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Abstract: Big Data became a buzz word nowadays due to the evolution of huge 

volumes of data beyond peta bytes. This article focuses on matrix multiplication 

with big sparse data. The proposed FASTsparseMUL algorithm outperforms the 

state-of-the-art big matrix multiplication approaches in sparse data scenario.   
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1. Introduction 

Big Data analytics and its applications attracted researchers leading to many 

inventions. While analysing the data, a small amount of data may be required for 

drawing conclusions, taking decisions or achieving the solution. As sparse data 

consists of large number of missing values or null values which are not useful in 

data analysis, the key is to store only the non-null values of it. When the sparse data 

becomes voluminous, so that we cannot apply any of the traditional database 

techniques to reach the objective, then it is known as big sparse data. An efficient 

sparse matrix representation and it’s usage to solve the big matrix multiplication 

problem in sparse data scenario is our main theme. Operation with the pair of big 

sparse matrices, used as input in sparse matrices multiplication, involves the 

problems of data representation, storage, retrieval and processing. Researchers had 

given many solutions to solve them. The data structures for the compact 

representation of sparse matrices were invented by D i  F e l i c e, A g n i f i l i  and 

C l e m e n t i n i  [1]. Compact storage options for sparse columns were proposed by 

A b a d i  [2]. The suitable sparse matrices representation techniques for GPU 

architectures were proposed by N e e l i m a  and P r a k a s h  [3]. The main 

advantages of the above three compact representation techniques are saving data 

storage space, and reducing data retrieval time. A fast sparse matrices multiplication 

technique was proposed by Y u s t e r  and Z w i c k  [4]. This technique partitions 

the matrices to be multiplied into a dense part and a sparse part. It uses a fast 

algebraic algorithm to multiply the dense parts, and the naive algorithm to multiply 

the sparse parts. It focussed on minimising the number of arithmetic operations 

involved in sparse matrices multiplication. But it is having only theoretical value.  
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Many Big Data processing techniques were brought into limelight by D e a n  and 

G h e m a w a t  [5] and W h i t e  [6] which can also be used in big sparse data 

applications. Parallelisation and indexing techniques for sparse matrices 

multiplication were implemented by B u l u c  and G i l b e r t  [7]. The 

communication overhead problem of sparse matrices multiplication was solved by 

B a l l a r d  et al. [8]. The parallelisation technique for sparse tensor matrix 

multiplication was proposed by S m i t h  et al. [9]. The above approaches [7-9] are 

not suitable for Big Data applications. Proper care should be taken by the 

programmer regarding the data distribution, replication, load balancing, 

communication overhead etc. Several mapreduce based techniques applicable in 

many big sparse data scenarios were innovated [10-15]. A Big Data solution for 

matrix factorization was proposed by S u n, L i  and R i s h e  [10]. It involves more 

computation cost. Though the HAMA based iterative approaches [11-12] exhibit 

good scalability over large data sets, they take multiple rounds for matrix 

multiplication. An efficient solution for matrix chain multiplication was proposed 

by M y u n g  and L e e  [13], giving more importance to inter-operation parallelism 

than intra-operation parallelism during matrix multiplication. Here, matrix is 

represented as a relation. But this representation has redundancy problem. More 

memory space is needed to store each input sparse matrix which increases the data 

retrieval time. This results in more time for multiplication. The Vector Linear 

Combination scheme was proposed by Z h e n g  et al. [14]. It splits matrix 

multiplication in two steps, namely scalar multiplication and linear combination of 

weighted vectors. It gives the result in a single mapreduce job. As any special input 

format or layout for sparse matrices is not taken prior to multiplication process, it 

leads to a little bit increase in multiplication time. Though multi-round matrix 

multiplication [15] is suitable for long running mapreduce computations in cloud 

systems, the management of input/output pairs in each round is a complex issue. 

The subsequent rounds will spend much time to read temporary files generated by 

the previous round. This results in extra overhead. 

Some serious attempts were made (ScaLAPACK [16] and DAGuE [17]) to 

make matrix computation easy and simple. But they failed to solve scalability issue. 

ScaLAPACK is difficult to program and incurs severe synchronization overhead. 

