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In the case of low signal-to-noise ratio, for the frequency estimation of single-frequency sinusoidal signals with additive white
Gaussian noise, the phase unwrapping estimator usually performs poorly. In this paper, an efficient and accuratemethod is proposed
to address this problem. Different from other methods, based on fast Fourier transform, the sampled signals are estimated with the
variances approaching the Cramer-Rao bound, followed with the maximum likelihood estimation of the frequency. Experimental
results reveal that our estimator has a better performance than other phase unwrapping estimators. Compared with the state-of-
the-art method, our estimator has the same accuracy and lower computational complexity. Besides, our estimator does not have
the estimation bias.

1. Introduction

Frequency estimation of a complex sinusoid is a fundamental
problem in signal processing and has applications in many
areas including communications, power spectrum estima-
tion, array, and radar signal processing [1–8]. The general
signal model is

𝑦 (𝑛) = 𝐴 exp (𝑗2𝜋 (𝜃 + 𝑓𝑛)) + 𝑤 (𝑛)
𝑛 = 0, 1, . . . ,𝑁 − 1

= 𝑟 (𝑛) exp (𝑗2𝜋𝑥 (𝑛))
(1)

where 𝑤(𝑛) = 𝑤𝐼(𝑛) + 𝑗𝑤𝑄(𝑛). 𝑤𝐼(𝑛) and 𝑤𝑄(𝑛) are
independent and normally distributed with zero mean and
variance 𝜎2. 𝑟(𝑛) is the absolute value of 𝑦(𝑛) and 𝑥(𝑛) is
the argument of 𝑦(𝑛). The frequency 𝑓, the phase 𝜃, and the
amplitude 𝐴 are deterministic but unknown constants, and𝑁 is the number of samples. 𝑓 and 𝜃 are in [-1/2,1/2). The
problem is to estimate𝑓with a low computational complexity
and statistically efficient estimator.

For all the frequency estimators, there is a signal-to-
noise ratio (SNR) threshold. When the SNR is lower than

the threshold, the mean square error (MSE) of the estimated
frequency no longer converges to the Cramer-Rao bound
(CRB) [7]. The classical periodogram estimator [6] is widely
considered to have the best performance and the lowest SNR
threshold. However, the implementation of this estimator
is complicated and may suffer from the resolution problem
[7, 8]. A commonly used phase unwrapping estimator was
first suggested by Kay [9]. Through calculating the first-
order difference of the phase signal, the resulting signal
resembles a moving average process and the parameters can
be estimated by standard linear techniques. Kay’s estimator
can attain the CRB in high SNR, while it performs poorly
from themoderate SNR. To change this situation, researchers
presented many improved phase unwrapping estimators [10–
17]. The main drawback of these phase unwrapping estima-
tors is that the SNR threshold still begins from a relatively
high SNR and the performance does depend on the value of
the frequency. Among the phase unwrapping estimators [9–
18], the least squares phase unwrapping estimator (LSPUE)
[18, 19] performs well under low SNR, but its computational
complexity is too high. Further, an iterative method requiring𝑁log2𝑁 operations was suggested in [20], showing a similar
performance to that of the periodogram estimator.
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In this paper, we propose a new phase unwrapping esti-
mator which has the same performance as the periodogram
estimator. The asymptotic variance is given and the choice of
parameters is analyzed. The main contribution of this paper
is that we improve the performance of the phase unwrapping
estimator by using fast Fourier transform (FFT) and derive
the asymptotic estimation variance. Compared with other
phase unwrapping estimators, both the SNR threshold and
the accuracy are improved. Compared with the state-of-the-
art method, our estimator has the same accuracy and lower
computational complexity. Moreover, unlike the state-of-the-
art method, our estimator does not have the estimation bias.

In Section 2, based on FFT, the estimated signals whose
variances approach the CRB are given. Then, the frequency is
estimated by phase unwrapping and the asymptotic variance
is derived. Two methods are suggested. In Section 3, the
simulations that display the statistical performance of our
estimators alongside the periodogram estimator and some
other phase unwrapping estimators are provided.

