
 16

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 17, No 1

Sofia 2017 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2017-0002

Fast Matrix Multiplication with Big Sparse Data

G. Somasekhar1, K. Karthikeyan2
1School of Computer Science & Engineering, VIT University, Vellore, India
2School of Advanced Sciences, VIT University, Vellore, India

Emails: gidd.somasekhar2014@vit.ac.in k.karthikeyan@vit.ac.in

Abstract: Big Data became a buzz word nowadays due to the evolution of huge

volumes of data beyond peta bytes. This article focuses on matrix multiplication

with big sparse data. The proposed FASTsparseMUL algorithm outperforms the

state-of-the-art big matrix multiplication approaches in sparse data scenario.

Keywords: Sparse data, sparse matrices multiplication, Big Data, Mapreduce.

1. Introduction

Big Data analytics and its applications attracted researchers leading to many

inventions. While analysing the data, a small amount of data may be required for

drawing conclusions, taking decisions or achieving the solution. As sparse data

consists of large number of missing values or null values which are not useful in

data analysis, the key is to store only the non-null values of it. When the sparse data

becomes voluminous, so that we cannot apply any of the traditional database

techniques to reach the objective, then it is known as big sparse data. An efficient

sparse matrix representation and it’s usage to solve the big matrix multiplication

problem in sparse data scenario is our main theme. Operation with the pair of big

sparse matrices, used as input in sparse matrices multiplication, involves the

problems of data representation, storage, retrieval and processing. Researchers had

given many solutions to solve them. The data structures for the compact

representation of sparse matrices were invented by D i F e l i c e, A g n i f i l i and

C l e m e n t i n i [1]. Compact storage options for sparse columns were proposed by

A b a d i [2]. The suitable sparse matrices representation techniques for GPU

architectures were proposed by N e e l i m a and P r a k a s h [3]. The main

advantages of the above three compact representation techniques are saving data

storage space, and reducing data retrieval time. A fast sparse matrices multiplication

technique was proposed by Y u s t e r and Z w i c k [4]. This technique partitions

the matrices to be multiplied into a dense part and a sparse part. It uses a fast

algebraic algorithm to multiply the dense parts, and the naive algorithm to multiply

the sparse parts. It focussed on minimising the number of arithmetic operations

involved in sparse matrices multiplication. But it is having only theoretical value.

mailto:gidd.somasekhar2014@vit.ac.in
mailto:k.karthikeyan@vit.ac.in

 17

Many Big Data processing techniques were brought into limelight by D e a n and

G h e m a w a t [5] and W h i t e [6] which can also be used in big sparse data

applications. Parallelisation and indexing techniques for sparse matrices

multiplication were implemented by B u l u c and G i l b e r t [7]. The

communication overhead problem of sparse matrices multiplication was solved by

B a l l a r d et al. [8]. The parallelisation technique for sparse tensor matrix

multiplication was proposed by S m i t h et al. [9]. The above approaches [7-9] are

not suitable for Big Data applications. Proper care should be taken by the

programmer regarding the data distribution, replication, load balancing,

communication overhead etc. Several mapreduce based techniques applicable in

many big sparse data scenarios were innovated [10-15]. A Big Data solution for

matrix factorization was proposed by S u n, L i and R i s h e [10]. It involves more

computation cost. Though the HAMA based iterative approaches [11-12] exhibit

good scalability over large data sets, they take multiple rounds for matrix

multiplication. An efficient solution for matrix chain multiplication was proposed

by M y u n g and L e e [13], giving more importance to inter-operation parallelism

than intra-operation parallelism during matrix multiplication. Here, matrix is

represented as a relation. But this representation has redundancy problem. More

memory space is needed to store each input sparse matrix which increases the data

retrieval time. This results in more time for multiplication. The Vector Linear

Combination scheme was proposed by Z h e n g et al. [14]. It splits matrix

multiplication in two steps, namely scalar multiplication and linear combination of

weighted vectors. It gives the result in a single mapreduce job. As any special input

format or layout for sparse matrices is not taken prior to multiplication process, it

leads to a little bit increase in multiplication time. Though multi-round matrix

multiplication [15] is suitable for long running mapreduce computations in cloud

systems, the management of input/output pairs in each round is a complex issue.

The subsequent rounds will spend much time to read temporary files generated by

the previous round. This results in extra overhead.

