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This paper proposes a two-stage fast convergence adaptive complex-valued independent component analysis based on second-
order statistics of complex-valued source signals.The first stage constructs a cost function by extending the real-valued whiten cost
function to a complex-valued domain and optimizes the cost function using a complex-valued gradient. The second stage uses the
restriction that the pseudocovariance matrix of the separated signal is a diagonal matrix to construct the cost function and the
geodesic method is used to optimize the cost function. Compared with other adaptive complex-valued independent component
analysis, the proposed method shows a faster convergence rate and smaller error. Computer simulations were performed on
synthesized signals and communications signals. The simulation results demonstrate the validity of the proposed algorithm.

1. Introduction

Blind source separation (BSS) is the separating of a set of
source signals from a set of mixed signals without the aid of
information (or with very little information) about either the
source signals or the mixing process. Independent compo-
nent analysis (ICA) is an attractive approach for solving blind
source separation problems. ICA can be divided into real-
valued ICA and complex-valued ICA according to the mixed
signals. Complex-valued ICA is widely used to estimate
the mixing matrix or to separate complex-valued mixed
signals, such as frequency domain signals [1, 2], digital
communication signals [3, 4], functional magnetic resonance
imaging signals [5], and power system signals [6].

Studies of complex-valued ICA can be divided into three
categories. The first category includes methods based on
a nonlinear function, such as complex-valued fastICA (C-
fastICA) [7], noncircular complex fastICA (NC-fastICA)
[8], complex maximization of non-Gaussiantiy (CMN)
[9], complex-valued ICA by entropy bound minimization
(CEBM) [10], complex-valued ICA by entropy rate bound
minimization (CERBM) [11], and others [3, 12]. The second
category includes methods that are based on kurtosis or

higher-order cumulants, such as joint approximative diago-
nalization of eigenmatrix (JADE) [4], kurtosis maximization
(KM) [13], pseudo-Euclidean gradient iteration ICA (GEGI-
ICA) [14], and others [15–17]. The third category includes
methods based on second-order statistics, such as strong-
uncorrelating transform (SUT) [18, 19] and its adaptive
algorithms [2, 20–22] and pseudo-uncorrelating transform
(PUT) [23]. Recently, the performance and separability of
complex-valued Gaussian mixtures of SUTmethod have also
been studied [24, 25]. Every complex-valued ICA category
has its own merits and appropriate application conditions.
The methods based on second-order statistics have a simple
structure and low computation complexity and are suitable
for complex Gaussian and non-Gaussian noncircular signals.
In contrast, ICA methods in the first and second categories
are not suitable for use with complex Gaussian noncircular
signals.

The major advantage of SUT is that “whenever applicable,
remains perhaps the simplest and most accessible approach”
[24]. SUT is a batch algorithm and cannot be used to process
signals in real time, so some adaptive complex-valued ICA
algorithms have been proposed based on second-order statis-
tics [2, 20–22]. Compared with other complex-valued ICA
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strategies, adaptive complex-valued ICA algorithms based
on second-order statistics are simpler in structure and do
not require the probability density of the real and imaginary
parts of a complex-valued source signal to be non-Gaussian.
The Scott method [20] proposes an updating formula of
the separating matrix for adaptive complex-valued ICA
without mathematical speculation. The Cong method [2]
simultaneously uses diagonal covariance and pseudocovari-
ance noncircular signals as the cost function to deduce the
adaptive complex ICA. The convergence condition of the
Scott and Cong methods requires that the covariance and
pseudocovariance of the separated signal are simultaneously
diagonal. For example, if only the covariance of the separated
signal is diagonal, the method is unable to reach convergence
until the pseudocovariance is also diagonal.This requirement
could affect convergence speed. The Yang method [22] uses
a two-step serial updating method to make the separated
signals satisfy the above convergence condition. In the second
step, Yang uses the orthogonalmethod to force the separating
matrix to be a unitary matrix. This changes the updating
direction of the separating matrix and leads to slow conver-
gence speed.