DAGuE does not implement any failure handling mechanism and its performance is 

limited due to tile level parallelism. With the pioneer work of Q i a n  et al. [18], 

MadLINQ was emerged as a unified programming model for both matrix algorithm 

and application developers. It is efficient in dense matrices’ computations. But it is 

difficult to handle sparse matrices using MadLINQ. These flaws in the above 

approaches motivated us to improve the matrix multiplication approach in the big 

sparse data perspective. As mapreduce has immense impact in real time Big Data 

applications, we selected mapreduce and improved the algorithm for big sparse data 

processing. We used compact sparse representations to save the memory space 

needed to store large sparse matrices. The results show that the proposed approach 

gives significant reduction in execution time and improvement in scalability. It 

overcomes the drawbacks of state-of-the-art approaches in operating with big sparse 

matrices. 
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2. Problem statement 

The big sparse matrices multiplication involves a pair of sparse matrices to be 

multiplied. Let us assume the first input sparse matrix Am×n and the second input 

sparse matrix Bn×k, i.e., matrix A consists of m number of rows and n number of 

columns, whereas matrix B consists of n number of rows and k number of columns. 

If we take the raw sparse matrix data, a larger amount of multiplication time is 

wasted in retrieving and processing null values. So, an efficient combined sparse 

data representation of the pair of sparse matrices, and its implementation in the 

matrix multiplication from the point of view of Big Data are the major problems. 

3. Problem solving and innovative content 

The following two sparse row representations can be used in representing a sparse 

matrix as shown in Figs 1 and 2.  

 
Fig. 1. Positions represented using a list (Compact sparse row representation #1) 

 
Fig. 2. Positions represented using a bit string (Compact sparse row representation#2) 

Though these compact sparse data representations we solve the storage and 

retrieval problems to the maximum extent; the sparse matrices multiplication 

problem is yet to be solved in the Big Data scenario.  
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Any Big Data solution has to satisfy the following three requirements.  

 All the data should be distributable. 

 The global pattern (Final output) should be obtained from all the local 

patterns (Local outputs). 

 The problem should be mapreducible. 

Mapreduce is a programming strategy (Fig. 3) well suited to solve Big Data 

problems where less execution time and more scalability are essential. The big input 

data set is first partitioned and sent to fixed number of map functions as input and 

processed in parallel. The intermediate outputs (Local outputs) of map functions are 

collected as one unit and sent to each reducer function as input. The total job 

consists of split, sort, and merge operation sequence. Finally, the outputs from all 

reducer functions are collected as one final output file. FAST sparse MUL uses this 

strategy to solve the big sparse matrices multiplication problem. 

 
Fig. 3. The implementation of Mapreduce programming strategy 

The problem is not mapreducible unless the compact sparse data 

representations of the two matrices involved in multiplication are converted into a 

mapreducible format. The sample mapreducible format of a sparse matrix row is 

shown below in Fig. 4. 

 
Fig. 4. The mapreducible format of a row of the sparse matrix M shown as a line in the input file 
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To simplify the problem further, instead of taking two input files for two 

sparse matrices which are to be multiplied, only a single input file is created by 

concatenating the mapreducible formats of respective matrices. This is implemented 

in the sub-algorithm called Combined_Sparse_Compact( ). The steps in the main 

Big Data algorithm FASTsparseMUL( ) are as shown below. 

Pseudo code for the FASTsparseMUL approach 

File  FASTsparseMUL (File D) // Algorithm FASTsparseMUL 

Input: The original sparse matrices A and B; 

Output: The target data file F; 

1: D=Combined_Sparse_Compact(Matrix A, Matrix B); /* Converts matrix A and matrix B into 

mapreducible compact format */  

2: F= FAST_MR_sparseMUL(D); // Initiates mapreduce job; 

 

File Combined_Sparse_Compact (Matrix A, Matrix B) // Algorithm Combined_Sparse_Compact 

Input: The original matrices A and B; 

File A consists of the original sparse matrix A of size m*n. 

File B consists of the original sparse matrix B of size n*k. 

Output: The target data file D; /* File D consists of the mapreducible compact form of both the 

original sparse matrices A and B.*/ 

1: for   i = 0…m do 

2:   str1=””;     // create  two empty strings. 

3:   str2=””; 

4:   str1+=”A, i”; 

5:   for j = 0…n do 

6:     if A[i] [j] = Null then // skips on reading null values of matrix A 

7:       continue; 

8:     else 

9:       str1+=”j”; 

10:       str2+=A[i] [j]; 

11:   end if 

12: end for 

13: line=str1+”\t”+str2; /* Conversion of each row of matrix A in the mapreducible compact                  

                                       form as shown in Fig. 4.*/        

14: Write line to file f1; 

15: end for 

16: for   i = 0...n do 

17:   str1=””;     // create two empty strings. 