Some serious attempts were made (ScaLAPACK [16] and DAGuE [17]) to

make matrix computation easy and simple. But they failed to solve scalability issue.

ScaLAPACK is difficult to program and incurs severe synchronization overhead.

DAGuE does not implement any failure handling mechanism and its performance is

limited due to tile level parallelism. With the pioneer work of Q i a n et al. [18],

MadLINQ was emerged as a unified programming model for both matrix algorithm

and application developers. It is efficient in dense matrices’ computations. But it is

difficult to handle sparse matrices using MadLINQ. These flaws in the above

approaches motivated us to improve the matrix multiplication approach in the big

sparse data perspective. As mapreduce has immense impact in real time Big Data

applications, we selected mapreduce and improved the algorithm for big sparse data

processing. We used compact sparse representations to save the memory space

needed to store large sparse matrices. The results show that the proposed approach

gives significant reduction in execution time and improvement in scalability. It

overcomes the drawbacks of state-of-the-art approaches in operating with big sparse

matrices.

 18

2. Problem statement

The big sparse matrices multiplication involves a pair of sparse matrices to be

multiplied. Let us assume the first input sparse matrix Am×n and the second input

sparse matrix Bn×k, i.e., matrix A consists of m number of rows and n number of

columns, whereas matrix B consists of n number of rows and k number of columns.

If we take the raw sparse matrix data, a larger amount of multiplication time is

wasted in retrieving and processing null values. So, an efficient combined sparse

data representation of the pair of sparse matrices, and its implementation in the

matrix multiplication from the point of view of Big Data are the major problems.

3. Problem solving and innovative content

The following two sparse row representations can be used in representing a sparse

matrix as shown in Figs 1 and 2.

Fig. 1. Positions represented using a list (Compact sparse row representation #1)

Fig. 2. Positions represented using a bit string (Compact sparse row representation#2)

Though these compact sparse data representations we solve the storage and

retrieval problems to the maximum extent; the sparse matrices multiplication

problem is yet to be solved in the Big Data scenario.

 19

Any Big Data solution has to satisfy the following three requirements.

 All the data should be distributable.

 The global pattern (Final output) should be obtained from all the local

patterns (Local outputs).

 The problem should be mapreducible.

Mapreduce is a programming strategy (Fig. 3) well suited to solve Big Data

problems where less execution time and more scalability are essential. The big input

data set is first partitioned and sent to fixed number of map functions as input and

processed in parallel. The intermediate outputs (Local outputs) of map functions are

collected as one unit and sent to each reducer function as input. The total job

consists of split, sort, and merge operation sequence. Finally, the outputs from all

reducer functions are collected as one final output file. FAST sparse MUL uses this

strategy to solve the big sparse matrices multiplication problem.

Fig. 3. The implementation of Mapreduce programming strategy

The problem is not mapreducible unless the compact sparse data

representations of the two matrices involved in multiplication are converted into a

mapreducible format. The sample mapreducible format of a sparse matrix row is

shown below in Fig. 4.

Fig. 4. The mapreducible format of a row of the sparse matrix M shown as a line in the input file

 20

To simplify the problem further, instead of taking two input files for two

sparse matrices which are to be multiplied, only a single input file is created by

concatenating the mapreducible formats of respective matrices. This is implemented

in the sub-algorithm called Combined_Sparse_Compact(). The steps in the main

Big Data algorithm FASTsparseMUL() are as shown below.

Pseudo code for the FASTsparseMUL approach

File FASTsparseMUL (File D) // Algorithm FASTsparseMUL

Input: The original sparse matrices A and B;

Output: The target data file F;

1: D=Combined_Sparse_Compact(Matrix A, Matrix B); /* Converts matrix A and matrix B into

mapreducible compact format */

2: F= FAST_MR_sparseMUL(D); // Initiates mapreduce job;

File Combined_Sparse_Compact (Matrix A, Matrix B) // Algorithm Combined_Sparse_Compact

Input: The original matrices A and B;

File A consists of the original sparse matrix A of size m*n.

File B consists of the original sparse matrix B of size n*k.

Output: The target data file D; /* File D consists of the mapreducible compact form of both the

original sparse matrices A and B.*/

1: for i = 0…m do

2: str1=””; // create two empty strings.