To increase the rate of convergence, a fast complex-valued
ICA method is proposed in this work. The proposed method
first extends the real-valued whitening process to a complex-
valued domain to provide unit variance for the processed
signal. Second, this work uses the restriction that the pseudo-
covariancematrix of the separated signals is a diagonalmatrix
to construct cost function and optimize the cost function
using the geodesicmethod.This avoids computing the square
root and inverse of the separating matrix and also keeps
the separating matrix to be an orthogonal matrix, without
any forcing operation. This improves the convergence speed
of the proposed method compared to the other adaptive
methods.

2. Complex-Valued ICA and
Second-Order Statistics

2.1. Complex-Valued Linear ICA Model. Generally, a lin-
ear complex-valued ICA model that is noise-free can be
expressed as follows:

𝑥 = 𝐴𝑠, (1)

where 𝑠 = [𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
]
𝑇 is the unknown column vector

of source signals, 𝑛 is the number of source signals, 𝐴 is
the unknown complex-valued mixing matrix, 𝑥 = [𝑥

1
, 𝑥
2
,

. . . , 𝑥
𝑚
]
𝑇 is the column vector of observed complex-valued

mixed signals, and 𝑚 is the number of observed signals. The
components of the source signals are mutually independent.
Most complex-valued ICA algorithms assume that the num-
ber of observed signals is not less than the source signals,
and only one Gaussian source signal is allowed. The aim of
complex-valued ICA is to search the separating matrix and
estimate the source signals and mixing matrix. Given that
complex-valued ICA does not utilize any information about
the source signals or mixing matrix, it has some indetermi-
nacy in amplitude, sequence, and phase. This indeterminacy

does not affect the shape of the estimated source signal
waveform, which contains most information about source
signals.

2.2. Second-Order Statistics of Complex-Valued Signals.
Assume a complex-valued randomcolumn vector 𝑠 = 𝑠

𝑅
+𝑗𝑠
𝐼
,

where 𝑠
𝑅
and 𝑠
𝐼
are the real and imaginary part of 𝑠, respec-

tively, and 𝑗 = √−1. The expectation 𝐸[⋅] of the random
vector 𝑠 is defined as follows:

𝐸 [𝑠] = 𝐸 [𝑠
𝑅
] + 𝑗𝐸 [𝑠

𝐼
] . (2)

Its covariance matrix cov(𝑠) is defined as follows:

cov (𝑠) = 𝐸 [(𝑠 − 𝐸 (𝑠)) (𝑠 − 𝐸 (𝑠))
𝐻
] , (3)

where (⋅)𝐻 denotes the Hermitian transpose. Its correspond-
ing pseudocovariance matrix is defined as follows:

𝑝 cov (𝑠) = 𝐸 [(𝑠 − 𝐸 (𝑠)) (𝑠 − 𝐸 (𝑠))
𝑇
] , (4)

where (⋅)
𝑇 denotes the matrix transpose. The covariance

matrix together with the pseudocovariance matrix is the full
expression of second-order statistics [19]. If the pseudoco-
variance matrix equals zero, the random vector is considered
circular or proper. If both the covariance matrix and pseu-
docovariance matrix of the random vector are diagonal with
nonzero diagonal elements, the random vector is noncircular
or improper, and components of the random vector are called
strong uncorrelated components.

2.3. Complex-Valued ICA Based on SUT. For any complex
random vector 𝑥, if the vector can be transformed into a
random vector 𝑠 by use of a nonsingular square matrix 𝑤,
where 𝑠 = [𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
]
𝑇
= 𝑤𝑥 has covariance that is a unit

matrix and pseudocovariance that is a diagonal matrix with
diagonal elements between zero and one, then the matrix 𝑤
is called SUT. If the observed signal is the complex random
vector 𝑥 and the source signal is 𝑠, then the SUT is the
separating matrix in complex-valued ICA.The procedure for
complex-valued ICA based on SUT is as follows [18].

(1)Whitening the complex-valued observed signals 𝑥: the
whitening procedure is given by

𝑧 = 𝐵𝑥 = cov (𝑥)−1/2 𝑥, (5)

where the whitening matrix 𝐵 is the inverse of the matrix
square root of the covariance matrix and 𝑧 is the whitened
signal with a unit covariance matrix.