18:   str2=””; 

19:   str1+=”B, i”; 

20:   for j = 0...k do 

21:     if B[i][j] = Null then  // skips on reading null values of matrix B 

22:       continue; 

23:     else 

24:       str1+=”j”; 

25:       str2+=B[i] [j]; 

26:     end if 

27:   end for 

30: line=str1+”\t”+str2; /* Conversion of each row of matrix B in the mapreducible compact                  

                                       form as shown in Fig. 4.*/        

31: Write line to file f2; 

32: end for 

33: Concatenate f1 and f2 to get file D. // Collective compact representation of both matrices A and B 

in a single file. 
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File FAST_MAP_sparseMUL (File D) // Map task; 
Input: A source data file D; 
Output: The intermediate file DPART ; 
M1: for each line in D do 
M2:   str = line.split (“\t”); 
M3:  str1=str [0].split (“,”); 
M4:  str2=str [1].split (“,”); 
M5:  if str1 [0] = ‘A’ then 

M6:     for j = 0…k do 
M7:      for r = 0... (str2.length) do 
M8:       Key = str1 [1] +”,”+j; // Representing matrix A in the (Key, Value) format.  
M9:       Value = A+”,”+str1[r+2] +”,”+str2[r];   
M10:       context.write (Key, Value);   // Writing line to DPART 
M11:    end for 

M12:   end for 
M13:  end if 
M14:  if str1 [0] = ‘B’ then 

M15:     for i = 0…m do 
M16:      for s = 0… (str2.length) do 
M17:       Key = i+”,”+str1[s+2]; // Representing matrix B in the (Key, Value) format. 
M18:       Value = B+”,”+str1[1]+”,”+str2[s]; 
M19:       context.write (Key, Value);   // Writing line to DPART 
M20:      end for 

M21:     end for 
M22:  end if 
M23: end for 

 

File FAST_RED_sparseMUL (File  DUNION) // Reduce task ; 
Input: DUNION = Collection of all DPART files. 
HashMap<Integer, Float> hashA = new HashMap<Integer, Float> ( ); 
HashMap<Integer, Float> hashB = new HashMap<Integer, Float> ( ); 
Float result = 0.0; 
Float a_ij, b_jk; 
Output: RDPART = The output of a reduce task; 
R1: for each line in DUNION  do 

              // grouped by Key; 
R2:     str1= Value.toString ( ).split(“,”); 
// Implementing Hash Maps to store intermediate (Key, Value) pairs. 
R3:      if str1 [0].equals (“A”) then 
R4:        hashA.put (Integer.parseInt (str1[1]), Float.parseFloat (str1[2])); 
R5:      else 

R6:         hashB.put (Integer.parseInt (str1 [1]), Float.parseFloat (str1 [2])); 
R7:      end if 
R8: end for 

/* Getting the intermediate (Key, Value) pairs from corresponding HashMaps and using them to obtain 
the product matrix. */ 
R9: for j=0…n do 

R10:   a_ij = hashA.containsKey (j)?hashA.get (j) : 0.0f; 
R11:   b_jk= hashB.containsKey (j)? hashB.get (j): 0.0f; 
R12:    result+= a_ij * b_jk; 
R13: end for 
// writing product matrix into the output file RDPART. 
R14: if result! = 0.0 then  
R15:  context.write (null, new Text (Key.toString () +”\t”+ Float.toString (result))); 
R16: end if 
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The Cloudera Quick Start VM 5.5.0 virtual machine environment with pseudo 

-distributed mode Hadoop 2.6.0, and other eco system tools like HBase, Pig, Hive 

etc., is used for experiments. The results in the following section prove that the 

proposed approach shows better execution time and scalability compared to the 

sparse matrices multiplication approaches using HAMA_Hadoop, HAMA_HPMR 

[11, 12] and VLCA [14]. 