3: str2=””;

4: str1+=”A, i”;

5: for j = 0…n do

6: if A[i] [j] = Null then // skips on reading null values of matrix A

7: continue;

8: else

9: str1+=”j”;

10: str2+=A[i] [j];

11: end if

12: end for

13: line=str1+”\t”+str2; /* Conversion of each row of matrix A in the mapreducible compact

 form as shown in Fig. 4.*/

14: Write line to file f1;

15: end for

16: for i = 0...n do

17: str1=””; // create two empty strings.

18: str2=””;

19: str1+=”B, i”;

20: for j = 0...k do

21: if B[i][j] = Null then // skips on reading null values of matrix B

22: continue;

23: else

24: str1+=”j”;

25: str2+=B[i] [j];

26: end if

27: end for

30: line=str1+”\t”+str2; /* Conversion of each row of matrix B in the mapreducible compact

 form as shown in Fig. 4.*/

31: Write line to file f2;

32: end for

33: Concatenate f1 and f2 to get file D. // Collective compact representation of both matrices A and B

in a single file.

 21

File FAST_MAP_sparseMUL (File D) // Map task;
Input: A source data file D;
Output: The intermediate file DPART ;
M1: for each line in D do
M2: str = line.split (“\t”);
M3: str1=str [0].split (“,”);
M4: str2=str [1].split (“,”);
M5: if str1 [0] = ‘A’ then

M6: for j = 0…k do
M7: for r = 0... (str2.length) do
M8: Key = str1 [1] +”,”+j; // Representing matrix A in the (Key, Value) format.
M9: Value = A+”,”+str1[r+2] +”,”+str2[r];
M10: context.write (Key, Value); // Writing line to DPART
M11: end for

M12: end for
M13: end if
M14: if str1 [0] = ‘B’ then

M15: for i = 0…m do
M16: for s = 0… (str2.length) do
M17: Key = i+”,”+str1[s+2]; // Representing matrix B in the (Key, Value) format.
M18: Value = B+”,”+str1[1]+”,”+str2[s];
M19: context.write (Key, Value); // Writing line to DPART
M20: end for

M21: end for
M22: end if
M23: end for

File FAST_RED_sparseMUL (File DUNION) // Reduce task ;
Input: DUNION = Collection of all DPART files.
HashMap<Integer, Float> hashA = new HashMap<Integer, Float> ();
HashMap<Integer, Float> hashB = new HashMap<Integer, Float> ();
Float result = 0.0;
Float a_ij, b_jk;
Output: RDPART = The output of a reduce task;
R1: for each line in DUNION do

 // grouped by Key;
R2: str1= Value.toString ().split(“,”);
// Implementing Hash Maps to store intermediate (Key, Value) pairs.
R3: if str1 [0].equals (“A”) then
R4: hashA.put (Integer.parseInt (str1[1]), Float.parseFloat (str1[2]));
R5: else

R6: hashB.put (Integer.parseInt (str1 [1]), Float.parseFloat (str1 [2]));
R7: end if
R8: end for

/* Getting the intermediate (Key, Value) pairs from corresponding HashMaps and using them to obtain
the product matrix. */
R9: for j=0…n do

R10: a_ij = hashA.containsKey (j)?hashA.get (j) : 0.0f;
R11: b_jk= hashB.containsKey (j)? hashB.get (j): 0.0f;
R12: result+= a_ij * b_jk;
R13: end for
// writing product matrix into the output file RDPART.
R14: if result! = 0.0 then
R15: context.write (null, new Text (Key.toString () +”\t”+ Float.toString (result)));
R16: end if

 22

The Cloudera Quick Start VM 5.5.0 virtual machine environment with pseudo

-distributed mode Hadoop 2.6.0, and other eco system tools like HBase, Pig, Hive

etc., is used for experiments. The results in the following section prove that the

proposed approach shows better execution time and scalability compared to the

sparse matrices multiplication approaches using HAMA_Hadoop, HAMA_HPMR

[11, 12] and VLCA [14].