(2) Determining the separating matrix of the whitened
signal by use of Takagi’s factorization: this is done according
to

𝑝 cov (𝑧) = 𝑈Λ𝑈
𝑇
. (6)

From (5) and (6) we obtain the separating matrix 𝑤 = 𝑈
𝐻
𝐵.
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3. Proposed Adaptive Complex-Valued ICA

In this section, we describe an adaptive fast convergence
complex-valued ICA algorithmbased on second-order statis-
tics, used in the SUT method. This is unlike other adaptive
complex-valued ICAmethods that simultaneously force sep-
arated signals to comply with second-order statistics. Instead,
this method uses an adaptive serial updating method to
realize the SUT. First, we use an adaptive method to whiten
the observed signals. The cost function used in real-value
whitening is directly extended to the complex-valued signal.
The cost function is given as follows:

𝐽 (𝑤) = −

1

2

[log (det (𝑤𝑤𝐻)) −
𝑛

∑

𝑖=1

𝐸 {
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖

󵄨
󵄨
󵄨
󵄨

2

}] , (7)

where 𝑤 is the whitening matrix and 𝑦
𝑖
is the 𝑖th whitening

signal. In complex-valued signal processing, the steepest
descent direction of cost function (7) is

𝜕𝐽 (𝑤)

𝜕𝑤
∗

= −

1

2

(

𝜕 log (det (𝑤𝑤𝐻))
𝜕𝑤
∗

−

𝜕∑
𝑛
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𝐸 {
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󵄨
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󵄨
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󵄨
󵄨
󵄨
󵄨

2

}

𝜕𝑤
∗

)

= −

1

2

[2 (𝑤𝑤
𝐻
)

−1

𝑤 − 2𝐸 (𝑦𝑥
𝐻
)]

= − (𝑤𝑤
𝐻
)

−1

𝑤 + 𝐸 (𝑦𝑥
𝐻
) ,

(8)

where 𝑥 is the observed signal, 𝑦 = 𝑤𝑥, 𝜕𝑤𝐻/𝜕𝑤∗ = 𝐼,
and 𝜕𝑤

𝑇
/𝜕𝑤
∗
= 0. To avoid computing the matrix inverse, a

complex-valued natural gradient is used to simplify (8):

Δ𝑤 =

𝜕𝐽 (𝑤)

𝜕𝑤
∗

(𝑤
𝐻
𝑤)

= [− (𝑤𝑤
𝐻
)

−1

𝑤 + 𝐸 (𝑦𝑥
𝐻
)] (𝑤
𝐻
𝑤)

= 𝐸 (𝑦𝑦
𝐻
)𝑤 − 𝑤 = [𝐸 (𝑦𝑦

𝐻
) − 𝐼]𝑤.

(9)

So, adaptive whitening can be expressed as follows:

𝑤 (𝑘 + 1) = 𝑤 (𝑘) + 𝜇 [𝐼 − 𝐸 (𝑦𝑦
𝐻
)]𝑤 (𝑘) . (10)

If we use the instantaneous value instead of the expected value
in (10), we obtain the adaptive real-time whitening method:

𝑤 (𝑘 + 1) = 𝑤 (𝑘) + 𝜇 [𝐼 − 𝑦𝑦
𝐻
]𝑤 (𝑘) . (11)

Second, we must modify the separated signals to satisfy a
diagonal pseudocovariance matrix while keeping the covari-
ancematrix as a unit matrix.We use the cost function in [22],
which can be expressed as follows:

𝐽
2
(V) =

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
Λ − 𝐸 [𝑧𝑧

𝑇
]

󵄩
󵄩
󵄩
󵄩
󵄩

2

, (12)

where 𝑧 = V𝑦, V is the separating matrix of the whitened
signals and Λ is the diagonal matrix of 𝐸[𝑧𝑧𝑇]. The ordinary
gradient with V∗ is as follows:

𝜕𝐽
2
(V)