2. Methods

The phase unwrapping estimator like Kay’s [9] performs
poorly in low SNR and the main reason is that this kind of
estimator is no longer accurate from the medium SNR [15].
Considering (1), we have

𝑦 (𝑛) = 𝐴 exp (𝑗2𝜋 (𝜃 + 𝑓𝑛)) + 𝑤 (𝑛) = 𝐴
⋅ exp (𝑗2𝜋 (𝜃 + 𝑓𝑛)) [1 + 𝑤 (𝑛) exp (−𝑗2𝜋 (𝜃 + 𝑓𝑛))𝐴 ] (2)

Assuming 𝑤󸀠(𝑛) = 𝑤(𝑛)(exp(−𝑗2𝜋(𝜃 + 𝑓𝑛))/𝐴) = 𝑤󸀠𝐼(𝑛) +𝑗𝑤󸀠𝑄(𝑛), 𝑤󸀠𝐼(𝑛) and 𝑤󸀠𝑄(𝑛) are independent and normally
distributed with zero mean and variance 𝜎2/𝐴2. Then, 𝑦(𝑛)
can be expressed as

𝑦 (𝑛) = 𝐴 exp (𝑗2𝜋 (𝜃 + 𝑓𝑛)) (1 + 𝑤󸀠𝐼 (𝑛) + 𝑗𝑤󸀠𝑄 (𝑛)) (3)

The argument of 𝑦(𝑛), denoted 𝑥(𝑛) = ∠𝑦(𝑛)/2𝜋, has the
form

𝑥 (𝑛) = 𝜃 + 𝑓𝑛 + 𝑢 (𝑛) (4)

where 𝑢(𝑛) is the phase nosie. Considering (3), when the SNR
is high enough, we have the approximation

1 + 𝑤󸀠𝐼 (𝑛) + 𝑗𝑤󸀠𝑄 (𝑛) ≈ 1 + 𝑗𝑤󸀠𝑄 (𝑛) ≈ exp (𝑗𝑤󸀠𝑄 (𝑛)) (5)

According to (3), (4), and (5), 𝑢(𝑛) can be approximated as𝑢(𝑛) ≈ 𝑤󸀠𝑄(𝑛)/2𝜋. Then, we have the approximated linear
phase model

𝑥 (𝑛) ≈ 𝜃 + 𝑓𝑛 + 𝑤󸀠𝑄 (𝑛)2𝜋 (6)

Kay’s estimator is derived based on the model (6). However,
from the medium SNR, the approximation (5) is no longer
accurate and the phase noise 𝑢(𝑛) can no longer be approx-
imated as white Gaussian noise 𝑤󸀠𝑄(𝑛)/2𝜋. Then, estimators
based on model (6) will not be accurate.

To address this problem, a commonly used method is to
improve the SNR before using the phase unwrapping estima-
tor [10–12, 16, 17]. However, for these estimators, the SNR
threshold still begins from a relatively high SNR. Besides,
when 𝑓 is close to ±1/2, the performance is very poor.
Different from these estimators, our estimator is realized
by three steps. First, we do a coarse search to narrow the
range of the frequency to be estimated. Then, we improve
the SNR by using the moving average filter [16]. Finally, we
do a fine search by using the phase unwrapping estimator
to obtain the estimated frequency. We will show that, in this
way, the estimator can achieve the optimal SNR threshold and
its performance is no longer influenced by the value of the
frequency.

2.1. The Coarse Search. The sequence {𝑌(𝑚)} = FFT({𝑦(𝑛)})
is the𝑁-point FFT of {𝑦(𝑛)}. First, we do a coarse search and
find the parameter 𝑚̂𝑁 ∈ {0, 1, . . . , 𝑁 − 1}

𝑚̂𝑁 = argmax
𝑚

({|𝑌 (𝑚)|2}) (7)

According to [7, 20], the frequency can be written as

𝑓 = 𝑚̂𝑁 + 𝛿𝑁 (8)

In [20], it has been shown that𝛿 is almost surely in [−1/2, 1/2]
when the SNR is larger than the SNR threshold. Therefore,
in the analysis of the asymptotic variance, similar to [20] we
assume 𝛿 ∈ [−1/2, 1/2], which will not influence the result.
A complex exponential signal with the frequency −𝑚̂𝑁/𝑁 is
given as

𝑧 (𝑛) = exp(−𝑗2𝜋(𝑚̂𝑁𝑛𝑁 )) (9)

Multiplying 𝑦(𝑛) by 𝑧(𝑛), we have the signal 𝑠(𝑛)
𝑠 (𝑛) = 𝑦 (𝑛) 𝑧 (𝑛) = 𝐴 exp (𝑗2𝜋 (Δ𝑓𝑛 + 𝜃)) + V (𝑛) (10)

where V(𝑛) = 𝑤(𝑛) exp(−𝑗2𝜋(𝑚̂𝑁𝑛/𝑁)) = V𝐼(𝑛) + 𝑗V𝑄(𝑛) andΔ𝑓 = 𝛿/𝑁. V(𝑛) is also a complex white Gaussian noise with
zero-mean and variance 2𝜎2. As 𝑚̂𝑁 has been obtained by (7),
according to (8), to estimate 𝑓, all we need to do is to estimateΔ𝑓 from the sequence {𝑠(𝑛)}. Then the estimated frequency
can be obtained by