4. Results and comparison 

Table 1. Analytical comparison of FASTsparseMUL with various matrix multiplication approaches 

in the big sparse data scenario 
Approach/Algo

rithm 
Advantages Limitations 

ScaLAPACK 
(HPC Solution) 

High expressiveness 

 Difficult to program 

 Problem size bounded by total memory size 

 Synchronization overhead 

DAGuE  
(Tiles & DAG) 

High expressiveness 

 Programmer must annotate data dependencies 

explicitly 

 Problem size bounded by total memory size 

 Performance bound by parallelism at tile level 

 No failure handling 

HAMA based 

iterative 
approach 

(MapReduce) 

No constraint on problem size  Takes multiple rounds for matrix multiplication 

MadLINQ 
 High expressiveness 

 No constraint on problem size 

 Performance bounded by tile level parallelism, 

improved with block-level pipelining 

 Handling sparse matrices is very difficult and 

creates severe load imbalance 

VLCA 
(MapReduce) 

 No constraint on problem size 

 Reduction in execution time  

 Takes single mapreduce job 

 No pre-processing to remove null values in the 

input sparse matrices 

 No use of  any special format  for input sparse 
matrices 

 No focus on null values in second input matrix 

 Unnecessary computation overhead which  

includes  null values of second input matrix 

FASTsparseM
UL 

(MapReduce) 

 No constraint on problem size 

 Maximum  reduction in 
execution time  

 Takes single  mapreduce job 

 Shows maximum scalability 

 Makes best use of a special 
format for input sparse matrices  

 Pre-processing overhead 

 Mainly intended for sparse matrices multiplication  

 Application of the algorithm to dense matrices is 

yet to be studied 

Table 1 shows comparative analysis of FASTsparseMUL with state-of-the-art 

matrix computation approaches in the big sparse data scenario. It compares with 

non-mapreduce based approaches as well as mapreduce based approaches. The non-

mapreduce based approaches like ScaLAPACK and DAGuE do not solve 

scalability issue of matrix computation. Though MadLINQ shows a little bit 

improvement in scalability, it has difficulties in handling sparse matrices. In 

particular, MadLINQ creates severe load imbalance problem while processing big 

sparse matrices. Our main focus is on improving scalability and reducing execution 

time of big sparse matrices multiplication. For the moment, we are skipping the 
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discussion of the above three approaches as they show deviation from the focused 

objectives. HAMA uses both iterative and block based approaches for matrix 

multiplication. As our focus is on sparse data case only and iterative approach of 

HAMA is better than its block based approach in sparse data applications, we 

compared the proposed algorithm with iterative HAMA approaches only. HAMA 

based iterative approaches take less execution time leading to further improvement 

in scalability. But they take multiple rounds to give the result. The iterative 

approach of HAMA requires N rounds for multiplying a matrix of size N×N [15]. 

Compared to HAMA based iterative approaches, FASTsparseMUL takes single 

round only. VLCA approach shows improvement in scalability and reduction in 

multiplication time. As it does not use any special format for input sparse matrices, 

there exists some multiplication time overhead. No pre-processing is performed in 

VLCA to remove null values and there is no focus on null values in second input 

matrix. In addition, it creates m number of copies of each null value present in each 

row vector of second input matrix. As a result, a significant number of additional 

multiplication operations are performed without considering the presence of null 

values in second input matrix. This incurs computation overhead and increase in 

multiplication time of sparse matrices. The proposed FASTsparseMUL makes best 

use of a special input format or layout for sparse matrices. It removes null values 

while pre-processing and avoids multiplication operations with null values to the 

maximum extent. It results in more reduction of execution time and improvement of 

scalability compared to HAMA based iterative approaches as well as VLCA 

approach.   

Table 2. Execution times of  various  matrix multiplication approaches for sparse data 
Matrix 

dimension  

Execution time (sec) 

HAMA_Hadoop HAMA_HPMR VLCA FASTsparseMUL 

32 16 16 12 41 

64 85 71 48 37 

128 102 101 69 35 

192 131 115 79 42 

256 181 172 103 47 

320 228 202 125 52 

 

 

Fig. 5. Execution time comparison of  FASTsparseMUL with  sparse matrices multiplication 

approaches of HAMA_Hadoop, HAMA_HPMR and VLCA 
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FASTsparseMUL is executed on single node Hadoop-pseudo distributed 

cluster environment with 1% sparse matrices having dimensions varying from 32 up 

to 320. Similarly sparse matrices multiplications with HAMA_Hadoop, 

HAMA_HPMR and VLCA are implemented in the same environment. On average, 

FASTsparseMUL shows approximately 2.8 times, 2.6 times and 1.7 times reduction 

in time complexity compared to sparse matrices multiplication approaches of 

HAMA_Hadoop, HAMA_HPMR and VLCA respectively. 