𝜕V∗
=

1

2

𝜕

󵄩
󵄩
󵄩
󵄩
󵄩
Λ − 𝐸 [𝑧𝑧

𝑇
]

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜕V∗

=

1

2

𝜕tr ((Λ − 𝐸 [𝑧𝑧
𝑇
]) (Λ − 𝐸 [𝑧𝑧

𝑇
])

𝐻

)

𝜕V∗

=

1

2

𝜕tr ((Λ − V𝐸 [𝑦𝑦
𝑇
] V𝑇) (Λ − V𝐸 [𝑦𝑦

𝑇
])

𝐻

)

𝜕V∗

= − (Λ − V𝐸 [𝑦𝑦
𝑇
] V𝑇) 𝐸 [V∗𝑦∗𝑦𝐻] .

(13)

The update of V can be written as follows:

V (𝑘 + 1) = V (𝑘)

+ 𝜇 (Λ − V (𝑘) 𝑃V (𝑘)𝑇) 𝐸 [V (𝑘)∗ 𝑃∗] ,
(14)

where 𝑃 = 𝐸[𝑦𝑦
𝑇
] is the correlated matrix of the whitened

signal. At the convergence point, the pseudocovariance
matrix of the separated signal is diagonal. To keep the covari-
ance matrix of the separated signal as a unit matrix, the
separating matrix V must be a unitary matrix. In [22], they
directly used the method of fixed-point fastICA to force the
separating matrix to be a unitary matrix:

V (𝑘 + 1) = V (𝑘 + 1) (V (𝑘 + 1)
𝐻 V (𝑘 + 1))

−1/2

. (15)

This approach has two major drawbacks. One is that (16)
changes the steepest gradient direction in every iteration,
which slows the convergence speed. The second is that (16)
must compute the square root and the inverse of the separat-
ing matrix in every iteration, which increases the algorithm
computation complexity, slowing the time of convergence.

To overcome this problem, we use a geodesic method
to search the optimized separating matrix V. The geodesic
method causes the separating matrix to move on the surface
of the orthogonal matrix to converge to a local minimum
without a forcing operation.The geodesic method is given by

V (𝑘 + 1) = 𝑃V (𝑘) , (16)

where

𝑃 = exp [𝑢 (ΔV (𝑘 + 1) V (𝑘)𝐻 − V (𝑘) ΔV (𝑘 + 1)
𝐻
)] . (17)

If V(𝑘) is a unitarymatrix, then V(𝑘+1) is also a unitarymatrix.
By using the geodesic method, we do not need additional
operations to make the separating matrix be an orthogonal
matrix and change its search direction.

Using the geodesic method with self-tuning [26] to opti-
mize the cost function (12), we can describe a fast con-
vergence complex-valued ICA method. The implementation
process of the proposed adaptive ICA method is as follows:

(1) Initialize the whitening matrix and separating matrix
using unit matrix, learning rate 𝜇

1
and 𝜇

2
, and itera-

tive number for optimizing (7) and (12), respectively.
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(2) Use (10) to whiten the observed signal 𝑥 and obtain
the whitening signal 𝑦 = 𝑤𝑥 and whiteningmatrix𝑤.

(3) Compute the gradient of the cost function in Rieman-
nian space, which can be expressed as follows:

𝐺 (𝑘) = (Λ − 𝑅) 𝐸 [𝐹
𝐻
] − 𝐸 [𝐹] (Λ − 𝑅

𝐻
) , (18)

where Λ is a diagonal matrix with diagonal elements
𝑅, 𝑅 = V(𝑘)𝑃V(𝑘)𝑇, 𝑃 = 𝐸[𝑦𝑦

𝑇
], and 𝐹 = V(𝑘)∗𝑃𝐻.

(4) Compute the rotation matrix 𝐷(𝑘) = exp(−𝜇
2
𝐺(𝑘))

and 𝑄(𝑘) = 𝐷(𝑘)𝐷(𝑘).