𝑓 = 𝑚̂𝑁𝑁 + Δ𝑓 (11)

2.2. Improving the SNR by the Moving Average Filter. Before
estimating Δ𝑓, we use the moving average filter to improve
the SNR. {𝑠(𝑛)} is divided into 𝐿 subsequences with the length𝑀 = 𝑁/𝐿. For the 𝑘𝑡ℎ subsequence, an estimated signal can
be obtained

𝑠 (𝑘) = 𝑀−1∑
𝑙=0

𝑠 (𝑘𝑀 + 𝑙) 𝑘 = 0, . . . , 𝐿 − 1 (12)
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Substituting (10) into (12) yields

𝑠 (𝑘)
= Ω (𝑀, 𝛿) 𝐴 exp (𝑗 (((2𝑘 + 1)𝑀 − 1) 𝜋Δ𝑓 + 2𝜋𝜃))
+ 𝑀−1∑
𝑙=0

V (𝑘𝑀 + 𝑙)
(13)

where

Ω(𝑀, 𝛿) = sin (𝑀𝜋Δ𝑓)
sin (𝜋Δ𝑓) = sin (𝑀𝜋𝛿/𝑁)

sin (𝜋𝛿/𝑁) (14)

The argument of 𝑠(𝑘), denoted ∠𝑠(𝑘)/2𝜋, can be written as

𝑥 (𝑘) = ((2𝑘𝑀 +𝑀 − 1)Δ𝑓
2 + 𝜃) + 𝑢𝑘 (15)

where 𝑢𝑘 is the phase noise. According to the phase model in
[21], 𝑢𝑘 can be approximated as

𝑢𝑘 = 1
Ω (𝑀, 𝛿)

𝑀−1∑
𝑙=0

V𝑄 (𝑘𝑀 + 𝑙)
2𝜋𝐴 (16)

Obviously, the variance of 𝑢𝑘 is
var (𝑢𝑘) = 𝑀

Ω(𝑀, 𝛿)2
𝜎2

(2𝜋)2 𝐴2 (17)

In the appendix, it is demonstrated that, on the condition
of 𝑀 ≤ 𝑁/8, var(𝑢𝑘) is quite close to 𝜎2/𝑀(2𝜋)2𝐴2
which is the CRB for phase estimation. For 𝑦(𝑛), the
phase noise is approximately 𝑤𝑄(𝑛)/2𝜋𝐴 with the variance
𝜎2/(2𝜋)2𝐴2 [21]. Therefore, for 𝑠(𝑘), the SNR is improved
by 10log10(𝑀)d𝐵 approximately. Correspondingly, for the
frequency estimation based on {𝑠(𝑘)}, the SNR threshold can
also be 10log10(𝑀)d𝐵 lower. That is why we can obtain a
much better performance. In addition, var(𝑢𝑘) increases with
the decreasing |𝛿| and attains the upper bound when 𝛿 =±1/2.
2.3. The Fine Search Method. In the following, using {𝑠(𝑘)},Δ𝑓 is estimated by Kay’s two phase unwrapping estimation
methods [9]: weighted phase average (WPA) and weighted
linear predictor (WLP). In this paper, we call our two
methods FFT-based weighted phase average (FWPA) and
FFT-based weighted linear predictor (FWLP), respectively.

First, we introduce the FWPA.We realize the FWPA esti-
mator throughusing theWPAestimator for {𝑠(𝑘)}. According
to (15), the first difference of the argument of 𝑠(𝑘)has the form
Δ 𝑘 = ∠ (𝑠 (𝑘 + 1) 𝑠∗ (𝑘))

2𝜋 = 𝑀Δ𝑓 + 𝑢𝑘+1 − 𝑢𝑘
𝑘 = 0, . . . , 𝐿 − 2

(18)

For (18), to estimate Δ𝑓, the minimum variance unbiased
estimation is well known [9]