4. Results and comparison

Table 1. Analytical comparison of FASTsparseMUL with various matrix multiplication approaches

in the big sparse data scenario
Approach/Algo

rithm
Advantages Limitations

ScaLAPACK
(HPC Solution)

High expressiveness

 Difficult to program

 Problem size bounded by total memory size

 Synchronization overhead

DAGuE
(Tiles & DAG)

High expressiveness

 Programmer must annotate data dependencies

explicitly

 Problem size bounded by total memory size

 Performance bound by parallelism at tile level

 No failure handling

HAMA based

iterative
approach

(MapReduce)

No constraint on problem size Takes multiple rounds for matrix multiplication

MadLINQ
 High expressiveness

 No constraint on problem size

 Performance bounded by tile level parallelism,

improved with block-level pipelining

 Handling sparse matrices is very difficult and

creates severe load imbalance

VLCA
(MapReduce)

 No constraint on problem size

 Reduction in execution time

 Takes single mapreduce job

 No pre-processing to remove null values in the

input sparse matrices

 No use of any special format for input sparse
matrices

 No focus on null values in second input matrix

 Unnecessary computation overhead which

includes null values of second input matrix

FASTsparseM
UL

(MapReduce)

 No constraint on problem size

 Maximum reduction in
execution time

 Takes single mapreduce job

 Shows maximum scalability

 Makes best use of a special
format for input sparse matrices

 Pre-processing overhead

 Mainly intended for sparse matrices multiplication

 Application of the algorithm to dense matrices is

yet to be studied

Table 1 shows comparative analysis of FASTsparseMUL with state-of-the-art

matrix computation approaches in the big sparse data scenario. It compares with

non-mapreduce based approaches as well as mapreduce based approaches. The non-

mapreduce based approaches like ScaLAPACK and DAGuE do not solve

scalability issue of matrix computation. Though MadLINQ shows a little bit

improvement in scalability, it has difficulties in handling sparse matrices. In

particular, MadLINQ creates severe load imbalance problem while processing big

sparse matrices. Our main focus is on improving scalability and reducing execution

time of big sparse matrices multiplication. For the moment, we are skipping the

 23

discussion of the above three approaches as they show deviation from the focused

objectives. HAMA uses both iterative and block based approaches for matrix

multiplication. As our focus is on sparse data case only and iterative approach of

HAMA is better than its block based approach in sparse data applications, we

compared the proposed algorithm with iterative HAMA approaches only. HAMA

based iterative approaches take less execution time leading to further improvement

in scalability. But they take multiple rounds to give the result. The iterative

approach of HAMA requires N rounds for multiplying a matrix of size N×N [15].

Compared to HAMA based iterative approaches, FASTsparseMUL takes single

round only. VLCA approach shows improvement in scalability and reduction in

multiplication time. As it does not use any special format for input sparse matrices,

there exists some multiplication time overhead. No pre-processing is performed in

VLCA to remove null values and there is no focus on null values in second input

matrix. In addition, it creates m number of copies of each null value present in each

row vector of second input matrix. As a result, a significant number of additional

multiplication operations are performed without considering the presence of null

values in second input matrix. This incurs computation overhead and increase in

multiplication time of sparse matrices. The proposed FASTsparseMUL makes best

use of a special input format or layout for sparse matrices. It removes null values

while pre-processing and avoids multiplication operations with null values to the

maximum extent. It results in more reduction of execution time and improvement of

scalability compared to HAMA based iterative approaches as well as VLCA

approach.

Table 2. Execution times of various matrix multiplication approaches for sparse data
Matrix

dimension

Execution time (sec)

HAMA_Hadoop HAMA_HPMR VLCA FASTsparseMUL

32 16 16 12 41

64 85 71 48 37

128 102 101 69 35

192 131 115 79 42

256 181 172 103 47

320 228 202 125 52

Fig. 5. Execution time comparison of FASTsparseMUL with sparse matrices multiplication

approaches of HAMA_Hadoop, HAMA_HPMR and VLCA

 24

FASTsparseMUL is executed on single node Hadoop-pseudo distributed

cluster environment with 1% sparse matrices having dimensions varying from 32 up

to 320. Similarly sparse matrices multiplications with HAMA_Hadoop,

HAMA_HPMR and VLCA are implemented in the same environment. On average,

FASTsparseMUL shows approximately 2.8 times, 2.6 times and 1.7 times reduction

in time complexity compared to sparse matrices multiplication approaches of

HAMA_Hadoop, HAMA_HPMR and VLCA respectively.

The execution times of different sparse matrices multiplication approaches are

tabulated in Table 2 and compared in Fig. 5. Though FASTsparseMUL’s initial

execution time for matrix dimension 32 is more, it takes less execution time for the

next remaining matrix dimensions. The sample input file and overviews of the

FASTsparseMUL’s mapreduce job execution are as shown below from Fig. 6 to

Fig. 11b.