(5) If 𝐽 ≥ (𝜇
2
/2)real{trace{𝐺(𝑘)𝐺(𝑘)𝐻}}, 𝜇

2
= 2𝜇
2
, where

𝐽 = ‖Λ − 𝑅‖
2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Λ
2
− 𝑄 (𝑘) 𝑅𝑄 (𝑘)

𝑇󵄩󵄩
󵄩
󵄩
󵄩

2

, (19)

whereΛ andΛ
2
are diagonal matrices corresponding

to 𝑅 and 𝑄(𝑘)𝑅𝑄(𝑘)
𝑇, respectively.

(6) If 𝐽 < (𝜇
2
/2)real{trace{𝐺(𝑘)𝐺(𝑘)H}}, 𝜇

2
= 0.5𝜇

2
.

(7) Update the separating matrix

V (𝑘 + 1) = exp (−𝜇
2
𝐺 (𝑘)) V (𝑘) . (20)

(8) If real{trace{𝐺(𝑘)𝐺(𝑘)𝐻}} is sufficiently small, then
STOP; else return to step (3).

4. Experimental Results and Analysis

In order to test the algorithm, we used five synthesized
signals with different spectral coefficients, three digital com-
munication signals with different spectral coefficients, and
three synthesized signals of which two signals have same
spectral coefficients as the source signals. For simplicity, we
directly used the expectation of the signal instead of the
instantaneous value. Quality of separation was assessed using
the performance index (PI), a widely used index in ICA. PI
can be expressed as [27]

PI (𝐻) =

1

𝑛 (𝑛 − 1)

{

{

{

𝑛

∑

𝑖=1

(

𝑛
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𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

max
𝑙

󵄨
󵄨
󵄨
󵄨
ℎ
𝑖𝑙

󵄨
󵄨
󵄨
󵄨

− 1)

+

𝑛

∑

𝑗=1

(

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

max
𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑙𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

− 1)

}

}

}

,

(21)

where ℎ
𝑖𝑗
is the (𝑖, 𝑗) element of the global systemmatrix𝐻 =

𝑤𝐵𝐴, 𝑤𝐵 is the separating matrix of mixed signal, 𝐴 is the
mixing matrix, and max

𝑙
|ℎ
𝑖𝑙
| and max

𝑙
|ℎ
𝑙𝑗
| are the maximum

absolute value of the elements in the 𝑖 row and 𝑗 column
vector 𝐻, respectively. When perfect separation is achieved,
the performance index is zero. “In practice, the value of
performance index 10−2 gives quite a good performance” [27].
The smaller the value of PI, the better the performance.
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Figure 1: Convergence curves of four methods with synthesized
signals.
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Figure 2: Average convergence curves of fourmethods with synthe-
sized signals.

In the first experiment, five complex-valued synthesized
source signals with 10000 samples were used, constructed as
follows:

𝑠
𝑘
(𝑡) = [𝑁

(0,1)
(𝑡) + sin( 𝜋

100𝑘

𝑡)]

+ 𝑗 [𝑁
(0,𝑘)

(𝑡) + cos( 𝜋

100𝑘

𝑡)] ,

(22)

where 𝑘 = 1, 2, 3, 4, 5, 𝑁
(0,𝑘)

(𝑡) is a sample drawn from a
normal random distribution within (0, 𝑘), and 𝑗 = √−1.
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Figure 3: Original signals, mixed signals, and separated signals in the digital communication system.

The mixing matrix is a complex-valued random matrix with
real and imaginary parts generated from a random uniform
distribution between 0 and 1. All algorithms have the same
learning rate of 0.01 and were run 100 times. Each time,
the source signal and mixing matrix was independently
generated.