Δ𝑓 = 1
𝑀

1𝑇C−1Δ
1𝑇C−11

= w𝑇Δ (19)

where 1 = [1, . . . , 1]𝑇, w = (1/𝑀)(1𝑇C−1/1𝑇C−11) =[𝑤0, . . . , 𝑤𝐿−2]𝑇, Δ = [Δ 0, . . . , Δ𝐿−2], and C = [𝐶𝑖,𝑗] is the(𝐿 − 1) × (𝐿 − 1) covariance matrix of {𝑢𝑘+1 − 𝑢𝑘}

𝐶𝑖,𝑗 = 𝑀
Ω (𝑀, 𝛿)2

𝜎2
(2𝜋)2 𝐴2

{{{{{{{{{

1, 𝑖 = 𝑗
−12 , 󵄨󵄨󵄨󵄨𝑖 − 𝑗󵄨󵄨󵄨󵄨 = 1
0, others

(20)

The variance of Δ𝑓 is [9]

var (Δ𝑓) = 6𝑀2
𝑁(𝑁2 −𝑀2)

1
Ω (𝑀, 𝛿)2

2𝜎2
(2𝜋)2 𝐴2 (21)

and the CRB for the estimated frequency is [6]

CRB (Δ𝑓) = 6
𝑁 (𝑁2 − 1)

2𝜎2
(2𝜋)2 𝐴2 (22)

According to (21), (22), (A.2), and (A.3), there is an upper
bound for var(Δ𝑓)

var (Δ𝑓) ≤ (𝑁2 − 1)
(𝑁2 −𝑀2)

𝑀2CRB (Δ𝑓)
Ω (𝑀, ±1/2)2

≈ 1
1 − (𝑀/𝑁)2

CRB (Δ𝑓)
(1 − (𝑀/2𝑁)2 (𝜋2/3!))2

(23)

It can be seen that the upper bound only has the relation with1/𝐿 = 𝑀/𝑁. To keep the balance between a low upper bound
and a high SNR, we usually set 𝑀 = 𝑁/8 or 𝑀 = 𝑁/16,
for which the upper bounds are, respectively, ≤ 1.029CRB
and ≤ 1.007CRB. By doing an iteration (when we obtain
the estimated frequency 𝑓, we can take 𝑓 as the result of the
coarse search, let 𝑚̂𝑁/𝑁 = 𝑓 and perform the frequency
estimation again), 𝛿 converges to 0, and the limit of var(Δ𝑓)
is

var (Δ𝑓) = (𝑁2 − 1)
(𝑁2 −𝑀2)

𝑀2CRB (Δ𝑓)
Ω (𝑀, 0)2

≈ CRB (Δ𝑓)
1 − (𝑀/𝑁)2

(24)

For 𝐿 = 8 and 𝐿 = 16, the limits of var(Δ𝑓) are, respectively,1.015CRB and 1.004CRB. Our estimator has an asymptotic
variance which is only a little larger than the CRB.

Then we introduce the FWLP. For the frequency estima-
tion problem, there are two kinds of relatively complicated
operations, namely, the sin/cos operation and the 𝑎𝑟𝑐𝑡𝑎𝑛𝑔𝑒𝑛𝑡
operation, so these operations should be reduced as much as
possible. In FFT and (9), calculating a complex exponential
needs two sin/cos operations. However, all of these complex
exponentials take fixed values that can be stored in memory
in advance. Hence, our estimator does not need sin/cos oper-
ations and, in order to decrease the number of 𝑎𝑟𝑐𝑡𝑎𝑛𝑔𝑒𝑛𝑡
operations, it is possible to find another estimator

Δ𝑓 = ∠ (∑𝐿−2𝑘=0 𝑤𝑘𝑠 (𝑘 + 1) 𝑠∗ (𝑘))
2𝜋 (25)
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Step1: Let {𝑌(𝑚)} = FFT{𝑦(𝑛)}
Step2: Find 𝑚̂𝑁 = argmax 𝑚({|𝑌(𝑚)|2})
Step3: For each 𝑛 from 0 to𝑁 − 1 do

𝑠(𝑛) = 𝑦 (𝑛) exp(−𝑗2𝜋(𝑚̂𝑁𝑛𝑁 ))
Step4: For each 𝑘 from 0 to 𝐿 − 1 do

𝑠(𝑘) = ∑𝑀−1𝑙=0 𝑠(𝑘M + 𝑙)
Step5: FWPA:Δ𝑓 = (∑𝐿−2𝑘=0 𝑤𝑘∠(𝑠(𝑘 + 1)𝑠∗(𝑘)))/2𝜋

FWLP:Δ𝑓 = ∠(∑𝐿−2𝑘=0 𝑤𝑘𝑠(𝑘 + 1)𝑠∗(𝑘))/2𝜋
Step6: 𝑓 = 𝑚̂𝑁/𝑁 + Δ𝑓
Algorithm 1: The algorithm for FWPA and FWLP.