Fig. 6. Snapshot of part of the sample input file for the matrix dimension 320

Fig. 7. Snapshot of the output file contents for the matrix dimension 320

 25

(a)

(b)

Fig. 8. Overview of the mapreduce application of FASTsparseMUL for matrix dimension 320,

displaying execution time of FASTsparseMUL for the matrix dimension 320. (Finish Time – Start

Time = 19:41:56 – 19:41:04 = 52 sec (shown in Table 2))

Fig. 9. Overview of map tasks for the FASTsparseMUL’s mapreduce job

 26

(a)

(b)

Fig. 10. Overview of reduce tasks for the FASTsparseMUL’s mapreduce job

 27

(a)

(b)

Fig. 11. Overview of the history of FASTsparseMUL’s mapreduce job

 28

Scale up is calculated by using the following formula,

(1) Scale up(dimension) = log(T(dimension)/T(32)),

where T denotes the execution time.

Scale up is inversely proportional to the scalability. The scalability

improvement of FASTsparseMUL compared to sparse matrices multiplication using

HAMA_Hadoop, HAMA_HPMR and VLCA approach is depicted in Fig. 12 and

tabulated in Table 3.

Table 3. Scale up values of various sparse matrices multiplication approaches

Matrix

dimension

Scale up

HAMA_Hadoop HAMA_HPMR VLCA
FASTsparse

MUL

32 0.0 0.0 0.0 0.0

64 0.73 0.65 0.6 –0.05

128 0.80 0.80 0.76 –0.07

192 0.91 0.86 0.82 0.01

256 1.05 1.03 0.93 0.06

320 1.15 1.10 1.02 0.1

Fig. 12. Scale up comparison of FASTsparseMUL with sparse matrices multiplication approaches

of HAMA_Hadoop, HAMA_HPMR and VLCA

5. Discussion

The proposed FASTsparseMUL algorithm is compared with sparse matrices

multiplication approaches of HAMA_Hadoop, HAMA_HPMR and VLCA on a

single node hadoop pseudo distributed environment. Though the algorithm initially

takes more time for execution, it takes less time for other matrix dimensions

afterwards, as shown in Fig. 5 and Table 2. There is improvement in the scalability

also. Scale up values are low for FASTsparseMUL as shown in Fig. 12 and Table 3,

which means that the scalability is high comparing to the sparse matrices

multiplication approaches of HAMA_Hadoop, HAMA_HPMR and VLCA, as scale

up is inversely proportional to scalability. Possible decrement in execution time and

increment in scalability prove that the algorithm is more suitable for Big Data

applications. The algorithm may be combined with HAMA_Hadoop or

HAMA_HPMR or VLCA in the fully distributed cluster environment to get the

results still better in the big sparse data perspective.

 29

6. Conclusion

An efficient Big Data algorithm for the multiplication of a pair of sparse matrices is

proposed. In the sparse data case, the experiments prove that the algorithm

outperforms the state-of-the-art big matrices multiplication approaches. It is more

suitable for the Big Data applications showing better results in terms of scalability

and execution time compared to the sparse matrices multiplication approaches of

HAMA_Hadoop, HAMA_HPMR and VLCA. Application of the algorithm to dense

matrices is yet to be studied. There are some future research directions possible in

this problem domain. FASTsparseMUL may be combined and implemented with

HAMA-Hadoop or HAMA-HPMR or VLCA to get significant improvement in the

performance of sparse matrices multiplication. Moreover, FASTsparseMUL may be

further developed to perform sparse matrices chain multiplication. The

implementations of FASTsparseMUL with Spark and HBase are other possible

research directions. The Big Data algorithms with compact representations of

matrices are more desirable to improve the performance of sparse matrices data

processing. The Big Data research needs encouragement in this problem domain.

R e f e r e n c e s

1. D i F e l i c e, P., A. A g n i f i l i, E. C l e m e n t i n i. Data Structures for Compact Sparse

Matrices Representation. – J. Adv. Eng. Software, Vol. 11, 1989, No 2, pp. 75-83.

2. A b a d i, D. J. Column-Stores for Wide and Sparse Data. – In: Proc. of 3rd Biennial Conference on

Innovative Data Systems Research (CIDR), January 2007, pp. 1-6.

3. N e e l i m a, B., S. R. P r a k a s h. Effective Sparse Matrix Representation for the GPU

Architectures. – Int. J. of Computer Science, Engineering and Applications (IJCSEA), Vol. 2,

2012, No 2, pp. 151-165.