In contrast, convergence curves are shown in Figure 1 that
correspond to the four methods: Yang method [22], Scott
method [20], SUT method [18], and our proposed method.
Every method has 100 convergence curves, and every conver-
gence curve corresponds to results from one run. The SUT
method is a batch method without iterative computations.
Therefore, the convergence curves are straight lines. From
Figure 1, we can see that all the convergence curves of the
proposed method are more closer than the other adaptive
methods except for the SUT method. This suggests that the
proposed method shows improved, stable performance for
different mixed sources that is better than the other adaptive
methods. The SUT method shows the smallest fluctuation
range, followed by the proposed method, Scott method, and

then the Yang method. This indicates that the proposed
method is more suitable for processing different mixed
signals than the other adaptive methods, except for the SUT
method. Although the performance of SUT is more stable
than the othermethods for separating differentmixed signals,
its realization involves Takagi’s factorization that is difficult
to implement and is not suitable for real-time separation of
mixed signals. The adaptive complex-valued BSS method is
easy to perform and is more appropriate for real-time sepa-
ration of mixed signals.

Average convergence curves for the four methods are
shown in Figure 2. From Figure 2, we see that the Yang
method does not converge to a stationary point until 40000
iterations; the Scott method starts to converge close to 35000
iterations; the proposedmethod starts to converge after about
2000 iterations. Thus, the proposed method has a faster
convergence speed. The performance index is larger than
the proposed method when the Scott method converges to
a stationary point. This indicates that the proposed method
has a smaller error than the Scott method. The performance
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Figure 4: Average convergence curves of the four methods for dig-
ital communication signals.

indices of the proposedmethod and the SUTmethod are very
similar, indicating that the twomethods have almost the same
amount of error.

In the second experiment, we supposed that three digital
communication signals (8QAM, 4QAM, and BPSK) impinge
on a uniform linear antenna array with three elements from
directions of 10∘, 25∘, and 70∘. In Figure 3, the first row gives
the original source signals, the second row gives the three
mixed signals that are separately received by the three ele-
ments of antenna, and the third row provides the separated
signals obtained using the proposed method. Comparing the
source signals with the separated signals, we see that the
constellation of separated signals is almost the same as the
source signals, except the sequence, amplitude, and phase,
which are inherently indeterminate. This shows that the
proposed method is valid for the supposed communication
signals.

The average convergence curves for the four methods are
shown in Figure 4 from an average of 100 different simulation
runs with a learning rate of 0.01. From Figure 4, we see that
the proposed method starts to converge after 150 iterations,
the Scott method starts to converge after 4500 iterations, and
the slowest to converge is the Yang method, which starts to
converge after 17000 iterations. Thus, the proposed method
has faster convergence than the other adaptive methods.
When the proposed method convergences to the stationary
point, the performance index curve of proposed method and
SUT method are the same. This means that the two methods
have the same error for the communicating signals.

In the third experiment, three random complex-valued
signals were used as source signals, with spectral coeffi-
cients of 0, 0.6, and 0.6. Their imaginary and real parts
were generated by a random uniform distribution function.
Average convergence curves from an average of 100 different
simulation runs with a learning rate of 0.01 are shown for
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Figure 5: Average convergence curves of all methods for source sig-
nals; two of these signals have the same spectral coefficients.

the four methods in Figure 5. From Figure 5, we see that the
performance indexes of Yang method, the Scott method, and
the proposed method are less than 0.1 at the stationary point.
The average performance index of SUT is about 0.33, which
is far greater than 0.1. According to [27], this means that
the three adaptive methods successfully separated the mixed
signals but the SUT method failed for the mixed signals.
The SUT method includes Takagi’s factorization to factorize
the pseudocovariance matrix. Therefore, it is not suitable for
noncircular signals with the same spectral coefficients.

The proposed method has two stages. The convergence
curves shown in all figures are the convergence curves only
for the second stage. For the first stage, the whitening signal
converges to the unit matrix in first experiment after about
600 iterations and after about 100 iterations in the second and
third experiments. Compared with other methods, the total
iterations required for the proposed method are far less than
other methods.

5. Conclusions

This paper proposes an adaptive complex-valued ICA
method for noncircular signals based on second-order statis-
tics and the geodesic method. The proposed method has
faster convergence and smaller error than the other adaptive
methods. For different mixing source signals, the proposed
method has better performance and faster convergence than
the Scott method. For source signals with different spectral
coefficients, the proposed method and the SUT method have
almost the same error. However, the SUT method is not
suitable for source signals that some of source signals have
the same spectral coefficients.
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