This is the FWLP and the only one complicated arithmetic
operation is the 𝑎𝑟𝑐 𝑡𝑎𝑛𝑔𝑒𝑛𝑡, which can further reduce the
computational complexity. In [9, 15], it has been shown
that, for Kay’s method, the linear predictor has the same
performance as the phase average only in very high SNR.
However, for our method, the SNR is high enough to make
the linear predictor nearly have the same performance as the
phase average, which is shown in Section 3.The algorithm for
the FWPA and the FWLP is summarized in Algorithm 1.

2.4. Analysis of Computational Complexity. We assume that
the 𝑁-samples FFT requires 𝑁log2𝑁 complex valued (CV)
multiplications and additions. Locating the DFT maximum
requires additional 2𝑁 real-valued (RV) multiplications and𝑁 RV additions (calculation of the squared modulus of
the DFT) and 𝑁 comparisons (the worst case). The FWPA
needs (4𝑁log2𝑁 + 4𝑁) RV additions, (4𝑁log2𝑁 + 6𝑁 +𝐿) RV multiplications, 𝑁 comparisons, and 𝐿 𝑎𝑟𝑐𝑡𝑎𝑛𝑔𝑒𝑛𝑡
operations. The FWLP needs (4𝑁log2𝑁+ 4𝑁) RV additions,(4𝑁log2𝑁 + 6𝑁 + 2𝐿) RV multiplications, 𝑁 comparisons,
and only one 𝑎𝑟𝑐 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 operation. Among the previous
estimators achieving the optimal threshold, based on FFT,
the iterative estimators [4, 20] and the direct estimators [3]
have a lower computational complexity. According to the
recent result, among these estimators, the estimator in [4] has
the lowest computational complexity. This estimator needs(4𝑁log2𝑁 + 13𝑁) RV additions, (4𝑁log2𝑁 + 17𝑁) RV
multiplications, 6𝑁sin/cos calculations, and𝑁 comparisons.
Obviously, compared with the state-of-the-art method [4, 20]
our estimator has the same accuracy and a lower computa-
tional complexity. Besides, for the iterative estimators and the
direct estimators, there is an inevitable estimation bias [22],
while our estimator is unbiased.

3. Results and Discussion

This section shows the simulation results to illustrate the
performance of our estimators. First, we compare the per-
formance of our FWPA estimator, our FWLP estimator,
the periodogram estimator [6], the LSPUE [18], the WPA
estimator [9], the WLP estimator [9], and the hybrid esti-
mator [17]. Among the improved estimators [10–17] based
on Kay’s estimator [9], the hybrid estimator has the best
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Figure 1:TheMSE in frequency versus SNR for different estimators
when 𝑓 = 0.012, 𝜃 = 0.35,𝑁 = 64.
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Figure 2:TheMSE in frequency versus SNR for different estimators
when 𝑓 = 0.4, 𝜃 = 0.15,𝑁 = 1024.

performance. Compared with other phase unwrapping esti-
mators, the LSPUE has a much better performance. There-
fore, we compare our estimator with the hybrid estimator
and the LSPUE.The performance was evaluated by computer
simulation in complex white Gaussian noise and the SNR is10log10(𝐴2/2𝜎2) dB. The SNR was incremented from -20 dB
to 30 dB in steps of 2 dB. To ensure the accuracy, 10000 trials
were run for each SNR value.

Figures 1 and 2 show the MSE of different estimators.
In Figure 1, the parameters are 𝑓 = 0.012, 𝜃 = 0.35
and the number of samples is 𝑁 = 64. In Figure 2, the



Mathematical Problems in Engineering 5

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

M
SE

10−8

CRB
FWPA,Q=1
A&M,Q=1
A&M,Q=2

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5−0.5


Figure 3: The MSE in frequency for different estimators when 𝛿
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parameters are 𝑓 = 0.4, 𝜃 = 0.15 and the number of samples
is 𝑁 = 1024. It is clear that the periodogram estimator,
the LSPUE, our FWPA estimator, and our FWLP estimator
have the best performance, while our two estimators have a
lower computation complexity.TheWPA estimator, theWLP
estimator, and the hybrid estimator perform comparatively
poorly especially when𝑁 is large or 𝑓 is close to ±1/2. From
the medium SNR, the LSPUE has an asymptotic variance
which is a little larger than the CRB,while the variances of the
periodogram estimator and our FWPA estimator approach
the CRB accurately. Besides, when𝑁 is small (as is shown in
Figure 1,𝑁 is 64.), the SNR threshold of the LSPUE is larger
than that of the periodogram estimator while our estimators
still possess the optimal threshold. The WLP has a much
worse performance than WPA, while, for our estimators, the
performance of FWLP is only marginally worse than that of
FWPA.

