1. Model Implementation 

To simulate the IEEE 802.11 TGn compliant channel model, 
the MATLAB channel simulator [30] developed by Schumacher 
and Dijkstra was applied as part of the simulation platform to 
generate MIMO channel matrix. Based on the initial indoor 
scenario parameter settings, MIMO channel matrix H for channel 
profiles A to F can be easily generated. The TGn MIMO channel 
matrix is generated in two phase procedure as shown in Fig. 1. In 
the first phase, a spatial correlation matrix is generated for all the 
MSs and APs based on the number of antennas, antenna spacing, 
number of clusters, PAS, AS, and AoA. Based on the generated 
MS and AP spatial correlation matrices, the uplink or downlink 
spatial correlation matrices are generated by Kronecker product 
operations. In the second phase, the power delay profile is defined 
as the time dispersion of the non-line-of-sight and line-of-sight 
components with power coefficients. Finally, the MIMO channel 
matrix is created using fading signals derived from various 
Doppler spectra and power delay profiles and a from various 
Doppler spectra and power delay profiles and a symmetrical 
mapping matrix based on the spatial correlation matrix generated 
in the first phase. For channel profiles D and E, fluorescent light 
effect is added to the generated MIMO channel matrix. 
2. Simulation Model 

In our simulation model, we consider 50 m ´ 30 m rectangular 
field as our experimental testbed as shown in Fig. 2. There are 4 
APs acting as RSS measurement devices for the radio signal 
transmitted by different MSs in various positions. The locations of 
all the APs are shown as blue star in Fig. 2 located at (10 m, 10 m), 
(40 m, 10 m), (10 m, 20 m), and (40 m, 20 m). There are R = 1500 
reference points used as location estimation testing spots, located 

 

 
그림 1. TGN MIMO 채널 매트릭스 생성 블록도. 
Fig.  1. TGn MIMO channel matrix generation procedure. 
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uniformly with 1m separation from each other. The reference 
points are shown as black dots. The detailed steps of the 
simulation procedure are given as follows. 
1) The TGn MATLAB channel simulator is configured to 

generate realizations of the channel matrices between the R 
reference points and 4 APs, where the reference points and 
APs are assumed to be the receiver side and transmitter side, 
respectively. The configuration parameters are shown in 
Table 1. 

2) The generated channel matrices are processed by our 
MATLAB based module to calculate the received power of 
each spatial stream at the R reference points and obtain the 
mean SNR values as follows 
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where s2 is the Gaussian noise variance, M is the number of 
transmit antennas, N is the number of receive antennas, F is 
the number of subcarriers, and T is the number of symbols.  

3) The received SNR values calculated in step 2 are collected 
and processed to construct the radio map of the experimental 
testbed based on fingerprint vector 1 2[ , ,p p pS SNR SNR=  

, ],pKSNRL  for each reference point p, where K is the 

number of APs.  
4) The test channel matrix is generated following the same 

procedure as in step 1. 

Algorithm 1 RBF Neural Network based Location Estimation Algorithm 
1: Initialization: 
2:     Construct fingerprint based InputTrainSeq from radio map. 
3:     Construct user location based DesOutputTrainSeq from radio map. 
4:     Normalize the training data by using mapminmax ( ). 
5:     Compute RBFcenterC using Eq. (3). 
6:     Randomly select G RBF centers from RBFcenterC. 
7: end initialization 
8: 
9: while estimation error > threshold do 
10:      for i = 1 : G 
11:            Compute RBF output F(InputTrainSeq, RBFcenterC ). 
12:      end for 
13:      Compute RBFNN output (x_est, y_est) using Eq. (2). 
14:      Compute estimation error using diff((x_est, y_est), DesOutputTrainSeq). 
15:      Update weights w using LMS algorithm. 
16: end while 
 

 
그림 3. 알고리즘 1. 
Fig.  3. Algorithm 1. 

 
5) The proposed algorithm is evaluated based on the test channel 

matrix and the radio map constructed in step 3. 
 