4. Y u s t e r, R., U. Z w i c k. Fast Sparse Matrix Multiplication. – J. ACM Transactions on

Algorithms (TALG), Vol. 1, 2005, No 1, pp. 2-13.

5. D e a n, J., S. G h e m a w a t. MapReduce: Simplified Data Processing on Large Clusters. –

Communications of the ACM, Vol. 51, 2008, No 1, pp. 107-113.

6. W h i t e, T. H. The Definitive Guide. O’Reilly Media, USA, 2009.

7. B u l u c, A., J. R. G i l b e r t. Parallel Sparse Matrix-Matrix Multiplication and Indexing:

Implementation and Experiments. – Siam J. Sci. Comput., Vol. 34, 2011, No 4,

pp. C170-C191.

8. B a l l a r d, G., A. B u l l u c, J. D e m m e l, L. G r i g o r i, B. L i p s h i t z, O. S c h w a r t z,

S. T o l e d o. Communication Optimal Parallel Multiplication of Sparse Random Matrices. –

In: Proc. of 25th Annual ACM Symposium on Parallelism in Algorithms and Architectures,

New York, July 2013, pp. 222-231.

9. S m i t h, S., N. R a v i n d r a n, N. D. S i d i r o p o u l o s, G. K a r y p i s. SPLATT: Efficient and

Parallel Sparse Tensor-Matrix Multiplication. – In: Proc. of 29th IEEE International Parallel

& Distributed Processing Symposium, May 2015.

10. S u n, Z., T. L i, N. R i s h e. Large-Scale Matrix Factorization using MapReduce. – In: Proc. of

International Conference on Data Mining Workshops, December 2010, pp. 1242-1248.

11. S e o, S., E. J. Y o o n, J. K i m, S. J i n, J. S. K i m, S. M a e n g. HAMA: An Efficient Matrix

Computation with the MapReduce Framework. – In: Proc. of IEEE 2nd International

Conference on Cloud Computing Technology and Science (CloudCom), November 2010,

pp. 721-726.

 30

12. S e o, S., I. J a n g, K. W o o, I. K i m, J. S. K i m, S. M a e n g. HPMR: Prefetching and Pre-

Shuffling in Shared MapReduce Computation Environment. – In: Proc. of 11th IEEE

International Conference on Cluster Computing, New Orleans, August 2009, pp. 1-8.

13. M y u n g, J., S. L e e. Matrix Chain Multiplication via Multi Way Join Algorithms in Mapreduce.

– In: Proc. of 6th International Conference on Ubiquitous Information Management and

Communication, Article No 53, February 2012.

14. Z h e n g, J. H., L. J. Z h a n g, R. Z h u, K. N i n g, D. L i u . Parallel Matrix Multiplication

Algorithm Based on Vector Linear Combination Using MapReduce. – In: Proc. of IEEE 11th

World Congress on Services, July 2013, pp.193-200.

15. C e c c a r e l l o, M., F. S i l v e s t r i. Experimental Evaluation of Multi-Round Matrix

Multiplication on MapReduce. – In: Proc. of ALENEX’15 Meeting on Algorithm

Engineering & Experiments, Society for Industrial and Applied Mathematics Philadelphia,

January 2015, pp. 119-132.

16. C h o i, J., J. J. D o n g a r r a, R. P o z o, D. W. W a l k e r. ScaLAPACK: A Scalable Linear

Algebra Library for Distributed Memory Concurrent Computers. – In Proc. of 4th

Sysmposium on the Frontiers of Massively Parallel Computation, IEEE, October 1992,

pp. 120-127.

17. B o s i l c a, G., A. B o u t e i l l e r , A. D a n a l i s , T. H e r a u l t, P. L e m a r i n i e r,

J. D o n g a r r a. DAGuE: A Generic Distributed DAG Engine for High Performance

Computing. – J. Parallel Computing, Vol. 38, 2010, No 1-2, pp. 37-51.

18. Q i a n , Z., X. C h e n, N. K a n g, M. C h e n, Y. Y u, T. M o s c i b r o d a, Z. Z h a n g. MadLINQ:

Large-Scale Distributed Matrix Computation for the Cloud. – In Proc. of 7th ACM European

Conference on Computer Systems EuroSys’2012, Berne, Switzerland, April 2012, pp. 197-

210.