Then, we compare the performance of our FWPA esti-
mator and the A&M estimator [4, 20]. Among the iterative
estimators, the A&M estimator has the best performance and
is widely considered to be the state-of-the-of-art method.
Considering that the performance of the two kinds of
estimators can be influenced by the value of 𝛿, we compare
the performance when 𝛿 varied from -0.5 to 0.5 in particular
SNR. Figures 3 and 4 show the MSE of different estimators
when 𝛿 varied from -0.5 to 0.5. In Figure 3, 𝑁 = 1024
and SNR = −5dB. In Figure 4, 𝑁 = 1024 and S𝑁𝑅 =5dB. 𝑄 is the number of iterations. It can be seen that
the performance of FWPA estimator is not influenced by
frequency variation. For the A&M estimator, an iteration
must be taken, while, for the FWPA estimator, we do not need
to take an iteration. Besides, the FWPA estimator has a better
performance than the A&M estimator when 𝛿 is close to±0.5.
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Figure 4: The MSE in frequency for different estimators when 𝛿
varied from −0.5 to 0.5,𝑁 = 1024, and SNR = 5 dB.

4. Conclusion

Phase unwrapping frequency estimator usually has a bad
performance in low SNR. To solve this problem, we propose a
new estimator. By improving the SNR before using the phase
unwrapping estimator, the new estimator performs well in
low SNR and has the optimal threshold. Compared with the
LSPUE, it has a better performance and the computational
complexity is reduced greatly. Compared with other phase
unwrapping estimators, it has a much better performance
and can well solve the problem of bad performance under
low SNR. Compared with the state-of-the-art method, it has
the same accuracy and a lower computational complexity.
Moreover, unlike the state-of-the-art method, our estimator
does not have the estimation bias. Due to its simplicity,
efficiency, and low computational complexity, the proposed
estimator represents a viable solution for real-time practical
applications.

Appendix

As it is shown in (17), the variance of 𝑢𝑘 is

var (𝑢𝑘) = 𝑀
Ω (𝑀, 𝛿)2

𝜎2
(2𝜋)2 𝐴2 (A.1)

According to (14), Ω(𝑀, 𝛿) is an even function for 𝛿 and
increases with the decreasing |𝛿|. As 𝛿 is in [−1/2, 1/2], we
have Ω(𝑀, 𝛿) ≥ Ω(𝑀,±1/2) and var(𝑢𝑘) has the upper
bound

var (𝑢𝑘) ≤ 𝑀2
Ω (𝑀,±1/2)2

𝜎2
𝑀(2𝜋)2 𝐴2 (A.2)
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Therefore, in order to make var(𝑢𝑘) approach 𝜎2/𝑀(2𝜋)2𝐴2
in all cases, wemust keepΩ(𝑀,±1/2) approaching𝑀. When𝛿 = ±1/2, according to (14), we have

Ω (𝑀, ±1/2)
𝑀 = sin (𝑀𝜋/2𝑁)

𝑀 sin (𝜋/2𝑁) ≈ 1 − (
𝑀
2𝑁)2 𝜋23! (A.3)

It can be seen that the upper bound of var(𝑢𝑘) only has the
relation with 𝑀/𝑁. The smaller 𝑀/𝑁 is, the smaller the
deviation between var(𝑢𝑘) and 𝜎2/𝑀(2𝜋)2𝐴2 is. When𝑀 =𝑁/8, the result for (A.3) is 0.9936 and var(𝑢𝑘) satisfies

var (𝑢𝑘) ≤ 1.0129
𝑀

𝜎2
(2𝜋)2 𝐴2 (A.4)

Therefore, we usually set𝑀 ≤ 𝑁/8.
Abbreviations

SNR: Signal-to-noise ratio
MSE: Mean square error
CRB: Cramer-Rao bound
LSPUE: Least squares phase unwrapping estimator
FFT: Fast Fourier transform
WPA: Weighted phase average
WLP: Weighted linear predictor
FWPA: FFT-based weighted phase average
FWLP: FFT-based weighted linear predictor.
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