III. NEURAL NETWORK BASED FINGERPRINTING 

LOCALIZATION 
1. Neural Network based Localization 

Among various pattern matching methods, NN is one of the 
most popular methods due to the robustness against noise and 
interference with good generalization properties. The NN consists 
of interconnected neurons, which are adapted through a learning 
process to produce a desired pattern matching results. The neurons 
are grouped into three basic layers: the input layer, the hidden 
layer, and the output layer. The input layer is fed with input data 
and is processed in the hidden layer with appropriate activation 
functions. Each neuron in the hidden layer emits an output, which 
is a nonlinear function of its activation, and is processed in the 
output layer, to produce an output similar to the desired output. 
Among numerous NN architectures, we propose to use the 
RBFNN [31] due to its properties such as small network size, fast 
network convergence, and simple weight adjustment procedure. 
The output of the RBFNN can be represented as 
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where x is the input data vector, ci denotes the basis function 
center of RBF neurons, || x- ci || is the Euclidean distance between 
the input data vector and the basis function center, G is the total 
number of RBFs, wi denotes the weights of the output layer, 
F (·) is the radial basis function. As for the weights in the output 
layer, wi = [wi

x, wi
y], they are iteratively trained to produce the 

desired (x, y) location of the users using least mean square (LMS) 
learning rule. We assume Gaussian radial basis function for our 
RBFNN, defined as F(|| x - ci ||) = exp(-b || x - ci ||). 

The RBFNN is applied in this paper as the core pattern 
matching algorithm for fingerprinting based location estimation 
system. The RBFNN based location estimation algorithm can be 
described with two phases. The first phase is data collection stage 
and the second phase is the configuration phase. In the data 
collection stage, a radio map is constructed based on the 
postdetection SNR data obtained at all R reference points. In the 
network configuration stage, the radio map provides the required 
training input data to the RBFNN. The number of center units is 
set to be G < R, where R is the number of reference points. 
Furthermore, the RBF centers are set equal to the mean value of 
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그림 2. 위치 추정 테스트베드 모델. 
Fig.  2. Localization testbed model. 

 
표   1. TGn 매트랩 채널 시뮬레이터 파라미터. 
Table 1. TGn MATLAB channel simulator parameters. 

Channel model IEEE 802.11n Case D 
Direction of connection Downlink 

Carrier frequency 5.25 GHz 
Number of Tx antennas 1 
Number of Rx antennas 1 or 2 

Antenna spacing uniform linear array (l/2) 
Fading number of iterations 512 

Sampling rate 2 ́  106 
Speed of movement of 
scattering environment 1.2 km/h 
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Ntr samples of fingerprint vectors at each reference points p 
expressed as 

 
1
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where i = 1 … G and Spj is the fingerprinting vector for jth RSS 
sample. The detailed RBFNN based localization algorithm’s 
process is described in detail in Alg. 1. Before training the 
RBFNN, the training input and desired data are normalized by 
using the MATLAB function mapminmax. After the 
normalization, the scaled training data will fall in the range [-1, 
+1]. The reason for the normalization is that by mapping the 
training data values to [-1, +1], the RBFNN is able to converge 
faster with performance improvement. 
2. Neural Network Ensemble based Localization  

The NNE is a popular pattern matching method for problems 
with many local minima. By combining multiple neural network 
outputs, the ensemble of neural network provides improved 
performance through collective decision rule compared to single 
neural network decision output. The individual NNs are trained 
independently and the NNs are combined by majority or by 
weighted average method. The different weights correspond to 
different ways of forming generalization about the pattern given 
as the training set to each NN. In our proposed location estimation 
method, the weights are recomputed each time the NNE output is 
evaluated for best decision results for that particular instance. The 
output of NNE is a weighted average of all member neural 
networks’ output with the ensemble weights determined as a 
function of the relative error of each network. The general NNE 
output is defined as 

 ( )
1
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where L is the number of neural network members in the 
ensemble, ai denotes the ensemble weights chosen to minimize 
the ensemble mean square error (MSE), and fi (x) is the i th neural 
network decision output. The proposed NNE based localization 
method is configured in three phases: the data collection phase, 
the network configuration phase, and the combination phase. The 
data collection phase and the network configuration phase are 
carried out to train the member NNs and are processed as 
described in the previous section. As for the combination stage, L 
NN output is combined to produce improved location estimation 
results. Two important factors in NNE construction are member 
network training and combination. In [32], various combination 
methods for ensemble of RBF networks were extensively studied 

and LMS method was proven to be one of the best performing 
methods. Based on this study, the ensemble weight is trained by 
using LMS algorithm expressed as 

 ( )1 ( ),k k k k kF dd+ = + -w w f x  (5) 

where d is the learning rate, Fk is the NNE output, dk denotes the 
desired location coordinates, and f (xk) is the output vector from 
member networks. The detailed NNE based localization 
algorithm’s process is described in detail in Alg. 2.  