The execution times of different sparse matrices multiplication approaches are 

tabulated in Table 2 and compared in Fig. 5. Though FASTsparseMUL’s initial 

execution time for matrix dimension 32 is more, it takes less execution time for the 

next remaining matrix dimensions. The sample input file and overviews of the 

FASTsparseMUL’s mapreduce job execution are as shown below from Fig. 6 to 

Fig. 11b. 

 

Fig. 6. Snapshot of part of the sample input file for the matrix dimension 320 

 

Fig. 7. Snapshot of the output file contents for the matrix dimension 320 

 



 25 

 
(a) 

 

(b) 

Fig. 8. Overview of the mapreduce application of FASTsparseMUL for matrix dimension 320, 

displaying execution time of FASTsparseMUL for the matrix dimension 320. (Finish Time – Start 

Time = 19:41:56 – 19:41:04 = 52 sec (shown in Table 2)) 

 
Fig. 9. Overview of map tasks for the FASTsparseMUL’s mapreduce job 
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(a) 

 
(b) 

Fig. 10. Overview of reduce tasks for the FASTsparseMUL’s mapreduce job 
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(a) 

 

 
(b) 

Fig. 11. Overview of the history of FASTsparseMUL’s mapreduce job 



 28 

Scale up is calculated by using the following formula, 

(1)   Scale up(dimension) = log(T(dimension)/T(32)), 

where T denotes the execution time. 

Scale up is inversely proportional to the scalability. The scalability 

improvement of FASTsparseMUL compared to sparse matrices multiplication using 

HAMA_Hadoop, HAMA_HPMR and VLCA approach is depicted in Fig. 12 and 

tabulated in Table 3. 
 

Table 3. Scale up values of various sparse matrices multiplication approaches 

Matrix 

dimension 

Scale up 

HAMA_Hadoop HAMA_HPMR VLCA 
FASTsparse

MUL 

32 0.0 0.0 0.0 0.0 

64 0.73 0.65 0.6 –0.05 

128 0.80 0.80 0.76 –0.07 

192 0.91 0.86 0.82 0.01 

256 1.05 1.03 0.93 0.06 

320 1.15 1.10 1.02 0.1 

 

 
Fig. 12. Scale up comparison of FASTsparseMUL with sparse matrices multiplication approaches  

of HAMA_Hadoop, HAMA_HPMR and VLCA 

5. Discussion 

The proposed FASTsparseMUL algorithm is compared with sparse matrices 

multiplication approaches of HAMA_Hadoop, HAMA_HPMR and VLCA on a 

single node hadoop pseudo distributed environment. Though the algorithm initially 

takes more time for execution, it takes less time for other matrix dimensions 

afterwards, as shown in Fig. 5 and Table 2. There is improvement in the scalability 

also. Scale up values are low for FASTsparseMUL as shown in Fig. 12 and Table 3, 

which means that the scalability is high comparing to the sparse matrices 

multiplication approaches of HAMA_Hadoop, HAMA_HPMR and VLCA, as scale 

up is inversely proportional to scalability. Possible decrement in execution time and 

increment in scalability prove that the algorithm is more suitable for Big Data 

applications. The algorithm may be combined with HAMA_Hadoop or 

HAMA_HPMR or VLCA in the fully distributed cluster environment to get the 

results still better in the big sparse data perspective. 
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6. Conclusion 

An efficient Big Data algorithm for the multiplication of a pair of sparse matrices is 

proposed. In the sparse data case, the experiments prove that the algorithm 

outperforms the state-of-the-art big matrices multiplication approaches. It is more 

suitable for the Big Data applications showing better results in terms of scalability 

and execution time compared to the sparse matrices multiplication approaches of 

HAMA_Hadoop, HAMA_HPMR and VLCA. Application of the algorithm to dense 

matrices is yet to be studied. There are some future research directions possible in 

this problem domain. FASTsparseMUL may be combined and implemented with 

HAMA-Hadoop or HAMA-HPMR or VLCA to get significant improvement in the 

performance of sparse matrices multiplication. Moreover, FASTsparseMUL may be 

further developed to perform sparse matrices chain multiplication. The 

implementations of FASTsparseMUL with Spark and HBase are other possible 

research directions. The Big Data algorithms with compact representations of 

matrices are more desirable to improve the performance of sparse matrices data 

processing. The Big Data research needs encouragement in this problem domain. 
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