 
IV. NUMERICAL EVALUATIONS 

The experimental testbed with dimension of 50m ´ 30m shown 
in Fig. 2 is used to analyze the performance of the proposed 
algorithm. The IEEE 802.11 TGn channel model profile D with 
mobile speed of 1.2 km/h, carrier frequency of 5.25 GHz, and 
signal bandwidth of 20 MHz was used. We collected 
postdetection SNR data at R = 1500 reference points from all 4 
APs located as shown in Fig. 2. For each reference points, we 
collected 100 signal strength samples for training and testing 
purposes. From the collected 100 signal strength samples, 50 
samples have been employed as training data samples to train the 
network and other 50 samples have been used as the testing data 
samples to test the proposed system with the corresponding user 
locations. The distance error is utilized as the main performance 
metric, which is a Euclidean distance between the estimated 
location and the true location of the user to be localized.  

Based on the radio map constructed in the data collection stage, 
each member RBFNN is trained in the network configuration 
stage by setting the number of center units to G = 100, RBF 
centers equal to Ntr = 50 samples of fingerprint (FP) vector, and 
the number of training iteration to 50000 with learning rate equal 
d to 0.001. In the NNE combination stage, two member RBFNN 
output is combined based on the ensemble weights that were 
obtained through LMS algorithm with the number of training 
iteration equal to 10000 with learning rate set to 0.0001. Fig. 5 
shows the CDF of the localization error for the proposed NNE 
method, RBF method with single network, MLP method with one 
input layer and two hidden layers, and the traditionally popular 

Algorithm 2 Neural Network Ensemble based Location Estimation Algorithm 
1: Initialization: 
2:      Construct numMemberNN member NNs based on Algorithm 1. 
3:      for i = 1 : numMemberNN 
4:            Construct InputNNETrainSeq(i) based on the memberNN(i) output. 
5:            Construct DesOutputNNETrainSeq(i) from radio map elements used in memberNN(i). 
6:      end for 
7: end initialization 
8: 
9: while estimation error > threshold do 
10:      Compute NNE output (x_est, y_est) using Eq. (4). 
11:      Compute estimation error using diff((x_est, y_est), DesOutputNNETrainSeq). 
12:      Update weights w using LMS algorithm. 
13: end while 
 

 
그림 4. 알고리즘 2. 
Fig.  4. Algorithm 2. 
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그림 5. NNE, RBF, MLP 및 KNN 기법에 따른 오류 거리 

CDF 그래프. 
Fig.  5. Error distance CDF performance for NNE, RBF, MLP, and 

KNN localization methods. 
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KNN method. The number of member networks is equal to L = 2 
which were trained independently with first network based on the 
FP data corresponding to APs positioned at (10 m, 10 m) and (40 
m, 10 m). Furthermore, the second network was trained with data 
from APs at (10 m, 20 m) and (40 m, 20 m). As shown in the 
figure, the neural network based algorithms outperform the KNN 
method significantly. Furthermore, we can observe that by 
combining two neural network outputs trained by different AP 
RSS data, the proposed algorithm improves the localization 
performance compared to one RBF method and outperforms the 
MLP method. 

To evaluate the performance of the NNE based localization 
system with multiple antennas, each RBF member network is 
configured by setting the number of center units to G = 50, RBF 
centers equal to Ntr = 50 samples of fingerprint vector, and the 
number of training iteration to 5000 with learning rate equal d to 
0.05. Note that the RBF centers are randomly chosen from R = 
1500 reference points. Fig. 6 illustrates the CDF of the 
localization error for the proposed NNE and the RBF methods 
with 1´1 and 1´2 antenna configurations. One can observe that 
for both schemes, the increase in the number of receive antennas 
effectively improves the performance. Furthermore, we discover 
that the performance improvement due to the proposed method is 
decreased in multiple antenna scenario compared to the single 
antenna case. The results demonstrate that further performance 
gain is difficult to achieve in addition to the performance gain due 
to the multiple antenna diversity gain. The CDF of the localization 
error for the NNE and RBF method with 1´1 and 1´2 antenna 
configurations is depicted in Fig. 7 with different number of APs. 
For Four AP environment, the number of member networks is set 
to L = 2, trained independently, with AP1 and AP2 FP data 
assigned to the first member network and AP3 and AP4 FP data 
assigned to the second member network. For the 3 AP case, AP1 
and AP2 FP data were assigned to the first member network and 
AP3 FP data was assigned to the second member network. In the 
case of 2 APs, AP1 FP data was assigned to the first member 
network and AP2 FP data to the second member network. For one 
AP case, to obtain two different training data sets for two 

independent member networks construction, the order of the AP 
FP data samples were randomly shifted for all the member 
networks. From the results shown in the figure, we can see that 
compared to the RBF method, the NNE method achieves better 
performance for number of APs equal to 3 and 4. However for 
two AP case, the numerical results show small NNE performance 
improvement compared to three and four AP results. This is due 
to the similar architecture of the NNE compared to the RBF 
algorithm. Two different one dimensional data assigned to two 
network based NNE provides small increase in the available degree 
of information compared to two dimensional data assigned to a 
single network. However, note that for one AP case, by applying 
independently trained data to each member network of NNE, the 
proposed method does gain superior performance improvement 
with very low median error values less than 4.5 m for both single 
and double antenna cases. Furthermore the figure shows with 
increase in the number of receive antennas, large performance 
improvement is observed. However, as the number of APs is 
decreased, the multiple antennas' effectiveness is reduced due to 
the degradation in the RBF network's nonlinear mapping function. 

In order to study the performance impact with respect to the 
number of member networks, we compare the location estimation 
accuracy results in Fig. 8. The number of APs is fixed to four as 
shown in Fig. 2. For one and two member network based NNE 
systems, same configuration was used as in the previous 
experiments. For three member network NNE, AP1 and AP2 FP 
data were assigned to the first member network, AP3 FP data was 
assigned to the second member network, and AP4 FP data was 
assigned to the third network. For four member network NNE, 
both AP1 and AP2 FP data were assigned to the first and third 
member networks and both AP3 and AP4 FP data were assigned 
to the second and fourth member networks providing two 
dimensional data to each member network. As the number of 
member network is increased from one to two, enhanced 
estimation accuracy is observed in Fig. 8. However, as the number 
of member network is increased to three and four, the 
improvement is decreased due to the reduced available degree of 
information provided to the member networks. 
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그림 6. 다중 안테나 기반의 NNE 및 RBF 기법에 따른 오류 

거리 CDF 그래프. 
Fig.  6. Error distance CDF performance with different antenna 

configurations for NNE and RBF methods. 
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그림 7. 엑세스 포인트 수에 따른 다중 안테나 기반의 NNE 

및 RBF 기법의 오류 거리 성능 그래프. 
Fig.  7. Error distance performance with different number of APs 

and multiple antennas for CDF = 0.5. 
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그림 8. 다양한 인공신경망 수에 따른 다중 안테나 기반의 

NNE 및 RBF 기법의 오류 거리 성능 그래프. 
Fig.  8. Error distance performance with different number of NNs 

and multiple antennas for CDF = 0.5. 
 

V. CONCLUSIONS 
In this paper, we propose a novel location estimation algorithm 

based on NNE. To the best of our knowledge, this is the first time 
that NNE technique has been applied in the area of indoor 
wireless location estimation problem. The proposed NNE based 
algorithm is based on multiple NNs that are trained independently 
using a database called radio map containing RSS information 
from multiple APs. We evaluate the proposed algorithm by 
investigating the resulting cumulative distribution function respect 
to the error distance estimation using the TGn channel model that 
was developed by the IEEE 802.11n task group with multiple 
transmit and receive antennas. The experimental results indicate 
that our approach achieves significant improvements of the 
location estimation accuracy compared to the conventional 
methods with single and multiple antennas. Furthermore, the 
numerical results show that the proposed algorithm achieves a 
very low location estimation error even in indoor wireless 
environments with only single AP, which was not possible 
previously with conventional methods. 
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